201
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Curran G. Gahan
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | | | - Diego F. Calderon
- University of Wisconsin-Madison Pathobiological Sciences UNITED STATES
| | - Ke Zhao
- University of Wisconsin-Madison Chemistry 1101 University Ave. 53706 Madison UNITED STATES
| | | | | | - David M. Lynn
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | - Helen E. Blackwell
- University of Wisconsin Department of Chemistry 1101 University Ave.Room 5211a Chemistry 53706-1322 Madison UNITED STATES
| |
Collapse
|
202
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022; 61:e202201798. [PMID: 35334139 PMCID: PMC9322450 DOI: 10.1002/anie.202201798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
A synthetic peptide was found to block cell-to-cell signalling, or quorum sensing, in bacteria and be highly bioavailable in mouse tissue. The controlled release of this agent from degradable polymeric microparticles strongly inhibited skin infection in a wound model at levels that far surpassed the potency of the peptide when delivered conventionally.
Collapse
Affiliation(s)
- Korbin H. J. West
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Curran G. Gahan
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Patricia R. Kierski
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Diego F. Calderon
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Ke Zhao
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Charles J. Czuprynski
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Jonathan F. McAnulty
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - David M. Lynn
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Helen E. Blackwell
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| |
Collapse
|
203
|
Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals (Basel) 2022; 15:ph15030385. [PMID: 35337182 PMCID: PMC8952364 DOI: 10.3390/ph15030385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin’s ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.
Collapse
|
204
|
Screening Repurposed Antiviral Small Molecules as Antimycobacterial Compounds by a Lux-Based phoP Promoter-Reporter Platform. Antibiotics (Basel) 2022; 11:antibiotics11030369. [PMID: 35326832 PMCID: PMC8944841 DOI: 10.3390/antibiotics11030369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of multidrug-resistant strains and hyper-virulent strains of Mycobacterium tuberculosis are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to identify novel anti-TB agents from a library of small-molecule compounds via a rapid screening system. A total of 320 small-molecule compounds were used to screen for their ability to suppress the expression of a key virulence gene, phop, of the M. tuberculosis complex using luminescence (lux)-based promoter-reporter platforms. The minimum inhibitory and bactericidal concentrations on drug-resistant M. tuberculosis and cytotoxicity to human macrophages were determined. RNA sequencing (RNA-seq) was conducted to determine the drug mechanisms of the selected compounds as novel antibiotics or anti-virulent agents against the M. tuberculosis complex. The results showed that six compounds displayed bactericidal activity against M. bovis BCG, of which Ebselen demonstrated the lowest cytotoxicity to macrophages and was considered as a potential antibiotic for TB. Another ten compounds did not inhibit the in vitro growth of the M. tuberculosis complex and six of them downregulated the expression of phoP/R significantly. Of these, ST-193 and ST-193 (hydrochloride) showed low cytotoxicity and were suggested to be potential anti-virulence agents for M. tuberculosis.
Collapse
|
205
|
Synthetic Low-Molecular-Mass Compounds as Potential Inhibitors of Staphylococcus Aureus Adhesion in Experiment. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02570-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
206
|
Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 2022; 199:114982. [PMID: 35247333 DOI: 10.1016/j.bcp.2022.114982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Collapse
|
207
|
Alhayek A, Khan ES, Schönauer E, Däinghaus T, Shafiei R, Voos K, Han MK, Ducho C, Posselt G, Wessler S, Brandstetter H, Haupenthal J, del Campo A, Hirsch AK. Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections. ADVANCED THERAPEUTICS 2022; 5:2100222. [PMID: 35310821 PMCID: PMC7612511 DOI: 10.1002/adtp.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/02/2023]
Abstract
Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| | - Essak S. Khan
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Tobias Däinghaus
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Katrin Voos
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Mitchell K.L. Han
- Leibniz Institute for New Materials (INM) Saarl and University Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Gernot Posselt
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Aránzazu del Campo
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department Saarland University 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
208
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
209
|
Guan XN, Zhang T, Yang T, Dong Z, Yang S, Lan L, Gan J, Yang CG. Covalent sortase A inhibitor ML346 prevents Staphylococcus aureus infection of Galleria mellonella. RSC Med Chem 2022; 13:138-149. [PMID: 35308030 PMCID: PMC8864484 DOI: 10.1039/d1md00316j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2023] Open
Abstract
The housekeeping sortase A (SrtA), a membrane-associated cysteine transpeptidase, is responsible for anchoring surface proteins to the cell wall peptidoglycan in Gram-positive bacteria. This process is essential for the regulation of bacterial virulence and pathogenicity. Therefore, SrtA is considered to be an ideal target for antivirulence therapy. In this study, we report that ML346, a compound with a barbituric acid and cinnamaldehyde scaffold, functions as an irreversible inhibitor of Staphylococcus aureus SrtA (SaSrtA) and Streptococcus pyogenes SrtA (SpSrtA) in vitro at low micromolar concentrations. According to our X-ray crystal structure of the SpSrtAΔN81/ML346 complex (Protein Data Bank ID: 7V6K), ML346 covalently modifies the thiol group of Cys208 in the active site of SpSrtA. Importantly, ML346 significantly attenuated the virulence phenotypes of S. aureus and exhibited inhibitory effects on Galleria mellonella larva infection caused by S. aureus. Collectively, our results indicate that ML346 has potential for development as a covalent antivirulence agent for treating S. aureus infections, including methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Xiang-Na Guan
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Tao Zhang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Teng Yang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University Guiyang 550025 China
| | - Ze Dong
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University Guiyang 550025 China
| | - Lefu Lan
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jianhua Gan
- School of Life Sciences, Fudan University Shanghai 200433 China
| | - Cai-Guang Yang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
210
|
Vieira TF, Magalhães RP, Simões M, Sousa SF. Drug Repurposing Targeting Pseudomonas aeruginosa MvfR Using Docking, Virtual Screening, Molecular Dynamics, and Free-Energy Calculations. Antibiotics (Basel) 2022; 11:185. [PMID: 35203788 PMCID: PMC8868191 DOI: 10.3390/antibiotics11020185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rita P. Magalhães
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
211
|
Li J, Zhao F, Zhan W, Li Z, Zou L, Zhao Q. Challenges for the application of bacteriophages as effective antibacterial agents in the food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:461-471. [PMID: 34487550 DOI: 10.1002/jsfa.11505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Food contamination caused by foodborne pathogens is one of the most important concerns in public health worldwide, and accounts for a significant portion of food loss every year. The emergence of antimicrobial resistant bacteria has turned the attention of researchers back to the potential of bacteriophages as antibacterial agents, and their use has been attempted in various pre-and post-harvest food production settings. The application of phage-based antibacterial products has achieved considerable success but a number of technical, environmental and administrative challenges remain unaddressed. In this review, we summarize the current status of bacteriophage application in the food industry. We discuss the obstacles facing the further development of phage-based antibacterial products from the aspects of technology, environmental safety, and administrative policy. We also advance some possible solutions to these challenges. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Li
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Feng Zhao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenyao Zhan
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
212
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202112295. [PMID: 34762767 PMCID: PMC9299988 DOI: 10.1002/anie.202112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/11/2022]
Abstract
Extracellular virulence factors have emerged as attractive targets in the current antimicrobial resistance crisis. The Gram-negative pathogen Pseudomonas aeruginosa secretes the virulence factor elastase B (LasB), which plays an important role in the infection process. Here, we report a sub-micromolar, non-peptidic, fragment-like inhibitor of LasB discovered by careful visual inspection of structural data. Inspired by the natural LasB substrate, the original fragment was successfully merged and grown. The optimized inhibitor is accessible via simple chemistry and retained selectivity with a substantial improvement in activity, which can be rationalized by the crystal structure of LasB in complex with the inhibitor. We also demonstrate an improved in vivo efficacy of the optimized hit in Galleria mellonella larvae, highlighting the significance of this class of compounds as promising drug candidates.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
213
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substratinspirierte Fragment‐Fusion und ‐Erweiterung führt zu wirksamen LasB‐Inhibitoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cansu Kaya
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Isabell Walter
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Samir Yahiaoui
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Asfandyar Sikandar
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Alaa Alhayek
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Jelena Konstantinović
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Andreas M. Kany
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jörg Haupenthal
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jesko Köhnke
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Rolf W. Hartmann
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Anna K. H. Hirsch
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
214
|
Barthels F, Meyr J, Hammerschmidt SJ, Marciniak T, Räder HJ, Ziebuhr W, Engels B, Schirmeister T. 2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors. Front Mol Biosci 2022; 8:804970. [PMID: 35047562 PMCID: PMC8763382 DOI: 10.3389/fmolb.2021.804970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar KI values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the SNAr reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Jessica Meyr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Tessa Marciniak
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
215
|
Wang Y, Zheng Q, Li L, Pan L, Zhu H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar Drugs 2022; 20:md20020085. [PMID: 35200615 PMCID: PMC8924889 DOI: 10.3390/md20020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.
Collapse
|
216
|
Slavetinsky CJ, Hauser JN, Gekeler C, Slavetinsky J, Geyer A, Kraus A, Heilingbrunner D, Wagner S, Tesar M, Krismer B, Kuhn S, Ernst CM, Peschel A. Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. eLife 2022; 11:66376. [PMID: 35044295 PMCID: PMC8806190 DOI: 10.7554/elife.66376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. MprF is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases virulence and resistance of methicillin-resistant Staphylococcus aureus (MRSA) and other pathogens to cationic host defense peptides and antibiotics. With the aim to design MprF inhibitors that could sensitize MRSA to antimicrobial agents and support the clearance of staphylococcal infections with minimal selection pressure, we developed MprF-targeting monoclonal antibodies, which bound and blocked the MprF flippase subunit. Antibody M-C7.1 targeted a specific loop in the flippase domain that proved to be exposed at both sides of the bacterial membrane, thereby enhancing the mechanistic understanding of bacterial lipid translocation. M-C7.1 rendered MRSA susceptible to host antimicrobial peptides and antibiotics such as daptomycin, and it impaired MRSA survival in human phagocytes. Thus, MprF inhibitors are recommended for new anti-virulence approaches against MRSA and other bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Cordula Gekeler
- Department of Infection Biology, Eberhard Karls University Tübingen
| | | | - André Geyer
- Department of Infection Biology, Eberhard Karls University Tübingen
| | | | | | - Samuel Wagner
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen
| | | | - Bernhard Krismer
- Department of Infection Biology, Eberhard Karls University Tübingen
| | - Sebastian Kuhn
- Department of Infection Biology, Eberhard Karls University Tübingen
| | - Christoph M Ernst
- Department of Molecular Biology and Center for Computational and Integrative Biology, Broad Institute
| | - Andreas Peschel
- Department of Infection Biology, Eberhard Karls University Tübingen
| |
Collapse
|
217
|
Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021; 14:pharmaceutics14010062. [PMID: 35056958 PMCID: PMC8780423 DOI: 10.3390/pharmaceutics14010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023] Open
Abstract
The pharmacological inhibition of the bacterial collagenases (BC) enzymes is considered a promising strategy to block the virulence of the bacteria without targeting the selection mechanism leading to drug resistance. The chemical structures of the Clostridium perfringens collagenase A (ColA) inhibitors were analyzed using Bemis-Murcko skeletons, Murcko frameworks, the type of plain rings, and docking studies. The inhibitors were classified based on their structural architecture and various scoring methods were implemented to predict the probability of new compounds to inhibit ColA and other BC. The analyses indicated that all compounds contain at least one aromatic ring, which is often a nitrobenzene fragment. 2-Nitrobenzene based compounds are, on average, more potent BC inhibitors compared to those derived from 4-nitrobenzene. The molecular descriptors MDEO-11, AATS0s, ASP-0, and MAXDN were determined as filters to identify new BC inhibitors and highlighted the necessity for a compound to contain at least three primary oxygen atoms. The DrugBank database was virtually screened using the developed methods. A total of 100 compounds were identified as potential BC inhibitors, of which, 10 are human approved drugs. Benzthiazide, entacapone, and lodoxamide were chosen as the best candidates for in vitro testing based on their pharmaco-toxicological profile.
Collapse
|
218
|
Rahman F, Wushur I, Malla N, Åstrand OAH, Rongved P, Winberg JO, Sylte I. Zinc-Chelating Compounds as Inhibitors of Human and Bacterial Zinc Metalloproteases. Molecules 2021; 27:molecules27010056. [PMID: 35011288 PMCID: PMC8746695 DOI: 10.3390/molecules27010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of bacterial virulence is believed to be a new treatment option for bacterial infections. In the present study, we tested dipicolylamine (DPA), tripicolylamine (TPA), tris pyridine ethylene diamine (TPED), pyridine and thiophene derivatives as putative inhibitors of the bacterial virulence factors thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) and the human zinc metalloproteases, matrix metalloprotease-9 (MMP-9) and matrix metalloprotease-14 (MMP-14). These compounds have nitrogen or sulfur as putative donor atoms for zinc chelation. In general, the compounds showed stronger inhibition of MMP-14 and PLN than of the other enzymes, with Ki values in the lower μM range. Except for DPA, none of the compounds showed significantly stronger inhibition of the virulence factors than of the human zinc metalloproteases. TPA and Zn230 were the only compounds that inhibited all five zinc metalloproteinases with a Ki value in the lower μM range. The thiophene compounds gave weak or no inhibition. Docking indicated that some of the compounds coordinated zinc by one oxygen atom from a hydroxyl or carbonyl group, or by oxygen atoms both from a hydroxyl group and a carbonyl group, and not by pyridine nitrogen as in DPA and TPA.
Collapse
Affiliation(s)
- Fatema Rahman
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Imin Wushur
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Nabin Malla
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ove Alexander Høgmoen Åstrand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Jan-Olof Winberg
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
- Correspondence: ; Tel.: +47-7764-4705
| |
Collapse
|
219
|
Guo M, Xia C, Wu Y, Zhou N, Chen Z, Li W. Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems. Front Bioeng Biotechnol 2021; 9:772522. [PMID: 34869288 PMCID: PMC8636778 DOI: 10.3389/fbioe.2021.772522] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Cell membrane-coated biomimetic nanoplatforms have many inherent properties, such as bio-interfacing abilities, self-identification, and signal transduction, which enable the biomimetic delivery system to escape immune clearance and opsonization. This can also maximize the drug delivery efficiency of synthetic nanoparticles (NPs) and functional cell membranes. As a new type of delivery system, cell membrane-coated biomimetic delivery systems have broadened the prospects for biomedical applications. In this review, we summarize research progress on cell membrane biomimetic technology from three aspects, including sources of membrane, modifications, and applications, then analyze their limitations and propose future research directions.
Collapse
Affiliation(s)
- Mengyu Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenjie Xia
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
220
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 618] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
221
|
Froes TQ, Chaves BT, Mendes MS, Ximenes RM, da Silva IM, da Silva PBG, de Albuquerque JFC, Castilho MS. Synthesis and biological evaluation of thiazolidinedione derivatives with high ligand efficiency to P. aeruginosa PhzS. J Enzyme Inhib Med Chem 2021; 36:1217-1229. [PMID: 34080514 PMCID: PMC8186431 DOI: 10.1080/14756366.2021.1931165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
The thiazolidinone ring is found in compounds that have widespan biology activity and there is mechanism-based evidence that compounds bearing this moiety inhibit P. aeruginosa PhzS (PaPzhS), a key enzyme in the biosynthesis of the virulence factor named pyocyanin. Ten novel thiazolidinone derivatives were synthesised and screened against PaPhzS, using two orthogonal assays. The biological results provided by these and 28 other compounds, whose synthesis had been described, suggest that the dihydroquinazoline ring, found in the previous hit (A- Kd = 18 µM and LE = 0.20), is not required for PaPzhS inhibition, but unsubstituted nitrogen at the thiazolidinone ring is. The molecular simplification approach, pursued in this work, afforded an optimised lead compound (13- 5-(2,4-dimethoxyphenyl)thiazolidine-2,4-dione) with 10-fold improvement in affinity (Kd= 1.68 µM) and more than 100% increase in LE (0.45), which follows the same inhibition mode as the original hit compound (competitive to NADH).Executive summaryPhzS is a key enzyme in the pyocyanin biosynthesis pathway in P. aeruginosa.Orthogonal assays (TSA and FITC) show that fragment-like thiazolidinedione derivatives bind to PaPhzS with one-digit micromolar affinity.Fragment-like thiazolidinedione derivatives bind to the cofactor (NADH) binding site in PaPhzS.The molecular simplification optimised the ligand efficiency and affinity of the lead compound.
Collapse
Affiliation(s)
- Thamires Quadros Froes
- Programa de Pós-graduação em biotecnologia da, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Marina Sena Mendes
- Faculdade de Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
| | - Rafael Matos Ximenes
- Departamento de Antibióticos da, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, Recife-Pe, Brazil
| | - Ivanildo Mangueira da Silva
- Departamento de Antibióticos da, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, Recife-Pe, Brazil
| | | | | | - Marcelo Santos Castilho
- Programa de Pós-graduação em biotecnologia da, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
- Faculdade de Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
222
|
Lima RD, Dos Reis GA, da Silva Reviello J, Glatthardt T, da Silva Coimbra L, Lima COGX, Antunes LCM, Ferreira RBR. Antibiofilm activity of Cutibacterium acnes cell-free conditioned media against Staphylococcus spp. Braz J Microbiol 2021; 52:2373-2383. [PMID: 34599747 PMCID: PMC8578501 DOI: 10.1007/s42770-021-00617-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
Staphylococcus spp. and Cutibacterium acnes are members of the skin microbiome but can also act as pathogens. Particularly, Staphylococcus species are known to cause medical devices-associated infections, and biofilm production is one of their main virulence factors. Biofilms allow bacteria to adhere and persist on surfaces, protecting them from antimicrobials and host defenses. Since both bacteria are found in the human skin, potentially competing for niches, we aimed to investigate if C. acnes produces molecules that affect Staphylococcus spp. biofilm formation and dispersal. Thus, we evaluated the impact of C. acnes cell-free conditioned media (CFCM) on S. aureus, S. epidermidis, S. hominis, and S. lugdunensis biofilm formation. S. lugdunensis and S. hominis biofilm formation was significantly reduced with C. acnes CFCM without impact on their planktonic growth. C. acnes CFCM also significantly disrupted S. hominis established biofilms. The active molecules against S. lugdunensis and S. hominis biofilms appeared to be distinct since initial characterization points to different sizes and sensitivity to sodium metaperiodate, although the activity is highly resistant to heat in both cases. Mass spectrometry analysis of the fractions active against S. hominis revealed several potential candidates. Investigating how species present in the same environment interact, affecting the dynamics of biofilm formation, may reveal clinically useful compounds as well as molecular aspects of interspecies interactions.
Collapse
Affiliation(s)
- Rayssa Durães Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle Antunes Dos Reis
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana da Silva Reviello
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Glatthardt
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa da Silva Coimbra
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luis Caetano Martha Antunes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana Barreto Rocha Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, CCS, Bloco I2-028, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
223
|
Yin N, Yang X, Wang L, Zhang C, Guan J, Tao Y, Guo X, Zhao Y, Song W, Wang B, Tang Y. Kaempferol inhibits the expression of α-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog 2021; 162:105336. [PMID: 34856361 DOI: 10.1016/j.micpath.2021.105336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium that induces a variety of diseases in humans and animals. The significant pathogenicity of S. aureus is due to its expression of several virulence factors. Alpha-hemolysin (Hla) has attracted attention as a virulence factor in staphylococcal pathogenesis and has been the predominant focus of intense research. In this study, we found that kaempferol, a flavonoid compound, inhibited hemolysis at a low concentration (32 μg/mL) and exerted no effect on bacterial growth. Western blot and RT-qPCR assays further demonstrated that kaempferol downregulated the expression of Hla in S. aureus. We observed that kaempferol alleviated the damage from S. aureus Hla in A549 cells. More importantly, kaempferol showed a potent protective effect on mice pneumonia induced by MRSA, as evidenced by a significant improvement in the survival of mice, a reduction in the number of colonized colonies in lung tissue and a decrease in the pathological damage to lung tissues. In summary, the results demonstrate the protective effect of kaempferol on MRSA-induced lethal pneumonia in mice and indicate that kaempferol could be developed as a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Ning Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 271016, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xuerui Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
224
|
Feng J, Sun D, Wang L, Li X, Guan J, Wei L, Yue D, Wang X, Zhao Y, Yang H, Song W, Wang B. Biochanin A as an α-hemolysin inhibitor for combating methicillin-resistant Staphylococcus aureus infection. World J Microbiol Biotechnol 2021; 38:6. [PMID: 34837116 DOI: 10.1007/s11274-021-03182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. In S. aureus, α-hemolysin is an important virulence factor as it contributes to the capacity of the bacteria to infect the host. Here, we showed that biochanin A (bioA), an isoflavone present in red clover, cabbage and alfalfa, effectively inhibited hemolytic activity at a dose as low as 32 μg/mL. Further, western blot and RT-qPCR data showed that bioA reduced the production and expression of MRSA hemolysin in a dose-dependent manner. In addition, when different concentrations of bioA were added to a coculture system of A549 cells and S. aureus, it could significantly decrease cell injury. Importantly, the in vivo study showed that bioA could protect mice from pneumonia caused by a lethal dose of MRSA, as evidenced by improving their survival and reducing the number of bacterial colonies in lung tissues, the secretion of hemolysin into alveolar lavage fluid and the degree of pulmonary edema. In conclusion, biochanin A protected the host from MRSA infection by inhibiting the expression of the hemolysin of MRSA, which may provide experimental evidence for its development to a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Jiaxuan Feng
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xueting Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Donghui Yue
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haimiao Yang
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
225
|
Piewngam P, Chiou J, Ling J, Liu R, Pupa P, Zheng Y, Otto M. Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Sci Transl Med 2021; 13:eabf4692. [PMID: 34818053 PMCID: PMC11097119 DOI: 10.1126/scitranslmed.abf4692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Whether and how probiotics promote human health is a controversial issue. Their claimed benefit for counteracting gastrointestinal infection is linked predominantly to reducing pathogen abundance within the intestinal microbiota. Less understood mechanistically is the reported value that probiotics could have in reducing systemic infections. Enterococcus faecalis is an opportunistic pathogen that causes systemic infection after translocation through the intestinal epithelium, particularly in hospitalized and immune-depleted patients receiving antibiotic therapy. In this study, we used an E. faecalis mouse infection model with wild-type and isogenic mutant strains deficient in genes of the E. faecalis Fsr (fecal streptococci regulator) quorum-sensing system. We show that E. faecalis translocation from the mouse gut into the blood is mediated by the Fsr quorum-sensing system through production of the protease GelE, which compromises intestinal epithelium integrity. Furthermore, we demonstrate that orally administered probiotic Bacillus subtilis spores blocked E. faecalis translocation from the gut to the bloodstream and subsequent systemic infection in mice by inhibiting Fsr activity. These findings demonstrate that a key aspect of Enterococcus pathogenesis is controlled by quorum sensing, which can be targeted with probiotic Bacillus spores.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Joie Ling
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Pawiya Pupa
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| |
Collapse
|
226
|
Identification of ClpP Dual Isoform Disruption as an Anti-sporulation Strategy for Clostridioides difficile. J Bacteriol 2021; 204:e0041121. [PMID: 34807726 DOI: 10.1128/jb.00411-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Clostridioides difficile is a primary cause of hospital-acquired diarrhea, threatening both immunocompromised and healthy individuals. An important aspect of defining mechanisms that drive C. difficile persistence and virulence relies on developing a more complete understanding of sporulation. C. difficile sporulation is the single determinant of transmission and complicates treatment and prevention due to the chemical and physical resilience of spores. By extension, the identification of druggable targets that significantly attenuate sporulation would have a significant impact on thwarting C. difficile infection. Using a new CRISPR-Cas9 nickase genome editing methodology, stop codons were inserted early in the coding sequence for clpP1 and clpP2 to generate C. difficile mutants that no longer produced the corresponding isoforms of caseinolytic protease P (ClpP). The data show that genetic ablation of ClpP isoforms leads to altered sporulation phenotypes with the clpP1/clpP2 double mutant exhibiting asporogenic behavior. A small screen of known ClpP inhibitors in a fluorescence-based biochemical assay identified bortezomib as an inhibitor of C. difficile ClpP that produces dose-dependent inhibition of purified ClpP. Incubation of C. difficile cultures in the presence of bortezomib reveals anti-sporulation effects approaching that observed in the clpP1/clpP2 double mutant. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as C. difficile anti-sporulating agents. IMPORTANCE Due to diverse roles of ClpP and the reliance of pathogens upon this system for infection, it has emerged as a target for antimicrobial development. Biology regulated by ClpP is organism-dependent and has not been defined in C. difficile. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as anti-sporulating agents. The identification of new approaches and/or drug targets that reduce C. difficile sporulation would be transformative and are expected to find high utility in prophylaxis, transmission attenuation, and relapse prevention. Discovery of the ClpP system as a major driver to sporulation also provides a new avenue of inquiry for advancing the understanding of sporulation.
Collapse
|
227
|
Identification of Translocation Inhibitors Targeting the Type III Secretion System of Enteropathogenic Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0095821. [PMID: 34543097 DOI: 10.1128/aac.00958-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with enteropathogenic Escherichia coli (EPEC) cause severe diarrhea in children. The noninvasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir (translocated intimin receptor). Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. In addition, these substances reduced bacterial binding to host cells, effector-dependent cell detachment, and abolished attaching and effacing lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and enterohemorrhagic E. coli infections.
Collapse
|
228
|
Roberge N, Neville N, Douchant K, Noordhof C, Boev N, Sjaarda C, Sheth PM, Jia Z. Broad-Spectrum Inhibitor of Bacterial Polyphosphate Homeostasis Attenuates Virulence Factors and Helps Reveal Novel Physiology of Klebsiella pneumoniae and Acinetobacter baumannii. Front Microbiol 2021; 12:764733. [PMID: 34764949 PMCID: PMC8576328 DOI: 10.3389/fmicb.2021.764733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae currently rank amongst the most antibiotic-resistant pathogens, responsible for millions of infections each year. In the wake of this crisis, anti-virulence therapeutics targeting bacterial polyphosphate (polyP) homeostasis have been lauded as an attractive alternative to traditional antibiotics. In this work, we show that the small molecule gallein, a known G-protein βγ subunit modulator, also recently proven to have dual-specificity polyphosphate kinase (PPK) inhibition in Pseudomonas aeruginosa, in turn exhibits broad-spectrum PPK inhibition in other priority pathogens. Gallein treatment successfully attenuated virulence factors of K. pneumoniae and A. baumannii including biofilm formation, surface associated motility, and offered protection against A. baumannii challenge in a Caenorhabditis elegans model of infection. This was highlighted most importantly in the critically understudied A. baumannii, where gallein treatment phenocopied a ppk1 knockout strain of a previously uncharacterized PPK1. Subsequent analysis revealed a unique instance of two functionally and phenotypically distinct PPK1 isoforms encoded by a single bacterium. Finally, gallein was administered to a defined microbial community comprising over 30 commensal species of the human gut microbiome, demonstrating the non-disruptive properties characteristic of anti-virulence treatments as microbial biodiversity was not adversely influenced. Together, these results emphasize that gallein is a promising avenue for the development of broad-spectrum anti-virulence therapeutics.
Collapse
Affiliation(s)
- Nathan Roberge
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katya Douchant
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Curtis Noordhof
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Nadejda Boev
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada
| | - Calvin Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada.,Division of Microbiology, Kingston Health Science Center, Kingston, ON, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
229
|
Visan DC, Oprea E, Radulescu V, Voiculescu I, Biris IA, Cotar AI, Saviuc C, Chifiriuc MC, Marinas IC. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals (Basel) 2021; 14:1159. [PMID: 34832941 PMCID: PMC8617773 DOI: 10.3390/ph14111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to establish the essential oil (EO) composition from young shoots of Picea abies, Larix decidua, Pseudotsuga menziesii, and Pinus nigra harvested from Romania and evaluate their antimicrobial and anti-virulence activity, as well as potential synergies with currently used antibiotics. The samples' EO average content varied between 0.62% and 1.02% (mL/100 g plant). The mono- and sesquiterpene hydrocarbons were dominant in the composition of the studied EOs. The antimicrobial activity revealed that the minimum inhibitory concentration (MIC) values for the tested EOs and some pure compounds known for their antimicrobial activity ranged from 6.25 to 100 µL/mL. The most intensive antimicrobial effect was obtained for the Pinus nigra EO, which exhibited the best synergistic effect with some antibiotics against Staphylococcus aureus strains (i.e., oxacillin, tetracycline, erythromycin and gentamycin). The subinhibitory concentrations (sMIC) of the coniferous EOs inhibited the expression of soluble virulence factors (DN-ase, lipase, lecithinase, hemolysins, caseinase and siderophore-like), their efficiency being similar to that of the tested pure compounds, and inhibited the rhl gene expression in Pseudomonas aeruginosa, suggesting their virulence-arresting drug potential.
Collapse
Affiliation(s)
- Diana-Carolina Visan
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, 020956 Bucharest, Romania; (D.-C.V.); (V.R.)
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Valeria Radulescu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, 020956 Bucharest, Romania; (D.-C.V.); (V.R.)
| | - Ion Voiculescu
- “Marin Drăcea” National Institute for Forestry Research and Development, 128 Eroilor, 077190 Voluntari, Romania; (I.V.); (I.-A.B.)
| | - Iovu-Adrian Biris
- “Marin Drăcea” National Institute for Forestry Research and Development, 128 Eroilor, 077190 Voluntari, Romania; (I.V.); (I.-A.B.)
- Faculty of Agriculture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti, 011464 Bucharest, Romania
| | - Ani Ioana Cotar
- Cantacuzino National Medico-Military Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania;
| | - Crina Saviuc
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| |
Collapse
|
230
|
Wang B, Duan J, Jin Y, Zhan Q, Xu Y, Zhao H, Wang X, Rao L, Guo Y, Yu F. Functional Insights of MraZ on the Pathogenicity of Staphylococcus aureus. Infect Drug Resist 2021; 14:4539-4551. [PMID: 34754202 PMCID: PMC8572050 DOI: 10.2147/idr.s332777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction In recent years, multidrug-resistant methicillin-resistant Staphylococcus aureus has become increasingly prevalent, which raised a huge challenge to antibiotic treatment of infectious diseases. The anti-virulence strategy targeting virulent factors is a promising novel therapy for S. aureus infection. The virulence mechanism of S. aureus was needed to explore deeply to develop more targets and improve the effectiveness of anti-virulence strategies. Results In this study, we found mraZ was highly conserved in S. aureus, and its production is homologous with the MraZ of Escherichia coli, a transcriptional regulator involved in the growth and cell division of E. coli. To investigate the function of mraZ in S. aureus, we constructed a MW2 mraZ deletion mutant and its complementary mutant for virulence comparison. Although no remarkable influence on the growth, the mraZ deletion mutant led to significantly reduced resistance to human neutrophils and decreased virulence in Galleria mellonella model as well as mouse skin and soft tissue infection models, indicating its essential contribution to virulence and immune evasion to support the pathogenicity of S. aureus infection. RNA-Seq and quantitative RT-qPCR revealed that MraZ is a multi-functional regulator; it involves in diverse biological processes and can up-regulate the expression of various virulence genes by agr and sarA. Conclusion mraZ plays vital roles in the pathyogenicity of S. aureus via regulating many virulence genes. It may be an attractive target for anti-virulence therapy of S. aureus.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jingjing Duan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Hubei, People's Republic of China
| | - Ye Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qing Zhan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Yanlei Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lulin Rao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
231
|
Abd El-Aleam RH, George RF, Georgey HH, Abdel-Rahman HM. Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 2021; 11:36459-36482. [PMID: 35494393 PMCID: PMC9043591 DOI: 10.1039/d1ra06238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is one of the most important challenges of the 21st century. However, the growing understanding of bacterial pathogenesis and cell-to-cell communication has revealed many potential strategies for the discovery of drugs that can be used for the treatment of bacterial infections. Interfering with bacterial virulence and/or quorum sensing could be a particularly interesting approach, because it is believed to exert less selective pressure on the bacterial resistance than with traditional strategies, geared toward killing bacteria or preventing their growth. Here, we discuss the mechanism of bacterial virulence, presenting promising strategies and recently synthesized heterocyclic compounds to combat future bacterial infections.
Collapse
Affiliation(s)
- Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI Cairo 11571 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo 11786 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University Beni Suef Egypt
| |
Collapse
|
232
|
Lin IT, Tulman ER, Geary SJ, Zhou X. A gatekeeper protein contributes to T3SS2 function via interaction with an ATPase in Vibrio parahaemolyticus. Microbiol Res 2021; 252:126857. [PMID: 34481262 DOI: 10.1016/j.micres.2021.126857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Assembly of a functional type III secretion system (T3SS) requires intricate protein-protein interactions in many bacterial species. In Vibrio parahaemolyticus, the leading cause of seafood-associated diarrheal illnesses, the gatekeeper protein VgpA is essential for T3SS2 to secrete its substrates. However, it is unknown if VgpA interacts with other core elements of T3SS2 to mediate its substrate secretion. Through bacterial two-hybrid (BACTH) analysis, we now show that VgpA physically interacts with VscN2 (an ATPase essential for T3SS function) and six other hypothetical proteins. Mutation of isoleucine to alanine at residue 175 of VgpA (VgpAI175A) abolished its ability to interact with VscN2. Importantly, complementation of a VgpA nonsense mutant (vgpA') with VgpAI175A did not restore the ability of T3SS2 to secrete substrates, demonstrating that VgpA-VscN2 interaction is critical for the function of T3SS2. Bacterial cell fractionation and mass spectrometry analyses showed that vgpA' resulted in significant alterations of T3SS2 protein abundance in multiple bacterial cell fractions. Particularly, VscN2 abundance in the inner membrane fraction and VscC2 abundance in the outer membrane fraction are significantly reduced in vgpA' compared to those in WT. These results demonstrated that VgpA contributes to T3SS2 function via its interaction with VscN2 and possibly by affecting subcellular distribution of T3SS2 proteins.
Collapse
Affiliation(s)
- I-Ting Lin
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Center of Excellence for Vaccine Research, University of Connecticut, CT, 06269, USA
| | - Steve J Geary
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Center of Excellence for Vaccine Research, University of Connecticut, CT, 06269, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
233
|
Antipathogenic Compounds That Are Effective at Very Low Concentrations and Have Both Antibiofilm and Antivirulence Effects against Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0024921. [PMID: 34494853 PMCID: PMC8557914 DOI: 10.1128/spectrum.00249-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa, a human pathogen, causes both acute and chronic infections that are mediated by virulence factor production and biofilm formation. Since both characteristics of P. aeruginosa are regulated by quorum sensing (QS), we screened 126 synthetic chemicals for anti-QS activity and finally selected the compounds that have both antivirulence and antibiofilm activities. To efficiently screen the chemical library, the following reporter-based bioassay systems were used: the QS- or biofilm-specific promoter-lacZ fusions (lasIp- or PA1897p-lacZ for the QS activity and cdrAp-lacZ for measuring the intracellular c-di-GMP levels). We also measured the production of virulence factors and biofilm formation in P. aeruginosa. A small-animal infection model using mealworms was also used for virulence analysis. From this screening, MHY1383 and MHY1387 were found to have both antivirulence and antibiofilm activities in P. aeruginosa. Most importantly, MHY1383 and MHY1387 exhibited these activities at very low concentrations, showing a significant anti-QS effect at 100 pM and an antibiofilm effect at 1 to 10 pM. By treating P. aeruginosa with these compounds, the virulence factor production and biofilm formation of P. aeruginosa were significantly reduced. These compounds can be developed as promising antipathogenic and antibiofilm drugs that can be applied in situations where such compounds must be used in an extremely low concentration. Our findings also offer a significant advantage for developing therapeutic agents with few adverse side effects. IMPORTANCE Many antibiotics are increasingly losing their efficacy due to antibiotic resistance mediated by biofilm formation. In this study, we screened a synthetic chemical library and discovered several compounds that have both antivirulence and antibiofilm effects against Pseudomonas aeruginosa, a notorious human pathogen. Two of them had these effects at extremely low concentrations and are expected not to develop resistance, unlike conventional antibiotics, because they have no effect on the growth of bacteria. Our results strongly suggest that these compounds act on the target in a noncompetitive manner, indicating that they are distinct from other previously known quorum sensing inhibitors or biofilm inhibitors. Our findings offer a significant advantage for developing therapeutic agents with few adverse side effects.
Collapse
|
234
|
Bhosale H, Ramakrishnan V, Jayaraman VK. Support vector machine-based prediction of pore-forming toxins (PFT) using distributed representation of reduced alphabets. J Bioinform Comput Biol 2021; 19:2150028. [PMID: 34693886 DOI: 10.1142/s0219720021500281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such "mechanism-informed" features that may increase the prediction accuracy further.
Collapse
Affiliation(s)
- Hrushikesh Bhosale
- Department of Computer Science, FLAME University, Pune, Maharashtra, India
| | - Vigneshwar Ramakrishnan
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, Tamilnadu, India
| | - Valadi K Jayaraman
- Department of Computer Science, FLAME University, Pune, Maharashtra, India
| |
Collapse
|
235
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
236
|
MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, Stogios PJ, Sanchez H, O'Meara TR, Tompkins TA, Savchenko A, Selmecki A, Veri AO, Andes DR, Fidel PL, Robbins N, Nodwell J, Whitesell L, Cowen LE. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun 2021; 12:6151. [PMID: 34686660 PMCID: PMC8536679 DOI: 10.1038/s41467-021-26390-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-β-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montreal, QC, Canada
| | - Alexei Savchenko
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
237
|
Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLoS One 2021; 16:e0258385. [PMID: 34648550 PMCID: PMC8516228 DOI: 10.1371/journal.pone.0258385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.
Collapse
|
238
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
239
|
Preparation and Pharmacokinetic Characterization of an Anti-Virulence Compound Nanosuspensions. Pharmaceutics 2021; 13:pharmaceutics13101586. [PMID: 34683879 PMCID: PMC8540953 DOI: 10.3390/pharmaceutics13101586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance has become a worldwide public health threat due to the rapid evolution and spread of antibiotic-resistant bacteria. CCG-211790 is a novel anti-virulence compound that does not kill bacteria but could ameliorate human diseases by inhibiting expression of virulence factors, thereby applying less selection pressure for antibiotic resistance. However, its potential clinical use is restricted because of its poor aqueous solubility, resulting in formulation challenges. Nanosuspension technology is an effective way to circumvent this problem. Nanosuspensions of CCG-211790 with two different particle sizes, NanoA (315 ± 6 nm) and NanoB (915 ± 24 nm), were prepared using an antisolvent precipitation-ultrasonication method with Tween 80 as the stabilizer. Particle and pharmacokinetics (PK) of CCG-211790 nanosuspensions were characterized. Both NanoA and NanoB demonstrated remarkable increases in dissolution rate compared with the bulk compound. The PK parameters of NanoA were comparable to those of CCG-211790 solution formulation in intravenous or oral administration, suggesting that CCG-211790 nanosuspensions with smaller particle size improved oral bioavailability and drug exposure compared to traditional formulations of drug candidates.
Collapse
|
240
|
Sapra R, Rajora AK, Kumar P, Maurya GP, Pant N, Haridas V. Chemical Biology of Sortase A Inhibition: A Gateway to Anti-infective Therapeutic Agents. J Med Chem 2021; 64:13097-13130. [PMID: 34516107 DOI: 10.1021/acs.jmedchem.1c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is the leading cause of hospital-acquired infections. The enzyme sortase A, present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability. Inhibition of sortase A activity offers a powerful but clinically less explored therapeutic strategy, as it offers the possibility of not inducing any selective pressure on the bacteria to evolve drug-resistant strains. In this Perspective, we offer a chemical space narrative for the design of sortase A inhibitors, as delineated into three broad domains: peptidomimetics, natural products, and synthetic small molecules. This provides immense opportunities for medicinal chemists to alleviate the ever-growing crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Amit K Rajora
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pushpendra Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Govind P Maurya
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nalin Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
241
|
Zhou J, Horton JR, Yu D, Ren R, Blumenthal RM, Zhang X, Cheng X. Repurposing epigenetic inhibitors to target the Clostridioides difficile-specific DNA adenine methyltransferase and sporulation regulator CamA. Epigenetics 2021; 17:970-981. [PMID: 34523387 PMCID: PMC9487755 DOI: 10.1080/15592294.2021.1976910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
242
|
Sieber S, Mathew A, Jenul C, Kohler T, Bär M, Carrión VJ, Cazorla FM, Stalder U, Hsieh YC, Bigler L, Eberl L, Gademann K. Mitigation of Pseudomonas syringae virulence by signal inactivation. SCIENCE ADVANCES 2021; 7:eabg2293. [PMID: 34516871 PMCID: PMC8442906 DOI: 10.1126/sciadv.abg2293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pseudomonas syringae is an important plant pathogen of many valuable crops worldwide, with more than 60 identified pathovars. The phytotoxins produced by these organisms were related to the severity of the damage caused to the plant. An emerging strategy to treat bacterial infections relies on interference with their signaling systems. In this study, we investigated P. syringae pv. syringae, which produces the virulence factor mangotoxin that causes bacterial apical necrosis on mango leaves. A previously unknown signaling molecule named leudiazen was identified, determined to be unstable and volatile, and responsible for mangotoxin production. A strategy using potassium permanganate, compatible with organic farming, was developed to degrade leudiazen and thus to attenuate the pathogenicity of P. syringae pv. syringae.
Collapse
Affiliation(s)
- Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Christian Jenul
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Tobias Kohler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Max Bär
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Víctor J. Carrión
- Institute of Biology, Leiden University, 2333 BE Leiden, Netherlands
| | - Francisco M. Cazorla
- IHSM-UMA-CSIC, Department of Microbiology, University of Málaga, 29071 Málaga, Spain
| | - Urs Stalder
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ya-Chu Hsieh
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| |
Collapse
|
243
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
244
|
Na SH, Jeon H, Oh MH, Kim YJ, Lee JC. Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity. J Microbiol 2021; 59:871-878. [PMID: 34449059 DOI: 10.1007/s12275-021-1394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.
Collapse
Affiliation(s)
- Seok Hyeon Na
- Division of Antimicrobial Resistance Research, Center for Infectious Diseases Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Hyejin Jeon
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yoo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
245
|
Krain A, Siupka P. Fungal Guttation, a Source of Bioactive Compounds, and Its Ecological Role-A Review. Biomolecules 2021; 11:biom11091270. [PMID: 34572483 PMCID: PMC8467351 DOI: 10.3390/biom11091270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Guttation is a common phenomenon in the fungal kingdom. Its occurrence and intensity depend largely on culture conditions, such as growth medium composition or incubation temperature. As filamentous fungi are a rich source of compounds, possessing various biological activities, guttation exudates could also contain bioactive substances. Among such molecules, researchers have already found numerous mycotoxins, antimicrobials, insecticides, bioherbicides, antiviral, and anticancer agents in exudate droplets. They belong to either secondary metabolites (SMs) or proteins and are secreted with different intensities. The background of guttation, in terms of its biological role, in vivo, and promoting factors, has been explored only partially. In this review, we describe the metabolites present in fungal exudates, their diversity, and bioactivities. Pointing to the significance of fungal ecology and natural products discovery, selected aspects of guttation in the fungi are discussed.
Collapse
|
246
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
247
|
Inhibiting Type VI Secretion System Activity with a Biomimetic Peptide Designed To Target the Baseplate Wedge Complex. mBio 2021; 12:e0134821. [PMID: 34372705 PMCID: PMC8406304 DOI: 10.1128/mbio.01348-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human health is threatened by bacterial infections that are increasingly resistant to multiple drugs. A recently emerged strategy consists of disarming pathogenic bacteria by targeting and blocking their virulence factors. The type VI secretion system (T6SS) is a widespread secretion nanomachine encoded and employed by pathogenic strains to establish their virulence process during host invasion. Given the conservation of T6SS in several human bacterial pathogens, the discovery of an effective broad-spectrum T6SS virulence blocker represents an attractive target for development of antivirulence therapies. Here, we identified and validated a protein-protein interaction interface, TssK-TssG, as a key factor in the assembly of the T6SS baseplate (BP) complex in the pathogen enteroaggregative Escherichia coli (EAEC). In silico and biochemical studies revealed that the determinants of the interface are broadly conserved among pathogenic species, suggesting a role for this interface as a target for T6SS inhibition. Based on the high-resolution structure of the TssKFGE wedge complex, we rationally designed a biomimetic cyclic peptide (BCP) that blocks the assembly of the EAEC BP complex and inhibits the function of T6SS in bacterial cultures. Our BCP is the first compound completely designed from prior structural knowledge with anti-T6SS activity that can be used as a model to target human pathogens.
Collapse
|
248
|
Wang L, Jing S, Qu H, Wang K, Jin Y, Ding Y, Yang L, Yu H, Shi Y, Li Q, Wang D. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A. Virulence 2021; 12:2149-2161. [PMID: 34369293 PMCID: PMC8354611 DOI: 10.1080/21505594.2021.1962138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drug-resistant pathogenic Staphylococcus aureus (S. aureus) has severely threatened human health and arouses widespread concern. Sortase A (SrtA) is an essential virulence factor of S. aureus, which is responsible for the covalent anchoring of a variety of virulence-related proteins to the cell wall. SrtA has always been regarded as an ideal pharmacological target against S. aureus infections. In this research, we have determined that orientin, a natural compound isolated from various medicinal plants, can effectively inhibit the activity of SrtA with an IC50 of 50.44 ± 0.51 µM. We further demonstrated that orientin inhibited the binding of S. aureus to fibrinogen and diminished biofilm formation and the attaching of Staphylococcal protein A (SpA) to the cell wall in vitro. Using the fluorescence quenching assay, we demonstrated a direct interaction between orientin and SrtA. Further mechanistic studies revealed that the residues Glu-105, Thr-93, and Cys-184 were the key sites for the binding of SrtA to orientin. Importantly, we demonstrated that treatment with orientin attenuated S. aureus virulence of in vivo and protected mice against S. aureus-induced lethal pneumonia. These findings indicate that orientin is a potential drug to counter S. aureus infections and limit the development of drug resistance.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun China
| | - Han Qu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun China
| | - Ying Ding
- College of Animal Science, Jilin University, Changchun China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun China
| |
Collapse
|
249
|
Elaboration of a benzofuran scaffold and evaluation of binding affinity and inhibition of Escherichia coli DsbA: A fragment-based drug design approach to novel antivirulence compounds. Bioorg Med Chem 2021; 45:116315. [PMID: 34364222 DOI: 10.1016/j.bmc.2021.116315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.
Collapse
|
250
|
Rahman F, Nguyen TM, Adekoya OA, Campestre C, Tortorella P, Sylte I, Winberg JO. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. J Enzyme Inhib Med Chem 2021; 36:819-830. [PMID: 33757387 PMCID: PMC7993378 DOI: 10.1080/14756366.2021.1901088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.
Collapse
Affiliation(s)
- Fatema Rahman
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Tra-Mi Nguyen
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Cristina Campestre
- Department of Pharmacy, University of "G. d'Annunzio" Chieti, Chieti, Italy
| | - Paolo Tortorella
- Department of Pharmacy, Science of Pharmacy, University "A. Moro" Bari, Bari, Italy
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|