201
|
Beck O, Paret C, Russo A, Burhenne J, Fresnais M, Steimel K, Seidmann L, Wagner DC, Vewinger N, Lehmann N, Sprang M, Backes N, Roth L, Neu MA, Wingerter A, Henninger N, El Malki K, Otto H, Alt F, Desuki A, Kindler T, Faber J. Safety and Activity of the Combination of Ceritinib and Dasatinib in Osteosarcoma. Cancers (Basel) 2020; 12:cancers12040793. [PMID: 32224911 PMCID: PMC7225940 DOI: 10.3390/cancers12040793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma (OS) is the second most common cause of cancer-related death in pediatric patients. The insulin-like growth factor (IGF) pathway plays a relevant role in the biology of OS but no IGF targeted therapies have been successful as monotherapy so far. Here, we tested the effect of three IGF specific inhibitors and tested ceritinib as an off-target inhibitor, alone or in combination with dasatinib, on the proliferation of seven primary OS cells. Picropodophyllin, particularly in combination with dasatinib and the combination ceritinib/dasatinib were effective in abrogating the proliferation. The ceritinib/dasatinib combination was applied to the primary cells of a 16-year-old girl with a long history of lung metastases, and was more effective than cabozantinib and olaparib. Therefore, the combination was used to treat the patient. The treatment was well tolerated, with toxicity limited to skin rush and diarrhea. A histopathological evaluation of the tumor after three months of therapy indicated regions of high necrosis and extensive infiltration of macrophages. The extension of the necrosis was proportional to the concentration of dasatinib and ceritinib in the area, as analysed by an ultra performance liquid chromatography–tandem mass spectrometer (UPLC-MS/MS). After the cessation of the therapy, radiological analysis indicated a massive growth of the patient’s liver metastases. In conclusion, these data indicate that the combination of ceritinib/dasatinib is safe and may be used to develop new therapy protocols.
Collapse
Affiliation(s)
- Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kevin Steimel
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
| | - Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.S.); (D.-C.W.)
| | - Daniel-Christoph Wagner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.S.); (D.-C.W.)
| | - Nadine Vewinger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nadine Lehmann
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Maximilian Sprang
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nora Backes
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Lea Roth
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Marie Astrid Neu
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nicole Henninger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Henrike Otto
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Alexander Desuki
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Joerg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6131-17-6821
| |
Collapse
|
202
|
Mathur L, Ballinger M, Utharala R, Merten CA. Microfluidics as an Enabling Technology for Personalized Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904321. [PMID: 31747127 DOI: 10.1002/smll.201904321] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/14/2019] [Indexed: 05/26/2023]
Abstract
Tailoring patient-specific treatments for cancer is necessary in order to achieve optimal results but requires new diagnostic approaches at affordable prices. Microfluidics has immense potential to provide solutions for this, as it enables the processing of samples that are not available in large quantities (e.g., cells from patient biopsies), is cost efficient, provides a high level of automation, and allows the set-up of complex models for cancer studies. In this review, individual solutions in the fields of genetics, circulating tumor cell monitoring, biomarker analysis, phenotypic drug sensitivity tests, and systems providing controlled environments for disease modeling are discussed. An overview on how these early stage achievements can be combined or developed further is showcased, and the required translational steps before microfluidics becomes a routine tool for clinical applications are critically discussed.
Collapse
Affiliation(s)
- Lukas Mathur
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Martine Ballinger
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ramesh Utharala
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| |
Collapse
|
203
|
Eide CA, Kurtz SE, Kaempf A, Long N, Agarwal A, Tognon CE, Mori M, Druker BJ, Chang BH, Danilov AV, Tyner JW. Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia. Leukemia 2020; 34:2342-2353. [PMID: 32094466 DOI: 10.1038/s41375-020-0764-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) results from the enhanced proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Using an ex vivo functional screening assay, we identified that the combination of the BTK inhibitor ibrutinib and BCL2 inhibitor venetoclax (IBR + VEN), currently in clinical trials for chronic lymphocytic leukemia (CLL), demonstrated enhanced efficacy on primary AML patient specimens, AML cell lines, and in a mouse xenograft model of AML. Expanded analyses among a large cohort of hematologic malignancies (n = 651 patients) revealed that IBR + VEN sensitivity associated with selected genetic and phenotypic features in both CLL and AML specimens. Among AML samples, 11q23 MLL rearrangements were highly sensitive to IBR + VEN. Analysis of differentially expressed genes with respect to IBR + VEN sensitivity indicated pathways preferentially enriched in patient samples with reduced ex vivo sensitivity, including IL-10 signaling. These findings suggest that IBR + VEN may represent an effective therapeutic option for patients with AML.
Collapse
Affiliation(s)
- Christopher A Eide
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Howard Hughes Medical Institute, Portland, OR, USA
| | - Stephen E Kurtz
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nicola Long
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Anupriya Agarwal
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Cristina E Tognon
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Howard Hughes Medical Institute, Portland, OR, USA
| | - Motomi Mori
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Portland State University and Oregon Health & Science University School of Public Health, Portland, OR, USA
| | - Brian J Druker
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Howard Hughes Medical Institute, Portland, OR, USA
| | - Bill H Chang
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexey V Danilov
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
204
|
Mehta D, Uber R, Ingle T, Li C, Liu Z, Thakkar S, Ning B, Wu L, Yang J, Harris S, Zhou G, Xu J, Tong W, Lesko L, Fang H. Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discov Today 2020; 25:813-820. [PMID: 32032705 DOI: 10.1016/j.drudis.2020.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 12/01/2022]
Abstract
Pharmacogenomics (PGx), studying the relationship between drug response and genetic makeup of an individual, is accelerating advances in precision medicine. The FDA includes PGx information in the labeling of approved drugs to better inform on their safety and effectiveness. We herein present a summary of PGx information found in 261 prescription drug labeling documents by querying the publicly available FDALabel database. A total of 362 drug-biomarker pairs (DBPs) were identified. We profiled DBPs using frequency of the biomarkers and their therapeutic classes. Four categories of applications (indication, safety, dosing and information) were discussed according to information in labeling. This analysis facilitates better understanding, utilization and translation of PGx information in drug labeling among researchers, healthcare professionals and the public.
Collapse
Affiliation(s)
- Darshan Mehta
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Ryley Uber
- Department of Pharmacy and Therapeutics, University of Pittsburg, Pittsburgh, PA 15213, USA
| | - Taylor Ingle
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Catherine Li
- Office of Translational Sciences, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD 20993, USA
| | - Zhichao Liu
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Shraddha Thakkar
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Leihong Wu
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Junshuang Yang
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Steve Harris
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Guangxu Zhou
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Joshua Xu
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Weida Tong
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA.
| | - Lawrence Lesko
- College of Pharmacy, University of Florida, Orlando, FL 32827, USA.
| | - Hong Fang
- National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
205
|
Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. NATURE REVIEWS. MATERIALS 2020; 5:149-165. [PMID: 32728478 PMCID: PMC7388681 DOI: 10.1038/s41578-019-0167-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.
Collapse
Affiliation(s)
- Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hyemin Kim
- PHI Biomed Co., Seoul, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Gae Hwang Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul, South Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- PHI Biomed Co., Seoul, South Korea
| |
Collapse
|
206
|
Burke Quinlan E, Banaschewski T, Barker GJ, Bokde AL, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Walter H, Whelan R, Schumann G. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry 2020; 25:243-253. [PMID: 31676814 PMCID: PMC6978138 DOI: 10.1038/s41380-019-0555-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/24/2023]
Abstract
Mental disorders represent an increasing personal and financial burden and yet treatment development has stagnated in recent decades. Current disease classifications do not reflect psychobiological mechanisms of psychopathology, nor the complex interplay of genetic and environmental factors, likely contributing to this stagnation. Ten years ago, the longitudinal IMAGEN study was designed to comprehensively incorporate neuroimaging, genetics, and environmental factors to investigate the neural basis of reinforcement-related behavior in normal adolescent development and psychopathology. In this article, we describe how insights into the psychobiological mechanisms of clinically relevant symptoms obtained by innovative integrative methodologies applied in IMAGEN have informed our current and future research aims. These aims include the identification of symptom groups that are based on shared psychobiological mechanisms and the development of markers that predict disease course and treatment response in clinical groups. These improvements in precision medicine will be achieved, in part, by employing novel methodological tools that refine the biological systems we target. We will also implement our approach in low- and medium-income countries to understand how distinct environmental, socioeconomic, and cultural conditions influence the development of psychopathology. Together, IMAGEN and related initiatives strive to reduce the burden of mental disorders by developing precision medicine approaches globally.
Collapse
Affiliation(s)
- Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany,Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [or depending on journal requirements can be: Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2 - 12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; DIGITEO labs, Gif sur Yvette; France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany,University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany, and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China
| | | |
Collapse
|
207
|
Gupta A, Gautam P, Wennerberg K, Aittokallio T. A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Commun Biol 2020; 3:42. [PMID: 31974521 PMCID: PMC6978361 DOI: 10.1038/s42003-020-0765-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Accurate quantification of drug effects is crucial for identifying pharmaceutically actionable cancer vulnerabilities. Current cell viability-based measurements often lead to biased response estimates due to varying growth rates and experimental artifacts that explain part of the inconsistency in high-throughput screening results. We developed an improved drug scoring model, normalized drug response (NDR), which makes use of both positive and negative control conditions to account for differences in cell growth rates, and experimental noise to better characterize drug-induced effects. We demonstrate an improved consistency and accuracy of NDR compared to existing metrics in assessing drug responses of cancer cells in various culture models and experimental setups. Notably, NDR reliably captures both toxicity and viability responses, and differentiates a wider spectrum of drug behavior, including lethal, growth-inhibitory and growth-stimulatory modes, based on a single viability readout. The method will therefore substantially reduce the time and resources required in cell-based drug sensitivity screening.
Collapse
Affiliation(s)
- Abhishekh Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.
| |
Collapse
|
208
|
The need for rapid therapeutic efficacy testing for cancer therapy. Exp Mol Pathol 2020; 113:104382. [PMID: 31982397 DOI: 10.1016/j.yexmp.2020.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
|
209
|
Abe Y, Hirano H, Shoji H, Tada A, Isoyama J, Kakudo A, Gunji D, Honda K, Boku N, Adachi J, Tomonaga T. Comprehensive characterization of the phosphoproteome of gastric cancer from endoscopic biopsy specimens. Theranostics 2020; 10:2115-2129. [PMID: 32089736 PMCID: PMC7019165 DOI: 10.7150/thno.37623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Cancer phosphoproteomics can provide insights regarding kinases that can be targeted for therapeutic applications. Monitoring the phosphoproteomics in cancer is expected to play a key role in optimizing treatments with kinase inhibitors. Clinical phosphoproteomics in surgical tissues and patient-derived models has been studied intensively. However, the reported data may not accurately reflect the phosphosignaling status in patients due to the effect of ischemia occurring during surgery or changes in the characteristics of cancer cells when establishing the models. In contrast, endoscopic biopsies have an advantage for clinical phosphoproteomics because they can be rapidly cryo-preserved. We aimed to develop a highly sensitive method for phosphoproteomics in endoscopic biopsies of gastric cancer. Methods: Three tumor biopsies and three normal gastric biopsies were obtained by endoscopy at one time, and subjected to our optimized phosphoproteomics. Phosphopeptides were enriched with an immobilized metal affinity chromatography, and labeled with Tandem Mass Tag reagent. Quantified phosphosites were compared between the pairs of tumor/normal biopsies within same patient. Cancer-specific activated pathways and kinases were identified by pathway enrichment analysis and kinase-substrate enrichment analysis. Results: Our protocol enabled the identification of more than 10,000 class 1 phosphosites from endoscopic biopsies. A comparison between samples from cancer tissue and normal mucosa demonstrated differences in the phosphosignaling, including biomarkers of response to DNA damage. Finally, cancer-specific activation of DNA damage response signaling was validated by additional phosphoproteomics of other patients and western blotting of gastric cancer/normal cells. Conclusion: In summary, our pioneering approach will facilitate more accurate clinical phosphoproteomics in endoscopic biopsies, which can be applied to monitor the activities of therapeutic kinases and, ultimately, can be a useful tool to precision medicine.
Collapse
|
210
|
Abstract
Our immune system plays a key role in health and disease as it is capable of responding to foreign antigens as well as acquired antigens from cancer cells. Latter are caused by somatic mutations, the so-called neoepitopes, and might be recognized by T cells if they are presented by HLA molecules on the surface of cancer cells. Personalized mutanome vaccines are a class of customized immunotherapies, which is dependent on the detection of individual cancer-specific tumor mutations and neoepitope (i.e., prediction, followed by a rational vaccine design, before on-demand production. The development of next generation sequencing (NGS) technologies and bioinformatic tools allows a large-scale analysis of each parameter involved in this process. Here, we provide an overview of the bioinformatic aspects involved in the design of personalized, neoantigen-based vaccines, including the detection of mutations and the subsequent prediction of potential epitopes, as well as methods for associated biomarker research, such as high-throughput sequencing of T-cell receptors (TCRs), followed by data analysis and the bioinformatics quantification of immune cell infiltration in cancer samples.
Collapse
Affiliation(s)
- Christoph Holtsträter
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Barbara Schrörs
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Thomas Bukur
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Martin Löwer
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany.
| |
Collapse
|
211
|
Sturm G, Finotello F, List M. In Silico Cell-Type Deconvolution Methods in Cancer Immunotherapy. Methods Mol Biol 2020; 2120:213-222. [PMID: 32124322 DOI: 10.1007/978-1-0716-0327-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Several computational methods have been proposed to infer the cellular composition from bulk RNA-seq data of a tumor biopsy sample. Elucidating interactions in the tumor microenvironment can yield unique insights into the status of the immune system. In immuno-oncology, this information can be crucial for deciding whether the immune system of a patient can be stimulated to target the tumor. Here, we shed a light on the working principles, capabilities, and limitations of the most commonly used methods for cell-type deconvolution in immuno-oncology and offer guidelines for method selection.
Collapse
Affiliation(s)
- Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus List
- Big Data in BioMedicine Group, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
212
|
Wang Y, Liao H, Zheng T, Wang J, Guo D, Lu Z, Li Z, Chen Y, Shen L, Zhang Y, Gao J. Conditionally reprogrammed colorectal cancer cells combined with mouse avatars identify synergy between EGFR and MEK or CDK4/6 inhibitors. Am J Cancer Res 2020; 10:249-262. [PMID: 32064165 PMCID: PMC7017732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023] Open
Abstract
Preclinical models, including patient-derived xenograft (PDX) and organoid and primary cell culture, are essential for studies of cancer cell biology and facilitate translational research and individualization of therapy. We explored the optimum preclinical model by modifying the conventional conditional reprogramming (CR) system followed by screening effective targeted drug combinations against colorectal cancer (CRC). By modifying the ingredients of the culture medium used in a conventional CR system, a novel individualized CR system (termed i-CR) was established. Tumor samples from CRC patients were collected and PDX models were derived followed by high-throughput i-CR drug screening and validation of the effective targeted drug combinations. The i-CR system selectively expanded tumor cells rather than normal epithelial cells and facilitated high-throughput drug screening when combined with high-content imaging and quantitative analysis of cell proliferation. Using inhibitors targeting multiple signaling pathways identified by high-throughput i-CR drug screening, we discovered that inhibition of the EGFR and MEK or CDK4/6 pathways exerted a synergistic inhibitory effect against CRC, and we noted super-synergistic effects when EGFR, MEK, and CDK4/6 inhibitors were used simultaneously. These data were validated using paired PDX models, which showed marked inhibition of tumor growth. The novel i-CR system combined with PDX models will enable individualization of therapy and drug discovery, and strategies combining EGFR, MEK, and CDK4/6 inhibitors warrant clinical validation.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Jingyuan Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | | | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, China
| |
Collapse
|
213
|
Pan Y, Jiang D, Gu C, Qiu Y, Wan H, Wang P. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment. MICROSYSTEMS & NANOENGINEERING 2020; 6:23. [PMID: 34567638 PMCID: PMC8433334 DOI: 10.1038/s41378-020-0130-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 05/19/2023]
Abstract
In recent decades, three-dimensional (3D) cancer cell models have attracted increasing interest in the field of drug screening due to their significant advantages in more accurate simulations of heterogeneous tumor behavior in vivo compared to two-dimensional models. Furthermore, drug sensitivity testing based on 3D cancer cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve real-time and label-free viability monitoring in 3D cancer cell models. In this study, a microgroove impedance sensor (MGIS) was specially developed for the dynamic and noninvasive monitoring of 3D cell viability. 3D cancer cells were trapped in microgrooves with gold electrodes on opposite walls for in situ impedance measurement. The change in the number of live cells caused inversely proportional changes to the impedance magnitude of the entire cell/Matrigel construct and reflected the proliferation and apoptosis of the 3D cells. It was confirmed that the 3D cell viability detected by the MGIS was highly consistent with the standard live/dead staining by confocal microscope characterization. Furthermore, the accuracy of the MGIS was validated quantitatively using a 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of the MGIS in the measurement experiments were optimized in detail using simulations and experimental validation. The results demonstrated that the MGIS coupled with 3D cell culture would be a promising platform to improve the efficiency and accuracy of cell-based anticancer drug screening in vitro.
Collapse
Affiliation(s)
- Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| |
Collapse
|
214
|
McGrath JS, Honrado C, Moore JH, Adair SJ, Varhue WB, Salahi A, Farmehini V, Goudreau BJ, Nagdas S, Blais EM, Bauer TW, Swami NS. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal Chim Acta 2019; 1101:90-98. [PMID: 32029124 DOI: 10.1016/j.aca.2019.12.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer lacking specific biomarkers that can be correlated to disease onset, promotion and progression. To assess whether tumor cell electrophysiology may serve as a marker for PDAC tumorigenicity, we use multi-frequency impedance cytometry at high throughput (∼350 cells/s) to measure the electrical phenotype of single PDAC tumor cells from xenografts, which are derived from primary pancreatic tumors versus those from liver metastases of different patients. A novel phase contrast metric based on variations in the high and low frequency impedance phase responses that is related to electrophysiology of the cell interior is found to be systematically altered as a function of tumorigenicity. PDAC cells of higher tumorigenicity exhibited lowered interior conductivity and enhanced permittivity, which is validated by the dielectrophoresis on the respective cell types. Using genetic analysis, we suggest the role of dysregulated Na+ transport and removal of Ca2+ ions from the cytoplasm on key oncogenic KRAS-driven processes that may be responsible for lowering of the interior cell conductivity. We envision that impedance cytometry can serve as a tool to quantify phenotypic heterogeneity for rapidly stratifying tumorigenicity. It can also aid in protocols for dielectrophoretic isolation of cells with a particular phenotype for prognostic studies on patient survival and to tailor therapy selection to specific patients.
Collapse
Affiliation(s)
- J S McGrath
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - C Honrado
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - J H Moore
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - S J Adair
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - W B Varhue
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - A Salahi
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - V Farmehini
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - B J Goudreau
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - S Nagdas
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - E M Blais
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - T W Bauer
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - N S Swami
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
215
|
Akras Z, Bungo B, Leach BH, Marquard J, Ahluwalia M, Carraway H, Grivas P, Sohal DP, Funchain P. Primer on Hereditary Cancer Predisposition Genes Included Within Somatic Next-Generation Sequencing Panels. JCO Precis Oncol 2019; 3:1-11. [DOI: 10.1200/po.18.00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE It has been estimated that 5% to 10% of cancers are due to hereditary causes. Recent data sets indicate that the incidence of hereditary cancer may be as high as 17.5% in patients with cancer, and a notable subset is missed if screening is solely by family history and current syndrome-based testing guidelines. Identification of germline variants has implications for both patients and their families. There is currently no comprehensive overview of cancer susceptibility genes or inclusion of these genes in commercially available somatic testing. We aimed to summarize genes linked to hereditary cancer and the somatic and germline panels that include such genes. METHODS Germline predisposition genes were chosen if commercially available for testing. Penetrance was defined as low, moderate, or high according to whether the gene conferred a 0% to 20%, 20% to 50%, or 50% to 100% lifetime risk of developing the cancer or, when percentages were not available, was estimated on the basis of existing literature descriptions. RESULTS We identified a total of 89 genes linked to hereditary cancer predisposition, and we summarized these genes alphabetically and by organ system. We considered four germline and six somatic commercially available panel tests and quantified the coverage of germline genes across them. Comparison between the number of genes that had germline importance and the number of genes included in somatic testing showed that many but not all germline genes are tested by frequently used somatic panels. CONCLUSION The inclusion of cancer-predisposing genes in somatic variant testing panels makes incidental germline findings likely. Although somatic testing can be used to screen for germline variants, this strategy is inadequate for comprehensive screening. Access to genetic counseling is essential for interpretation of germline implications of somatic testing and implementation of appropriate screening and follow-up.
Collapse
|
216
|
Xue L, Guo C, Zhang K, Jiang H, Pang F, Dou Y, Liu X, Lin H, Dong X, Zhao S, Yao M, Wang K, Feng Y, Gu W. Comprehensive molecular profiling of extrahepatic cholangiocarcinoma in Chinese population and potential targets for clinical practice. Hepatobiliary Surg Nutr 2019; 8:615-622. [PMID: 31929988 DOI: 10.21037/hbsn.2019.08.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma (CCA) is a diverse group of malignancies arising from the intra- or extrahepatic biliary epithelium and characterized by its late diagnosis and fatal outcome. Extrahepatic cholangiocarcinoma (ECC) accounts for 90% of CCA. However, little is known about the comprehensive genomic alterations of ECC in Chinese population for providing clinical managements especially targeted therapy. Methods Comprehensive genomic profiling (CGP) was performed with next generation sequencing panel on paraffin-embedded tumor from a cohort of 80 Chinese ECC patients. Results The most frequently altered genes were TP53 (68%), KRAS (46%), SMAD4 (22%), ARID1A (20%) and CDKN2A (19%). Mutual exclusivity was observed between multiple genes including ARID1A:TP53, KRAS:LRP1B and NF2:TP53. Genetic alterations with potential therapeutic implications were identified in 43% of patients. The top three actionable alterations include CDKN2A (n=11), BRAF (n=5) and ERBB2 (n=4). Potentially actionable alterations were mainly enriched in the G1-S transition, homologous recombination repair, MAPK/ERK pathway. Conclusions This is the largest data set of ECC cases providing a comprehensive view on genetic alterations in Chinese population which differs significantly from a US cohort, and indicates the potential clinical implications for targeted therapies.
Collapse
Affiliation(s)
- Liang Xue
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Kang Zhang
- Department of Cancer, People's Hospital of Wuzhou, Wuzhou 543000, China
| | - Hang Jiang
- Department of Hepato-Biliary-Pancreatic Surgery, The Third People's Hospital of Yunnan Province, Kunming 650011, China
| | - Fei Pang
- OrigiMed Inc., Shanghai 201114, China
| | - Ying Dou
- OrigiMed Inc., Shanghai 201114, China
| | | | | | | | | | - Ming Yao
- OrigiMed Inc., Shanghai 201114, China
| | - Kai Wang
- OrigiMed Inc., Shanghai 201114, China
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Weiguang Gu
- Department of Medical Oncology, People's Hospital of Nanhai District, Foshan 528200, China.,Department of Medical Oncology, Southern Medical University Nanfang Hospital, Guangzhou 510515, China
| |
Collapse
|
217
|
Pillarsetty N, Jhaveri K, Taldone T, Caldas-Lopes E, Punzalan B, Joshi S, Bolaender A, Uddin MM, Rodina A, Yan P, Ku A, Ku T, Shah SK, Lyashchenko S, Burnazi E, Wang T, Lecomte N, Janjigian Y, Younes A, Batlevi CW, Guzman ML, Roboz GJ, Koziorowski J, Zanzonico P, Alpaugh ML, Corben A, Modi S, Norton L, Larson SM, Lewis JS, Chiosis G, Gerecitano JF, Dunphy MPS. Paradigms for Precision Medicine in Epichaperome Cancer Therapy. Cancer Cell 2019; 36:559-573.e7. [PMID: 31668946 PMCID: PMC6996250 DOI: 10.1016/j.ccell.2019.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Alterations in protein-protein interaction networks are at the core of malignant transformation but have yet to be translated into appropriate diagnostic tools. We make use of the kinetic selectivity properties of an imaging probe to visualize and measure the epichaperome, a pathologic protein-protein interaction network. We are able to assay and image epichaperome networks in cancer and their engagement by inhibitor in patients' tumors at single-lesion resolution in real time, and demonstrate that quantitative evaluation at the level of individual tumors can be used to optimize dose and schedule selection. We thus provide preclinical and clinical evidence in the use of this theranostic platform for precision medicine targeting of the aberrant properties of protein networks.
Collapse
Affiliation(s)
| | - Komal Jhaveri
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eloisi Caldas-Lopes
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Blesida Punzalan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mohammad M Uddin
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anna Rodina
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Pengrong Yan
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Smit K Shah
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probes Core, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eva Burnazi
- Radiochemistry and Molecular Imaging Probes Core, Sloan Kettering Institute, New York, NY 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Nicolas Lecomte
- Gastrointestinal Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yelena Janjigian
- Gastrointestinal Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anas Younes
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Connie W Batlevi
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Jacek Koziorowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary L Alpaugh
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Molecular Pharmacology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Molecular Pharmacology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gabriela Chiosis
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - John F Gerecitano
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark P S Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
218
|
Qiu T, Li W, Zhang F, Wang B, Ying J. Major challenges in accurate mutation detection of multifocal lung adenocarcinoma by next-generation sequencing. Cancer Biol Ther 2019; 21:170-177. [PMID: 31651223 DOI: 10.1080/15384047.2019.1674070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Many patients with advanced non-small cell lung cancer manifested with metastasis, and molecular heterogeneity may exhibit between primary and metastatic tumors. We sought to investigate the clinical detection strategy of primary and metastatic tumors in Chinese patients with NSCLC.Methods: Here, 77 paired tumors of Chinese patients with lung adenocarcinoma were analyzed, and 1836 mutation in hotspot regions of 22 genes were identified by next-generation sequencing. The expression of ALK in these paired tumors was also detected by immunohistochemistry.Results: The results showed that the concordance rate in multiple pulmonary nodules, primary-LN metastasis pairs and primary-distant metastasis pairs was 67.7%, 94.1% and 86.7%, respectively. In multiple pulmonary nodules, the concordance rate was 100% when the pathologic diagnosis was intrapulmonary metastasis, whereas the concordance rate was 23.1% when the pathologic diagnosis was multiple primary tumors. TP53 and CTNNB1 mutations were detected as the recurrent alterations in LN metastasis. Moreover, the concordance of ALK status was observed in these pairs.Conclusions: Our data suggested that hotspot mutations and ALK status in the primary-metastasis pairs had a high concordance in lung adenocarcinoma. Clinical detection of one lesion may be enough to identify the key alterations except that patients are diagnosed with multiple primary tumors or have disease progression after benefiting from target therapy.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanshuang Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
219
|
Lee JS, Roberts A, Juarez D, Vo TTT, Bhatt S, Herzog LO, Mallya S, Bellin RJ, Agarwal SK, Salem AH, Xu T, Jia J, Li L, Hanna JR, Davids MS, Fleischman AG, O'Brien S, Lam LT, Leverson JD, Letai A, Schatz JH, Fruman DA. Statins enhance efficacy of venetoclax in blood cancers. Sci Transl Med 2019; 10:10/445/eaaq1240. [PMID: 29899021 DOI: 10.1126/scitranslmed.aaq1240] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Abstract
Statins have shown promise as anticancer agents in experimental and epidemiologic research. However, any benefit that they provide is likely context-dependent, for example, applicable only to certain cancers or in combination with specific anticancer drugs. We report that inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) using statins enhances the proapoptotic activity of the B cell lymphoma-2 (BCL2) inhibitor venetoclax (ABT-199) in primary leukemia and lymphoma cells but not in normal human peripheral blood mononuclear cells. By blocking mevalonate production, HMGCR inhibition suppressed protein geranylgeranylation, resulting in up-regulation of proapoptotic protein p53 up-regulated modulator of apoptosis (PUMA). In support of these findings, dynamic BH3 profiling confirmed that statins primed cells for apoptosis. Furthermore, in retrospective analyses of three clinical studies of chronic lymphocytic leukemia, background statin use was associated with enhanced response to venetoclax, as demonstrated by more frequent complete responses. Together, this work provides mechanistic justification and clinical evidence to warrant prospective clinical investigation of this combination in hematologic malignancies.
Collapse
Affiliation(s)
- J Scott Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Andrew Roberts
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Thanh-Trang T Vo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Shruti Bhatt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lee-Or Herzog
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | - Ahmed Hamed Salem
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA.,Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tu Xu
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Jia Jia
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Lingxiao Li
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John R Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Angela G Fleischman
- Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Susan O'Brien
- Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lloyd T Lam
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Joel D Leverson
- Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan H Schatz
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
220
|
DelNero P, Hopkins BD, Cantley LC, Fischbach C. Cancer metabolism gets physical. Sci Transl Med 2019; 10:10/442/eaaq1011. [PMID: 29794058 DOI: 10.1126/scitranslmed.aaq1011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Patient-derived culture models enable assessment of drug sensitivity and can connect personalized genomics with therapeutic options. However, their clinical translation is constrained by limited fidelity. We outline how the physical microenvironment regulates cell metabolism and describe how engineered culture systems could enhance the predictive power for precision medicine.
Collapse
Affiliation(s)
- Peter DelNero
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Benjamin D Hopkins
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA. .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
221
|
Panoptic View of Prognostic Models for Personalized Breast Cancer Management. Cancers (Basel) 2019; 11:cancers11091325. [PMID: 31500225 PMCID: PMC6770520 DOI: 10.3390/cancers11091325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The efforts to personalize treatment for patients with breast cancer have led to a focus on the deeper characterization of genotypic and phenotypic heterogeneity among breast cancers. Traditional pathology utilizes microscopy to profile the morphologic features and organizational architecture of tumor tissue for predicting the course of disease, and is the first-line set of guiding tools for customizing treatment decision-making. Currently, clinicians use this information, combined with the disease stage, to predict patient prognosis to some extent. However, tumoral heterogeneity stubbornly persists among patient subgroups delineated by these clinicopathologic characteristics, as currently used methodologies in diagnostic pathology lack the capability to discern deeper genotypic and subtler phenotypic differences among individual patients. Recent advancements in molecular pathology, however, are poised to change this by joining forces with multiple-omics technologies (genomics, transcriptomics, epigenomics, proteomics, and metabolomics) that provide a wealth of data about the precise molecular complement of each patient's tumor. In addition, these technologies inform the drivers of disease aggressiveness, the determinants of therapeutic response, and new treatment targets in the individual patient. The tumor architecture information can be integrated with the knowledge of the detailed mutational, transcriptional, and proteomic phenotypes of cancer cells within individual tumors to derive a new level of biologic insight that enables powerful, data-driven patient stratification and customization of treatment for each patient, at each stage of the disease. This review summarizes the prognostic and predictive insights provided by commercially available gene expression-based tests and other multivariate or clinical -omics-based prognostic/predictive models currently under development, and proposes a more inclusive multiplatform approach to tackling the challenging heterogeneity of breast cancer to individualize its management. "The future is already here-it's just not very evenly distributed."-William Ford Gibson.
Collapse
|
222
|
Mankoff DA, Pantel AR, Viswanath V, Karp JS. Advances in PET Diagnostics for Guiding Targeted Cancer Therapy and Studying In Vivo Cancer Biology. CURRENT PATHOBIOLOGY REPORTS 2019; 7:97-108. [PMID: 37092138 PMCID: PMC10117535 DOI: 10.1007/s40139-019-00202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of the Review We present an overview of recent advances in positron emission tomography (PET) diagnostics as applied to the study of cancer, specifically as a tool to study in vivo cancer biology and to direct targeted cancer therapy. The review is directed to translational and clinical cancer investigators who may not be familiar with these applications of PET cancer diagnostics, but whose research might benefit from these advancing tools. Recent Findings We highlight recent advances in 3 areas: (1) the translation of PET imaging cancer biomarkers to clinical trials; (2) methods for measuring cancer metabolism in vivo in patients; and (3) advances in PET instrumentation, including total-body PET, that enable new methodologies. We emphasize approaches that have been translated to human studies. Summary PET imaging methodology enables unique in vivo cancer diagnostics that go beyond cancer detection and staging, providing an improved ability to guide cancer treatment and an increased understanding of in vivo human cancer biology.
Collapse
Affiliation(s)
- David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Varsha Viswanath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joel S Karp
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
223
|
Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Sci Rep 2019; 9:12480. [PMID: 31462653 PMCID: PMC6713778 DOI: 10.1038/s41598-019-48764-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
The EGFR pathway plays a critical role in head and neck squamous cell carcinoma (HNSCC). Targeted therapies against the EGFR are utilized as a treatment for HNSCCC. However, patient response is heterogeneous and molecular biomarkers are lacking to predict patient response. Therefore, functional assays where drug response is directly evaluated in tumor cells are an interesting alternative. Previous studies have shown that experimental conditions modify the drug response observed in functional assays. Thus, in this work the influence of the culture environment on response to Cetuximab (EGFR monoclonal antibody) and AZD8055 (mTOR inhibitor) was evaluated. HNSCC UM-SCC-1 and UM-SCC-47 cells were cultured in 2D monoculture and compared with: 2D co-culture with cancer-associated fibroblasts (CAF); 3D culture in collagen hydrogels; and 3D culture in tumor spheroids. The results showed UM-SCC-1 drug response significantly changed in the different culture environments; leading to an increase in drug resistance in the CAF co-culture and the 3D spheroids. Conversely, UM-SCC-47 exhibited a more constant drug response across culture conditions. In conclusion, this work highlights the importance of culture conditions that modulate response to EGFR pathway inhibition.
Collapse
|
224
|
Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of human lung cancer cells in vitro and in vivo. Gene Ther 2019; 27:51-61. [PMID: 31439890 DOI: 10.1038/s41434-019-0096-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Cancer therapies that target a single protein or pathway may be limited by their specificity, thus missing key players that control cellular proliferation and contributing to the failure of the treatment. We propose that approaches to cancer therapy that hit multiple targets would limit the chances of escape. To this end, we have developed a bicistronic adenoviral vector encoding both the CDKN2A and p53 tumor suppressor genes. The bicistronic vector, AdCDKN2A-I-p53, supports the translation of both gene products from a single transcript, assuring that all transduced cells will express both proteins. We show that combined, but not single, gene transfer results in markedly reduced proliferation and increased cell death correlated with reduced levels of phosphorylated pRB, induction of CDKN1A and caspase 3 activity, yet avoiding the induction of senescence. Using isogenic cell lines, we show that these effects were not impeded by the presence of mutant p53. In a mouse model of in situ gene therapy, a single intratumoral treatment with the bicistronic vector conferred markedly inhibited tumor progression while the treatment with either CDKN2A or p53 alone only partially controlled tumor growth. Histologic analysis revealed widespread transduction, yet reduced proliferation and increased cell death was associated only with the simultaneous transfer of CDKN2A and p53. We propose that restoration of two of the most frequently altered genes in human cancer, mediated by AdCDKN2A-I-p53, is beneficial since multiple targets are reached, thus increasing the efficacy of the treatment.
Collapse
|
225
|
Simarro J, Murria R, Pérez-Simó G, Llop M, Mancheño N, Ramos D, Juan ID, Barragán E, Laiz B, Cases E, Ansótegui E, Gómez-Codina J, Aparicio J, Salvador C, Juan Ó, Palanca S. Development, Implementation and Assessment of Molecular Diagnostics by Next Generation Sequencing in Personalized Treatment of Cancer: Experience of a Public Reference Healthcare Hospital. Cancers (Basel) 2019; 11:E1196. [PMID: 31426418 PMCID: PMC6721584 DOI: 10.3390/cancers11081196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The establishment of precision medicine in cancer patients requires the study of several biomarkers. Single-gene testing approaches are limited by sample availability and turnaround time. Next generation sequencing (NGS) provides an alternative for detecting genetic alterations in several genes with low sample requirements. Here we show the implementation to routine diagnostics of a NGS assay under International Organization for Standardization (UNE-EN ISO 15189:2013) accreditation. For this purpose, 106 non-small cell lung cancer (NSCLC) and 102 metastatic colorectal cancer (mCRC) specimens were selected for NGS analysis with Oncomine Solid Tumor (ThermoFisher). In NSCLC the most prevalently mutated gene was TP53 (49%), followed by KRAS (31%) and EGFR (13%); in mCRC, TP53 (50%), KRAS (48%) and PIK3CA (16%) were the most frequently mutated genes. Moreover, NGS identified actionable genetic alterations in 58% of NSCLC patients, and 49% of mCRC patients did not harbor primary resistance mechanisms to anti-EGFR treatment. Validation with conventional approaches showed an overall agreement >90%. Turnaround time and cost analysis revealed that NGS implementation is feasible in the public healthcare context. Therefore, NGS is a multiplexed molecular diagnostic tool able to overcome the limitations of current molecular diagnosis in advanced cancer, allowing an improved and economically sustainable molecular profiling.
Collapse
Affiliation(s)
- Javier Simarro
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Rosa Murria
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Gema Pérez-Simó
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Marta Llop
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nuria Mancheño
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Ramos
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Inmaculada de Juan
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Eva Barragán
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Begoña Laiz
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Enrique Cases
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Emilio Ansótegui
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - José Gómez-Codina
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Jorge Aparicio
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Carmen Salvador
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Óscar Juan
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Sarai Palanca
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain.
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain.
| |
Collapse
|
226
|
Kobayashi H, Lei C, Wu Y, Huang CJ, Yasumoto A, Jona M, Li W, Wu Y, Yalikun Y, Jiang Y, Guo B, Sun CW, Tanaka Y, Yamada M, Yatomi Y, Goda K. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. LAB ON A CHIP 2019; 19:2688-2698. [PMID: 31287108 DOI: 10.1039/c8lc01370e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug susceptibility (also called chemosensitivity) is an important criterion for developing a therapeutic strategy for various cancer types such as breast cancer and leukemia. Recently, functional assays such as high-content screening together with genomic analysis have been shown to be effective for predicting drug susceptibility, but their clinical applicability is poor since they are time-consuming (several days long), labor-intensive, and costly. Here we present a highly simple, rapid, and cost-effective liquid biopsy for ex vivo drug-susceptibility testing of leukemia. The method is based on an extreme-throughput (>1 million cells per second), label-free, whole-blood imaging flow cytometer with a deep convolutional autoencoder, enabling image-based identification of the drug susceptibility of every single white blood cell in whole blood within 24 hours by simply flowing a drug-treated whole blood sample as little as 500 μL into the imaging flow cytometer without labeling. Our results show that the method accurately evaluates the drug susceptibility of white blood cells from untreated patients with acute lymphoblastic leukemia. Our method holds promise for affordable precision medicine.
Collapse
|
227
|
Lazzari L, Corti G, Picco G, Isella C, Montone M, Arcella P, Durinikova E, Zanella ER, Novara L, Barbosa F, Cassingena A, Cancelliere C, Medico E, Sartore-Bianchi A, Siena S, Garnett MJ, Bertotti A, Trusolino L, Di Nicolantonio F, Linnebacher M, Bardelli A, Arena S. Patient-Derived Xenografts and Matched Cell Lines Identify Pharmacogenomic Vulnerabilities in Colorectal Cancer. Clin Cancer Res 2019; 25:6243-6259. [PMID: 31375513 DOI: 10.1158/1078-0432.ccr-18-3440] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. EXPERIMENTAL DESIGN Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. RESULTS XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven responses observed in vitro in XLs were confirmed in vivo in the matched PDXs. MSI-H models were dependent upon WRN gene expression, while loss of WRN did not affect MSS XLs growth. Interestingly, one MSS XL with transcriptional MSI-like traits was sensitive to WRN depletion. CONCLUSIONS The XL platform represents a preclinical tool for functional gene validation and proof-of-concept studies to identify novel druggable vulnerabilities in colorectal cancer.
Collapse
Affiliation(s)
- Luca Lazzari
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | - Claudio Isella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Monica Montone
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | | | - Luca Novara
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Fabiane Barbosa
- Department of Interventional Radiology, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | | | - Andrea Bertotti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
228
|
Illangeswaran RSS, Das S, Paul DZ, Mathews V, Balasubramanian P. A personalized approach to acute myeloid leukemia therapy: current options. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:167-179. [PMID: 31447578 PMCID: PMC6684879 DOI: 10.2147/pgpm.s168267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Therapeutic options for acute myeloid leukemia (AML) have remained unchanged for nearly the past 5 decades, with cytarabine and anthracyclines and use of hypomethylating agents for less intensive therapy. Implementation of large-scale genomic studies in the past decade has unraveled the genetic landscape and molecular etiology of AML. The approval of several novel drugs for targeted therapy, including midostaurin, enasidenib, ivosidenib, gemtuzumab–ozogamicin, and CPX351 by the US Food and Drug Administration has widened the treatment options for clinicians treating AML. This review focuses on some of these novel therapies and other promising agents under development, along with key clinical trial findings in AML.
Collapse
Affiliation(s)
| | - Saswati Das
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
229
|
Hansen MR, Okuda DT. Precision medicine for multiple sclerosis promotes preventative medicine. Ann N Y Acad Sci 2019; 1420:62-71. [PMID: 29878402 DOI: 10.1111/nyas.13846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, lifelong disease, currently without a cure that is responsible for significant neurological injury in young adults. Precision medicine for MS aims to provide a more exacting and refined approach toward management by providing recommendations based on disease subtype, clinical status, existing radiological data, para-clinical data, and other biological markers. To achieve better outcomes, the three stages of care-diagnosis, treatment, and management-should be optimized. However, as the temporal profile of disease behavior is highly variable in MS, and unlike outcomes from other chronic conditions (i.e., hypertension, diabetes mellitus, etc.), should precision medicine for MS be one that focuses more on disease prevention and lifestyle modifications beyond recommendations for the use of disease-modifying therapies? As scientific advancements continue within the field of neuroimmunology, and until reliable biomarkers that predict disease outcomes are available, success may be better achieved by focusing on modifiable factors to reduce future disability.
Collapse
Affiliation(s)
- Madison R Hansen
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| | - Darin T Okuda
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| |
Collapse
|
230
|
Goh TS, Lee JS, Il Kim J, Park YG, Pak K, Jeong DC, Oh SO, Kim YH. Prognostic scoring system for osteosarcoma using network-regularized high-dimensional Cox-regression analysis and potential therapeutic targets. J Cell Physiol 2019; 234:13851-13857. [PMID: 30604867 DOI: 10.1002/jcp.28065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 07/20/2023]
Abstract
With the recent emphasis on the importance of personalized genomic medicine, studies have performed prognostic stratification using gene signatures in cancers. However, these studies have not considered gene networks with clinical data. Therefore, this study aimed to develop a novel prognostic score using grouped variable selection for patients with osteosarcoma. We assessed messenger RNA (mRNA) expression and clinical data from Gene Expression Omnibus to develop a novel prognostic scoring system for patients with osteosarcoma. Variable selection using Network-Regularized high-dimensional Cox-regression analysis with information regarding gene networks obtained from six large pathway databases was performed. We determined the risk score on the linear combination of regression coefficients and mRNA expression values. Log-rank test, UNO's c-index, and area under the curve (AUC) values were determined to evaluate the discriminatory power between the low- and high-risk groups. A recently reported next-generation Connectivity Map was used to identify future therapeutic targets for osteosarcoma. Our novel model had significantly high discriminatory power in predicting overall survival. An optimal c-index of 0.967 was obtained and time-dependent receiver operating characteristic analysis revealed an acceptable predictive value of AUC between 0.953 and 1.000. Knockdown of BACE2 or ING2 and linifanib treatment may improve the prognosis of patients with osteosarcoma. Herein, this novel prognostic scoring system would not only facilitate a more accurate prediction of patient prognosis, but also contribute to the selection of suitable therapeutic alternatives for osteosarcoma patients.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeung Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yong Geon Park
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dae Cheon Jeong
- Deloitte Analytics Group, Deloitte Consulting LLC, Seoul, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
231
|
Handa JT, Bowes Rickman C, Dick AD, Gorin MB, Miller JW, Toth CA, Ueffing M, Zarbin M, Farrer LA. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 2019; 10:3347. [PMID: 31350409 PMCID: PMC6659646 DOI: 10.1038/s41467-019-11262-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly in the developed world. While treatment is effective for the neovascular or “wet” form of AMD, no therapy is successful for the non-neovascular or “dry” form. Here we discuss the current knowledge on dry AMD pathobiology and propose future research directions that would expedite the development of new treatments. In our view, these should emphasize system biology approaches that integrate omic, pharmacological, and clinical data into mathematical models that can predict disease onset and progression, identify biomarkers, establish disease causing mechanisms, and monitor response to therapy. No effective therapies exist for dry age-related macular degeneration. In this perspective, the authors propose that research should emphasize system biology approaches that integrate various ‘omics’ data into mathematical models to establish pathogenic mechanisms on which to design novel treatments, and identify biomarkers that predict disease progression and therapeutic response.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, 21287, MD, USA.
| | - Cathy Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, BS8 1TH, UK.,University College London, Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Michael B Gorin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, 90095, CA, USA.,Brain Research Institute, UCLA, Los Angeles, 90095, CA, USA
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, USA
| | - Cynthia A Toth
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, D-72076, Germany
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, 07103, NJ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, 02118, MA, USA.
| |
Collapse
|
232
|
Lind AP, Anderson PC. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One 2019; 14:e0219774. [PMID: 31295321 PMCID: PMC6622537 DOI: 10.1371/journal.pone.0219774] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
A key goal of precision medicine is predicting the best drug therapy for a specific patient from genomic information. In oncology, cancers that appear similar pathologically can vary greatly in how they respond to the same drug. Fortunately, data from high-throughput screening programs often reveal important relationships between genomic variability of cancer cells and their response to drugs. Nevertheless, many current computational methods to predict compound activity against cancer cells require large quantities of genomic, epigenomic, and additional cellular data to develop and to apply. Here we integrate recent screening data and machine learning to train classification models that predict the activity/inactivity of compounds against cancer cells based on the mutational status of only 145 oncogenes and a set of compound structural descriptors. Using IC50 values of 1 μM as activity cutoffs, our predictive models have sensitivities of 87%, specificities of 87%, and yield an area under the receiver operating characteristic curve equal to 0.94. We also develop regression models to predict log(IC50) values of compounds for cancer cells; the models achieve a Pearson correlation coefficient of 0.86 for cross-validation and up to 0.65-0.73 against blind test sets. Predictive performance remains strong when as few as 50 oncogenes are included. Finally, even when 40% of experimental IC50 values are missing from screening data, they can be imputed with sufficient reliability that classification accuracy is not diminished. The presented models are fast to generate and may serve as easily implemented screening tools for personalized oncology medicine, drug repurposing, and drug discovery.
Collapse
Affiliation(s)
- Alex P. Lind
- Physical Sciences Division, University of Washington Bothell, Bothell, Washington, United States of America
| | - Peter C. Anderson
- Physical Sciences Division, University of Washington Bothell, Bothell, Washington, United States of America
| |
Collapse
|
233
|
Katogiritis A, Khanna C. Towards the Delivery of Precision Veterinary Cancer Medicine. Vet Clin North Am Small Anim Pract 2019; 49:809-818. [PMID: 31256903 DOI: 10.1016/j.cvsm.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduce a next phase in the evolution of medicine affecting human and veterinary patients. This evolution, genomic cancer medicine (Pmed), involves expansion of genomic and molecular biology into clinical medicine. The implementation of these new technologies has already begun and is a commercial reality. We introduce the underpinnings for this evolution, and focus on application in complex disease states. Pet owners have begun requesting Pmed technologies. To meet this demand, it is important to be aware of the opportunities and obstacles associated with available Pmed offerings as well as the current state of the field.
Collapse
Affiliation(s)
- Anna Katogiritis
- EthosVeterinaryHealth LLC, 20 Cabot Road, Woburn, MA 01801, USA; EthosDiscovery(501c3), Washington, DC, USA. https://twitter.com/DoctorAnnaK
| | - Chand Khanna
- EthosVeterinaryHealth LLC, 20 Cabot Road, Woburn, MA 01801, USA; EthosDiscovery(501c3), Washington, DC, USA.
| |
Collapse
|
234
|
Hall F, Villalobos V, Wilky B. Future directions in soft tissue sarcoma treatment. Curr Probl Cancer 2019; 43:300-307. [PMID: 31229264 DOI: 10.1016/j.currproblcancer.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
Sarcoma is a broad term for mesenchymal malignancies that arise from soft tissue or bone. Despite classification by histologic subtype, clinical behavior and response to therapy have great variability. Modern genetic sequencing techniques have been able to identify additional genetic variability and subsequently new targeted therapies. In this review, we discuss the current state of STS diagnostics and treatment and explore some of the more promising areas in which progress is being made. We discuss therapies targeting PDGFRα/KIT, β-Catenin/APC/NOTCH, IDH-1/2 mutations, MDM2 amplifications, EZH2/INI1 expression loss, ALK fusion, and ASPSCR1-TFE3 fusion. We also discuss the progress that has been made within immunotherapies. While soft tissue sarcomas still portend a poor prognosis, these targeted therapies and immunotherapies provide treatment with less toxic side effects.
Collapse
Affiliation(s)
- Francis Hall
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Victor Villalobos
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Breelyn Wilky
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
235
|
Au R, Ritchie M, Hardy S, Ang TFA, Lin H. Aging Well: Using Precision to Drive Down Costs and Increase Health Quality. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2019; 1:e190003. [PMID: 31342014 PMCID: PMC6656386 DOI: 10.20900/agmr20190003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Efforts to provide patients with individualized treatments have led to tremendous breakthroughs in healthcare. However, a precision medicine approach alone will not offset the rapid increase in prevalence and burden of chronic non-communicable illnesses that is continuing to pervade the world's aging population. With rapid advances in technology, it is now possible to collect digital metrics to assess, monitor and detect chronic disease indicators, much earlier in the disease course, potentially redefining what was previously considered asymptomatic to pre-symptomatic. Data science and artificial intelligence can drive the discovery of digital biomarkers before the emergence of overt clinical symptoms, thereby transforming the current healthcare approach from one centered on precision medicine to a more comprehensive focus on precision health, and by doing so enable the possibility of preventing disease altogether. Presented herein are the challenges to the current healthcare model and the proposition of first steps for reversing the prevailing intractable trend of rising healthcare costs and poorer health quality.
Collapse
Affiliation(s)
- Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Boston, MA 01702, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marina Ritchie
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Spencer Hardy
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ting Fang Alvin Ang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Boston, MA 01702, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Honghuang Lin
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Boston, MA 01702, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
236
|
Kyrochristos ID, Ziogas DE, Roukos DH. Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy. Drug Discov Today 2019; 24:1281-1294. [PMID: 31009757 DOI: 10.1016/j.drudis.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Progress in understanding and overcoming fatal intrinsic and acquired resistance is slow, with only a few exceptions. Despite advances in modern genome and transcriptome analysis, the controversy of the three different theories on drug resistance and tumor progression, namely dynamic intratumor heterogeneity, pre-existing minor genomic clones and tumor ecosystem, is unresolved. Moreover, evidence on transcriptional heterogeneity suggests the necessity of a drug bank for individualized, precise drug-sensitivity prediction. We propose a cancer type- and stage-specific clinicogenomic and tumor ecosystemic concept toward cancer precision medicine, focusing on early therapeutic resistance and relapse.
Collapse
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Demosthenes E Ziogas
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, 'G. Hatzikosta' General Hospital, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|
237
|
Abstract
The relevance of different in vitro culture models of cancer cells is a hot topic, but few systematic and definitive analyses in this area exist. In this issue of Cell Chemical Biology, Senkowski et al. (2016) address this issue by studying the transcriptomic profiles of drug-treated cancer cells cultured in two-dimensional and three-dimensional cultures. They describe biological findings with potential therapeutic implications and provide a unique data resource to mine.
Collapse
Affiliation(s)
- Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
238
|
Zhang P, Meng J, Li Y, Wang Z, Hou Y. pH-Sensitive Ratiometric Fluorescent Probe for Evaluation of Tumor Treatments. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1632. [PMID: 31109039 PMCID: PMC6566363 DOI: 10.3390/ma12101632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Determining therapeutic efficacy is critical for tumor precision theranostics. In order to monitor the efficacy of anti-cancer drugs (e.g., Paclitaxel), a pH-sensitive ratiometric fluorescent imaging probe was constructed. The pH-sensitive ratiometric fluorescent dye ANNA was covalently coupled to the N-terminal of the cell-penetrating TAT peptide through an amidation reaction (TAT-ANNA). The in vitro cellular experiments determined that the TAT-ANNA probe could penetrate the cell membrane and image the intracellular pH in real time. The in vivo experiments were then carried out, and the ratiometric pH response to the state of the tumor was recorded immediately after medication. The TAT-ANNA probe was successfully used to monitor the pharmacodynamics of anti-cancer drugs in vivo.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zihua Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yi Hou
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
239
|
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12:48. [PMID: 31088479 PMCID: PMC6518774 DOI: 10.1186/s13045-019-0735-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis, namely, providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer, several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare, CTC methods are currently mainly used for research purposes, and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Therefore, the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits, we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages, use, and significance. Technologies using whole blood samples utilize size-based, immunoaffinity-based, and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet, they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus, a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
Collapse
Affiliation(s)
- Petra Bankó
- Department of Biochemical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sun Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | | | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Chang Hoon Chae
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - András Telekes
- Department of Oncology, St. Lazarus Hospital, Salgótarján, Hungary
| |
Collapse
|
240
|
Sharick JT, Jeffery JJ, Karim MR, Walsh CM, Esbona K, Cook RS, Skala MC. Cellular Metabolic Heterogeneity In Vivo Is Recapitulated in Tumor Organoids. Neoplasia 2019; 21:615-626. [PMID: 31078067 PMCID: PMC6514366 DOI: 10.1016/j.neo.2019.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Heterogeneous populations within a tumor have varying metabolic profiles, which can muddle the interpretation of bulk tumor imaging studies of treatment response. Although methods to study tumor metabolism at the cellular level are emerging, these methods provide a single time point “snapshot” of tumor metabolism and require a significant time and animal burden while failing to capture the longitudinal metabolic response of a single tumor to treatment. Here, we investigated a novel method for longitudinal, single-cell tracking of metabolism across heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures autofluorescence of metabolic coenzymes as a report of metabolic activity. We also investigated whether in vivo cellular metabolic heterogeneity can be accurately captured using tumor-derived three-dimensional organoids in a genetically engineered mouse model of breast cancer. OMI measurements of response to paclitaxel and the phosphatidylinositol-3-kinase inhibitor XL147 in tumors and organoids taken at single cell resolution revealed parallel shifts in metaboltruic heterogeneity. Interestingly, these previously unappreciated heterogeneous metabolic responses in tumors and organoids could not be attributed to tumor cell fate or varying leukocyte content within the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is largely due to heterogeneous metabolic shifts within tumor cells. Together, these studies show that OMI revealed remarkable heterogeneity in response to treatment, which could provide a novel approach to predict the presence of potentially unresponsive tumor cell subpopulations lurking within a largely responsive bulk tumor population, which might otherwise be overlooked by traditional measurements.
Collapse
Affiliation(s)
- Joe T Sharick
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN, 37235, USA; Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Mohammad R Karim
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Christine M Walsh
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 3170 UW Medical Foundation Centennial Building, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN, 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935 U-3218, Medical Research Building III, Nashville, TN, 37240, USA;; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa C Skala
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive Room #2130, Madison, WI, 53706.
| |
Collapse
|
241
|
Romano D. Relevance of neuroendocrine tumours models assessed by kinomic profiling. ANNALES D'ENDOCRINOLOGIE 2019; 80:144-148. [PMID: 31054767 DOI: 10.1016/j.ando.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic landscape of NETs is characterized by relatively few mutations and chromosomal aberrations per tumour compared with other tumour types. In addition, NETs display few actionable mutations providing compelling rationale for targeted therapies. Recent works aiming at characterizing currently used NETs in vitro models at the genomic level raised concerns on their reliability as bona fide tools to study NETs biology. However, the lack of actionable mutation in NETs implies that sole use of genomic is not sufficient to describe these models and establish appropriate therapeutic strategies. Several kinases and kinase-involving signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases have only been investigated regardless of their involvement in large intracellular signalling networks. In order to assess the validity of in vitro NETs models to study NETs biology, "next-generation" high throughput functional technologies based on "kinome-wide activity" will demonstrate the similarities between signalling pathways in NETs models and patients' samples. These approaches will significantly assist in identifying actionable alterations in NETs signalling pathways and guide patient stratification into early-phase clinical trials based on kinase inhibition targeted therapies.
Collapse
Affiliation(s)
- David Romano
- Marseille Medical Genetics, MMG, U1251 Inserm, Aix-Marseille université, Marseille, France.
| |
Collapse
|
242
|
Chen J, Liu J, Calhoun VD. The Translational Potential of Neuroimaging Genomic Analyses To Diagnosis And Treatment In The Mental Disorders. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:912-927. [PMID: 32051642 PMCID: PMC7015534 DOI: 10.1109/jproc.2019.2913145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging genomics focuses on characterizing genomic influence on the variation of neurobiological traits, holding promise for illuminating the pathogenesis, reforming the diagnostic system, and precision medicine of mental disorders. This paper aims to provide an overall picture of the current status of neuroimaging-genomic analyses in mental disorders, and how we can increase their translational potential into clinical practice. The review is organized around three perspectives. (a) Towards reliability, generalizability and interpretability, where we summarize the multivariate models and discuss the considerations and trade-offs of using these methods and how reliable findings may be reached, to serve as ground for further delineation. (b) Towards improved diagnosis, where we outline the advantages and challenges of constructing a dimensional transdiagnostic model and how imaging genomic analyses map into this framework to aid in deconstructing heterogeneity and achieving an optimal stratification of patients that better inform treatment planning. (c) Towards improved treatment. Here we highlight recent efforts and progress in elucidating the functional annotations that bridge between genomic risk and neurobiological abnormalities, in detecting genomic predisposition and prodromal neurodevelopmental changes, as well as in identifying imaging genomic biomarkers for predicting treatment response. Providing an overview of the challenges and promises, this review hopefully motivates imaging genomic studies with multivariate, dimensional and transdiagnostic designs for generalizable and interpretable findings that facilitate development of personalized treatment.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM 87106 USA
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
243
|
Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1542. [PMID: 30084539 PMCID: PMC6585966 DOI: 10.1002/wnan.1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Despite massive growth in nanomedicine research to date, the field still lacks fundamental understanding of how certain physical and chemical features of a nanoparticle affect its ability to overcome biological obstacles in vivo and reach its intended target. To gain fundamental understanding of how physical and chemical parameters affect the biological outcomes of administered nanoparticles, model systems that can systematically manipulate a single parameter with minimal influence on others are needed. Gold nanoparticles are particularly good model systems in this case as one can synthetically control the physical dimensions and surface chemistry of the particles independently and with great precision. Additionally, the chemical and physical properties of gold allow particles to be detected and quantified in tissues and cells with high sensitivity. Through systematic biological studies using gold nanoparticles, insights toward rationally designed nanomedicine for in vivo imaging and therapy can be obtained. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| | - Lucas A. Lane
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| |
Collapse
|
244
|
Targeting tropomyosin receptor kinase for cancer therapy. Eur J Med Chem 2019; 175:129-148. [PMID: 31077998 DOI: 10.1016/j.ejmech.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
NTRKs and their expression product tropomyosin receptor kinases (Trks) are widely distributed in mammals. While neural growth factor (NGF)-induced normal Trk activation plays a key role in nerve growth, NTRK alternations occurring in tumor cells were highly correlated to tumor progression and invasion. Recent clinical data from several pan-Trk inhibitors have demonstrated potential and broad applications in various cancers. This intrigues us to summarize the development of inhibitors targeting Trks with different mechanisms of action and their applications in cancer therapy. We believe that this perspective would be of great help in investigating novel anticancer drugs with better therapeutic index.
Collapse
|
245
|
Bushnell GG, Hardas TP, Hartfield RM, Zhang Y, Oakes RS, Ronquist S, Chen H, Rajapakse I, Wicha MS, Jeruss JS, Shea LD. Biomaterial Scaffolds Recruit an Aggressive Population of Metastatic Tumor Cells In Vivo. Cancer Res 2019; 79:2042-2053. [PMID: 30808673 PMCID: PMC6467791 DOI: 10.1158/0008-5472.can-18-2502] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
For most cancers, metastasis is the point at which clinical treatment shifts from curative intent to extending survival. Biomaterial implants acting as a synthetic premetastatic niche recruit metastatic cancer cells and provide a survival advantage, and their use as a diagnostic platform requires assessing their relevance to disease progression. Here, we showed that scaffold-captured tumor cells (SCAF) were 30 times more metastatic to the lung than primary tumor (PT) cells, similar to cells derived from lung micrometastases (LUNG). SCAF cells were more aggressive in vitro, demonstrated higher levels of migration, invasion, and mammosphere formation, and had a greater proportion of cancer stem cells than PT. SCAF cells were highly enriched for gene expression signatures associated with metastasis and had associated genomic structural changes, including globally enhanced entropy. Collectively, our findings demonstrate that SCAF cells are distinct from PT and more closely resemble LUNG, indicating that tumor cells retrieved from scaffolds are reflective of cells at metastatic sites. SIGNIFICANCE: These findings suggest that metastatic tumor cells captured by a biomaterial scaffold may serve as a diagnostic for molecular staging of metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/2042/F1.large.jpg.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Tejaswini P Hardas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rachel M Hartfield
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Robert S Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Scott Ronquist
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Haiming Chen
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Indika Rajapakse
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
246
|
Goh TS, Ha M, Lee JS, Jeong DC, Jung ES, Han ME, Kim YH, Oh SO. Prognostic significance of EIF4G1 in patients with pancreatic ductal adenocarcinoma. Onco Targets Ther 2019; 12:2853-2859. [PMID: 31043796 PMCID: PMC6472433 DOI: 10.2147/ott.s202101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Advances in genomics have greatly improved the survival rate in cancer patients. However, due to genetic heterogeneity, pancreatic ductal adenocarcinoma (PDAC) is still difficult to diagnose early, and its survival rate is extremely low. Therefore, we identified biomarkers that predict the prognosis of PDAC patients using independent cohort data. Materials and methods To develop a novel prognostic biomarker, we used the gene expression and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Kaplan-Meier survival curve using median values of genes as cutoff showed that EIF4G1 was the only statistically significant gene in the 3 cohorts. We analyzed the prognostic significance of EIF4G1 using the time-dependent area under the curve (AUC) of Uno's C-index, the AUC value of the receiver operating characteristics (ROC) at 3 years, and multivariate Cox analysis. We also compared EIF4G1 levels between tumors and matched non-tumor tissues. Results EIF4G1 is the only prognostic gene in patients with PDAC, which was selected by Kaplan-Meier survival analysis. The survival curve showed that high expression of EIF4G1 was associated with poor prognosis of PDAC with a good discriminative ability in 3 independent cohorts. The risk stratifying ability of EIF4G1 was demonstrated by analyzing C-indices and AUC values. Multivariate Cox regression confirmed its prognostic significance. EIF4G1 expression was significantly higher in PDAC tissues than in the matched normal tissues. Conclusion EIF4G1 could be used as a novel prognostic marker for PDAC and to determine suitable treatment options.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Mihyang Ha
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea,
| | - Jung Sub Lee
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dae Cheon Jeong
- Deloitte Analytics Group, Deloitte Consulting LLC, Seoul, Republic of Korea
| | - Eun Sang Jung
- Department of Bioenvironmental Energy, College of Life & Resources Science, Pusan National University, Miryang, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea,
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea, .,Biomedical Research Institute, Pusan National University, Busan, Republic of Korea,
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea,
| |
Collapse
|
247
|
|
248
|
Bandaru P, Chu D, Sun W, Lasli S, Zhao C, Hou S, Zhang S, Ni J, Cefaloni G, Ahadian S, Dokmeci MR, Sengupta S, Lee J, Khademhosseini A. A Microfabricated Sandwiching Assay for Nanoliter and High-Throughput Biomarker Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900300. [PMID: 30884183 DOI: 10.1002/smll.201900300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/14/2019] [Indexed: 05/03/2023]
Abstract
Cells secrete substances that are essential to the understanding of numerous immunological phenomena and are extensively used in clinical diagnoses. Countless techniques for screening of biomarker secretion in living cells have generated valuable information on cell function and physiology, but low volume and real-time analysis is a bottleneck for a range of approaches. Here, a simple, highly sensitive assay using a high-throughput micropillar and microwell array chip (MIMIC) platform is presented for monitoring of biomarkers secreted by cancer cells. The sensing element is a micropillar array that uses the enzyme-linked immunosorbent assay (ELISA) mechanism to detect captured biomolecules. When integrated with a microwell array where few cells are localized, interleukin 8 (IL-8) secretion can be monitored with nanoliter volume using multiple micropillar arrays. The trend of cell secretions measured using MIMICs matches the results from conventional ELISA well while it requires orders of magnitude less cells and volumes. Moreover, the proposed MIMIC is examined to be used as a drug screening platform by delivering drugs using micropillar arrays in combination with a microfluidic system and then detecting biomolecules from cells as exposed to drugs.
Collapse
Affiliation(s)
- Praveen Bandaru
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Dafeng Chu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Soufian Lasli
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiahua Ni
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Giorgia Cefaloni
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet Remzi Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiladitya Sengupta
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Junmin Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
249
|
Usón Junior PLS, Wagner J, Corpa MVDN, Coelho IM, Nagourney RA, Yamaguchi NH. Metastatic carcinoma of unknown primary with complete metabolic response following sorafenib-based chemotherapy. SAGE Open Med Case Rep 2019; 7:2050313X19838739. [PMID: 30915220 PMCID: PMC6429643 DOI: 10.1177/2050313x19838739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
Background: The treatment of carcinoma of unknown primary based on histopathology and immunohistochemistry is generally chemotherapy. The use of molecular markers, genetic profiling platforms, and personalized medicine is under active investigation. Case Report: We report the case of a 56-year-old patient who presented to medical attention with palpable axillary adenopathy. Biopsy confirmed poorly differentiated adenocarcinoma. Formal staging revealed extensive metastatic disease to bone and liver. Initial chemotherapy proved ineffective. We describe the diagnostic evaluation, treatment, and achievement of durable remission using a novel sorafenib-based drug combination that was chosen through the application of a functional analytic laboratory platform. Conclusion: The clinical management of patients with carcinoma of unknown primary continues to present a considerable challenge for practicing oncologists. Laboratory platforms capable of examining cellular response to injury, growth factor withdrawal, and cytotoxic insult at the level of cellular function may provide insights for drug selection in this patient population.
Collapse
Affiliation(s)
| | - Jairo Wagner
- Department of Nuclear Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Robert A Nagourney
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
250
|
Grossi V, Fasano C, Celestini V, Lepore Signorile M, Sanese P, Simone C. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers (Basel) 2019; 11:414. [PMID: 30909600 PMCID: PMC6468785 DOI: 10.3390/cancers11030414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) poses a formidable challenge in terms of molecular heterogeneity, as it involves a variety of cancer-related pathways and molecular changes unique to an individual's tumor. On the other hand, recent advances in DNA sequencing technologies provide an unprecedented capacity to comprehensively identify the genetic alterations resulting in tumorigenesis, raising the hope that new therapeutic approaches based on molecularly targeted drugs may prevent the occurrence of chemoresistance. Regulation of the transcription factor FOXO3a in response to extracellular cues plays a fundamental role in cellular homeostasis, being part of the molecular machinery that drives cells towards survival or death. Indeed, FOXO3a is controlled by a range of external stimuli, which not only influence its transcriptional activity, but also affect its subcellular localization. These regulation mechanisms are mediated by cancer-related signaling pathways that eventually drive changes in FOXO3a post-translational modifications (e.g., phosphorylation). Recent results showed that FOXO3a is imported into the mitochondria in tumor cells and tissues subjected to metabolic stress and cancer therapeutics, where it induces expression of the mitochondrial genome to support mitochondrial metabolism and cell survival. The current review discusses the potential clinical relevance of multidrug therapies that drive cancer cell fate by regulating critical pathways converging on FOXO3a.
Collapse
Affiliation(s)
- Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Valentina Celestini
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy.
| | - Paola Sanese
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|