201
|
Khan M, Dhammu TS, Qiao F, Kumar P, Singh AK, Singh I. S-Nitrosoglutathione Mimics the Beneficial Activity of Endothelial Nitric Oxide Synthase-Derived Nitric Oxide in a Mouse Model of Stroke. J Stroke Cerebrovasc Dis 2019; 28:104470. [PMID: 31680031 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide (NO)-producing activity of endothelial nitric oxide synthase (eNOS) plays a significant role in maintaining endothelial function and protecting against the stroke injury. However, the activity of the eNOS enzyme and the metabolism of major NO metabolite S-nitrosoglutathione (GSNO) are dysregulated after stroke, causing endothelial dysfunction. We investigated whether an administration of exogenous of GSNO or enhancing the level of endogenous GSNO protects against neurovascular injury in wild-type (WT) and eNOS-null (endothelial dysfunction) mouse models of cerebral ischemia-reperfusion (IR). METHODS Transient cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) for 60 minutes in male adult WT and eNOS null mice. GSNO (0.1 mg/kg body weight, intravenously) or N6022 (GSNO reductase inhibitor, 5.0 mg/kg body weight, intravenously) was administered 30 minutes before MCAO in preinjury and at the reperfusion in postinjury studies. Brain infarctions, edema, and neurobehavioral functions were evaluated at 24 hours after the reperfusion. RESULTS eNOS-null mice had a higher degree (P< .05) of injury than WT. Pre- or postinjury treatment with either GSNO or N6022 significantly reduced infarct volume, improved neurological and sensorimotor function in both WT and eNOS-null mice. CONCLUSION Reduced brain infarctions and edema, and improved neurobehavioral functions by pre- or postinjury GSNO treatment of eNOS knock out mice indicate that GSNO can attenuate IR injury, likely by mimicking the eNOS-derived NO-dependent anti-ischemic and anti-inflammatory functions. Neurovascular protection by GSNO/N6022 in both pre- and postischemic injury groups support GSNO as a promising drug candidate for the prevention and treatment of stroke injury.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Fei Qiao
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
202
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
203
|
PKCγ promotes axonal remodeling in the cortico-spinal tract via GSK3β/β-catenin signaling after traumatic brain injury. Sci Rep 2019; 9:17078. [PMID: 31745212 PMCID: PMC6863826 DOI: 10.1038/s41598-019-53225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability. Enhancing the midline-crossing of the contralateral corticospinal tract (CST) to the denervated side of spinal cord facilitates functional recovery after TBI. Activation of the gamma isoform of PKC (PKCγ) in contralateral CST implicates its roles in promoting CST remodeling after TBI. In this study, we deployed loss and gain of function strategies in N2a cells and primary cortical neurons in vitro, and demonstrated that PKCγ is not only important but necessary for neuronal differentiation, neurite outgrowth and axonal branching but not for axonal extension. Mechanically, through the phosphorylation of GSK3β, PKCγ stabilizes the expression of cytosolic β-catenin and increase GAP43 expression, thus promoting axonal outgrowth. Further, rAAV2/9-mediated delivery of constitutive PKCγ in the corticospinal tract after unilateral TBI in vivo additionally showed that specifically delivery of active PKCγ mutant to cortical neuron promotes midline crossing of corticospinal fibers from the uninjured side to the denervated cervical spinal cord. This PKCγ-mediated injury response promoted sensorimotor functional recovery. In conclusion, PKCγ mediates stability of β-catenin through the phosphorylation of GSK3β to facilitate neuronal differentiation, neurite outgrowth and axonal branching, and PKCγ maybe a novel therapeutic target for physiological and functional recovery after TBI.
Collapse
|
204
|
Neumannova K, Machova-Urdzikova L, Kwok JCF, Fawcett JW, Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp Neurol 2019; 324:113097. [PMID: 31707082 DOI: 10.1016/j.expneurol.2019.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
Regeneration after spinal cord injury is a goal of many studies. Although the most obvious target is to recover motor function, restoration of sensation can also improve the quality of life after spinal cord injury. For many patients, recovery of sensation in the perineal and genital area is a high priority. Currently there is no experimental test in rodents for measuring changes in sensation in the perineal and genital area after spinal cord injury. The aim of our study was to develop a behavioural test for measuring the sensitivity of the perineal and genital area in rats. We have modified the tape removal test used routinely to test sensorimotor deficits after stroke and spinal cord injury to test the perineal area with several variations. A small piece of tape (approximately 1 cm2) was attached to the perineal area. Time to first contact and to the removal of the tape was measured. Each rat was trained for 5 consecutive days and then tested weekly. We compared different rat strains (Wistar, Sprague-Dawley, Long-Evans and Lewis), both genders, shaving and non-shaving and different types of tape. We found that the test was suitable for all tested strains, however, Lewis rats achieved the lowest contact times, but this difference was significant only for the first few days of learning the task. There were no significant differences between gender and different types of tape or shaving. After training the animals underwent dorsal column lesion at T10 and were tested at day 3, 8, 14 and 21. The test detected a sensory deficit, the average time across all animals to sense the stimulus increased from 1'32 up to 3'20. There was a strong relationship between lesion size and tape detection time, and only lesions that extended laterally to the dorsal root entry zone produced significant sensory deficits. Other standard behavioural tests (BBB, von Frey, ladder and Plantar test) were performed in the same animals. There was a correlation between lesion size and deficit for the ladder and BBB tests, but not for the von Frey and Plantar tests. We conclude that the tape removal test is suitable for testing perineal sensation in rats, can be used in different strains and is appropriate for monitoring changes in sensation after spinal cord injury.
Collapse
Affiliation(s)
- K Neumannova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - L Machova-Urdzikova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - J C F Kwok
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Biological Sciences, University of Leeds, UK
| | - J W Fawcett
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - P Jendelova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic.
| |
Collapse
|
205
|
Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion. Brain Sci 2019; 9:brainsci9100287. [PMID: 31652564 PMCID: PMC6827002 DOI: 10.3390/brainsci9100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/21/2023] Open
Abstract
Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points.
Collapse
|
206
|
Jiang Y, Liu N, Wang Q, Yu Z, Lin L, Yuan J, Guo S, Ahn BJ, Wang XJ, Li X, Lo EH, Sun X, Wang X. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke 2019; 49:3039-3049. [PMID: 30571410 DOI: 10.1161/strokeaha.118.022119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- The complexity and heterogeneity of stroke, as well as the associated comorbidities, may render neuroprotective drugs less efficacious in clinical practice. Therefore, the development of targeted therapies to specific patient subsets has become a high priority in translational stroke research. Ischemic stroke with type 2 diabetes mellitus has a nearly double mortality rate and worse neurological outcomes. In the present study, we tested our hypothesis that rFGF21 (recombinant human fibroblast growth factor 21) administration is beneficial for improving neurological outcomes of ischemic stroke with type 2 diabetes mellitus. Methods- Type 2 diabetes mellitus db/db and nondiabetic genetic control db/+ mice were subjected into permanent focal ischemia of distal middle cerebral artery occlusion, we examined the effects of poststroke administration with rFGF21 in systemic metabolic disorders, inflammatory gatekeeper PPARγ (peroxisome proliferator-activated receptor γ) activity at 3 days, mRNA expression of inflammatory cytokines and microglia/macrophage activation at 7 days in the perilesion cortex, and last neurological function deficits, ischemic brain infarction, and white matter integrity up to 14 days after stroke of db/db mice. Results- After permanent focal ischemia, diabetic db/db mice presented confounding pathological features, including metabolic dysregulation, more severe brain damage, and neurological impairment, especially aggravated proinflammatory response and white matter integrity loss. However, daily rFGF21 treatment initiated at 6 hours after stroke for 14 days significantly normalized systemic metabolic disorders, rescued PPARγ activity decline, inhibited proinflammatory cytokine mRNA expression, and M1-like microglia/macrophage activation in the brain. Importantly, rFGF21 also significantly reduced white matter integrity loss, ischemic brain infarction, and neurological function deficits up to 14 days after stroke. The potential mechanisms of rFGF21 may in part consist of potent systematic metabolic regulation and PPARγ-activation promotion-associated antiproinflammatory roles in the brain. Conclusions- Taken together, these results suggest rFGF21 might be a novel and potent candidate of the disease-modifying strategy for treating ischemic stroke with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Jiang
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., ).,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,The Third Affiliated Hospital of Zhengzhou University, China (N.L.)
| | - Qingzhi Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Li Lin
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Jing Yuan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Bum Ju Ahn
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiaochuan Sun
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., )
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| |
Collapse
|
207
|
Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Goldsteins G, Koistinaho J, Dhungana H. Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics 2019; 16:1304-1319. [PMID: 31372938 PMCID: PMC6985054 DOI: 10.1007/s13311-019-00761-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is strongly induced by cerebral ischemia. The early phase after the onset of ischemic stroke is characterized by acute neuronal injury, microglial activation, and subsequent infiltration of blood-derived inflammatory cells, including macrophages. Therefore, modulation of the microglial/macrophage responses has increasingly gained interest as a potential therapeutic approach for the ischemic stroke. In our study, we investigated the effects of peripherally administered interleukin 13 (IL-13) in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Systemic administration of IL-13 immediately after the ischemic insult significantly reduced the lesion volume, alleviated the infiltration of CD45+ leukocytes, and promoted the microglia/macrophage alternative activation within the ischemic region, as determined by arginase 1 (Arg1) immunoreactivity at 3 days post-ischemia (dpi). Moreover, IL-13 enhanced the expression of M2a alternative activation markers Arg1 and Ym1 in the peri-ischemic (PI) area, as well as increased plasma IL-6 and IL-10 levels at 3 dpi. Furthermore, IL-13 treatment ameliorated gait disturbances at day 7 and 14 and sensorimotor deficits at day 14 post-ischemia, as analyzed by the CatWalk gait analysis system and adhesive removal test, respectively. Finally, IL-13 treatment decreased neuronal cell death in a coculture model of neuroinflammation with RAW 264.7 macrophages. Taken together, delivery of IL-13 enhances microglial/macrophage anti-inflammatory responses in vivo and in vitro, decreases ischemia-induced brain cell death, and improves sensory and motor functions in the pMCAo mouse model of cerebral ischemia.
Collapse
Affiliation(s)
- Natalia Kolosowska
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Meike H. Keuters
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mika Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290 Finland
| | - Hiramani Dhungana
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
208
|
Bu F, Min JW, Munshi Y, Lai YJ, Qi L, Urayama A, McCullough LD, Li J. Activation of endothelial ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and angiogenesis via activating Pak1 in mice. Exp Neurol 2019; 322:113059. [PMID: 31499064 DOI: 10.1016/j.expneurol.2019.113059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Long-term disability after stroke is common yet the mechanisms of post-stroke recovery are far from clear. It has been suggested that Ras-related C3 botulinum toxin substrate 1 (Rac1) contributes to functional recovery after ischemic stroke in mice. As Rac1 activation plays diverse roles in multiple cell types after central nervous system (CNS) injury, we herein examined the functional role of endothelial Rac1 in post-stroke recovery and angiogenesis. METHODS Transient middle cerebral artery occlusion (MCAO) in mice and oxygen-glucose deprivation (OGD) in human brain endothelial cell line-5i (HEBC 5i) were performed to mimic ischemic stroke. Lentivirus vectors encoding Rac1 with GFP and endothelial promotor ENG were injected into the animal's brain after stroke to overexpress Rac1. After injection, stroke recovery was tested by multiple behavioral tests including novel object recognition, adhesive removal and single pellet reaching tests. Endothelial regeneration in the peri-infarct zone was detected by immunohistochemistry (IHC). In the vitro model, the effect of Rac1 and Pak1 inhibitors to cell proliferation and migration was examined by CCK-8 and wound healing assays after OGD. The cellular protein level of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element-binding protein (CREB), extracellular signal-regulated kinase (ERK) 1/2 and mitogen-activated protein kinase kinase (MEK) 1/2 were detected by western blots. RESULTS Delayed overexpression of endothelial Rac1 after MCAO improved cognitive and sensorimotor recovery from day 14 to 21 after stroke, increased vascular density and the protein level of pericytes in the peri-infarct zone without altering tissue loss in mice. Consistently, inhibition of Rac1 prevented endothelial proliferation and migration after OGD. Pak1 inhibition exerted a similar effect on endothelial cells. However, co-incubation of Rac1 and Pak1 inhibitors with cells did not lead to additive effects when compared with either inhibitor alone. Moreover, individual inhibition of Rac1 or Pak1 suppressed OGD-induced activation of pro-regenerative molecules, including CREB, MEK1/2 and ERK1/2, as well as the production of BDNF in vitro. The level of these proteins did not further decrease if both Rac1 and Pak1 were simultaneously inhibited. CONCLUSIONS We conclude that activation of endothelial Rac1 improves functional recovery and angiogenesis after stroke, and this process is mediated by Pak1 signaling. This study provides novel insight for Rac1 in the mechanism of long-term stroke recovery.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jia-Wei Min
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yashasvee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yun-Ju Lai
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Li Qi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jun Li
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
209
|
Santi A, Genis L, Torres Aleman I. A Coordinated Action of Blood-Borne and Brain Insulin-Like Growth Factor I in the Response to Traumatic Brain Injury. Cereb Cortex 2019; 28:2007-2014. [PMID: 28449086 DOI: 10.1093/cercor/bhx106] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/11/2017] [Indexed: 01/20/2023] Open
Abstract
In response to injury, the brain produces different neuroprotective molecules, such as insulin-like growth factor I (IGF-I). However, IGF-I is also taken up by the brain from the circulation in response to physiological stimuli. Herein, we analyzed in mice the relative contribution of circulating and locally produced IGF-I to increased brain IGF-I levels after insult. Traumatic brain injury (TBI) induced by a controlled impact resulted in increased IGF-I levels in the vicinity of the lesion, but mice with low serum IGF-I showed significantly lower increases. Indeed, in normal mice, peripheral IGF-I accumulated at the lesion site after injury, and at the same time serum IGF-I levels decreased. Collectively, these data suggest that serum IGF-I enter into the brain after TBI and contributes to increased brain IGF-I levels at the injury site. This connection between central and circulating IGF-I provides an amenable route for treatment, as subcutaneous administration of IGF-I to TBI mice led to functional recovery. These latter results add further support to the use of systemic IGF-I or its mimetics for treatment of brain injuries.
Collapse
Affiliation(s)
- A Santi
- Cajal Institute, CSIC, Avda Dr Arce 37, 28002 Madrid, Spain.,Ciberned, C/ Valderrebollo 5, 28031 Madrid, Spain
| | - L Genis
- Cajal Institute, CSIC, Avda Dr Arce 37, 28002 Madrid, Spain.,Ciberned, C/ Valderrebollo 5, 28031 Madrid, Spain
| | - I Torres Aleman
- Cajal Institute, CSIC, Avda Dr Arce 37, 28002 Madrid, Spain.,Ciberned, C/ Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
210
|
Thompson JM, Blanton HL, Pietrzak A, Little W, Sherfey C, Guindon J. Front and hind paw differential analgesic effects of amitriptyline, gabapentin, ibuprofen, and URB937 on mechanical and cold sensitivity in cisplatin-induced neuropathy. Mol Pain 2019; 15:1744806919874192. [PMID: 31418316 PMCID: PMC6757502 DOI: 10.1177/1744806919874192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cisplatin is a widely used platinum-derived antineoplastic agent that frequently results in peripheral neuropathy. Therapeutic strategies for neuropathic pain are limited and characterized by variable efficacy and severe adverse effects. Clinical translation of novel analgesics has proven difficult with many agents demonstrating preclinical efficacy failing in clinical trials. Preclinical studies frequently assess pain behaviors in the hind paws; however, the front paws have a greater degree of the fine sensorimotor functions characteristically damaged by chemotherapy-induced neuropathy. This is the first study to assess pain responses in the front paws. Here, we test the hypothesis that mouse front paws exhibit pain-related alterations in mechanical and thermal (cold) sensitivity in a murine model of cisplatin-induced neuropathy and that pharmacological treatment with amitriptyline, gabapentin, ibuprofen, and URB937 normalize pain behaviors in the front and hind paws. Cold (acetone withdrawal latencies) and mechanical (von Frey withdrawal thresholds) sensitivity were significantly increased and decreased respectively in both the front and the hind paws following initiation of weekly systemic (intraperitoneal) cisplatin injections (5 mg/kg). For the hind paws, systemic administration of amitriptyline (30 mg/kg), gabapentin (100 mg/kg), ibuprofen (0–10 mg/kg), or URB937 (0–10 mg/kg) resulted in a decrease in acetone withdrawal latencies and increase in von Frey withdrawal thresholds with return to normal values at the highest doses tested. For the front paws, return to baseline values for the highest doses was found for cold allodynia but not mechanical allodynia, where the highest doses failed to return to baseline values. These results indicate that mouse front paws exhibit pain-related changes in cisplatin-induced neuropathy and that drug effects can vary based on testing stimulus and location. This suggests that front paw responses across multiple modalities provide reliable and accurate information about pain-related drug effects. Future studies should be aimed at elucidating the mechanisms underlying these differential effects.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Agata Pietrzak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - William Little
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
211
|
Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. Neuroreport 2019; 30:834-841. [DOI: 10.1097/wnr.0000000000001280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
212
|
Carbonell AU, Cho CH, Tindi JO, Counts PA, Bates JC, Erdjument-Bromage H, Cvejic S, Iaboni A, Kvint I, Rosensaft J, Banne E, Anagnostou E, Neubert TA, Scherer SW, Molholm S, Jordan BA. Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome. Nat Commun 2019; 10:3529. [PMID: 31388001 PMCID: PMC6684583 DOI: 10.1038/s41467-019-11437-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdeletions in ANKS1B, a predicted risk gene for autism and neuropsychiatric diseases. Affected individuals present with a spectrum of neurodevelopmental phenotypes, including autism, attention-deficit hyperactivity disorder, and speech and motor deficits. Neurons generated from patient-derived induced pluripotent stem cells demonstrate loss of the ANKS1B-encoded protein AIDA-1, a brain-specific protein highly enriched at neuronal synapses. A transgenic mouse model of Anks1b haploinsufficiency recapitulates a range of patient phenotypes, including social deficits, hyperactivity, and sensorimotor dysfunction. Identification of the AIDA-1 interactome using quantitative proteomics reveals protein networks involved in synaptic function and the etiology of neurodevelopmental disorders. Our findings formalize a link between the synaptic protein AIDA-1 and a rare, previously undefined genetic disease we term ANKS1B haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Pamela A Counts
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Juliana C Bates
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
| | - Svetlana Cvejic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Ifat Kvint
- Pediatric Neurology Clinic, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
- Department of Pharmacology, New York University School of Medicine, New York, 10016, NY, USA
| | - Stephen W Scherer
- Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, M56 0A4, ON, Canada
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
| |
Collapse
|
213
|
Shen J, Xu G, Zhu R, Yuan J, Ishii Y, Hamashima T, Matsushima T, Yamamoto S, Takatsuru Y, Nabekura J, Sasahara M. PDGFR-β restores blood-brain barrier functions in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2019; 39:1501-1515. [PMID: 29629621 PMCID: PMC6681529 DOI: 10.1177/0271678x18769515] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although platelet-derived growth factor receptor beta (PDGFR-β) mediates the recruitment of vascular pericytes into ischemic lesion to restore the blood-brain barrier (BBB) dysfunction, its mechanisms still remain elusive. Compared with control PDGFR-βfloxed/floxed mice (Floxed), postnatally induced systemic PDGFR-β knockout mice (Esr-KO) not only showed severe brain edema, neurologic functional deficits, decreased expression of tight junction (TJ) proteins, abundant endothelial transcytosis, and deformed TJs in the BBB, but also showed reduced expression of transforming growth factor-β (TGF-β) protein after photothrombotic middle cerebral artery occlusion (MCAO). In endothelial-pericyte co-culture, an in vitro model of BBB, the increment in the barrier function of endothelial monolayer induced by pericyte co-culture was completely cancelled by silencing PDGFR-β gene expression in pericytes, and was additively improved by PDGFR-β and TGF-β receptor signals under hypoxia condition. Exogenous PDGF-BB increased the expression of p-Smad2/3, while anti-TGF-β1 antibody at least partially inhibited the phosphorylation of Smad2/3 after PDGF-BB treatment in vitro. Furthermore, pre-administration of TGF-β1 partially alleviated edema formation, neurologic dysfunction, and TJs reduction in Esr-KO mice after MCAO. Accordingly, PDGFR-β signalling, via TGF-β signalling, may be crucial for restoration of BBB integrity after cerebral ischemia and therefore represents a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jie Shen
- 1 Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Guihua Xu
- 2 Department of Clinical Medical Research Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Runxiu Zhu
- 1 Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Jun Yuan
- 1 Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Yoko Ishii
- 3 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takeru Hamashima
- 3 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takako Matsushima
- 3 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Seiji Yamamoto
- 3 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yusuke Takatsuru
- 4 Department of Integrative Physiology, Graduate School of Medicine, University of Gunma, Gunma, Japan
| | - Junichi Nabekura
- 5 Division of Homeostatic Development, National Institute for Physiological Sciences, Aichi, Japan
| | - Masakiyo Sasahara
- 3 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
214
|
Ommati MM, Heidari R, Ghanbarinejad V, Abdoli N, Niknahad H. Taurine Treatment Provides Neuroprotection in a Mouse Model of Manganism. Biol Trace Elem Res 2019; 190:384-395. [PMID: 30357569 DOI: 10.1007/s12011-018-1552-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is a trace element involved in many physiological processes. However, excessive Mn exposure leads to neurological complications. Although no precise mechanism(s) has been found for Mn-induced neurotoxicity, oxidative stress and mitochondrial injury seem to play a relevant role in this complication. On the other hand, there is no protective strategy against Mn neurotoxicity so far. Taurine is an amino acid with significant neuroprotective properties. The current study was designed to evaluate the effect of taurine supplementation and its potential mechanism(s) of action in a mouse model of manganism. Animals were treated with Mn (100 mg/kg, s.c) alone and/or in combination with taurine (50, 100, and 500 mg/kg, i.p, for eight consecutive days). Severe locomotor dysfunction along with a significant elevation in brain tissue biomarkers of oxidative stress was evident in Mn-exposed mice. On the other hand, it was revealed that mitochondrial indices of functionality were hampered in Mn-treated animals. Taurine supplementation (50, 100, and 500 mg/kg, i.p) alleviated Mn-induced locomotor deficit. Moreover, this amino acid mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial indices of functionality. These data introduce taurine as a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of taurine might play a fundamental role in its neuroprotective properties against Mn toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran.
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
215
|
Wang H, Cheng X, Yu H, Zhang X, Guan M, Zhao L, Liu Y, Linag Y, Luo Y, Zhao C. Activation of GABAA receptors enhances the behavioral recovery but not axonal sprouting in ischemic rats. Restor Neurol Neurosci 2019; 37:315-331. [PMID: 31227671 DOI: 10.3233/rnn-180827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huibin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hang Yu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiting Guan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lanqing Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yifan Linag
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yujia Luo
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
216
|
Konczalla L, Perez DR, Wenzel N, Wolters-Eisfeld G, Klemp C, Lüddeke J, Wolski A, Landschulze D, Meier C, Buchholz A, Yao D, Hofmann BT, Graß JK, Spriestersbach SL, Grupp K, Schumacher U, Betzel C, Kapis S, Nuguid T, Steinberg P, Püschel K, Sauter G, Bockhorn M, Uzunoglu FG, Izbicki JR, Güngör C, El Gammal AT. Biperiden and mepazine effectively inhibit MALT1 activity and tumor growth in pancreatic cancer. Int J Cancer 2019; 146:1618-1630. [PMID: 31291468 DOI: 10.1002/ijc.32567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
MALT1 is a key mediator of NF-κB signaling and a main driver of B-cell lymphomas. Remarkably, MALT1 is expressed in the majority of pancreatic ductal adenocarcinomas (PDACs) as well, but absent from normal exocrine pancreatic tissue. Following, MALT1 shows off to be a specific target in cancer cells of PDAC without affecting regular pancreatic cells. Therefore, we studied the impact of pharmacological MALT1 inhibition in pancreatic cancer and showed promising effects on tumor progression. Mepazine (Mep), a phenothiazine derivative, is a known potent MALT1 inhibitor. Newly, we described that biperiden (Bip) is a potent MALT1 inhibitor with even less pharmacological side effects. Thus, Bip is a promising drug leading to reduced proliferation and increased apoptosis in PDAC cells in vitro and in vivo. By compromising MALT1 activity, nuclear translocation of c-Rel is prevented. c-Rel is critical for NF-κB-dependent inhibition of apoptosis. Hence, off-label use of Bip or Mep represents a promising new therapeutic approach to PDAC treatment. Regularly, the Anticholinergicum Bip is used to treat neurological side effects of Phenothiazines, like extrapyramidal symptoms.
Collapse
Affiliation(s)
- Leonie Konczalla
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel R Perez
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Wenzel
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Klemp
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Lüddeke
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Wolski
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Landschulze
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Chris Meier
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Anika Buchholz
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dichao Yao
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca T Hofmann
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia K Graß
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah L Spriestersbach
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Svetlana Kapis
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Theresa Nuguid
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximillian Bockhorn
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T El Gammal
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
217
|
Jin J, Tang Y, Li K, Zuo X, Zhan L, Sun W, Xu E. Bone Marrow Stromal Cells Alleviate Secondary Damage in the Substantia Nigra After Focal Cerebral Infarction in Rats. Front Cell Neurosci 2019; 13:338. [PMID: 31396057 PMCID: PMC6668054 DOI: 10.3389/fncel.2019.00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/02/2022] Open
Abstract
Transplantation of bone marrow stromal cells (BMSCs) is a promising therapy for ischemic stroke. Previously, we had reported that the secondary degeneration occurred in the ipsilateral substantia nigra (SN) after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley rats. However, whether BMSCs have neurorestorative effects on the secondary damage in the SN after focal cerebral infarction has not known. In this study, rats were subjected to dMCAO followed by intravenous administration of BMSCs 1 day later. We found that transplanted BMSCs survived and migrated to cortical infarct areas and ipsilateral SN. Furthermore, BMSCs promoted neurogenesis through proliferation and differentiation in the SN after dMCAO. Rats implanted with BMSCs showed significant improvement in their performance of modified neurological severity scores and adhesive-removal test. Engrafted BMSCs enhanced survival of dopaminergic neuron, reduced gliosis in the ipsilateral SN, and increased contents of dopamine (DA) and its metabolites in the ipsilateral striatum after dMCAO. With pseudorabies virus-152 as a retrograde tracer, we also demonstrated that BMSCs could effectively enhance the cortico-striatum-nigral connections. These results suggest that BMSCs transplantation exerts neurorestorative effects after cortical infarction through promoting endogenous neurogenesis, increasing contents of DA and its metabolites, alleviating the secondary neuronal damage in the SN, enhancing the cortico-striatum-nigral projections pathway, and finally improving the neurological functional outcome.
Collapse
Affiliation(s)
- Jizi Jin
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Yanyan Tang
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Kongping Li
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Xialin Zuo
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| |
Collapse
|
218
|
DeMars KM, Yang C, Candelario-Jalil E. Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochem Int 2019; 127:94-102. [DOI: 10.1016/j.neuint.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
|
219
|
Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. J Neurosci 2019; 39:6571-6594. [PMID: 31263065 DOI: 10.1523/jneurosci.2010-18.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/23/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Cell transplantation therapy provides a regenerative strategy for neural repair. We tested the hypothesis that selective excitation of transplanted induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) could recapitulate an activity-enriched microenvironment that confers regenerative benefits for the treatment of stroke. Mouse iPS-NPCs were transduced with a novel optochemogenetics fusion protein, luminopsin 3 (LMO3), which consisted of a bioluminescent luciferase, Gaussia luciferase, and an opsin, Volvox Channelrhodopsin 1. These LMO3-iPS-NPCs can be activated by either photostimulation using light or by the luciferase substrate coelenterazine (CTZ). In vitro stimulations of LMO3-iPS-NPCs increased expression of synapsin-1, postsynaptic density 95, brain derived neurotrophic factor (BDNF), and stromal cell-derived factor 1 and promoted neurite outgrowth. After transplantation into the ischemic cortex of mice, LMO3-iPS-NPCs differentiated into mature neurons. Synapse formation between implanted and host neurons was identified using immunogold electron microscopy and patch-clamp recordings. Stimulation of transplanted cells with daily intranasal administration of CTZ enhanced axonal myelination, synaptic transmission, improved thalamocortical connectivity, and functional recovery. Patch-clamp and multielectrode array recordings in brain slices showed that CTZ or light stimulation facilitated synaptic transmission and induced neuroplasticity mimicking the LTP of EPSPs. Stroke mice received the combined LMO3-iPS-NPC/CTZ treatment, but not cell or CTZ alone, showed enhanced neural network connections in the peri-infarct region, promoted optimal functional recoveries after stroke in male and female, young and aged mice. Thus, excitation of transplanted cells via the noninvasive optochemogenetics treatment provides a novel integrative cell therapy with comprehensive regenerative benefits after stroke.SIGNIFICANCE STATEMENT Neural network reconnection is critical for repairing damaged brain. Strategies that promote this repair are expected to improve functional outcomes. This study pioneers the generation and application of an optochemogenetics approach in stem cell transplantation therapy after stroke for optimal neural repair and functional recovery. Using induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) expressing the novel optochemogenetic probe luminopsin (LMO3), and intranasally delivered luciferase substrate coelenterazine, we show enhanced regenerative properties of LMO3-iPS-NPCs in vitro and after transplantation into the ischemic brain of different genders and ages. The noninvasive repeated coelenterazine stimulation of transplanted cells is feasible for clinical applications. The synergetic effects of the combinatorial cell therapy may have significant impacts on regenerative approach for treatments of CNS injuries.
Collapse
|
220
|
Zhang JY, Lee JH, Gu X, Wei ZZ, Harris MJ, Yu SP, Wei L. Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma 2019; 35:802-813. [PMID: 29108471 DOI: 10.1089/neu.2016.4871] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disorder, but no effective therapies currently exist. An underlying pathophysiology of TBI includes the pathological elevation of autophagy. β-Catenin, a downstream mediator of the canonical Wnt pathway, is a repressor of autophagy. The Wnt/β-catenin pathway plays a crucial role in cell proliferation and neuronal plasticity/repair in the adult brain. We hypothesized that activation of this pathway could promote neuroprotection and neural regeneration following TBI. In the controlled cortical impact (CCI) model of TBI in C57BL/6 mice (total n = 160), we examined intranasal application of recombinant Wnt3a (2 μg/kg) in a short-term (1 dose/day for 2 days) and long-term (1 dose/day for 7 days) regimen. Immunohistochemistry was performed at 1 to 14 days post-TBI to assess cell death and neurovascular regeneration. Western blotting measured canonical Wnt3a activity, expression of growth factors, and cell death markers. Longitudinal behavior assays evaluated functional recovery. In short-term experiments, Wnt3a treatment with a 60-min delay post-TBI suppressed TBI-induced autophagic activity in neurons (44.3 ± 6.98 and 4.25 ± 2.53 LC3+/NeuN+ double positive cells in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.0001, n = 5/group), reduced autophagic markers light chain 3 (LC3)-II and Beclin-1, as well as injury markers caspase-3 and matrix metalloproteinase 9 (MMP-9). The Wnt3a treatment reduced cell death and contusion volume (0.72 ± 0.07 mm2 and 0.26 ± 0.04 mm2 in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.001, n = 5/group). The 7-day Wnt3a treatment increased levels of β-catenin and growth factors glial-derived growth factor (GDNF) and vascular endothelial growth factor (VEGF). This chronic Wnt3a therapy augmented neurogenesis (0.52 ± 0.09 and 1.25 ± 0.13 BrdU+/NeuN+ co-labeled cells in TBI+Saline mice and TBI+Wnt3a mice, respectively; p < 0.01, n = 6/group) and angiogenesis (0.26 ± 0.07 and 0.74 ± 0.13 BrdU+/GLUT1+ co-labeled cells in TBI+Saline and TBI+Wnt3a mice, respectively; p = 0.014, n = 6/group). The treatment improved performance in the rotarod test and adhesive removal test. Targeting the Wnt pathway implements a unique combination of protective and regenerative approaches after TBI.
Collapse
Affiliation(s)
- James Ya Zhang
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jin Hwan Lee
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohuan Gu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Zheng Zachory Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | | | - Shan Ping Yu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Ling Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia .,2 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
221
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019; 10:1360. [PMID: 31258534 PMCID: PMC6587666 DOI: 10.3389/fimmu.2019.01360] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
222
|
Liu B, Zhang Q, Ke C, Xia Z, Luo C, Li Y, Guan X, Cao X, Xu Y, Zhao Y. Ginseng-Angelica-Sansheng-Pulvis Boosts Neurogenesis Against Focal Cerebral Ischemia-Induced Neurological Deficiency. Front Neurosci 2019; 13:515. [PMID: 31191223 PMCID: PMC6549519 DOI: 10.3389/fnins.2019.00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023] Open
Abstract
Background The traditional Chinese medicine Ginseng-Angelica-Shanseng-Pulvis (GASP) has been used to treat stroke for 300 years. This present study investigated if it can induce increases in neurogenesis following cerebral ischemic injury. Methods Rats following middle cerebral artery occlusion were orally treated with high, medium, and low doses of a standardized GASP extract. Results After 14 days, treatment with GASP improved regional blood flow and infarction volume by magnetic resonance imaging scanning, enhanced Ki67+ expression in the subventricular zone, increased brain-derived neurotrophic factor (BDNF) secretion, Nestin, and bone morphogenetic protein (BMP) 2/4 expressions in the hippocampus in a dose-dependent manner. Interestingly, low-dose treatment with GASP downregulated doublecortin and Notch1 expressions in the hippocampus, as well as upregulated glial fibrillary acidic protein expression in the subgranular zone and hairy and enhancer of split (Hes) 5 expression in the hippocampus, while treatment with middle and high doses of GASP reversed these results. Meanwhile, the consumed time was shortened in the basket test and the adhesive removal test and the spending time on exploring novel objects was prolonged by GASP treatment whose effects were more obvious at day 14 post-ischemia. Conclusion Our study demonstrates that treatment with GASP increases neurogenesis and ameliorates sensorimotor functions and recognition memory. We hypothesize that these effects are thought be mediated by an effect on the BMP2/4 pathway and Notch1/Hes5 signal. Due to its beneficial efficacy, GASP can be recognized as an alternative therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Chienchih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Zhenyan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
223
|
Panax notoginsenoside Rb1 Restores the Neurotrophic Imbalance Following Photothrombotic Stroke in Rats. Neurotox Res 2019; 36:441-451. [DOI: 10.1007/s12640-019-00058-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
|
224
|
Wei ZZ, Chen D, Liu LP, Gu X, Zhong W, Zhang YB, Wang Y, Yu SP, Wei L. Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral Ischemia in Mice. Cell Transplant 2019; 27:622-636. [PMID: 29984620 PMCID: PMC7020234 DOI: 10.1177/0963689718771889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke remains a serious threat to human life. There are limited effective
therapies for the treatment of stroke. We have previously demonstrated that angiogenesis
and neurogenesis in the brain play an important role in functional recovery following
ischemic stroke. Recent studies indicate that increased arteriogenesis and collateral
circulation are determining factors for restoring reperfusion and outcomes of stroke
patients. Danshensu, the Salvia miltiorrhiza root extract, is used in
treatments of various human ischemic events in traditional Chinese medicine. Its
therapeutic mechanism, however, is not well clarified. Due to its proposed effect on
angiogenesis and arteriogenesis, we hypothesized that danshensu could benefit stroke
recovery through stimulating neurogenesis and collaterogenesis in the post-ischemia brain.
Focal ischemic stroke targeting the right sensorimotor cortex was induced in wild-type
C57BL6 mice and transgenic mice expressing green fluorescent protein (GFP) to label smooth
muscle cells of brain arteries. Sodium danshensu (SDS, 700 mg/kg) was administered
intraperitoneally (i.p.) 10 min after stroke and once daily until animals were sacrificed.
To label proliferating cells, 5-bromo-2′-deoxyuridine (BrdU; 50 mg/kg, i.p.) was
administered, starting on day 3 after ischemia and continued once daily until sacrifice.
At 14 days after stroke, SDS significantly increased the expression of vascular
endothelial growth factor (VEGF), stromal-derived factor-1 (SDF-1), brain-derived
neurotrophic factor (BDNF), and endothelial nitric oxide synthase (eNOS) in the
peri-infarct region. SDS-treated animals showed increased number of doublecortin
(DCX)-positive cells. Greater numbers of proliferating endothelial cells and smooth muscle
cells were detected in SDS-treated mice 21 days after stroke in comparison with vehicle
controls. The number of newly formed neurons labeled by NeuN and BrdU antibodies increased
in SDS-treated mice 28 days after stroke. SDS significantly increased the newly formed
arteries and the diameter of collateral arteries, leading to enhanced local cerebral blood
flow recovery after stroke. These results suggest that systemic sodium danshensu treatment
shows significant regenerative effects in the post-ischemic brain, which may benefit
long-term functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dongdong Chen
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Li-Ping Liu
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiwei Zhong
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong-Bo Zhang
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Ping Yu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.,5 Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
225
|
Delatour LC, Yeh PW, Yeh HH. Ethanol Exposure In Utero Disrupts Radial Migration and Pyramidal Cell Development in the Somatosensory Cortex. Cereb Cortex 2019; 29:2125-2139. [PMID: 29688328 PMCID: PMC6458911 DOI: 10.1093/cercor/bhy094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Deficits in sensory processing in Fetal Alcohol Spectrum Disorders (FASD) implicate dysfunction in the somatosensory cortex. However, the effects of prenatal ethanol exposure on the development of this region await elucidation. Here, we used an established mouse model of FASD with binge-type ethanol exposure from embryonic day 13.5-16.5 to investigate the effects of prenatal ethanol exposure on pyramidal neurons in the somatosensory cortex. Specifically, we focused on the radial migration of primordial pyramidal neurons during embryonic corticogenesis and their morphology and function during active synaptogenesis in early postnatal development. We found that prenatal ethanol exposure resulted in aberrant radial migration, particularly affecting the populations of postmitotic pyramidal neurons. In addition, there was an enduring effect of prenatal ethanol exposure on glutamate-mediated synaptic transmission in layer V/VI pyramidal neurons. This persisted beyond a transient decrease in pyramidal neuron dendritic complexity that was evident only during early postnatal development. Adolescent mice exposed prenatally to ethanol also displayed decreased tactile sensitivity, as revealed by a modified adhesive tape removal assay. Our findings demonstrate the persistent effects of binge-type in utero ethanol exposure on pyramidal neuron form and function and ultimately sensory processing, the latter being reminiscent of that seen in individuals with FASD.
Collapse
Affiliation(s)
- Laurie C Delatour
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| | - Pamela W Yeh
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| | - Hermes H Yeh
- Program in Experimental and Molecular Medicine, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 66 College Street, Hanover, NH, USA
| |
Collapse
|
226
|
Xu B, Wang T, Xiao J, Dong W, Wen HZ, Wang X, Qin Y, Cai N, Zhou Z, Xu J, Wang H. FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β/ β-catenin signaling pathway. Biochem Pharmacol 2019; 163:234-249. [DOI: 10.1016/j.bcp.2019.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
227
|
Tonello R, Lee SH, Berta T. Monoclonal Antibody Targeting the Matrix Metalloproteinase 9 Prevents and Reverses Paclitaxel-Induced Peripheral Neuropathy in Mice. THE JOURNAL OF PAIN 2019; 20:515-527. [PMID: 30471427 PMCID: PMC6511475 DOI: 10.1016/j.jpain.2018.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling condition accompanying several cancer drugs, including the front-line chemotherapeutic agent paclitaxel. Although CIPN can force dose reduction or even discontinuation of chemotherapy, affecting survival in cancer patients, there is no US Food and Drug Administration-approved treatment for CIPN. CIPN in mice is characterized by neuropathic pain (eg, mechanical allodynia) in association with oxidative stress and neuroinflammation in dorsal root ganglia (DRGs), as well as retraction of intraepidermal nerve fibers. Here, we report that paclitaxel-induced mechanical allodynia is associated with transcriptional increase in matrix metalloproteinase (MMP) 2 and 9 and decrease in metallopeptidase inhibitor 1 (TIMP1), a strong endogenous MMP9 inhibitor. Consistently, MMP9 protein levels are increased in DRG neurons in vivo and in vitro after paclitaxel treatment, and it is demonstrated, for the first time, that intrathecal injections of exogenous TIMP1 or a monoclonal antibody targeting MMP9 (MMP9 mAb) significantly prevented and reversed paclitaxel-induced mechanical allodynia in male and female mice. Analyses of DRG tissues showed that MMP9 mAb significantly decreased oxidative stress and neuroinflammatory mediators interleukin-6 and tumor necrosis factor α, as well as prevented paclitaxel-induced loss of intraepidermal nerve fibers. These findings suggest that MMP signaling plays a key role in paclitaxel-induced peripheral neuropathy, and MMP9 mAb may offer new therapeutic approaches for the treatment of CIPN. PERSPECTIVE: Chemotherapy-induced peripheral neuropathy (CIPN) remains ineffectively managed in cancer patients, potentially leading to the discontinuation of an otherwise life-saving treatment. Here, we demonstrate that a monoclonal antibody targeting MMP9 alleviates neuropathic pain and several mechanisms linked to CIPN. This study is particularly relevant, because a humanized MMP9 antibody is already in advanced clinical trials for the treatment of colitis and cancer, and it may be straightforwardly repurposed for the relief of CIPN.
Collapse
Affiliation(s)
- Raquel Tonello
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sang Hoon Lee
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
228
|
Role of NADPH oxidase-2 in the progression of the inflammatory response secondary to striatum excitotoxic damage. J Neuroinflammation 2019; 16:91. [PMID: 30995916 PMCID: PMC6471795 DOI: 10.1186/s12974-019-1478-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023] Open
Abstract
Background During excitotoxic damage, neuronal death results from the increase in intracellular calcium, the induction of oxidative stress, and a subsequent inflammatory response. NADPH oxidases (NOX) are relevant sources of reactive oxygen species (ROS) during excitotoxic damage. NADPH oxidase-2 (NOX-2) has been particularly related to neuronal damage and death, as well as to the resolution of the subsequent inflammatory response. As ROS are crucial components of the regulation of inflammatory response, in this work, we evaluated the role of NOX-2 in the progression of inflammation resulting from glutamate-induced excitotoxic damage of the striatum in an in vivo model. Methods The striata of wild-type C57BL/6 J and NOX-2 KO mice (gp91Cybbtm1Din/J) were stereotactically injected with monosodium glutamate either alone or in combination with IL-4 or IL-10. The damage was evaluated in histological sections stained with cresyl violet and Fluoro-Jade B. The enzymatic activity of caspase-3 and NOX were also measured. Additionally, the cytokine profile was identified by ELISA and motor activity was verified by the tests of the cylinder, the adhesive tape removal, and the inverted grid. Results Our results show a neuroprotective effect in mice with a genetic inhibition of NOX-2, which is partially due to a differential response to excitotoxic damage, characterized by the production of anti-inflammatory cytokines. In NOX-2 KO animals, the excitotoxic condition increased the production of interleukin-4, which could contribute to the production of interleukin-10 that decreased neuronal apoptotic death and the magnitude of striatal injury. Treatment with interleukin-4 and interleukin-10 protected from excitotoxic damage in wild-type animals. Conclusions The release of proinflammatory cytokines during the excitotoxic event promotes an additional apoptotic death of neurons that survived the initial damage. During the subsequent inflammatory response to excitotoxic damage, ROS generated by NOX-2 play a decisive role in the extension of the lesion and consequently in the severity of the functional compromise, probably by regulating the anti-inflammatory cytokines production. Electronic supplementary material The online version of this article (10.1186/s12974-019-1478-4) contains supplementary material, which is available to authorized users.
Collapse
|
229
|
Gluncic V, Moric M, Chu Y, Hanko V, Li J, Lukić IK, Lukić A, Edassery SL, Kroin JS, Persons AL, Perry P, Kelly L, Shiveley TJ, Nice K, Napier CT, Kordower JH, Tuman KJ. In utero Exposure to Anesthetics Alters Neuronal Migration Pattern in Developing Cerebral Cortex and Causes Postnatal Behavioral Deficits in Rats. Cereb Cortex 2019; 29:5285-5301. [DOI: 10.1093/cercor/bhz065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
During fetal development, cerebral cortical neurons are generated in the proliferative zone along the ventricles and then migrate to their final positions. To examine the impact of in utero exposure to anesthetics on neuronal migration, we injected pregnant rats with bromodeoxyuridine to label fetal neurons generated at embryonic Day (E) 17 and then randomized these rats to 9 different groups receiving 3 different means of anesthesia (oxygen/control, propofol, isoflurane) for 3 exposure durations (20, 50, 120 min). Histological analysis of brains from 54 pups revealed that significant number of neurons in anesthetized animals failed to acquire their correct cortical position and remained dispersed within inappropriate cortical layers and/or adjacent white matter. Behavioral testing of 86 littermates pointed to abnormalities that correspond to the aberrations in the brain areas that are specifically developing during the E17. In the second set of experiments, fetal brains exposed to isoflurane at E16 had diminished expression of the reelin and glutamic acid decarboxylase 67, proteins critical for neuronal migration. Together, these results call for cautious use of anesthetics during the neuronal migration period in pregnancy and more comprehensive investigation of neurodevelopmental consequences for the fetus and possible consequences later in life.
Collapse
Affiliation(s)
- V Gluncic
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago IL, USA
| | - M Moric
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Y Chu
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - V Hanko
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J Li
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - I K Lukić
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - A Lukić
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - S L Edassery
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - J S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - A L Persons
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - P Perry
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - L Kelly
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - T J Shiveley
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - K Nice
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - C T Napier
- Department of Pharmacology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - K J Tuman
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
230
|
Liu Y, Li Y, Zhan M, Liu Y, Li Z, Li J, Cheng G, Teng G, Lu L. Astrocytic cytochrome P450 4A/20-hydroxyeicosatetraenoic acid contributes to angiogenesis in the experimental ischemic stroke. Brain Res 2019; 1708:160-170. [DOI: 10.1016/j.brainres.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
|
231
|
Bennion DM, Jones CH, Donnangelo LL, Graham JT, Isenberg JD, Dang AN, Rodriguez V, Sinisterra RDM, Sousa FB, Santos RAS, Sumners C. Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischaemic stroke. Exp Physiol 2019; 103:916-923. [PMID: 29663576 DOI: 10.1113/ep086957] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Angiotensin-(1-7) decreases cerebral infarct volume and improves neurological function when delivered centrally before and during ischaemic stroke. Here, we assessed the neuroprotective effects of angiotensin-(1-7) when delivered orally post-stroke. What is the main finding and its importance? We show that oral delivery of angiotensin-(1-7) attenuates cerebral damage induced by middle cerebral artery occlusion in rats, without affecting blood pressure or cerebral blood flow. Importantly, these treatments begin post-stroke at times coincident with the treatment window for tissue plasminogen activator, providing supporting evidence for clinical translation of this new therapeutic strategy. ABSTRACT As a target for stroke therapies, the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas [ACE2/Ang-(1-7)/Mas] axis of the renin-angiotensin system can be activated chronically to induce neuroprotective effects, in opposition to the deleterious effects of angiotensin II via its type 1 receptor. However, more clinically relevant treatment protocols with Ang-(1-7) that involve its systemic administration beginning after the onset of ischaemia have not been tested. In this study, we tested systemic post-stroke treatments using a molecule where Ang-(1-7) is included within hydroxypropyl-β-cyclodextrin [HPβCD-Ang-(1-7)] as an orally bioavailable treatment. In three separate protocols, HPβCD-Ang-(1-7) was administered orally to Sprague-Dawley rats after induction of ischaemic stroke by endothelin-1-induced middle cerebral artery occlusion: (i) to assess its effects on cerebral damage and behavioural deficits; (ii) to determine its effects on cardiovascular parameters; and (iii) to determine whether it altered cerebral blood flow. The results indicate that post-stroke oral administration of HPβCD-Ang-(1-7) resulted in 25% reductions in cerebral infarct volumes and improvement in neurological functions (P < 0.05), without inducing any alterations in blood pressure, heart rate or cerebral blood flow. In conclusion, Ang-(1-7) treatment using an oral formulation after the onset of ischaemia induces significant neuroprotection in stroke and might represent a viable approach for taking advantage of the protective ACE2/Ang-(1-7)/Mas axis in this disease.
Collapse
Affiliation(s)
- Douglas M Bennion
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chad H Jones
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lauren L Donnangelo
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Justin T Graham
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jacob D Isenberg
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alex N Dang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vermali Rodriguez
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ruben D M Sinisterra
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico B Sousa
- Physics and Chemistry Institute, Federal University of Itajubá, Minas Gerais, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
232
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
233
|
Freitas-Andrade M, Wang N, Bechberger JF, De Bock M, Lampe PD, Leybaert L, Naus CC. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J Exp Med 2019; 216:916-935. [PMID: 30872361 PMCID: PMC6446879 DOI: 10.1084/jem.20171452] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/31/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
This study demonstrates that astrocytic connexin43 gap junction hemichannels are largely controlled by four C-terminal tail–located serine residues and provides mechanistic insight on how phosphorylation of these residues affects recovery from stroke. Connexin43 (Cx43) function is influenced by kinases that phosphorylate specific serine sites located near its C-terminus. Stroke is a powerful inducer of kinase activity, but its effect on Cx43 is unknown. We investigated the impact of wild-type (WT) and knock-in Cx43 with serine to alanine mutations at the protein kinase C (PKC) site Cx43S368A, the casein kinase 1 (CK1) sites Cx43S325A/328Y/330A, and the mitogen-activated protein kinase (MAPK) sites Cx43S255/262/279/282A (MK4) on a permanent middle cerebral artery occlusion (pMCAO) stroke model. We demonstrate that MK4 transgenic animals exhibit a significant decrease in infarct volume that was associated with improvement in behavioral performance. An increase in astrocyte reactivity with a concomitant decrease in microglial reactivity was observed in MK4 mice. In contrast to WT, MK4 astrocytes displayed reduced Cx43 hemichannel activity. Pharmacological blockade of Cx43 hemichannels with TAT-Gap19 also significantly decreased infarct volume in WT animals. This study provides novel molecular insights and charts new avenues for therapeutic intervention associated with Cx43 function.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nan Wang
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - John F Bechberger
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijke De Bock
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Luc Leybaert
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
234
|
Zhang SJ, Wang RL, Zhao HP, Tao Z, Li JC, Ju F, Han ZP, Ma QF, Liu P, Ma SB, Cao GD, Luo YM. MEPO promotes neurogenesis and angiogenesis but suppresses gliogenesis in mice with acute ischemic stroke. Eur J Pharmacol 2019; 849:1-10. [PMID: 30716313 DOI: 10.1016/j.ejphar.2019.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
Previously study has proved the non-erythropoietic mutant erythropoietin (MEPO) exerted neuroprotective effects against ischemic cerebral injury, with an efficacy similar to that of wild-type EPO. This study investigates its effects on neurogenesis, angiogenesis, and gliogenesis in cerebral ischemic mice. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and reperfusion. EPO (5000 U/kg), MEPO (5000 U/kg) or equal volume of normal saline was injected intraperitoneally. Neurological function was evaluated by Rota-rod test, Neurological severity scores (NSS) and Adhesive removal test. After ischemia and reperfusion (I/R), the survival rate, brain tissue loss, neurogenesis, angiogenesis and gliogenesis were detected by Nissl staining, Immunofluorescence and Western blot, respectively. The results shown that MEPO significantly increased survival rate, reduced brain tissue loss, and improved neurological function after MCAO (P < 0.05). Furthermore, MEPO obviously enhanced the proliferation of neuronal precursors (DCX) and promoted its differentiation into mature neurons (NeuN) (P < 0.05). In addition, compared to normal saline treatment mice, MEPO increased the number of BrdU-positive cells in the cerebral vasculature (P < 0.05). Whereas, MEPO treatment also reduced the numbers of newly generated astrocytes (GFAP) and microglia (Iba1) (P < 0.05). Among all the tests in this study, there was no significant difference between EPO group and MEPO group. Taken together, MEPO promoted the regeneration of neurons and blood vessels in peripheral area of infarction, and suppressed the gliogenesis, thus promoting neurogenesis, improving neurological function and survival rate. Our findings suggest that the MEPO may be a therapeutic drug for ischemic stroke intervention.
Collapse
Affiliation(s)
- Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rong-Liang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Hai-Ping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jin-Cheng Li
- Department of Neurology, Zibo Central Hospital, Zibo 255036, China
| | - Fei Ju
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Qing-Feng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shu-Bei Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guo-Dong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
235
|
Selakovic V, Arsenijevic L, Jovanovic M, Sivcev S, Jovanovic N, Leontijevic M, Stojanovic M, Radenkovic M, Andjus P, Radenovic L. Functional and pharmacological analysis of agmatine administration in different cerebral ischemia animal models. Brain Res Bull 2019; 146:201-212. [PMID: 30641119 DOI: 10.1016/j.brainresbull.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
Agmatine (AgM, 100 mg/kg i.p.) effect was tested in parallel at two animal models of cerebral ischemia - rat MCAO model (60'/24 h, 60'/48 h, 90'/24 h, 90'/48 h) and gerbil global ischemia (10') model, administrated 5 min after reperfusion. Aim was to evaluate AgM effect on functional outcome 24 and 48 h after MCAO on neurological and sensor-motor function, and coordination in rats. AgM administration significantly reduced infarct volume, improved neurological score and improved post-ischemic oxidative status. Results of behavioral tests (cylinder test, beam walking test, and adhesive removal test) have shown very effective functional recovery after AgM administration. Efficiency of AgM administration in gerbils was observed in forebrain cortex, striatum, hippocampus, and cerebellum at the level of each examined oxidative stress parameter (nitric oxide level, superoxide production, superoxide dismutase activity, and index of lipid peroxidation) measured in four different time points starting at 3 h up to 48 h after reperfusion. The highest levels were obtained 6 h after the insult. The most sensitive oxidative stress parameter to AgM was nitric oxide. Additionally, we performed pharmacological analysis of AgM on rat isolated common carotid arteries. The findings imply that mixed population of potassium channels located on the smooth muscle cells was involved in common carotid artery response to AgM, with predominance of inward rectifying K+ channels. In our comparative experimental approach, judged by behavioral, biochemical, as well as pharmacological data, the AgM administration showed an effective reduction of ischemic neurological damage and oxidative stress, hence indicating a direction towards improving post-stroke recovery.
Collapse
Affiliation(s)
- V Selakovic
- Institute of Medical Research, Medical Faculty Military Medical Academy, University of Defense, Serbia
| | | | - M Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | - S Sivcev
- Faculty of Biology, University of Belgrade, Serbia
| | - N Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | | | - M Stojanovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - M Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - P Andjus
- Faculty of Biology, University of Belgrade, Serbia
| | - L Radenovic
- Faculty of Biology, University of Belgrade, Serbia.
| |
Collapse
|
236
|
Ryan F, Zarruk JG, Lößlein L, David S. Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia. Front Neurosci 2019; 12:988. [PMID: 30670944 PMCID: PMC6331473 DOI: 10.3389/fnins.2018.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Ceruloplasmin (Cp) is a ferroxidase that also plays a role in iron efflux from cells. It can thus help to regulate cellular iron homeostasis. In the CNS, Cp is expressed as a membrane-anchored form by astrocytes. Here, we assessed the role of Cp in permanent middle cerebral artery occlusion (pMCAO) comparing wildtype and Cp null mice. Our studies show that the lesion size is larger and functional recovery impaired in Cp null mice compared to wildtype mice. Expression of Cp increased ninefold at 72 h after pMCAO and remained elevated about twofold at day 14. We also assessed changes in mRNA and protein expression of molecules involved in iron homeostasis. As expected there was a reduction in ferroportin in Cp null mice at 72 h. There was also a remarkable increase in DMT1 protein in both genotypes at 72 h, being much higher in wildtype mice (19.5-fold), that then remained elevated about twofold at 14 days. No difference was seen in transferrin receptor 1 (TfR1) expression, except a small reduction in wildtype mice at 72 h, suggesting that the increase in DMT1 may underlie iron uptake independent of TfR1-endosomal uptake. There was also an increase of ferritin light chain in both genotypes. Iron histochemistry showed increased iron accumulation after pMCAO, initially along the lesion border and later throughout the lesion. Immunofluorescence labeling for ferritin (a surrogate marker for iron) and GFAP or CD11b showed increased ferritin in GFAP+ astrocytes along the lesion border in Cp null mice, while CD11b+ macrophages expressed ferritin equally in both genotypes. Increased lipid peroxidation assessed by 4HNE staining was increased threefold in Cp null mice at 72 h after pMCAO; and 3-nitrotyrosine labeling showed a similar trend. Three key pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) were markedly increased at 24 h after pMCAO equally in both genotypes, and remained elevated at lower levels later, indicating that the lack of Cp does not alter key inflammatory cytokine expression after pMCAO. These data indicate that Cp expression is rapidly upregulated after pMCAO, and loss of Cp results in dysregulation of iron homeostasis, increased oxidative damage, greater lesion size and impaired recovery of function.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Juan G Zarruk
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lena Lößlein
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
237
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019. [PMID: 31258534 DOI: 10.3389/fimmu.2019.01360/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
238
|
Deuchar GA, van Kralingen JC, Work LM, Santosh C, Muir KW, McCabe C, Macrae IM. Preclinical Validation of the Therapeutic Potential of Glasgow Oxygen Level Dependent (GOLD) Technology: a Theranostic for Acute Stroke. Transl Stroke Res 2018; 10:583-595. [PMID: 30506268 PMCID: PMC6733820 DOI: 10.1007/s12975-018-0679-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
In acute stroke patients, penumbral tissue is non-functioning but potentially salvageable within a time window of variable duration and represents target tissue for rescue. Reperfusion by thrombolysis and/or thrombectomy can rescue penumbra and improve stroke outcomes, but these treatments are currently available to a minority of patients. In addition to the utility of Glasgow Oxygen Level Dependent (GOLD) as an MRI contrast capable of detecting penumbra, its constituent perfluorocarbon (PFC) oxygen carrier, combined with normobaric hyperoxia, also represents a potential acute stroke treatment through improved oxygen delivery to penumbra. Preclinical studies were designed to test the efficacy of an intravenous oxygen carrier, the perfluorocarbon emulsion Oxycyte® (O-PFC), combined with normobaric hyperoxia (50% O2) in both in vitro (neuronal cell culture) and in vivo rat models of ischaemic stroke. Outcome was assessed through the quantification of lipid peroxidation and oxidative stress levels, mortality, infarct volume, neurological scoring and sensorimotor tests of functional outcome in two in vivo models of stroke. Additionally, we investigated evidence for any positive or negative interactions with the thrombolytic recombinant tissue plasminogen activator (rt-PA) following embolus-induced stroke in rats. Treatment with intravenous O-PFC + normobaric hyperoxia (50% O2) provided evidence of reduced infarct size and improved functional recovery. It did not exacerbate oxidative stress and showed no adverse interactions with rt-PA. The positive results and lack of adverse effects support human trials of O-PFC + 50% O2 normobaric hyperoxia as a potential therapeutic approach. Combined with the diagnostic data presented in the preceding paper, O-PFC and normobaric hyperoxia is a potential theranostic for acute ischaemic stroke.
Collapse
Affiliation(s)
- Graeme A Deuchar
- Aurum Biosciences Ltd, 20-23 Woodside Place, Glasgow, Scotland, G3 7QL, UK.
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Josie C van Kralingen
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Celestine Santosh
- Aurum Biosciences Ltd, 20-23 Woodside Place, Glasgow, Scotland, G3 7QL, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, G51 4TF, UK
| | - Keith W Muir
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, G51 4TF, UK
| | - Chris McCabe
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - I Mhairi Macrae
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
239
|
Zhou YX, Wang X, Tang D, Li Y, Jiao YF, Gan Y, Hu XM, Yang LQ, Yu WF, Stetler RA, Li PY, Wen DX. IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8 + T cells. CNS Neurosci Ther 2018; 25:532-543. [PMID: 30444079 PMCID: PMC6488908 DOI: 10.1111/cns.13084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
Aims Demyelination, one of the major pathological changes of white matter injury, is closely related to T‐cell–mediated immune responses. Thus, we investigate the role of an IL‐2 monoclonal antibody (IL‐2mAb, JES6‐1) in combatting demyelination during the late phase of stroke. Methods IL‐2mAb or IgG isotype antibody (0.25 mg/kg) was injected intraperitoneally 2 and 48 hours after middle cerebral artery occlusion (MCAO) surgery. Infarct volume, peripheral immune cell infiltration, microglia activation, and myelin loss were measured by 2,3,5‐triphenyte trazoliumchloride staining, immunofluorescence staining, flow cytometry, and Western blot. Intraperitoneal CD8 neutralizing antibody (15 mg/kg) was injected 1 day before MCAO surgery to determine the role of CD8+ T cells on demyelinating lesions. Results IL‐2mAb treatment reduced brain infarct volume, attenuated demyelination, and improved long‐term sensorimotor functions up to 28 days after dMCAO. Brain infiltration of CD8+ T cells and peripheral activation of CD8+ T cells were both attenuated in IL‐2 mAb‐treated mice. The protection of IL‐2mAb on demyelination was abolished in mice depleted of CD8+ T cell 1 week after stroke. Conclusions IL‐2mAb preserved white matter integrity and improved long‐term sensorimotor functions following cerebral ischemic injury. The activation and brain infiltration of CD8+ T cells are detrimental for demyelination after stroke and may be the major target of IL‐2mAb posttreatment in the protection of white matter integrity after stroke.
Collapse
Affiliation(s)
- Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruth Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Da-Xiang Wen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
240
|
Huang Y, Wang J, Cai J, Qiu Y, Zheng H, Lai X, Sui X, Wang Y, Lu Q, Zhang Y, Yuan M, Gong J, Cai W, Liu X, Shan Y, Deng Z, Shi Y, Shu Y, Zhang L, Qiu W, Peng L, Ren J, Lu Z, Xiang AP. Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Theranostics 2018; 8:5929-5944. [PMID: 30613272 PMCID: PMC6299433 DOI: 10.7150/thno.28029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic strategy for the acute ischemic stroke (AIS). However, the poor targeted migration and low engraftment in ischemic lesions restrict their treatment efficacy. The ischemic brain lesions express a specific chemokine profile, while cultured MSCs lack the set of corresponding receptors. Thus, we hypothesize that overexpression of certain chemokine receptor might help in MSCs homing and improve therapeutic efficacy. Methods: Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we identified that CCL2 is one of the most highly expressed chemokines in the ipsilateral hemisphere. Then, we genetically transduced the corresponding receptor, CCR2 to the MSCs and quantified the cell retention of MSCCCR2 compared to the MSCdtomato control. Results: MSCCCR2 exhibited significantly enhanced migration to the ischemic lesions and improved the neurological outcomes. Brain edema and blood-brain barrier (BBB) leakage levels were also found to be much lower in the MSCCCR2-treated rats than the MSCdtomato group. Moreover, this BBB protection led to reduced inflammation infiltration and reactive oxygen species (ROS) generation. Similar results were also confirmed using the in vitro BBB model. Furthermore, genome-wide RNA sequencing (RNA-seq) analysis revealed that peroxiredoxin4 (PRDX4) was highly expressed in MSCs, which mainly contributed to their antioxidant impacts on MCAO rats and oxygen-glucose deprivation (OGD)-treated endothelium. Conclusion: Taken together, this study suggests that overexpression of CCR2 on MSCs enhances their targeted migration to the ischemic hemisphere and improves the therapeutic outcomes, which is attributed to the PRDX4-mediated BBB preservation.
Collapse
Affiliation(s)
- Yinong Huang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China, 510630
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Xin Sui
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Surgery Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yanan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Meng Yuan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jin Gong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Xin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Zhezhi Deng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Yue Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No. 52 Mei Hua East Road, Zhuhai, China, 519000
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Jie Ren
- Department of Medical Ultrasonic, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China, 510080
| |
Collapse
|
241
|
Khelif Y, Toutain J, Quittet MS, Chantepie S, Laffray X, Valable S, Divoux D, Sineriz F, Pascolo-Rebouillat E, Papy-Garcia D, Barritault D, Touzani O, Bernaudin M. A heparan sulfate-based matrix therapy reduces brain damage and enhances functional recovery following stroke. Am J Cancer Res 2018; 8:5814-5827. [PMID: 30613264 PMCID: PMC6299437 DOI: 10.7150/thno.28252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Alteration of the extracellular matrix (ECM) is one of the major events in the pathogenesis of brain lesions following ischemic stroke. Heparan sulfate mimetics (HSm) are synthetic pharmacologically active polysaccharides that promote ECM remodeling and tissue regeneration in various types of lesions. HSm bind to growth factors, protect them from enzymatic degradation and increase their bioavailability, which promotes tissue repair. As the ECM is altered during stroke and HSm have been shown to restore the ECM, we investigated the potential of HSm4131 (also named RGTA-4131®) to protect brain tissue and promote regeneration and plasticity after a stroke. Methods: Ischemic stroke was induced in rats using transient (1 h) intraluminal middle cerebral artery occlusion (MCAo). Animals were assigned to the treatment (HSm4131; 0.1, 0.5, 1.5, or 5 mg/kg) or vehicle control (saline) groups at different times (1, 2.5 or 6 h) after MCAo. Brain damage was assessed by MRI for the acute (2 days) and chronic (14 days) phases post-occlusion. Functional deficits were evaluated with a battery of sensorimotor behavioral tests. HSm4131-99mTc biodistribution in the ischemic brain was analyzed between 5 min and 3 h following middle cerebral artery reperfusion. Heparan sulfate distribution and cellular reactions, including angiogenesis and neurogenesis, were evaluated by immunohistochemistry, and growth factor gene expression (VEGF-A, Ang-2) was quantified by RT-PCR. Results: HSm4131, administered intravenously after stroke induction, located and remained in the ischemic hemisphere. HSm4131 conferred long-lasting neuroprotection, and significantly reduced functional deficits with no alteration of physiological parameters. It also restored the ECM, and increased brain plasticity processes, i.e., angiogenesis and neurogenesis, in the affected brain hemisphere. Conclusion: HSm represent a promising ECM-based therapeutic strategy to protect and repair the brain after a stroke and favor functional recovery.
Collapse
|
242
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
243
|
Zhuang QX, Li GY, Li B, Zhang CZ, Zhang XY, Xi K, Li HZ, Wang JJ, Zhu JN. Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits. J Clin Invest 2018; 128:5413-5427. [PMID: 30226827 DOI: 10.1172/jci99986] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) channel coupled to the H2 receptor. Intriguingly, DBS increased histamine release in the STN and regularized STN neuronal firing patterns under parkinsonian conditions. HCN2 contributed to the DBS-induced regularization of neuronal firing patterns, suppression of excessive β oscillations, and alleviation of motor deficits in PD. The results reveal an indispensable role for regularizing STN neuronal firing patterns in amelioration of parkinsonian motor dysfunction and a functional compensation for histamine in parkinsonian basal ganglia circuitry. The findings provide insights into mechanisms of STN-DBS as well as potential therapeutic targets and STN-DBS strategies for PD.
Collapse
Affiliation(s)
- Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Guang-Ying Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Chang-Zheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Kang Xi
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
244
|
Zhao YF, Qiong-Zhang, Zhang JF, Lou ZY, Zu HB, Wang ZG, Zeng WC, Kai-Yao, Xiao BG. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson's Disease. Aging Dis 2018; 9:785-797. [PMID: 30271656 PMCID: PMC6147589 DOI: 10.14336/ad.2017.1028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
Aging is an inevitable physiological challenge occurring in organisms over time, and is also the most important risk factor of neurodegenerative diseases. In this study, we observed cellular and molecular changes of different age mice and LPS-induced Parkinson disease (PD) model. The results showed that behavioral performance and dopaminergic (DA) neurons were declined, accompanied by increased expression of pro-inflammatory factors (TLR2, p-NF-kB-p65, IL-1β and TNF-α), as well as pro-oxidative stress factor gp91phox in aged mice compared with young mice. Aging exaggerated inflammatory M1 microglia, and destroyed the balance between oxidation and anti-oxidation. The intranasal LPS instillation induced PD model in both young and aged mice. The poor behavioral performance and the loss of DA neurons as well as TLR2, p-NF-kB-p65, IL-1β, TNF-α, iNOS and gp91phox were further aggravated in LPS-aged mice. Interestingly, the expression of Nrf2 and HO-1 was up-regulated by LPS only in young LPS-PD mice, but not in aged mice. The results indicate that the synergy of aging process and LPS exposure may prominently aggravate the DA neurons loss caused by more serious neuroinflammation and oxidative stress in the brain.
Collapse
Affiliation(s)
- Yong-Fei Zhao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhang
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jian-Feng Zhang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yin Lou
- 3Department of Neurology, Xinhua Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Hen-Bing Zu
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zi-Gao Wang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-Cheng Zeng
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kai-Yao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bao-Guo Xiao
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
245
|
Yao K, Zhao YF. Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice. Exp Gerontol 2018; 111:86-93. [DOI: 10.1016/j.exger.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
|
246
|
Baek H, Pahk KJ, Kim MJ, Youn I, Kim H. Modulation of Cerebellar Cortical Plasticity Using Low-Intensity Focused Ultrasound for Poststroke Sensorimotor Function Recovery. Neurorehabil Neural Repair 2018; 32:777-787. [PMID: 30157709 DOI: 10.1177/1545968318790022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stroke affects widespread brain regions through interhemispheric connections by influencing bilateral motor activity. Several noninvasive brain stimulation techniques have proved their capacity to compensate the functional loss by manipulating the neural activity of alternative pathways. Over the past few decades, brain stimulation therapies have been tailored within the theoretical framework of modulation of cortical excitability to enhance adaptive plasticity after stroke. OBJECTIVE However, considering the vast difference between animal and human cerebral cortical structures, it is important to approach specific neuronal target starting from the higher order brain structure for human translation. The present study focuses on stimulating the lateral cerebellar nucleus (LCN), which sends major cerebellar output to extensive cortical regions. METHODS In this study, in vivo stroke mouse LCN was exposed to low-intensity focused ultrasound (LIFU). After the LIFU exposure, animals underwent 4 weeks of rehabilitative training. RESULTS During the cerebellar LIFU session, motor-evoked potentials (MEPs) were generated in both forelimbs accompanying excitatory sonication parameter. LCN stimulation group on day 1 after stroke significantly enhanced sensorimotor recovery compared with the group without stimulation. The recovery has maintained for a 4-week period in 2 behavior tests. Furthermore, we observed a significantly decreased level of brain edema and tissue swelling in the affected hemisphere 3 days after the stroke. CONCLUSIONS This study provides the first evidence showing that LIFU-induced cerebellar modulation could be an important strategy for poststroke recovery. A longer follow-up study is, however, necessary in order to fully confirm the effects of LIFU on poststroke recovery.
Collapse
Affiliation(s)
- Hongchae Baek
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ki Joo Pahk
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Ju Kim
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Inchan Youn
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyungmin Kim
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
247
|
Lu D, Liu Y, Mai H, Zang J, Shen L, Zhang Y, Xu A. Rosuvastatin Reduces Neuroinflammation in the Hemorrhagic Transformation After rt-PA Treatment in a Mouse Model of Experimental Stroke. Front Cell Neurosci 2018; 12:225. [PMID: 30116175 PMCID: PMC6082938 DOI: 10.3389/fncel.2018.00225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hemorrhagic transformation (HT) is a serious complication that stimulates inflammation during reperfusion therapy after acute ischemic stroke. Rosuvastatin, a 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, might improve the outcome of HT by inhibiting neuroinflammation. This study aimed to explore the protective effects of rosuvastatin against HT after recombinant tissue plasminogen activator (rt-PA) treatment in mice with experimental stroke via the attenuation of inflammation. A total of one hundred sixty-nine male BALB/c mice were used in the experiment. HT was successfully established in 70 mice that were subjected to 3 h of middle cerebral artery occlusion (MCAO) followed by a 10 mg/kg rt-PA injection over 10 min and reperfusion for 24 h. The mice were then administered rosuvastatin (1 mg/kg, 5 mg/kg) or saline (vehicle). The brain water content and neurological deficits (wire hang and adhesive removal somatosensory tests) were assessed at 24 h after rt-PA reperfusion following MCAO surgery. The morphology, blood-brain barrier (BBB) permeability and number of astrocytes and microglia were assessed by immunohistochemistry, electron microscopy and western blotting at 24 h after rt-PA reperfusion following MCAO surgery. Rosuvastatin protected against impaired neurological function and reversed the BBB leakage observed in the HT group. The increased activation of astrocytes and microglia and secretion of inflammatory factors caused by HT damage were significantly attenuated by high-dose rosuvastatin treatment vs. normal-dose rosuvastatin treatment. Related inflammatory pathways, such as the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were downregulated in the rosuvastatin-treated groups compared with the HT group. In conclusion, our results indicate that rosuvastatin is a promising therapeutic agent for HT after rt-PA reperfusion following MCAO surgery in mice, as it attenuates neuroinflammation. Additionally, high-dose rosuvastatin treatment could have a greater anti-inflammatory effect on HT than normal-dose rosuvastatin treatment.
Collapse
Affiliation(s)
- Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yanfang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Lingling Shen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
248
|
Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 2018; 140:43-61. [PMID: 30056126 DOI: 10.1016/j.neuropharm.2018.07.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Neurotoxicity remains the most common adverse effect of oxaliplatin, limiting its clinical use. In the present study, we developed a mouse model of chronic oxaliplatin-induced neuropathy, which mimics both sensory and motor deficits observed in patients, in a clinically relevant time course. Repeated oxaliplatin administration in mice induced both cephalic and extracephalic long lasting mechanical and cold hypersensitivity after the first injection as well as delayed sensorimotor deficits and a depression-like phenotype. Using this model, we report that riluzole prevents both sensory and motor deficits induced by oxaliplatin as well as the depression-like phenotype induced by cumulative chemotherapeutic drug doses. All the beneficial effects are due to riluzole action on the TREK-1 potassium channel, which plays a central role in its therapeutic action. Riluzole has no negative effect on oxaliplatin antiproliferative capacity in human colorectal cancer cells and on its anticancer effect in a mouse model of colorectal cancer. Moreover, riluzole decreases human colorectal cancer cell line viability in vitro and inhibits polyp development in vivo. The present data in mice may support the need to clinically test riluzole in oxaliplatin-treated cancer patients and state for the important role of the TREK-1 channel in pain perception.
Collapse
|
249
|
L-Carnitine and extendin-4 improve outcomes following moderate brain contusion injury. Sci Rep 2018; 8:11201. [PMID: 30046063 PMCID: PMC6060156 DOI: 10.1038/s41598-018-29430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
There is a need for pharmaceutical agents that can reduce neuronal loss and improve functional deficits following traumatic brain injury (TBI). Previous research suggests that oxidative stress and mitochondrial dysfunction play a major role in neuronal damage after TBI. Therefore, this study aimed to investigate two drugs known to have antioxidant effects, L-carnitine and exendin-4, in rats with moderate contusive TBI. L-carnitine (1.5 mM in drinking water) or exendin-4 (15 µg/kg/day, ip) were given immediately after the injury for 2 weeks. Neurological function and brain histology were examined (24 h and 6 weeks post injury). The rats with TBI showed slight sensory, motor and memory functional deficits at 24 h, but recovered by 6 weeks. Both treatments improved sensory and motor functions at 24 h, while only exendin-4 improved memory. Both treatments reduced cortical contusion at 24 h and 6 weeks, however neither affected gliosis and inflammatory cell activation. Oxidative stress was alleviated and mitochondrial reactive oxygen species was reduced by both treatments, however only mitochondrial functional marker protein transporter translocase of outer membrane 20 was increased at 24 h post injury. In conclusion, L-carnitine and exendin-4 treatments immediately after TBI can improve neurological functional outcome and tissue integrity by reducing oxidative stress.
Collapse
|
250
|
Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, Shi Y, Leak RK, Chen J, Zhang F. Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol 2018; 17:323-337. [PMID: 29775963 PMCID: PMC6007054 DOI: 10.1016/j.redox.2018.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Brain ischemic preconditioning (IPC) with mild ischemic episodes is well known to protect the brain against subsequent ischemic challenges. However, the underlying mechanisms are poorly understood. Here we demonstrate the critical role of the master redox transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), in IPC-mediated neuroprotection and blood-brain barrier (BBB) preservation. We report that IPC causes generation of endogenous lipid electrophiles, including 4-hydroxy-2-nonenal (4-HNE), which release Nrf2 from inhibition by Keap1 (via Keap1-C288) and inhibition by glycogen synthase kinase 3β (via GSK3β-C199). Nrf2 then induces expression of its target genes, including a new target, cadherin 5, a key component of adherens junctions of the BBB. These effects culminate in mitigation of BBB leakage and of neurological deficits after stroke. Collectively, these studies are the first to demonstrate that IPC protects the BBB against ischemic injury by generation of endogenous electrophiles and activation of the Nrf2 pathway through inhibition of Keap1- and GSK3β-dependent Nrf2 degradation.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leilei Mao
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology and Key Laboratory of Cerebral Microcirculation, University of Shandong, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong, China
| | - Meijuan Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lili Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology and Key Laboratory of Cerebral Microcirculation, University of Shandong, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong, China.
| |
Collapse
|