201
|
Gereau GB, Torruella-Suárez ML, Sizer SE, Xia M, Zhou D, Wykoff LA, Teklezghi AT, Alvarez-Pamir A, Boyt KM, Kash TL, McElligott ZA. GABA Release From Central Amygdala Neurotensin Neurons Differentially Modulates Reward and Consummatory Behavior in Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557768. [PMID: 37745547 PMCID: PMC10515895 DOI: 10.1101/2023.09.14.557768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The central nucleus of the amygdala is known to play key roles in alcohol use and affect. Neurotensin neurons in the central nucleus of the amygdala have been shown to regulate alcohol drinking in male mice. However, little is known about which neurotransmitters released by these cells drive alcohol consumption or whether these cells drive alcohol consumption in female mice. Here we show that knockdown of GABA release from central amygdala neurotensin neurons using a Nts-cre-dependent vGAT-shRNA-based AAV strategy reduces alcohol drinking in male, but not female, mice. This manipulation did not impact avoidance behavior, except in a fasted novelty-suppressed feeding test, in which vGAT shRNA mice demonstrated increased latency to feed on a familiar high-value food reward, an effect driven by male mice. In contrast, vGAT shRNA female mice showed heightened sensitivity to thermal stimulation. These data show a role for GABA release from central amygdala neurotensin neurons in modulating consumption of rewarding substances in different motivational states.
Collapse
Affiliation(s)
- Graydon B Gereau
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - María L Torruella-Suárez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, USA
| | - Sarah E Sizer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Mengfan Xia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Diana Zhou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Adonay T Teklezghi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Ali Alvarez-Pamir
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
202
|
Kervancioglu Demirci E, Onen EA, Sevic Yilmaz E, Karagoz Koroglu A, Akakin D. SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2161-2173. [PMID: 37967299 DOI: 10.1093/micmic/ozad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Elevated CX3CL1 is associated with severe COVID-19 and neurologic symptoms. We aimed to investigate the potential protective effects of selective CX3CR1 antagonist AZD8797 on SARS-CoV-2-induced neuronal damage, and to identify the underlying mechanisms. K18-hACE2 transgenic mice (n = 37) were randomly divided into control groups and SARS-CoV-2 groups, with and without intraperitoneal administration of vehicle or AZD8797 (2.5 mg/mL/day), following exposure to either a single dose of SARS-CoV-2 inhalation or no exposure. Object recognition and hole board tests were performed to assess memory function. Postinfection 8 days, brain tissues were analyzed for histopathological changes, viral, glial, apoptotic, and other immunohistochemical markers, along with measuring malondialdehyde, glutathione, and myeloperoxidase activities. Serum samples were analyzed for proinflammatory cytokines. The SARS-CoV-2 group showed significant weight loss, neuronal damage, oxidative stress, and impaired object recognition memory, while AZD8797 treatment mitigated some of these effects, especially in weight, apoptosis, glutathione, and MCP-1. Histopathological analyses supported the protective effects of AZD8797 against SARS-CoV-2-induced damage. The CX3CL1-CX3CR1 signaling pathway could offer a promising target for reducing SARS-CoV-2's neurological impact, but additional research is needed to confirm these findings in combination with other therapies and assess the clinical significance.
Collapse
Affiliation(s)
- Elif Kervancioglu Demirci
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Engin Alp Onen
- Vaccine and Biotechnology R&D, Kocak Pharmaceuticals, Karaagac O.S.B. 11.Sk No:5, Kapakli, Tekirdag 59520, Turkey
| | - Erva Sevic Yilmaz
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Ayca Karagoz Koroglu
- Histology and Embryology Department, School of Medicine, Istinye University, Azerbaycan Cd. No:3C, Sariyer, Istanbul 34010, Turkey
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| | - Dilek Akakin
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| |
Collapse
|
203
|
Yang Y, Wang J, Ni H, Ding H, Wei L, Ke ZJ. Genetic model of selective COX2 inhibition improve learning and memory ability and brain pathological changes in 5xFAD mouse. Brain Res 2023; 1821:148566. [PMID: 37683778 DOI: 10.1016/j.brainres.2023.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that leads to dementia. Its pathogenesis is very complex, and inflammation is one of the main pathophysiological mechanisms of AD. Non-steroidal anti-inflammatory drugs (NSAIDs), which mainly target cyclooxygenase (COX) activity, are used to reduce the risk of AD, but several side effects limit their application. Here we assess the effect of Cyclooxygenase-2 (COX2) catalytic activity on learning ability and AD pathology using 5x Familial Alzheimer's Disease (FAD) mice with COX2 inhibition (5xFAD/COX2 KO), 5xFAD mice with cyclooxygenase inactivation of COX2 (5xFAD/COX2 Y385F), and 5xFAD mice with peroxidase (POX) inactivation of COX2 (5xFAD/COX2) H374Y), respectively. Our results indicate that learning ability of COX2 KO and mutants is improved compared to 5xFAD mice, further investigations show that Aβ depositions are reduced, microglia and astrocytes homeostasis are changed in COX2 KO and mutants. Especially, there is more responsive microglia in the brain of 5xFAD/COX2 Y385F mice, and Aβ depositions are more effectively cleaned at old age. Taken together, these results identify a role of COX2 Y385F in regulating microglia function and may have important implications for future treatment of AD.
Collapse
Affiliation(s)
- Yang Yang
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Wang
- Endocrinology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Hong Ni
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Hanqing Ding
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Luyao Wei
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Zun-Ji Ke
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
204
|
Zhai D, Yan S, Samsom J, Wang L, Su P, Jiang A, Zhang H, Jia Z, Wallach I, Heifets A, Zanato C, Tseng CC, Wong AH, Greig IR, Liu F. Small-molecule targeting AMPA-mediated excitotoxicity has therapeutic effects in mouse models for multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadj6187. [PMID: 38064562 PMCID: PMC10708182 DOI: 10.1126/sciadv.adj6187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
While most research and treatments for multiple sclerosis (MS) focus on autoimmune reactions causing demyelination, it is possible that neurodegeneration precedes the autoimmune response. Hence, glutamate receptor antagonists preventing excitotoxicity showed promise in MS animal models, though blocking glutamate signaling prevents critical neuronal functions. This study reports the discovery of a small molecule that prevents AMPA-mediated excitotoxicity by targeting an allosteric binding site. A machine learning approach was used to screen for small molecules targeting the AMPA receptor GluA2 subunit. The lead candidate has potent effects in restoring neurological function and myelination while reducing the immune response in experimental autoimmune encephalitis and cuprizone MS mouse models without affecting basal neurotransmission or learning and memory. These findings facilitate development of a treatment for MS with a different mechanism of action than current immune modulatory drugs and avoids important off-target effects of glutamate receptor antagonists. This class of MS therapeutics could be useful as an alternative or complementary treatment to existing therapies.
Collapse
Affiliation(s)
- Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - Shuxin Yan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - James Samsom
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - Le Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
| | - Haorui Zhang
- Department of Neurosciences & Mental Health, The Hospital for Sick Children, 686 Bay St., Toronto M5G 0A4, Canada
| | - Zhengping Jia
- Department of Neurosciences & Mental Health, The Hospital for Sick Children, 686 Bay St., Toronto M5G 0A4, Canada
| | - Izhar Wallach
- Atomwise Inc., 221 Main Street, Suite 1350, San Francisco, CA 94105, USA
| | - Abraham Heifets
- Atomwise Inc., 221 Main Street, Suite 1350, San Francisco, CA 94105, USA
| | - Chiara Zanato
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Chih-Chung Tseng
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Albert H.C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
- Institutes of Medical Science, University of Toronto, 1 King’s College Cir., Toronto M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Cir., Toronto M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto M5T 1R8, Canada
| | - Iain R. Greig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto M5T 1R8, Canada
- Institutes of Medical Science, University of Toronto, 1 King’s College Cir., Toronto M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto M5T 1R8, Canada
- Department of Physiology, University of Toronto, 1 King’s College Cir., Toronto M5T 1R8, Canada
| |
Collapse
|
205
|
Saha P, Andersen RE, Hong SJ, Gil E, Simms J, Lim DA. Sex-specific role for the long noncoding RNA Pnky in mouse behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569777. [PMID: 38105981 PMCID: PMC10723355 DOI: 10.1101/2023.12.05.569777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The human brain expresses thousands of different long noncoding RNAs (lncRNAs), and aberrant expression of specific lncRNAs has been associated with cognitive and psychiatric disorders. While a growing number of lncRNAs are now known to regulate neural cell development and function, relatively few have been shown to underlie animal behavior, particularly with genetic strategies that establish lncRNA function in trans. Pnky is an evolutionarily conserved, neural lncRNA that regulates brain development. Using mouse genetic strategies, we show that Pnky has sex-specific roles in mouse behavior and that this lncRNA underlies specific behavior by functioning in trans. Male Pnky-knockout (KO) mice have deficits in cued fear recall, a type of Pavlovian associative memory. In female Pnky-KO mice, the acoustic startle response (ASR) is increased and accompanied by a decrease in prepulse inhibition (PPI), both of which are behaviors altered in affective disorders. Remarkably, expression of Pnky from a bacterial artificial chromosome (BAC) transgene reverses the ASR phenotype of female Pnky-KO mice, demonstrating that Pnky underlies specific animal behavior by functioning in trans. More broadly, these data provide genetic evidence that a lncRNA gene and its function in trans can play a key role in the behavior of adult mammals, contributing fundamental knowledge to our growing understanding of the association between specific lncRNAs and disorders of cognition and mood.
Collapse
Affiliation(s)
- Parna Saha
- Department of Neurological Surgery; University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca E. Andersen
- Department of Neurological Surgery; University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sung Jun Hong
- Department of Neurological Surgery; University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eugene Gil
- Department of Neurological Surgery; University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey Simms
- Behavioral Core, Gladstone Institutes, San Francisco; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A. Lim
- Department of Neurological Surgery; University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco, San Francisco, CA 94143, USA
- San Francisco Veterans Affairs Medical Center; University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
206
|
Ayieng'a EO, Afify EA, Abuiessa SA, Elblehi SS, El-Gowilly SM, El-Mas MM. Morphine aggravates inflammatory, behavioral, and hippocampal structural deficits in septic rats. Sci Rep 2023; 13:21460. [PMID: 38052832 PMCID: PMC10697987 DOI: 10.1038/s41598-023-46427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Although pain and sepsis are comorbidities of intensive care units, reported data on whether pain control by opioid analgesics could alter inflammatory and end-organ damage caused by sepsis remain inconclusive. Here, we tested the hypothesis that morphine, the gold standard narcotic analgesic, modifies behavioral and hippocampal structural defects induced by sepsis in male rats. Sepsis was induced with cecal ligation and puncture (CLP) and behavioral studies were undertaken 24 h later in septic and/or morphine-treated animals. The induction of sepsis or exposure to morphine (7 mg/kg) elicited similar: (i) falls in systolic blood pressure, (ii) alterations in spatial memory and learning tested by the Morris water maze, and (iii) depression of exploratory behavior measured by the new object recognition test. These hemodynamic and cognitive defects were significantly exaggerated in septic rats treated with morphine compared with individual interventions. Similar patterns of amplified inflammatory (IL-1β) and histopathological signs of hippocampal damage were noted in morphine-treated septic rats. Additionally, the presence of intact opioid receptors is mandatory for the induction of behavioral and hemodynamic effects of morphine because no such effects were observed when the receptors were blocked by naloxone. That said, our findings suggest that morphine provokes sepsis manifestations of inflammation and interrelated hemodynamic, behavioral, and hippocampal deficits.
Collapse
Affiliation(s)
- Evans O Ayieng'a
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt.
| | - Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
207
|
Jiang J, Pan H, Shen F, Tan Y, Chen S. Ketogenic diet alleviates cognitive dysfunction and neuroinflammation in APP/PS1 mice via the Nrf2/HO-1 and NF-κB signaling pathways. Neural Regen Res 2023; 18:2767-2772. [PMID: 37449643 DOI: 10.4103/1673-5374.373715] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease is a progressive neurological disorder characterized by cognitive decline and chronic inflammation within the brain. The ketogenic diet, a widely recognized therapeutic intervention for refractory epilepsy, has recently been proposed as a potential treatment for a variety of neurological diseases, including Alzheimer's disease. However, the efficacy of ketogenic diet in treating Alzheimer's disease and the underlying mechanism remains unclear. The current investigation aimed to explore the effect of ketogenic diet on cognitive function and the underlying biological mechanisms in a mouse model of Alzheimer's disease. Male amyloid precursor protein/presenilin 1 (APP/PS1) mice were randomly assigned to either a ketogenic diet or control diet group, and received their respective diets for a duration of 3 months. The findings show that ketogenic diet administration enhanced cognitive function, attenuated amyloid plaque formation and proinflammatory cytokine levels in APP/PS1 mice, and augmented the nuclear factor-erythroid 2-p45 derived factor 2/heme oxygenase-1 signaling pathway while suppressing the nuclear factor-kappa B pathway. Collectively, these data suggest that ketogenic diet may have a therapeutic potential in treating Alzheimer's disease by ameliorating the neurotoxicity associated with Aβ-induced inflammation. This study highlights the urgent need for further research into the use of ketogenic diet as a potential therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jingwen Jiang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanxia Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Lab of Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| |
Collapse
|
208
|
Chen J, Wang T, Zhou Y, Hong Y, Zhang S, Zhou Z, Jiang A, Liu D. Microglia trigger the structural plasticity of GABAergic neurons in the hippocampal CA1 region of a lipopolysaccharide-induced neuroinflammation model. Exp Neurol 2023; 370:114565. [PMID: 37806513 DOI: 10.1016/j.expneurol.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
It is well-established that microglia-mediated neuroinflammatory response involves numerous neuropsychiatric and neurodegenerative diseases. While the role of microglia in excitatory synaptic transmission has been widely investigated, the impact of innate immunity on the structural plasticity of GABAergic inhibitory synapses is not well understood. To investigate this, we established an inflammation model using lipopolysaccharide (LPS) and observed a prolonged microglial response in the hippocampal CA1 region of mice, which was associated with cognitive deficits in the open field test, Y-maze test, and novel object recognition test. Furthermore, we found an increased abundance of GABAergic interneurons and GABAergic synapse formation in the hippocampal CA1 region. The cognitive impairment caused by LPS injection could be reversed by blocking GABA receptor activity with (-)-Bicuculline methiodide. These findings suggest that the upregulation of GABAergic synapses induced by LPS-mediated microglial activation leads to cognitive dysfunction. Additionally, the depletion of microglia by PLX3397 resulted in a decrease in GABAergic interneurons and GABAergic inhibitory synapses, which blocked the cognitive decline induced by LPS. In conclusion, our findings indicate that excessive reinforcement of GABAergic inhibitory synapse formation via microglial activation contributes to LPS-induced cognitive impairment.
Collapse
Affiliation(s)
- Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Tao Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhou
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Yiming Hong
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Shiyong Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Zhongtao Zhou
- School of Nursing, Bengbu Medical College, Bengbu 233030, China
| | - Ao Jiang
- School of Mental Health, Bengbu Medical College, Bengbu 233030, China
| | - Danyang Liu
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
209
|
Ratz-Mitchem ML, Leary G, Grindeland A, Silvius D, Guter J, Kavanaugh MP, Gunn TM. Generation and characterization of a knock-in mouse model for spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM). Mamm Genome 2023; 34:572-585. [PMID: 37642681 PMCID: PMC10680402 DOI: 10.1007/s00335-023-10013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Solute carrier family 1 member 4 (SLC1A4), also referred to as Alanine/Serine/Cysteine/Threonine-preferring Transporter 1 (ASCT1), is a sodium-dependent neutral amino acid transporter. It is expressed in many tissues, including the brain, where it is expressed primarily on astrocytes and plays key roles in neuronal differentiation and development, maintaining neurotransmitter homeostasis, and N-methyl-D-aspartate neurotransmission, through regulation of L- and D-serine. Mutations in SLC1A4 are associated with the rare autosomal recessive neurodevelopmental disorder spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM, OMIM 616657). Psychomotor development and speech are significantly impaired in these patients, and many develop seizures. We generated and characterized a knock-in mouse model for the most common mutant allele, which results in a single amino acid change (p.Glu256Lys, or E256K). Homozygous mutants had increased D-serine uptake in the brain, microcephaly, and thin corpus callosum and cortex layer 1. While p.E256K homozygotes showed some significant differences in exploratory behavior relative to wildtype mice, their performance in assays for motor coordination, endurance, learning, and memory was normal, and they showed no significant differences in long-term potentiation. Taken together, these results indicate that the impact of the p.E256K mutation on cognition and motor function is minimal in mice, but other aspects of SLC1A4 function in the brain are conserved. Mice homozygous for p.E256K may be a good model for understanding the developmental basis of the corpus callosum and microcephaly phenotypes observed in SPATCCM patients and assessing whether they are rescued by serine supplementation.
Collapse
Affiliation(s)
| | - Greg Leary
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA
- The Division of Biological Sciences, The University of Montana, Missoula, MT, USA
| | - Andrea Grindeland
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA
| | - Derek Silvius
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA
| | - Joseph Guter
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA
| | - Michael P Kavanaugh
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA.
- The Division of Biological Sciences, The University of Montana, Missoula, MT, USA.
- Neuroscience Program, University of Montana, 32 Campus Drive, Missoula, MT, 59803, USA.
| | - Teresa M Gunn
- The McLaughlin Research Institute, 1520 23Rd St. S, Great Falls, MT, 59405, USA.
| |
Collapse
|
210
|
Rodriguez G, Eren M, Haupfear I, Viola KL, Cline EN, Miyata T, Klein WL, Vaughan DE, Dong H. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology (Berl) 2023; 240:2641-2655. [PMID: 37700086 DOI: 10.1007/s00213-023-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice. METHODS We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.
Collapse
Affiliation(s)
- Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
211
|
Lee KH, Song JW, Kim CS, Seong H, Shin DM, Shon WJ. Taste receptor type 1 member 3 mediates diet-induced cognitive impairment in mice. Life Sci 2023; 334:122194. [PMID: 37865176 DOI: 10.1016/j.lfs.2023.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
AIMS Long-term consumption of a western diet (WD), which is characterized by high intake of saturated fats and sugary drinks, causes cognitive impairment. However, the molecular mechanism by which WD induces cognitive impairment remains unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is expressed in extra-oral tissues, including the brain, and particularly in the hippocampus. This study investigated whether TAS1R3 regulates WD-induced cognitive impairment in mice. MAIN METHODS Male C57BL/6J wild-type (WT) and Tas1r3 knock-out (KO) mice were fed either a normal diet (ND) or WD for 18 weeks. Cognitive functions were assessed using novel object recognition and Barnes maze tests. The mechanisms underlying WD-induced cognitive impairment were assessed using RNA-sequencing and bioinformatics analysis. KEY FINDINGS Cognitive impairment was observed in WT mice fed WD (WT-WD) compared with WT-ND mice. Conversely, mice lacking TAS1R3 were not cognitively impaired even under long-term WD feeding. Hippocampal transcriptome analysis revealed upregulated AMP-activated protein kinase (AMPK) signaling and increased AMPK-targeted sirtuin 3 expression in KO-WD mice. Pathway enrichment analysis showed that response to oxidative stress was downregulated, whereas neurogenesis was upregulated in dentate gyrus of KO-WD mice. In vitro studies validated the findings, indicating that Tas1r3 knockdown directly upregulated decreased sirtuin 3 expression, its downstream genes-related to oxidative stress, and apoptosis induced by WD condition in hippocampal neuron cells. SIGNIFICANCE TAS1R3 acts as a critical mediator of WD-induced cognitive impairment in mice, thereby offering potential as a novel therapeutic target to prevent WD-induced cognitive impairment.
Collapse
Affiliation(s)
- Keon-Hee Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Won Song
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hobin Seong
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woo-Jeong Shon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
212
|
Wang Y, Zou J, Wang Y, Wang J, Ji X, Zhang T, Chu Y, Cui R, Zhang G, Shi G, Wu Y, Kang Y. Hydralazine inhibits neuroinflammation and oxidative stress in APP/PS1 mice via TLR4/NF-κB and Nrf2 pathways. Neuropharmacology 2023; 240:109706. [PMID: 37661037 DOI: 10.1016/j.neuropharm.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiayang Zou
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China.
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
213
|
Yao N, Li Y, Han J, Wu S, Liu X, Wang Q, Li Z, Shi FD. Microglia-derived CCL20 deteriorates neurogenesis following intraventricular hemorrhage. Exp Neurol 2023; 370:114561. [PMID: 37802382 DOI: 10.1016/j.expneurol.2023.114561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice. Meanwhile, an elevated level of microglia-derived CC chemokine ligand 20 (CCL20) is observed in the SVZ following IVH, which can induce the upregulation of pro-inflammatory factors in microglia and impair the proliferation and survival of neural stem cells (NSCs) in vitro. Blocking CCL20 in microglia leads to downregulation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/the nuclear factor-κB (NF-κB) signaling pathway, which may contribute to CCL20-dependent pro-inflammatory responses and neural injury. These findings demonstrate a detrimental role of microglia in the neurogenesis and neurorepair after IVH in which CCL20 likely plays a role.
Collapse
Affiliation(s)
- Nan Yao
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulin Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinrui Han
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Siting Wu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiuyu Wang
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiguo Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China; Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
214
|
Pelaez MC, Desmeules A, Gelon PA, Glasson B, Marcadet L, Rodgers A, Phaneuf D, Pozzi S, Dutchak PA, Julien JP, Sephton CF. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition. Acta Neuropathol Commun 2023; 11:182. [PMID: 37974279 PMCID: PMC10652582 DOI: 10.1186/s40478-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.
Collapse
Affiliation(s)
- Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Antoine Desmeules
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Pauline A Gelon
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Bastien Glasson
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Laetitia Marcadet
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Alicia Rodgers
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Daniel Phaneuf
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
215
|
Takahashi J, Yamada D, Nagano W, Sano Y, Furuichi T, Saitoh A. Oxytocinergic projection from the hypothalamus to supramammillary nucleus drives recognition memory in mice. PLoS One 2023; 18:e0294113. [PMID: 37971993 PMCID: PMC10653413 DOI: 10.1371/journal.pone.0294113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
Oxytocin (OXT) neurons project to various brain regions and its receptor expression is widely distributed. Although it has been reported that OXT administration affects cognitive function, it is unclear how endogenous OXT plays roles in cognitive function. The present study examined the role of endogenous OXT in mice cognitive function. OXT neurons were specifically activated by OXT neuron-specific excitatory Designer Receptors Exclusively Activated by Designer Drug expression system and following administration of clozapine-N-oxide (CNO). Object recognition memory was assessed with the novel object recognition task (NORT). Moreover, we observed the expression of c-Fos via immunohistochemical staining to confirm neuronal activity. In NORT, the novel object exploration time percentage significantly increased in CNO-treated mice. CNO-treated mice showed a significant increase in the number of c-Fos-positive cells in the supramammillary nucleus (SuM). In addition, we found that the OXT-positive fibers from paraventricular hypothalamic nucleus (PVN) were identified in the SuM. Furthermore, mice injected locally with CNO into the SuM to activate OXTergic axons projecting from the PVN to the SuM showed significantly increased percentage time of novel object exploration. Taken together, we proposed that object recognition memory in mice could be modulated by OXT neurons in the PVN projecting to the SuM.
Collapse
Affiliation(s)
- Junpei Takahashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Wakana Nagano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
216
|
Esaki H, Deyama S, Izumi S, Katsura A, Nishikawa K, Nishitani N, Kaneda K. Varenicline enhances recognition memory via α7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology 2023; 239:109672. [PMID: 37506875 DOI: 10.1016/j.neuropharm.2023.109672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4β2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4β2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ayano Katsura
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
217
|
Loftis JM, Ramani S, Firsick EJ, Hudson R, Le-Cook A, Murnane KS, Vandenbark A, Shirley RL. Immunotherapeutic treatment of inflammation in mice exposed to methamphetamine. Front Psychiatry 2023; 14:1259041. [PMID: 38025429 PMCID: PMC10666795 DOI: 10.3389/fpsyt.2023.1259041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Currently, there are no FDA-approved medications to treat methamphetamine addiction, including the inflammatory, neurotoxic, and adverse neuropsychiatric effects. We have shown that partial (p)MHC class II constructs (i.e., Recombinant T-cell receptor Ligand - RTL1000), comprised of the extracellular α1 and β1 domains of MHC class II molecules linked covalently to myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide, can address the neuroimmune effects of methamphetamine addiction through its ability to bind to and down-regulate CD74 expression, block macrophage migration inhibitory factor (MIF) signaling, and reduce levels of pro-inflammatory chemokine ligand 2 (CCL2). The present study evaluated the effects of our third-generation pMHC II construct, DRmQ, on cognitive function and concentration of inflammatory cytokines in the frontal cortex, a region critical for cognitive functions such as memory, impulse control, and problem solving. Methods Female and male C57BL/6J mice were exposed to methamphetamine (or saline) via subcutaneous (s.c.) injections administered four times per day every other day for 14 days. Following methamphetamine exposure, mice received immunotherapy (DRmQ or ibudilast) or vehicle s.c. injections daily for five days. Cognitive function was assessed using the novel object recognition test (NORT). To evaluate the effects of immunotherapy on inflammation in the frontal cortex, multiplex immunoassays were conducted. ANOVA was used to compare exploration times on the NORT and immune factor concentrations. Results Post hoc analysis revealed increased novel object exploration time in MA-DRmQ treated mice, as compared to MA-VEH treated mice (non-significant trend). One-way ANOVA detected a significant difference across the groups in the concentration of macrophage inflammatory protein-2 (MIP-2) (p = 0.03). Post hoc tests indicated that mice treated with methamphetamine and DRmQ or ibudilast had significantly lower levels of MIP-2 in frontal cortex, as compared to mice treated with methamphetamine and vehicle (p > 0.05). Discussion By specifically targeting CD74, our DRQ constructs can block the signaling of MIF, inhibiting the downstream signaling and pro-inflammatory effects that contribute to and perpetuate methamphetamine addiction.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Methamphetamine Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Sankrith Ramani
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Evan J. Firsick
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Rebekah Hudson
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Anh Le-Cook
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Arthur Vandenbark
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
218
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
219
|
Matias D, Sisnande T, Martins A, do Amaral M, Santos B, Miranda A, Lima L. Dietary phytate induces subclinical mechanical allodynia in mice. Braz J Med Biol Res 2023; 56:e12955. [PMID: 37937602 PMCID: PMC10695159 DOI: 10.1590/1414-431x2023e12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Neuropathic pain is a condition with varying origins, including reduced dietary micronutrient intake. Phytate is a polyphosphate found in seeds and grains that can act as an antinutrient due to the ability of sequester essential divalent metals. Here we tested whether moderate dietary phytate intake could alter nociceptive pain. We subjected weaning mice to a chow supplemented with 1% phytate for eight weeks. Body weight gain, glycemic responses, food ingestion, water ingestion, and liver and adipose tissue weights were not altered compared to controls. We observed a decreased mechanical allodynia threshold in the intervention group, although there were no changes in heat- or cold-induced pain. Animals consuming phytate showed reduced spinal cord tumor necrosis factor (TNF), indicating altered inflammatory process. These data provide evidence for a subclinical induction of mechanical allodynia that is independent of phytate consumption in animals with otherwise normal phenotypic pattern.
Collapse
Affiliation(s)
- D.O. Matias
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Estudos em Farmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - T. Sisnande
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A.F. Martins
- Laboratório de Estudos em Farmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - M.J. do Amaral
- Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - B.L.R. Santos
- Laboratório de Estudos em Farmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A.L.P. Miranda
- Laboratório de Estudos em Farmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - L.M.T.R. Lima
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Macromoléculas, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, RJ, Brasil
| |
Collapse
|
220
|
Zhuo C, Tian H, Zhu J, Fang T, Ping J, Wang L, Sun Y, Cheng L, Chen C, Chen G. Low-dose lithium adjunct to quetiapine improves cognitive task performance in mice with MK801-induced long-term cognitive impairment: Evidence from a pilot study. J Affect Disord 2023; 340:42-52. [PMID: 37506773 DOI: 10.1016/j.jad.2023.07.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Low-dose lithium (LD-Li) has been shown to rescue cognitive impairment in mouse models of short-term mild cognitive impairment, dementia, and schizophrenia. However, few studies have characterized the effects of LD-Li, alone or in conjunction with anti-psychotics, in the mouse model of MK801-induced long term cognitive impairment. METHODS The present study used in vivo Ca2+ imaging and a battery of cognitive function assessments to investigate the long-term effects of LD-Li on cognition in mice exposed to repeated injections of MK801. Prefrontal Ca2+ activity was visualized to estimate alterations in neural activity in the model mice. Pre-pulse inhibition (PPI), novel object recognition (NOR), Morris water maze (MWM), and fear conditioning (FC) tasks were used to characterize cognitive performance; open field activity (OFA) testing was used to observe psychotic symptoms. Two treatment strategies were tested: LD-Li [250 mg/d human equivalent dose (HED)] adjunct to quetiapine (QTP; 600 mg/d HED); and QTP-monotherapy (mt; 600 mg/d HED). RESULTS Compared to the QTP-mt group, the LD-Li + QTP group showed greatly improved cognitive performance on all measures between experimental days 29 and 85. QTP-mt improved behavioral measures compared to untreated controls, but the effects persisted only from day 29 to day 43. These data suggest that LD-Li + QTP is superior to QTP-mt for improving long-term cognitive impairments in the MK801 mouse model. LIMITATIONS There is no medical consensus regarding lithium use in patients with schizophrenia. CONCLUSION More pre-clinical and clinical studies are needed to further investigate effective treatment strategies for patients with long-term cognitive impairments, such as chronic schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Jingjing Zhu
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Tao Fang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Jing Ping
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Yun Sun
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Langlang Cheng
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Chunmian Chen
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Guangdong Chen
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| |
Collapse
|
221
|
He Y, Li Z, Shi X, Ding J, Wang X. Metformin attenuates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2023; 43:78-94. [PMID: 37177813 PMCID: PMC10638997 DOI: 10.1177/0271678x231175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) is a series of cognitive dysfunction associated with cerebrovascular diseases and currently lacks effective treatments. The white matter, which is essential for neuronal information processing and integration, is nourished by a network of capillaries and is vulnerable to chronic hypoperfusion. Here, we show that metformin, a widely used drug for the treatment of type 2 diabetes, alleviates the white matter damage and improves cognitive impairment in a mouse model of VCID established by bilateral carotid artery stenosis (BCAS)-induced chronic hypoperfusion. Mechanistically, metformin restores the dysfunctions of oligodendrocyte precursor cells (OPCs) under hypoxia. Metformin up-regulates prolyl hydroxylases 2 via activating the AMP-activated protein kinase pathway, leading to hypoxia-inducible factor-1α (HIF-1α) degradation in OPCs. These findings suggest that metformin may have a promising therapeutic role in alleviating cognitive abnormalities by ameliorating white matter damage of VCID.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
222
|
Dubey H, Roychoudhury R, Alex A, Best C, Liu S, White A, Carlson A, Azcarate-Peril MA, Mansfield LS, Knickmeyer R. Effect of Human Infant Gut Microbiota on Mouse Behavior, Dendritic Complexity, and Myelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563309. [PMID: 37961091 PMCID: PMC10634763 DOI: 10.1101/2023.10.24.563309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development. Teaser Fecal transplants from human infants with highly abundant Bifidobacterium , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.
Collapse
|
223
|
Zhao W, Hou Y, Zhang Q, Yu H, Meng M, Zhang H, Zhou Y. Estrogen receptor β exerts neuroprotective effects by fine-tuning mitochondrial homeostasis through NRF1/PGC-1α. Neurochem Int 2023; 171:105636. [PMID: 39491237 DOI: 10.1016/j.neuint.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Estrogen deficiency causes mitochondrial defects that precede pathological changes related to Alzheimer's disease (AD) in the mouse model of postmenopause. The aim of this study was to investigate in such a mouse model whether and how estrogen receptor β (ERβ) was involved in prevention of mitochondrial damage and protection of neurons in the hippocampus. METHODS A mouse model of postmenopausal AD was created by ovariectomizing female 3xTg-AD mice, some of which were subcutaneously injected for six weeks with the non-steroidal ERβ agonist diarylpropionitrile. ERβ expression in female C57BL/6J mice was knocked down using shRNA interference. The different groups of animals were compared in terms of cognitive function using the Y-maze test, new object recognition test, and Morris water maze test, expression of numerous proteins related to mitochondrial biogenesis, mitophagy, apoptosis, and mitochondrial membrane potential, as well as deposition of amyloid β and neurofibrillary tangles. To complement these in vivo studies, we probed the effects of diarylpropionitrile on ERβ expression, apoptosis, and mitochondrial homeostasis in primary rat hippocampal neurons treated with amyloid β. RESULTS ERβ knockdown in C57BL/6J mice produced cognitive impairment, reduced mitochondrial biogenesis by downregulating PGC-1α, NRF1, mtTFA, and TOM20, and decreased mitophagy by downregulating Pink1, Parkin, and LC3B while upregulating PARIS and p62. ERβ knockdown promoted neuronal apoptosis by upregulating Cleaved-Caspase 9, Cleaved-Caspase 3, and Bax, while downregulating Bcl2 in hippocampus. Diarylpropionitrile mitigated cognitive decline in ovariectomized 3xTg-AD mice, which was associated with downregulation of BACE1, reduction of Aβ deposition, neurofibrillary tangles, and tau hyperphosphorylation, and upregulation of ERβ, increases in mitochondrial biogenesis and mitophagy, and decreases in apoptosis. The effects of diarylpropionitrile in mice were recapitulated in Aβ-injured primary rat hippocampal neurons. CONCLUSIONS ERβ activation can support learning and memory and alleviate AD symptoms in the postmenopausal AD model, which may involve regulation of neuronal mitochondrial biogenesis and mitophagy via NRF1/PGC-1α. This study supports further research on ERβ as a therapeutic target for postmenopausal women with AD.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, 271018, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Meichen Meng
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Hanting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China.
| |
Collapse
|
224
|
Chen YN, Kostka JK, Bitzenhofer SH, Hanganu-Opatz IL. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr Biol 2023; 33:4353-4366.e5. [PMID: 37729915 PMCID: PMC10617757 DOI: 10.1016/j.cub.2023.08.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
225
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
226
|
Morimoto K, Watanuki S, Eguchi R, Kitano T, Otsuguro KI. Short-term memory impairment following recovery from systemic inflammation induced by lipopolysaccharide in mice. Front Neurosci 2023; 17:1273039. [PMID: 37920299 PMCID: PMC10618367 DOI: 10.3389/fnins.2023.1273039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
The relationship between neuroinflammation and mental disorders has been recognized and investigated for over 30 years. Diseases of systemic or peripheral inflammation, such as sepsis, peritonitis, and infection, are associated with increased risk of mental disorders with neuroinflammation. To elucidate the pathogenesis, systemic administration of lipopolysaccharide (LPS) in mice is often used. LPS-injected mice exhibit behavioral abnormalities with glial activation. However, these studies are unlikely to recapitulate the clinical pathophysiology of human patients, as most studies focus on the acute inflammatory response with systemic symptoms occurring within 24 h of LPS injection. In this study, we focus on the effects of LPS on behavioral abnormalities following recovery from systemic symptoms and investigate the mechanisms of pathogenesis. Several behavioral tests were performed in LPS-injected mice, and to assess neuroinflammation, the time course of the morphological change and expression of inflammatory factors in neurons, astrocytes, and microglia were investigated. At 7 days post-LPS injection, mice exhibited short-term memory impairment accompanied by the suppression of neuronal activity and increases in morphologically immature spines. Glial cells were transiently activated in the hippocampus concomitant with upregulation of the microglial phagocytosis marker CD68 3 days after injection. Here we show that transient glial cell activation in the acute response phase affects neuronal activity and behavior following recovery from systemic symptoms. These findings provide novel insights for studies using the LPS-induced inflammation model and that will contribute to the development of treatments for mental disorders of this etiology.
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shu Watanuki
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Taisuke Kitano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
227
|
Liu S, Zhang S, Guo M, Lei Q, He L, Li Z. Acoustic stimulation during sleep improves cognition and ameliorates Alzheimer's disease pathology in APP/PS1 mice. Exp Gerontol 2023; 182:112299. [PMID: 37776987 DOI: 10.1016/j.exger.2023.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Nonpharmacological therapies for Alzheimer's disease (AD) have become a popular research topic, and acoustic stimulation during sleep is one such promising strategy for the clinical treatment of AD. Some animal experiments have illustrated that acoustic stimulation at a specific frequency can ameliorate AD-related pathology or improve cognition in mice, but these studies did not explore the effective time window of auditory stimulation. Here, we explored the effects of acoustic stimulation during wakefulness and acoustic stimulation during sleep on cognition and AD-related pathology in APP/PS1 mice and the underlying mechanisms. In this study, forty APP/PS1 mice were equally divided into the following 4 groups and treated for 28 days: the chronic sleep deprivation (CSD) group (exposed to sleep deprivation from zeitgeber time [ZT] 0 to ZT 12 each day), the normal sleep and stress exposure (NSS) group (exposed to a stressor from ZT 0 to ZT 12 each day), the acoustic stimulation during wakefulness (ASW) group (exposed to sleep deprivation and 40 Hz acoustic stimulation from ZT 0 to ZT 12 each day) and the acoustic stimulation during sleep (ASS) group (exposed to sleep deprivation from ZT 0 to ZT 12 and 40 Hz acoustic stimulation from ZT 12 to ZT 24 each day). After the intervention, cognition was assessed by behavioural experiments. The amyloid-β burden was analysed by Western blotting, immunofluorescence and enzyme-linked immunosorbent assay. Tau pathology was assessed by Western blotting. Mitochondrial function was evaluated by transmission electron microscopy, Western blotting and fluorescence intensity measurement. We found that the NSS and ASS groups had better cognitive functions than the CSD and ASW groups. The Aβ burden and tau phosphorylation were lower in the NSS and ASS groups than in the CSD and ASW groups. Mitochondrial function was better in the NSS and ASS groups than in the CSD and ASW groups. However, the differences in these parameters between the NSS and ASS groups and between the CSD and ASW groups were not significant. Our findings suggest that acoustic stimulation at a specific frequency during sleep, but not during wakefulness, reduces the amyloid-β burden by inhibiting amyloid beta precursor protein-binding protein 2, hinders tau phosphorylation by blocking glycogen synthase kinase 3 beta, and restores mitochondrial function by elevating mitophagy and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Su Zhang
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Mengxia Guo
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qingfeng Lei
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Lu He
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
228
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
229
|
Li Q, Jia X, Zhong Q, Zhong Z, Wang Y, Tang C, Zhao B, Feng H, Hao J, Zhao Z, He J, Zhang Y. Combination of Walnut Peptide and Casein Peptide alleviates anxiety and improves memory in anxiety mices. Front Nutr 2023; 10:1273531. [PMID: 37867495 PMCID: PMC10588484 DOI: 10.3389/fnut.2023.1273531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and Results Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.
Collapse
Affiliation(s)
- Qinxi Li
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Qixing Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Tang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bangcheng Zhao
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
230
|
Majimbi M, McLenachan S, Nesbit M, Chen FK, Lam V, Mamo J, Takechi R. In vivo retinal imaging is associated with cognitive decline, blood-brain barrier disruption and neuroinflammation in type 2 diabetic mice. Front Endocrinol (Lausanne) 2023; 14:1224418. [PMID: 37850093 PMCID: PMC10577437 DOI: 10.3389/fendo.2023.1224418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Type 2 diabetes (T2D) is associated with chronic inflammation and neurovascular changes that lead to functional impairment and atrophy in neural-derived tissue. A reduction in retinal thickness is an early indicator of diabetic retinopathy (DR), with progressive loss of neuroglia corresponding to DR severity. The brain undergoes similar pathophysiological events as the retina, which contribute to T2D-related cognitive decline. Methods This study explored the relationship between retinal thinning and cognitive decline in the LepR db/db model of T2D. Diabetic db/db and non-diabetic db/+ mice aged 14 and 28 weeks underwent cognitive testing in short and long-term memory domains and in vivo retinal imaging using optical coherence tomography (OCT), followed by plasma metabolic measures and ex vivo quantification of neuroinflammation, oxidative stress and microvascular leakage. Results At 28 weeks, mice exhibited retinal thinning in the ganglion cell complex and inner nuclear layer, concomitant with diabetic insulin resistance, memory deficits, increased expression of inflammation markers and cerebrovascular leakage. Interestingly, alterations in retinal thickness at both experimental timepoints were correlated with cognitive decline and elevated immune response in the brain and retina. Discussion These results suggest that changes in retinal thickness quantified with in vivo OCT imaging may be an indicator of diabetic cognitive dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- May Majimbi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Fred K. Chen
- Lions Eye Institute Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Research, Nedlands, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
231
|
Abdelghany AK, Gamal A, Abdel-Wahab A, Abdel-Razik ARH, El-Samannoudy S, Ibrahim MA, Hassan WH, El-Ela FIA. RETRACTED ARTICLE: Evaluating the neuroprotective effect of Spirulina platensis-loaded niosomes against Alzheimer's disease induced in rats. Drug Deliv Transl Res 2023; 13:2690. [PMID: 36790720 PMCID: PMC10468951 DOI: 10.1007/s13346-023-01301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Affiliation(s)
- Asmaa K. Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Abdel-Razik H. Abdel-Razik
- Department of Histopathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | | | - Marwa A. Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| |
Collapse
|
232
|
Fradley R, Goetghebeur P, Miller D, Burley R, Almond S, Gruart I Massó A, Delgado García JM, Zhu B, Howley E, Neill JC, Grayson B, Gaskin P, Carlton M, Gray I, Serrats J, Davies CH. Luvadaxistat: A Novel Potent and Selective D-Amino Acid Oxidase Inhibitor Improves Cognitive and Social Deficits in Rodent Models for Schizophrenia. Neurochem Res 2023; 48:3027-3041. [PMID: 37289348 PMCID: PMC10471729 DOI: 10.1007/s11064-023-03956-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunctionality is a well-studied hypothesis for schizophrenia pathophysiology, and daily dosing of the NMDA receptor co-agonist, D-serine, in clinical trials has shown positive effects in patients. Therefore, inhibition of D-amino acid oxidase (DAAO) has the potential to be a new therapeutic approach for the treatment of schizophrenia. TAK-831 (luvadaxistat), a novel, highly potent inhibitor of DAAO, significantly increases D-serine levels in the rodent brain, plasma, and cerebrospinal fluid. This study shows luvadaxistat to be efficacious in animal tests of cognition and in a translational animal model for cognitive impairment in schizophrenia. This is demonstrated when luvadaxistat is dosed alone and in conjunction with a typical antipsychotic. When dosed chronically, there is a suggestion of change in synaptic plasticity as seen by a leftward shift in the maximum efficacious dose in several studies. This is suggestive of enhanced activation of NMDA receptors in the brain and confirmed by modulation of long-term potentiation after chronic dosing. DAAO is highly expressed in the cerebellum, an area of increasing interest for schizophrenia, and luvadaxistat was shown to be efficacious in a cerebellar-dependent associative learning task. While luvadaxistat ameliorated the deficit seen in sociability in two different negative symptom tests of social interaction, it failed to show an effect in endpoints of negative symptoms in clinical trials. These results suggest that luvadaxistat potentially could be used to improve cognitive impairment in patients with schizophrenia, which is not well addressed with current antipsychotic medications.
Collapse
Affiliation(s)
- Rosa Fradley
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | - David Miller
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | - Sarah Almond
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | | | - Bin Zhu
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Eimear Howley
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Jo C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Philip Gaskin
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Mark Carlton
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Ian Gray
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, 9625 Towne Centre Dr, San Diego, CA, 92121, USA.
| | - Ceri H Davies
- Takeda Pharmaceuticals Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
233
|
Zhou F, Ouyang L, Li Q, Yang S, Liu S, Yu H, Jia Q, Rao S, Xie J, Du G, Feng C, Fan G. Hippocampal LIMK1-mediated Structural Synaptic Plasticity in Neurobehavioral Deficits Induced by a Low-dose Heavy Metal Mixture. Mol Neurobiol 2023; 60:6029-6042. [PMID: 37407880 DOI: 10.1007/s12035-023-03458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Humans are commonly exposed to the representative neurotoxic heavy metals lead (Pb), cadmium (Cd), and mercury (Hg). These three substances can be detected simultaneously in the blood of the general population. We have previously shown that a low-dose mixture of these heavy metals induces rat learning and memory impairment at human exposure levels, but the pathogenic mechanism is still unclear. LIM kinase 1 (LIMK1) plays a critical role in orchestrating synaptic plasticity during brain function and dysfunction. Hence, we investigated the role of LIMK1 activity in low-dose heavy metal mixture-induced neurobehavioral deficits and structural synaptic plasticity disorders. Our results showed that heavy metal mixture exposure altered rat fear responses and spatial learning at general population exposure levels and that these alterations were accompanied by downregulation of LIMK1 phosphorylation and structural synaptic plasticity dysfunction in rat hippocampal tissues and cultured hippocampal neurons. In addition, upregulation of LIMK1 phosphorylation attenuated heavy metal mixture-induced structural synaptic plasticity, dendritic actin dynamics, and cofilin phosphorylation damage. The potent LIMK1 inhibitor BMS-5 yielded similar results induced by heavy metal mixture exposure and aggravated these impairments. Our findings demonstrate that LIMK1 plays a crucial role in neurobehavioral deficits induced by low-dose heavy metal mixture exposure by suppressing structural synaptic plasticity.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Han Yu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang, 330006, P.R. China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
234
|
Feng R, Liu J, Yang Z, Yao T, Ye P, Li X, Zhang J, Jiang H. Realgar-Induced Neurotoxicity: Crosstalk Between the Autophagic Flux and the p62-NRF2 Feedback Loop Mediates p62 Accumulation to Promote Apoptosis. Mol Neurobiol 2023; 60:6001-6017. [PMID: 37400749 DOI: 10.1007/s12035-023-03452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Realgar is a traditional Chinese medicine that contains arsenic. It has been reported that the abuse of medicine-containing realgar has potential central nervous system (CNS) toxicity, but the toxicity mechanism has not been elucidated. In this study, we established an in vivo realgar exposure model and selected the end product of realgar metabolism, DMA, to treat SH-SY5Y cells in vitro. Many assays, including behavioral, analytical chemistry, and molecular biology, were used to elucidate the roles of the autophagic flux and the p62-NRF2 feedback loop in realgar-induced neurotoxicity. The results showed that arsenic could accumulate in the brain, causing cognitive impairment and anxiety-like behavior. Realgar impairs the ultrastructure of neurons, promotes apoptosis, perturbs autophagic flux homeostasis, amplifies the p62-NRF2 feedback loop, and leads to p62 accumulation. Further analysis showed that realgar promotes the formation of the Beclin1-Vps34 complex by activating JNK/c-Jun to induce autophagy and recruit p62. Meanwhile, realgar inhibits the activities of CTSB and CTSD and changes the acidity of lysosomes, leading to the inhibition of p62 degradation and p62 accumulation. Moreover, the amplified p62-NRF2 feedback loop is involved in the accumulation of p62. Its accumulation promotes neuronal apoptosis by upregulating the expression levels of Bax and cleaved caspase-9, resulting in neurotoxicity. Taken together, these data suggest that realgar can perturb the crosstalk between the autophagic flux and the p62-NRF2 feedback loop to mediate p62 accumulation, promote apoptosis, and induce neurotoxicity. Realgar promotes p62 accumulation to produce neurotoxicity by perturbing the autophagic flux and p62-NRF2 feedback loop crosstalk.
Collapse
Affiliation(s)
- Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Ping Ye
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Xiuhan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jiaxin Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
| |
Collapse
|
235
|
Peng J, He Y, He J, Zhang J, Yu Z, Xia Y. GPR30 agonist G1 combined with hypothermia alleviates cognitive impairment and anxiety-like behavior after subarachnoid hemorrhage in rats. Brain Behav 2023; 13:e3204. [PMID: 37548479 PMCID: PMC10570468 DOI: 10.1002/brb3.3204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the treatment effect of G protein-coupled receptor 30 (GPR30) agonist G1 combined with hypothermia (HT) on cognitive impairment and anxiety-like behavior after subarachnoid hemorrhage (SAH) in rats. METHODS Fifty male rats were randomly assigned to one of five groups: Sham group, SAH group, SAH + G1 group, SAH + HT group, and SAH + G1 + HT group. The SAH rat model was established by modified endovascular puncture in all groups except the Sham group. Neurological function after the operation was assessed by Garcia scoring. The degree of rat cerebral edema was determined using dry-wet weighing method on the 28th day after operation. Moreover, the behavioral test was performed on rats on the 4th and 28th days after operation. RESULTS Compared with Sham group, the Garcia score of each SAH rat model group decreased significantly on the first day and thereafter increased gradually. However, the recovery rate of each treatment group was higher than the SAH group (no treatment), and the Garcia score of SAH + G1 + HT group was much higher than the SAH group on the seventh day after operation. In addition, each treatment group could obviously reduce the cerebral edema degree of SAH rats, among which rats in SAH + G1 + HT group had lower cerebral edema degree than SAH + G1 group and SAH + HT group. Behavioral test results showed that the combination of GPR30 agonist G1 and HT markedly improved the learning and memory ability of SAH rats, alleviated their anxiety- and emotion-related behavior, and enhanced their social interaction. CONCLUSION GPR30 agonist G1 combined with HT reduces cognitive impairment and anxiety-like behavior in rats with SAH.
Collapse
Affiliation(s)
- Jun Peng
- Department of neurosurgeryHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHaikouHainanChina
| | - Yang He
- Department of NeurologyHainan Medical College First Affiliated HospitalHaikouHainanChina
| | - Jun He
- Department of neurosurgeryHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHaikouHainanChina
| | - Ji‐kun Zhang
- Department of neurosurgeryHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHaikouHainanChina
| | - Zheng‐tao Yu
- Department of neurosurgeryHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHaikouHainanChina
| | - Ying Xia
- Department of neurosurgeryHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHaikouHainanChina
| |
Collapse
|
236
|
Zhang L, Jia Z, Wu Q, Bai T, Wang B, Hu X, Li T, Liu X, Fu J, Chen Y, Ding X, Liu Z, Xu Z, Zhou H. Alleviating symptoms of neurodegenerative disorders by astrocyte-specific overexpression of TMEM164 in mice. Nat Metab 2023; 5:1787-1802. [PMID: 37679556 DOI: 10.1038/s42255-023-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Neuroinflammatory microglia secrete cytokines to induce neurotoxic reactive astrocytes, which are one of the major causes of neuronal death. However, the intrinsic key regulators underlying neurotoxic reactive astrocytes induction are unknown. Here we show that the transmembrane protein 164 (TMEM164) is an early-response intrinsic factor that regulates neurotoxic astrocyte reactivity. TMEM164 overexpression inhibits the induction of neurotoxic reactive astrocytes, maintains normal astrocytic functions and suppresses neurotoxic reactive astrocyte-mediated neuronal death by decreasing the secretion of neurotoxic saturated lipids. Adeno-associated virus-mediated, astrocyte-specific TMEM164 overexpression in male and female mice prevents the induction of neurotoxic reactive astrocytes, dopaminergic neuronal loss and motor deficits in a Parkinson's disease model. Notably, brain-wide astrocyte-specific TMEM164 overexpression prevents the induction of neurotoxic reactive astrocytes, amyloid β deposition, neurodegeneration and memory decline in the 5XFAD Alzheimer's disease mouse model, suggesting that TMEM164 could serve as a potential therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiang Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinde Hu
- Genemagic Biosciences, Shanghai, China
| | - Tianwen Li
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai, China
| | - Xingyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuelei Chen
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Ding
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zhengzheng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
237
|
Szczepańska K, Bojarski AJ, Popik P, Malikowska-Racia N. Novel object recognition test as an alternative approach to assessing the pharmacological profile of sigma-1 receptor ligands. Pharmacol Rep 2023; 75:1291-1298. [PMID: 37572216 PMCID: PMC10539447 DOI: 10.1007/s43440-023-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Although the terms "agonist" and "antagonist" have been used to classify sigma-1 receptor (σ1R) ligands, an unambiguous definition of the functional activity is often hard. In order to determine the pharmacological profile of σ1R ligands, the most common method is to assess their potency to alleviate opioid analgesia. It has been well established that σ1R agonists reduce opioid analgesic activity, while σ1R antagonists have been demonstrated to enhance opioid analgesia in different pain models. METHODS In the present study, we evaluated the pharmacological profile of selected σ1R ligands using a novel object recognition (NOR) test, to see if any differences in cognitive functions between σ1R agonists and antagonists could be observed. We used the highly selective PRE-084 and S1RA as reference σ1R agonist and antagonist, respectively. Furthermore, compound KSK100 selected from our ligand library was also included in this study. KSK100 was previously characterized as a dual-targeting histamine H3/σ1R antagonist with antinociceptive and antiallodynic activity in vivo. Donepezil (acetylcholinesterase inhibitor and σ1R agonist) was used as a positive control drug. RESULTS Both tested σ1R agonists (donepezil and PRE-084) improved learning in the NOR test, which was not observed with the σ1R antagonists S1RA and KSK100. CONCLUSIONS The nonlinear dose-response effect of PRE-084 in this assay does not justify its use for routine assessment of the functional activity of σ1R ligands.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Medicinal Chemistry, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Natalia Malikowska-Racia
- Department of Behavioral Neuroscience and Drug Development, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
238
|
Chen CM, Gung PY, Ho YC, Hamdin CD, Yet SF. Probucol treatment after traumatic brain injury activates BDNF/TrkB pathway, promotes neuroregeneration and ameliorates functional deficits in mice. Br J Pharmacol 2023; 180:2605-2622. [PMID: 37263748 DOI: 10.1111/bph.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide, yet pharmacotherapies for TBI are currently lacking. Neuroregeneration is important in brain repair and functional recovery. In this study, probucol, a cholesterol-lowering drug with established safety profiles, was examined for its therapeutic effects and neuroregenerative actions in TBI. EXPERIMENTAL APPROACH Male mice were subjected to the controlled cortical impact model of TBI, followed by daily administration of probucol. Neurological and cognitive functions were evaluated. Histological analyses of the neocortex and hippocampus were performed to detect the lesion, dendritic degeneration (microtubule-associated protein 2), synaptic density (synaptophysin), neurogenesis (doublecortin), brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) activation. Involvement of BDNF/TrkB pathway in probucol-mediated effects was examined in primary cultures of cortical neurons. KEY RESULTS Probucol reduced brain lesion volume, enhanced the recovery of body symmetry, improved motor function and attenuated memory dysfunction after TBI. Meanwhile, probucol promoted post-injury dendritic growth and synaptogenesis and increased hippocampal proliferating neuronal progenitor cells, along with the formation as well as the survival of newborn neurons. Moreover, probucol enhances BDNF expression and TrkB activation. In vitro, probucol promoted neurite outgrowth, which was inhibited by a selective TrkB antagonist ANA-12. CONCLUSIONS AND IMPLICATIONS Probucol enhanced functional restoration and ameliorated cognitive impairment after TBI by promoting post-injury neuronal remodelling and neurogenesis. Increased activation of BDNF/TrkB pathway by probucol, at least in part, contributed to the neuroregenerative effects of probucol. Together, it may be promising to repurpose probucol for TBI.
Collapse
Affiliation(s)
- Chen-Mei Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yu Gung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Candra D Hamdin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- National Health Research Institutes & Department of Life Sciences, National Central University Joint Ph.D. Program in Biomedicine, Taoyuan City, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
239
|
Li D, Liu S, Yu T, Liu Z, Sun S, Bragin D, Shirokov A, Navolokin N, Bragina O, Hu Z, Kurths J, Fedosov I, Blokhina I, Dubrovski A, Khorovodov A, Terskov A, Tzoy M, Semyachkina-Glushkovskaya O, Zhu D. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun 2023; 14:6104. [PMID: 37775549 PMCID: PMC10541888 DOI: 10.1038/s41467-023-41710-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Intraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation. Our results uncover the clinical significance of phototherapy of intraventricular hemorrhage in 4-day old male rat pups that have the brain similar to a preterm human brain. The course of phototherapy in newborn rats provides fast recovery after intraventricular hemorrhage due to photo-improvements of lymphatic drainage and clearing functions. These findings shed light on the mechanisms of phototherapy of intraventricular hemorrhage that can be a clinically relevant technology for treatment of neonatal intracerebral bleedings.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Silin Sun
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
- Department of Neurology University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Saratov State Medical University, B. Kazachya str., 112, Saratov, 410012, Russia
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jürgen Kurths
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473, Potsdam, Germany
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435, Moscow, Russia
| | - Ivan Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | | | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Maria Tzoy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
240
|
Philipsberg PA, Christenson Wick Z, Diego KS, Vaughan N, Galas A, Jurkowski A, Feng Y, Vetere LM, Chen L, Soler I, Cai DJ, Shuman T. Chronotate: An open-source tool for manual timestamping and quantification of animal behavior. Neurosci Lett 2023; 814:137461. [PMID: 37619698 PMCID: PMC10529615 DOI: 10.1016/j.neulet.2023.137461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
A core necessity to behavioral neuroscience research is the ability to accurately measure performance on behavioral assays, such as the novel object location and novel object recognition tasks. These tasks are widely used in neuroscience research and measure a rodent's instinct for investigating novel features as a proxy to test their memory of a previous experience. Automated tools for scoring behavioral videos can be cost prohibitive and often have difficulty distinguishing between active investigation of an object and simply being in close proximity to an object. As such, many experimenters continue to rely on hand scoring interactions using stopwatches, which makes it difficult to review scoring after-the-fact and results in the loss of temporal information. Here, we introduce Chronotate, a free, open-source tool to aid in manually scoring novel object behavior videos. The software consists of an interactive video player with keyboard integration for marking timestamps of behavioral events during video playback, making it simple to quickly score and review bouts of rodent-object interaction. In addition, Chronotate outputs detailed interaction bout data, allowing for nuanced behavioral performance analyses. Using this detailed temporal information, we demonstrate that novel object location performance peaks within the first 3 s of interaction time and preference for the novel location becomes reduced across the test session. Thus, Chronotate can be used to determine the temporal structure of interactions on this task and can provide new insight into the memory processes that drive this behavior. Chronotate is available for download at: https://github.com/ShumanLab/Chronotate.
Collapse
Affiliation(s)
| | | | - Keziah S Diego
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Angelina Galas
- Icahn School of Medicine at Mount Sinai, New York NY, United States; New York University, New York NY, United States
| | - Albert Jurkowski
- Icahn School of Medicine at Mount Sinai, New York NY, United States; CUNY Hunter College, New York NY, United States
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Lauren M Vetere
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Iván Soler
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - Tristan Shuman
- Icahn School of Medicine at Mount Sinai, New York NY, United States.
| |
Collapse
|
241
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
242
|
Wright EB, Larsen EG, Coloma-Roessle CM, Hart HR, Bhattacharya MRC. Transmembrane protein 184B (TMEM184B) promotes expression of synaptic gene networks in the mouse hippocampus. BMC Genomics 2023; 24:559. [PMID: 37730546 PMCID: PMC10512654 DOI: 10.1186/s12864-023-09676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
In Alzheimer's Disease (AD) and other dementias, hippocampal synaptic dysfunction and loss contribute to the progression of memory impairment. Recent analysis of human AD transcriptomes has provided a list of gene candidates that may serve as drivers of disease. One such candidate is the membrane protein TMEM184B. To evaluate whether TMEM184B contributes to neurological impairment, we asked whether loss of TMEM184B in mice causes gene expression or behavior alterations, focusing on the hippocampus. Because one major risk factor for AD is age, we compared young adult (5-month-old) and aged (15-month-old) wild type and Tmem184b-mutant mice to assess the dual contributions of age and genotype. TMEM184B loss altered expression of pre- and post-synaptic transcripts by 5 months and continued through 15 months, specifically affecting genes involved in synapse assembly and neural development. Wnt-activated enhancer elements were enriched among differentially expressed genes, suggesting an intersection with this pathway. Few differences existed between young adult and aged mutants, suggesting that transcriptional effects of TMEM184B loss are relatively constant. To understand how TMEM184B disruption may impact behaviors, we evaluated memory using the novel object recognition test and anxiety using the elevated plus maze. Young adult Tmem184b-mutant mice show normal object discrimination, suggesting a lack of memory impairment at this age. However, mutant mice showed decreased anxiety, a phenotype seen in some neurodevelopmental disorders. Taken together, our data suggest that TMEM184B is required for proper synaptic gene expression and anxiety-related behavior and is more likely to be linked to neurodevelopmental disorders than to dementia.
Collapse
Affiliation(s)
- Elizabeth B Wright
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | - Erik G Larsen
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | | - Hannah R Hart
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
243
|
Zhou Y, Xie L, Schröder J, Schuster IS, Nakai M, Sun G, Sun YBY, Mariño E, Degli-Esposti MA, Marques FZ, Grubman A, Polo JM, Mackay CR. Dietary Fiber and Microbiota Metabolite Receptors Enhance Cognition and Alleviate Disease in the 5xFAD Mouse Model of Alzheimer's Disease. J Neurosci 2023; 43:6460-6475. [PMID: 37596052 PMCID: PMC10506626 DOI: 10.1523/jneurosci.0724-23.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with poorly understood etiology. AD has several similarities with other "Western lifestyle" inflammatory diseases, where the gut microbiome and immune pathways have been associated. Previously, we and others have noted the involvement of metabolite-sensing GPCRs and their ligands, short-chain fatty acids (SCFAs), in protection of numerous Western diseases in mouse models, such as Type I diabetes and hypertension. Depletion of GPR43, GPR41, or GPR109A accelerates disease, whereas high SCFA yielding diets protect in mouse models. Here, we extended the concept that metabolite-sensing receptors and SCFAs may be a more common protective mechanism against Western diseases by studying their role in AD pathogenesis in the 5xFAD mouse model. Both male and female mice were included. Depletion of GPR41 and GPR43 accelerated cognitive decline and impaired adult hippocampal neurogenesis in 5xFAD and WT mice. Lack of fiber/SCFAs accelerated a memory deficit, whereas diets supplemented with high acetate and butyrate (HAMSAB) delayed cognitive decline in 5xFAD mice. Fiber intake impacted on microglial morphology in WT mice and microglial clustering phenotype in 5xFAD mice. Lack of fiber impaired adult hippocampal neurogenesis in both W and AD mice. Finally, maternal dietary fiber intake significantly affects offspring's cognitive functions in 5xFAD mice and microglial transcriptome in both WT and 5xFAD mice, suggesting that SCFAs may exert their effect during pregnancy and lactation. Together, metabolite-sensing GPCRs and SCFAs are essential for protection against AD, and reveal a new strategy for disease prevention.Significance Statement Alzheimer's disease (AD) is one of the most common neurodegenerative diseases; currently, there is no cure for AD. In our study, short-chain fatty acids and metabolite receptors play an important role in cognitive function and pathology in AD mouse model as well as in WT mice. SCFAs also impact on microglia transcriptome, and immune cell recruitment. Out study indicates the potential of specialized diets (supplemented with high acetate and butyrate) releasing high amounts of SCFAs to protect against disease.
Collapse
Affiliation(s)
- Yichen Zhou
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - Liang Xie
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Iona S Schuster
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Center for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia, 6009
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Eliana Mariño
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia, 3800
| | - Mariapia A Degli-Esposti
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Center for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia, 6009
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia, 6009
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Charles R Mackay
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 6009
| |
Collapse
|
244
|
Drulis‐Fajdasz D, Krzystyniak A, Puścian A, Pytyś A, Gostomska‐Pampuch K, Pudełko‐Malik N, Wiśniewski JŁ, Młynarz P, Miazek A, Wójtowicz T, Włodarczyk J, Duś‐Szachniewicz K, Gizak A, Wiśniewski JR, Rakus D. Glycogen phosphorylase inhibition improves cognitive function of aged mice. Aging Cell 2023; 22:e13928. [PMID: 37522798 PMCID: PMC10497847 DOI: 10.1111/acel.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.
Collapse
Affiliation(s)
| | - Adam Krzystyniak
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Alicja Puścian
- Nencki‐EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITYNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Agata Pytyś
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kinga Gostomska‐Pampuch
- Department of Biochemistry and ImmunochemistryWroclaw Medical UniversityWroclawPoland
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Natalia Pudełko‐Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Jerzy Ł. Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Arkadiusz Miazek
- Laboratory of Tumor ImmunologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - Tomasz Wójtowicz
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Jakub Włodarczyk
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kamila Duś‐Szachniewicz
- Department of Clinical and Experimental PathologyInstitute of General and Experimental Pathology, Wroclaw Medical UniversityWroclawPoland
| | - Agnieszka Gizak
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Dariusz Rakus
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| |
Collapse
|
245
|
Li S, Tian Z, Xian X, Yan C, Li Q, Li N, Xu X, Hou X, Zhang X, Yang Y, Xue S, Ma S, Cui S, Sun L, Yao X. Catalpol rescues cognitive deficits by attenuating amyloid β plaques and neuroinflammation. Biomed Pharmacother 2023; 165:115026. [PMID: 37336148 DOI: 10.1016/j.biopha.2023.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
This study sought to investigate the anti-amyloid β (Aβ) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS The effects of catalpol on Aβ formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aβ deposits, and NF-κB pathway activity. Aβ peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS Catalpol potently inhibited Aβ fibril and oligomer formation. In microglial cells stimulated by Aβ, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aβ-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aβ deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION The administration of catalpol protected neurons by preventing neuroinflammation and Aβ deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziqi Tian
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Cuihuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nan Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaokang Xu
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaojie Hou
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyun Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sisi Xue
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengkai Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuanlong Cui
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
246
|
Bellissimo CA, Castellani LN, Finch MS, Murugathasan M, Gandhi S, Sweeney G, Abdul‐Sater AA, MacPherson REK, Perry CGR. Memory impairment in the D2.mdx mouse model of Duchenne muscular dystrophy is prevented by the adiponectin receptor agonist ALY688. Exp Physiol 2023; 108:1108-1117. [PMID: 37415288 PMCID: PMC10988430 DOI: 10.1113/ep091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can adiponectin receptor agonism improve recognition memory in a mouse model of Duchenne muscular dystrophy? What is the main finding and its importance? Short-term treatment with the new adiponectin receptor agonist ALY688 improves recognition memory in D2.mdx mice. This finding suggests that further investigation into adiponectin receptor agonism is warranted, given that there remains an unmet need for clinical approaches to treat this cognitive dysfunction in people with Duchenne muscular dystrophy. ABSTRACT Memory impairments have been well documented in people with Duchenne muscular dystrophy (DMD). However, the underlying mechanisms are poorly understood, and there is an unmet need to develop new therapies to treat this condition. Using a novel object recognition test, we show that recognition memory impairments in D2.mdx mice are completely prevented by daily treatment with the new adiponectin receptor agonist ALY688 from day 7 to 28 of age. In comparison to age-matched wild-type mice, untreated D2.mdx mice demonstrated lower hippocampal mitochondrial respiration (carbohydrate substrate), greater serum interleukin-6 cytokine content and greater hippocampal total tau and Raptor protein contents. Each of these measures was partly or fully preserved after treatment with ALY688. Collectively, these results indicate that adiponectin receptor agonism improves recognition memory in young D2.mdx mice.
Collapse
Affiliation(s)
- Catherine A. Bellissimo
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| | - Laura N. Castellani
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| | - Michael S. Finch
- Department of Health SciencesBrock UniversitySt CatharinesONCanada
| | - Mayoorey Murugathasan
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| | - Shivam Gandhi
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| | - Gary Sweeney
- Muscle Health Research CentreYork UniversityTorontoCanada
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Ali A. Abdul‐Sater
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| | | | - Christopher G. R. Perry
- School of Kinesiology & Health ScienceYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoCanada
| |
Collapse
|
247
|
Zheng QM, Zhou ZR, Hou XY, Lv N, Zhang YQ, Cao H. Transcriptome Analysis of the Mouse Medial Prefrontal Cortex in a Chronic Constriction Injury Model. Neuromolecular Med 2023; 25:375-387. [PMID: 36971954 DOI: 10.1007/s12017-023-08742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The medial prefrontal cortex (mPFC) is critical for both the sensory and emotional/cognitive components of pain. However, the underlying mechanism remains largely unknown. Here, we examined changes in the transcriptomic profiles in the mPFC of mice with chronic pain using RNA sequencing (RNA-seq) technology. A mouse model of peripheral neuropathic pain was established via chronic constriction injury (CCI) of the sciatic nerve. CCI mice developed sustained mechanical allodynia and thermal hyperalgesia, as well as cognitive impairment four weeks after surgery. RNA-seq was conducted 4 weeks after CCI surgery. Compared with contral group, RNA-seq identified a total 309 and 222 differentially expressed genes (DEGs) in the ipsilateral and contralateral mPFC of CCI model mice, respectively. GO analysis indicated that the functions of these genes were mainly enriched in immune- and inflammation-related processes such as interferon-gamma production and cytokine secretion. KEGG analysis further showed the enrichment of genes involved in the neuroactive ligand-receptor interaction signaling pathway and Parkinson disease pathway that have been reported to be importantly involved in chronic neuralgia and cognitive dysfunction. Our study may provide insights into the possible mechanisms underlying neuropathic pain and pain-related comorbidities.
Collapse
Affiliation(s)
- Qi-Min Zheng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zi-Rui Zhou
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin-Yu Hou
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning Lv
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
248
|
Wencel PL, Blecharz-Klin K, Piechal A, Pyrzanowska J, Mirowska-Guzel D, Strosznajder RP. Fingolimod Modulates the Gene Expression of Proteins Engaged in Inflammation and Amyloid-Beta Metabolism and Improves Exploratory and Anxiety-Like Behavior in Obese Mice. Neurotherapeutics 2023; 20:1388-1404. [PMID: 37432552 PMCID: PMC10480137 DOI: 10.1007/s13311-023-01403-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity is considered a risk factor for type 2 diabetes mellitus, which has become one of the most important health problems, and is also linked with memory and executive function decline. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates cell death/survival and the inflammatory response via its specific receptors (S1PRs). Since the role of S1P and S1PRs in obesity is rather obscure, we examined the effect of fingolimod (an S1PR modulator) on the expression profile of genes encoding S1PRs, sphingosine kinase 1 (Sphk1), proteins engaged in amyloid-beta (Aβ) generation (ADAM10, BACE1, PSEN2), GSK3β, proapoptotic Bax, and proinflammatory cytokines in the cortex and hippocampus of obese/prediabetic mouse brains. In addition, we observed behavioral changes. Our results revealed significantly elevated mRNA levels of Bace1, Psen2, Gsk3b, Sphk1, Bax, and proinflammatory cytokines, which were accompanied by downregulation of S1pr1 and sirtuin 1 in obese mice. Moreover, locomotor activity, spatially guided exploratory behavior, and object recognition were impaired. Simultaneously, fingolimod reversed alterations in the expressions of the cytokines, Bace1, Psen2, and Gsk3b that occurred in the brain, elevated S1pr3 mRNA levels, restored normal cognition-related behavior patterns, and exerted anxiolytic effects. The improvement in episodic and recognition memory observed in this animal model of obesity may suggest a beneficial effect of fingolimod on central nervous system function.
Collapse
Affiliation(s)
- P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland.
| | - K Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - A Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - J Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland
| |
Collapse
|
249
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
250
|
Dennison J, Mendez A, Szeto A, Lohse I, Wahlestedt C, Volmar CH. Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse. Biomolecules 2023; 13:1324. [PMID: 37759724 PMCID: PMC10526199 DOI: 10.3390/biom13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic compounds have become attractive small molecules for targeting the multifaceted aspects of Alzheimer's disease (AD). Although AD disproportionately affects women, most of the current literature investigating epigenetic compounds for the treatment of AD do not report sex-specific results. This is remarkable because there is rising evidence that epigenetic compounds intrinsically affect males and females differently. This manuscript explores the sexual dimorphism observed after chronic, low-dose administration of a clinically relevant histone deacetylase inhibitor, chidamide (Tucidinostat), in the 3xTg-AD mouse model. We found that chidamide treatment significantly improves glucose tolerance and increases expression of glucose transporters in the brain of males. We also report a decrease in total tau in chidamide-treated mice. Differentially expressed genes in chidamide-treated mice were much greater in males than females. Genes involved in the neuroinflammatory pathway and amyloid processing pathway were mostly upregulated in chidamide-treated males while downregulated in chidamide-treated females. This work highlights the need for drug discovery projects to consider sex as a biological variable to facilitate translation.
Collapse
Affiliation(s)
- Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Armando Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|