201
|
Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2011; 2:mBio.00122-11. [PMID: 21791581 PMCID: PMC3143843 DOI: 10.1128/mbio.00122-11] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the interactions among different species and their responses to environmental changes, such as elevated atmospheric concentrations of CO2, is a central goal in ecology but is poorly understood in microbial ecology. Here we describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological networks using metagenomic sequencing data of 16S rRNA genes from grassland soil microbial communities, which were sampled from a long-term free-air CO2 enrichment experimental facility at the Cedar Creek Ecosystem Science Reserve in Minnesota. Our experimental results demonstrated that an RMT-based network approach is very useful in delineating phylogenetic molecular ecological networks of microbial communities based on high-throughput metagenomic sequencing data. The structure of the identified networks under ambient and elevated CO2 levels was substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher-order organization, topological roles of individual nodes, and network hubs, suggesting that the network interactions among different phylogenetic groups/populations were markedly changed. Also, the changes in network structure were significantly correlated with soil carbon and nitrogen contents, indicating the potential importance of network interactions in ecosystem functioning. In addition, based on network topology, microbial populations potentially most important to community structure and ecosystem functioning can be discerned. The novel approach described in this study is important not only for research on biodiversity, microbial ecology, and systems microbiology but also for microbial community studies in human health, global change, and environmental management. The interactions among different microbial populations in a community play critical roles in determining ecosystem functioning, but very little is known about the network interactions in a microbial community, owing to the lack of appropriate experimental data and computational analytic tools. High-throughput metagenomic technologies can rapidly produce a massive amount of data, but one of the greatest difficulties is deciding how to extract, analyze, synthesize, and transform such a vast amount of information into biological knowledge. This study provides a novel conceptual framework to identify microbial interactions and key populations based on high-throughput metagenomic sequencing data. This study is among the first to document that the network interactions among different phylogenetic populations in soil microbial communities were substantially changed by a global change such as an elevated CO2 level. The framework developed will allow microbiologists to address research questions which could not be approached previously, and hence, it could represent a new direction in microbial ecology research.
Collapse
|
202
|
Weckwerth W. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 2011; 75:284-305. [PMID: 21802534 DOI: 10.1016/j.jprot.2011.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 12/13/2022]
Abstract
Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
203
|
Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 2011; 7:473. [PMID: 21407210 PMCID: PMC3094067 DOI: 10.1038/msb.2011.6] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022] Open
Abstract
Using metagenomic ‘parts lists' to study microbial ecology remains a significant challenge. This work proposes a molecular trait-based approach to biogeography by integrating metagenomic data with external metadata and using functional community composition as readout. Climatic factors drive functional and phylogenetic composition of ocean microbial communities. Function dispersal is controlled by environmental conditions. Functional richness has a clear latitudinal gradient and correlates with primary production. Metagenomic data can be used as a predictor for ecosystem processes. To understand the relationship between community composition and environment, functional readouts are the most direct. Metagenomic data enable such trait-based ecology at the molecular level.
Metagenomics (shotgun sequencing of pooled DNA of complete microbial communities) is widely used to investigate ecosystem functioning of environmental and clinical samples. However, the nature of this data (usually a gigantic collection of gene fragments of 1000s of organisms) makes it very hard to infer global patterns on microbial ecology of the environment at hand. To address important ecological questions such as ‘How do microbial communities adapt to the environmental conditions?', ‘What drives the functional variation across the globe and to what extent do genes disperse?' and ‘What drives variation of CO2 uptake across different locations and communities?', we integrated 25 ocean metagenomes from the Global Ocean Sampling project with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the functional and phylogenetic composition of an environment and the main limiting factor on whether functions dispersal across the planet. We find a distinct latitudinal gradient in the size and diversity of the functional repertoire of ocean microbial communities, peaking at 20°N, and which correlates with oceanic CO2 uptake. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community composition derived from metagenomes can be used as quantitative predictor for molecular trait-based biogeography and ecology. Using metagenomic ‘parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20°N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community composition derived from metagenomes is an important quantitative readout for molecular trait-based biogeography and ecology.
Collapse
Affiliation(s)
- Jeroen Raes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
204
|
Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME JOURNAL 2011; 6:81-93. [PMID: 21716304 DOI: 10.1038/ismej.2011.78] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study describes reconstruction of two highly unusual archaeal genomes by de novo metagenomic assembly of multiple, deeply sequenced libraries from surface waters of Lake Tyrrell (LT), a hypersaline lake in NW Victoria, Australia. Lineage-specific probes were designed using the assembled genomes to visualize these novel archaea, which were highly abundant in the 0.1-0.8 μm size fraction of lake water samples. Gene content and inferred metabolic capabilities were highly dissimilar to all previously identified hypersaline microbial species. Distinctive characteristics included unique amino acid composition, absence of Gvp gas vesicle proteins, atypical archaeal metabolic pathways and unusually small cell size (approximately 0.6 μm diameter). Multi-locus phylogenetic analyses demonstrated that these organisms belong to a new major euryarchaeal lineage, distantly related to halophilic archaea of class Halobacteria. Consistent with these findings, we propose creation of a new archaeal class, provisionally named 'Nanohaloarchaea'. In addition to their high abundance in LT surface waters, we report the prevalence of Nanohaloarchaea in other hypersaline environments worldwide. The simultaneous discovery and genome sequencing of a novel yet ubiquitous lineage of uncultivated microorganisms demonstrates that even historically well-characterized environments can reveal unexpected diversity when analyzed by metagenomics, and advances our understanding of the ecology of hypersaline environments and the evolutionary history of the archaea.
Collapse
Affiliation(s)
- Priya Narasingarao
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011; 473:174-80. [PMID: 21508958 PMCID: PMC3728647 DOI: 10.1038/nature09944] [Citation(s) in RCA: 4971] [Impact Index Per Article: 355.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023]
Abstract
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
Collapse
Affiliation(s)
| | - Jeroen Raes
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- VIB—Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Eric Pelletier
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Denis Le Paslier
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Takuji Yamada
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel R. Mende
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gabriel R. Fernandes
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Julien Tap
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Thomas Bruls
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Jean-Michel Batto
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Marcelo Bertalan
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Natalia Borruel
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Francesc Casellas
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Leyden Fernandez
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
| | - Laurent Gautier
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Masahira Hattori
- Computational Biology Laboratory Bld, The University of Tokyo Kashiwa Campus, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba, 277-8561, Japan
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Michiel Kleerebezem
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - Ken Kurokawa
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Department of Biological Information, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa Pref. 226-8501, Japan
| | - Marion Leclerc
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Florence Levenez
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Chaysavanh Manichanh
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - H. Bjørn Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Nicolas Pons
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Julie Poulain
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
| | | | - Thomas Sicheritz-Ponten
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - David Torrents
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Edgardo Ugarte
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Oluf Pedersen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
- Institute of Biomedical Sciences, University of Copenhagen, Denmark
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
- University of Helsinki, FI-00014 Helsinki, Finland
| | - Søren Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Joel Doré
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | - Jean Weissenbach
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - S. Dusko Ehrlich
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Peer Bork
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, D-13092 Berlin, Germany
| |
Collapse
|
206
|
Bodelier PLE. Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol 2011; 2:80. [PMID: 21747797 PMCID: PMC3128941 DOI: 10.3389/fmicb.2011.00080] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/05/2011] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
207
|
Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF. Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ Microbiol 2011; 13:2279-92. [PMID: 21518216 DOI: 10.1111/j.1462-2920.2011.02486.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteomes of acid mine drainage biofilms at different stages of ecological succession were examined to understand microbial responses to changing community membership. We evaluated the degree of reproducibility of the community proteomes between samples of the same growth stage and found stable and predictable protein abundance patterns across time and sampling space, allowing for a set of 50 classifier proteins to be identified for use in predicting growth stages of undefined communities. Additionally, physiological changes in the dominant species, Leptospirillum Group II, were analysed as biofilms mature. During early growth stages, this population responds to abiotic stresses related to growth on the acid mine drainage solution. Enzymes involved in protein synthesis, cell division and utilization of 1- and 2-carbon compounds were more abundant in early growth stages, suggesting rapid growth and a reorganization of metabolism during biofilm initiation. As biofilms thicken and diversify, external stresses arise from competition for dwindling resources, which may inhibit cell division of Leptospirillum Group II through the SOS response. This population also represses translation and synthesizes more complex carbohydrates and amino acids in mature biofilms. These findings provide unprecedented insight into the physiological changes that may result from competitive interactions within communities in natural environments.
Collapse
Affiliation(s)
- Ryan S Mueller
- University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011. [DOI: 78495111110.1038/nature09944' target='_blank'>'"<>78495111110.1038/nature09944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/nature09944','', '10.1038/nrmicro1935')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/nature09944" />
|
209
|
Abstract
Metabolic reactions and gene regulation are two primary processes of cells. In response to environmental changes cells often adjust the regulatory programs and shift the metabolic states. An integrative investigation and modeling of these two processes would improve our understanding about the cellular systems and may generate substantial impacts in medicine, agriculture, environmental protection, and energy production. We review the studies of the various aspects of the crosstalk between metabolic reactions and gene regulation, including models, empirical evidence, and available databases.
Collapse
|
210
|
Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 2011; 108:4152-7. [PMID: 21325608 DOI: 10.1073/pnas.1101134108] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.
Collapse
|
211
|
|
212
|
Martins dos Santos V, Müller M, de Vos WM. Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol 2011; 21:539-50. [PMID: 20817507 DOI: 10.1016/j.copbio.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 01/06/2023]
Abstract
Our intestinal tract is colonized since birth by complex and subject-specific microbial communities that interact with the host. The human adult microbiota has recently been characterized by deep metagenomic sequencing and several hundreds of intestinal genomes have been characterized at the sequence level. Moreover, the transcriptional response of the host and selected microbes has been identified both in animal model systems and in human. Similarly, the transcriptional response of the host to different diets has been determined in humans, germ-free and gene knockout animals. These developments bring the intestinal tract in the realm of systems biology. An integrated, modular modelling framework that cross-links top-down and bottom-up approaches for the various levels of biological organization is paramount for the understanding of intestinal function.
Collapse
Affiliation(s)
- Vítor Martins dos Santos
- Laboratory of Systems & Synthetic Biology, Wageningen University, Dreijenplein 10, 6710 HB Wageningen, The Netherlands.
| | | | | |
Collapse
|
213
|
Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:567-99. [PMID: 21329217 DOI: 10.1146/annurev-marine-120308-081003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe-molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM-microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.
Collapse
Affiliation(s)
- Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
214
|
Nakanishi Y, Fukuda S, Chikayama E, Kimura Y, Ohno H, Kikuchi J. Dynamic omics approach identifies nutrition-mediated microbial interactions. J Proteome Res 2010; 10:824-36. [PMID: 21058740 DOI: 10.1021/pr100989c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
"Omics" studies reported to date have dealt with either thoroughly characterized single species or poorly explored meta-microbial communities. However, these techniques are capable of producing highly informative data for the analysis of interactions between two organisms. We examined the bacterial interaction between Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL) as a pathogenic-commensal bacterial model creating a minimum microbial ecosystem in the gut using dynamic omics approaches, consisting of improved time-lapse 2D-nuclear magnetic resonance (NMR) metabolic profiling, transcriptomic, and proteomic analyses. Our study revealed that the minimum ecosystem was established by bacterial adaptation to the changes in the extracellular environment, primarily by O157, but not by BL. Additionally, the relationship between BL and O157 could be partially regarded as that between a producer and a consumer of nutrients, respectively, especially with regard to serine and aspartate metabolism. Taken together, our profiling system can provide a new insight into the primary metabolic dynamics in microbial ecosystems.
Collapse
Affiliation(s)
- Yumiko Nakanishi
- Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
215
|
Decho AW, Frey RL, Ferry JL. Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 2010; 111:86-99. [PMID: 21142012 DOI: 10.1021/cr100311q] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | |
Collapse
|
216
|
Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol 2010; 115:197-213. [PMID: 21354526 DOI: 10.1016/j.funbio.2010.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The biodiversity-functional relationship in fungal ecology was recently developed and debated, but has rarely been addressed in endophytes. In this study, an integrative culture system was designed to capture a rich fungal consortium from the conifer Abies beshanzuensis. Results indicate an impressive diversity of fungal lineages (a total of 84 taxa classified in Dikarya) and a relatively high proportion of hitherto unknown species (27.4%). The laccase gene was used as a functional marker due to its involvement in lignocellulose degradation. Remarkable diversity of laccase genes was found across a wide range of taxa, with at least 35 and 19 distinct sequences in ascomycetes and basidiomycetes respectively, were revealed. Many groups displayed variable ability to decompose needles. Furthermore, many ascomycetes, including three volatile-producing Muscodor species (Xylariaceae), showed the ability to inhibit pathogens. Notably, most laccase-producing species showed little or no antibiosis and vice versa. Clavicipitalean and ustilaginomycetous fungi, specifically toxic to insects, were inferred from taxonomic information. Intra-specific physiological variation in Pezicula sporulosa, a second dominant species, was clearly high. We conclude that a suite of defensive characteristics in endophytes contributes to improving host fitness under various stresses and that a diversity of laccase genes confers an ecological advantage in competition for nutrients. Intra-specific diversity may be of great ecological significance for ecotypic adaptation. These findings suggest a fair degree of functional complementarity rather than redundancy among endemic symbionts of natural plant populations.
Collapse
Affiliation(s)
- Zhi-Lin Yuan
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China.
| | | | | | | | | |
Collapse
|
217
|
Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010; 6:e1001002. [PMID: 21124952 PMCID: PMC2987903 DOI: 10.1371/journal.pcbi.1001002] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.
Collapse
Affiliation(s)
- Niels Klitgord
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
218
|
Diversity of phytoplankton nitrate transporter sequences from isolated single cells and mixed samples from the East China Sea and mRNA quantification. Appl Environ Microbiol 2010; 77:122-30. [PMID: 21075880 DOI: 10.1128/aem.01315-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcript abundances of nitrate transporter genes (Nrt2) were proposed as potential markers for nitrogen deficiency in marine diatoms. To correctly quantify diatom Nrt2 mRNA in the East China Sea (ECS), we utilized both mixed-species sequencing and single-cell PCR to expand the sequence database for this region. Using the single-cell method of PCR, 9 new diatom Nrt2 sequences belonging to 5 genera, the Nrt2 sequences of which have never been reported before, were obtained. On the other hand, 291 sequences homologous to Nrt2 were retrieved from mixed-species sequencing using degenerate primers, and these sequences were clustered into 12 major groups according to a phylogenetic analysis. Based on sequence alignments, 11 pairs of group-specific PCR primers were designed to detect Nrt2 mRNA levels in the ECS, and 3 of these primer pairs showed high specificity to target species. In ECS phytoplankton samples, environmental RNA was amplified via antisense RNA amplification followed by cDNA production. Subsequently, Nrt2 transcript levels were readily detected using quantitative PCR. Our results indicated that investigating sequence diversity followed by careful primer design and evaluation is a good strategy to quantify the expression of genes of ecologically important phytoplankton.
Collapse
|
219
|
Wilmes P, Bowen BP, Thomas BC, Mueller RS, Denef VJ, VerBerkmoes NC, Hettich RL, Northen TR, Banfield JF. Metabolome-proteome differentiation coupled to microbial divergence. mBio 2010; 1:e00246-10. [PMID: 20978538 PMCID: PMC2962434 DOI: 10.1128/mbio.00246-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
Tandem high-throughput proteomics and metabolomics were employed to functionally characterize natural microbial biofilm communities. Distinct molecular signatures exist for each analyzed sample. Deconvolution of the high-resolution molecular data demonstrates that identified proteins and detected metabolites exhibit organism-specific correlation patterns. These patterns are reflective of the functional differentiation of two bacterial species that share the same genus and that co-occur in the sampled microbial communities. Our analyses indicate that the two species have similar niche breadths and are not in strong competition with one another.
Collapse
Affiliation(s)
- Paul Wilmes
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Benjamin P. Bowen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Brian C. Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Ryan S. Mueller
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Vincent J. Denef
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Nathan C. VerBerkmoes
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; and
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; and
| | - Trent R. Northen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
220
|
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio 2010; 1:e00169-10. [PMID: 20941329 PMCID: PMC2953006 DOI: 10.1128/mbio.00169-10] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022] Open
Abstract
Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on "species" richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO(2) enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO(2) and ambient CO(2) (aCO(2)) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO(2) and aCO(2), at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO(2) dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change.
Collapse
Affiliation(s)
- Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA.
| | | | | | | | | | | |
Collapse
|
221
|
Finazzi G, Moreau H, Bowler C. Genomic insights into photosynthesis in eukaryotic phytoplankton. TRENDS IN PLANT SCIENCE 2010; 15:565-572. [PMID: 20800533 DOI: 10.1016/j.tplants.2010.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
The evolution of photosynthesis completely altered the biogeochemistry of our planet and permitted the evolution of more complex multicellular organisms. Curiously, terrestrial photosynthesis is carried out largely by green algae and their descendents the higher plants, whereas in the ocean the most abundant photosynthetic eukaryotes are microscopic and have red algal affiliations. Although primary productivity is approximately equal between the land and the ocean, the marine microbes represent less than 1% of the photosynthetic biomass found on land. This review focuses on this highly successful and diverse group of organisms collectively known as phytoplankton and reviews how insights from whole genome analyses have improved our understanding of the novel innovations employed by them to maximize photosynthetic efficiency in variable light environments.
Collapse
Affiliation(s)
- Giovanni Finazzi
- Laboratoire de Physiologie Vegetale et Cellulaire, UMR 5168 Centre National de la Recherche Scientifique/Commissariat à l'énergie atomique et aux énergies alternatives/Université Joseph Fourier, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | | | | |
Collapse
|
222
|
Zinsstag J, Schelling E, Waltner-Toews D, Tanner M. From "one medicine" to "one health" and systemic approaches to health and well-being. Prev Vet Med 2010; 101:148-56. [PMID: 20832879 PMCID: PMC3145159 DOI: 10.1016/j.prevetmed.2010.07.003] [Citation(s) in RCA: 496] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Faced with complex patterns of global change, the inextricable interconnection of humans, pet animals, livestock and wildlife and their social and ecological environment is evident and requires integrated approaches to human and animal health and their respective social and environmental contexts. The history of integrative thinking of human and animal health is briefly reviewed from early historical times, to the foundation of universities in Europe, up to the beginning of comparative medicine at the end of the 19th century. In the 20th century, Calvin Schwabe coined the concept of “one medicine”. It recognises that there is no difference of paradigm between human and veterinary medicine and both disciplines can contribute to the development of each other. Considering a broader approach to health and well-being of societies, the original concept of “one medicine” was extended to “one health” through practical implementations and careful validations in different settings. Given the global health thinking in recent decades, ecosystem approaches to health have emerged. Based on complex ecological thinking that goes beyond humans and animals, these approaches consider inextricable linkages between ecosystems and health, known as “ecosystem health”. Despite these integrative conceptual and methodological developments, large portions of human and animal health thinking and actions still remain in separate disciplinary silos. Evidence for added value of a coherent application of “one health” compared to separated sectorial thinking is, however, now growing. Integrative thinking is increasingly being considered in academic curricula, clinical practice, ministries of health and livestock/agriculture and international organizations. Challenges remain, focusing around key questions such as how does “one health” evolve and what are the elements of a modern theory of health? The close interdependence of humans and animals in their social and ecological context relates to the concept of “human-environmental systems”, also called “social-ecological systems”. The theory and practice of understanding and managing human activities in the context of social-ecological systems has been well-developed by members of The Resilience Alliance and was used extensively in the Millennium Ecosystem Assessment, including its work on human well-being outcomes. This in turn entails systems theory applied to human and animal health. Examples of successful systems approaches to public health show unexpected results. Analogous to “systems biology” which focuses mostly on the interplay of proteins and molecules at a sub-cellular level, a systemic approach to health in social-ecological systems (HSES) is an inter- and trans-disciplinary study of complex interactions in all health-related fields. HSES moves beyond “one health” and “eco-health”, expecting to identify emerging properties and determinants of health that may arise from a systemic view ranging across scales from molecules to the ecological and socio-cultural context, as well from the comparison with different disease endemicities and health systems structures.
Collapse
Affiliation(s)
- J Zinsstag
- Swiss Tropical and Public Health Institute/University of Basel, PO Box, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
223
|
Heidelberg KB, Gilbert JA, Joint I. Marine genomics: at the interface of marine microbial ecology and biodiscovery. Microb Biotechnol 2010; 3:531-43. [PMID: 20953417 PMCID: PMC2948669 DOI: 10.1111/j.1751-7915.2010.00193.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/15/2010] [Indexed: 11/29/2022] Open
Abstract
The composition and activities of microbes from diverse habitats have been the focus of intense research during the past decade with this research being spurred on largely by advances in molecular biology and genomic technologies. In recent years environmental microbiology has entered very firmly into the age of the 'omics' – (meta)genomics, proteomics, metabolomics, transcriptomics – with probably others on the rise. Microbes are essential participants in all biogeochemical processes on our planet, and the practical applications of what we are learning from the use of molecular approaches has altered how we view biological systems. In addition, there is considerable potential to use information about uncultured microbes in biodiscovery research as microbes provide a rich source of discovery for novel genes, enzymes and metabolic pathways. This review explores the brief history of genomic and metagenomic approaches to study environmental microbial assemblages and describes some of the future challenges involved in broadening our approaches – leading to new insights for understanding environmental problems and enabling biodiscovery research.
Collapse
Affiliation(s)
- Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA.
| | | | | |
Collapse
|
224
|
Weingart U, Persi E, Gophna U, Horn D. Deriving enzymatic and taxonomic signatures of metagenomes from short read data. BMC Bioinformatics 2010; 11:390. [PMID: 20649951 PMCID: PMC2922197 DOI: 10.1186/1471-2105-11-390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background We propose a method for deriving enzymatic signatures from short read metagenomic data of unknown species. The short read data are converted to six pseudo-peptide candidates. We search for occurrences of Specific Peptides (SPs) on the latter. SPs are peptides that are indicative of enzymatic function as defined by the Enzyme Commission (EC) nomenclature. The number of SP hits on an ensemble of short reads is counted and then converted to estimates of numbers of enzymatic genes associated with different EC categories in the studied metagenome. Relative amounts of different EC categories define the enzymatic spectrum, without the need to perform genomic assemblies of short reads. Results The method is developed and tested on 22 bacteria for which there exist many EC annotations in Uniprot. Enzymatic signatures are derived for 3 metagenomes, and their functional profiles are explored. We extend the SP methodology to taxon-specific SPs (TSPs), allowing us to estimate taxonomic features of metagenomic data from short reads. Using recent Swiss-Prot data we obtain TSPs for different phyla of bacteria, and different classes of proteobacteria. These allow us to analyze the major taxonomic content of 4 different metagenomic data-sets. Conclusions The SP methodology can be successfully extended to applications on short read genomic and metagenomic data. This leads to direct derivation of enzymatic signatures from raw short reads. Furthermore, by employing TSPs, one obtains valuable taxonomic information.
Collapse
Affiliation(s)
- Uri Weingart
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
225
|
Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol 2010; 21:532-8. [PMID: 20637597 DOI: 10.1016/j.copbio.2010.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/20/2022]
Abstract
Recent advances in molecular microbial ecology and systems biology enhance insight into microbial community structure and functioning. They provide conceptual and technical bases for the translation of species-data and community-data into a model framework accounting for the functioning of and interactions between metabolic networks of species in multispecies environments. Function-directed and single cell-directed approaches supplement and improve metagenomics-derived community information. The topology of the metabolic network, reconstructed from a species' genome sequence, provides insight into its metabolic environments and interactions with other microorganisms. Progress in the theoretical and experimental analysis of flux through metabolic networks paves the way for their application at the community level, contributing to understanding of material flows between and within species and their resilience toward perturbations.
Collapse
|
226
|
Wu CH, Sercu B, Van De Werfhorst LC, Wong J, DeSantis TZ, Brodie EL, Hazen TC, Holden PA, Andersen GL. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators. PLoS One 2010; 5:e11285. [PMID: 20585654 PMCID: PMC2890573 DOI: 10.1371/journal.pone.0011285] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/01/2010] [Indexed: 02/01/2023] Open
Abstract
Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.
Collapse
Affiliation(s)
- Cindy H. Wu
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Bram Sercu
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Laurie C. Van De Werfhorst
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jakk Wong
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Todd Z. DeSantis
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Terry C. Hazen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Patricia A. Holden
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Gary L. Andersen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
227
|
Mueller RS, Denef VJ, Kalnejais LH, Suttle KB, Thomas BC, Wilmes P, Smith RL, Nordstrom DK, McCleskey RB, Shah MB, VerBerkmoes NC, Hettich RL, Banfield JF. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol Syst Biol 2010; 6:374. [PMID: 20531404 PMCID: PMC2913395 DOI: 10.1038/msb.2010.30] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/14/2010] [Indexed: 11/08/2022] Open
Abstract
An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.
Collapse
Affiliation(s)
- Ryan S Mueller
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - Vincent J Denef
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - Linda H Kalnejais
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - K Blake Suttle
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - Brian C Thomas
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - Paul Wilmes
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| | - Richard L Smith
- Water Resources Division, US Geological Survey, Boulder, CO, USA
| | - D Kirk Nordstrom
- Water Resources Division, US Geological Survey, Boulder, CO, USA
| | | | - Manesh B Shah
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jillian F Banfield
- Earth and Planetary Science Department, University of California, Berkeley, CA, USA
| |
Collapse
|
228
|
Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 2010; 20:947-59. [PMID: 20458099 DOI: 10.1101/gr.104521.109] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microbes are the most abundant and diverse organisms on Earth. In contrast to macroscopic organisms, their environmental preferences and ecological interdependencies remain difficult to assess, requiring laborious molecular surveys at diverse sampling sites. Here, we present a global meta-analysis of previously sampled microbial lineages in the environment. We grouped publicly available 16S ribosomal RNA sequences into operational taxonomic units at various levels of resolution and systematically searched these for co-occurrence across environments. Naturally occurring microbes, indeed, exhibited numerous, significant interlineage associations. These ranged from relatively specific groupings encompassing only a few lineages, to larger assemblages of microbes with shared habitat preferences. Many of the coexisting lineages were phylogenetically closely related, but a significant number of distant associations were observed as well. The increased availability of completely sequenced genomes allowed us, for the first time, to search for genomic correlates of such ecological associations. Genomes from coexisting microbes tended to be more similar than expected by chance, both with respect to pathway content and genome size, and outliers from these trends are discussed. We hypothesize that groupings of lineages are often ancient, and that they may have significantly impacted on genome evolution.
Collapse
Affiliation(s)
- Samuel Chaffron
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
229
|
Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. Shining light on the microbial world the application of Raman microspectroscopy. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:153-86. [PMID: 20359457 DOI: 10.1016/s0065-2164(10)70005-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Raman microspectroscopy is a noninvasive, label-free, and single-cell technology for biochemical analysis of individual mammalian cells, organelles, bacteria, viruses, and nanoparticles. Chemical information derived from a Raman spectrum provides comprehensive and intrinsic information (e.g., nucleic acids, protein, carbohydrates, and lipids) of single cells without the need of any external labeling. A Raman spectrum functions as a molecular "fingerprint" of single cells, which enables the differentiation of cell types, physiological states, nutrient condition, and variable phenotypes. Raman microspectroscopy combined with stable isotope probing, fluorescent in situ hybridization, and optical tweezers offers a culture-independent approach to study the functions and physiology of unculturable microorganisms in the ecosystem. Here, we review the application of Raman microspectroscopy to microbiology research with particular emphasis on single bacterial cells.
Collapse
Affiliation(s)
- Wei E Huang
- Department of Civil and Structural Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
230
|
Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 2010; 397:865-77. [PMID: 20152841 DOI: 10.1016/j.jmb.2010.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
Abstract
Experimental evidence that RNA virus populations consist of distributions of mutant genomes, termed quasispecies, was first published 31 years ago. This work provided the earliest experimental support for a theory to explain a system that replicated with limited fidelity and to understand the self-organization and adaptability of early life forms on Earth. High mutation rates and quasispecies dynamics of RNA viruses are intimately related to both viral disease and antiviral treatment strategies. Moreover, the quasispecies concept is being applied to other biological systems such as cancer research in which cellular mutant spectra can be also detected. This review addresses some of the unanswered questions regarding viral and theoretical quasispecies concepts as well as more practical aspects concerning resistance to antiviral treatments and pathogenesis.
Collapse
|
231
|
Ohta D, Kanaya S, Suzuki H. Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr Opin Biotechnol 2010; 21:35-44. [DOI: 10.1016/j.copbio.2010.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/23/2022]
|
232
|
Abstract
Oral biofilms develop under a range of different conditions and different environments. This review will discuss emerging concepts in microbial ecology and how they relate to oral biofilm development and the treatment of oral diseases. Clues to how oral biofilms develop may lie in other complex systems, such as interactions between host and gut microbiota, and even in factors that affect biofilm development on leaf surfaces. Most of the conditions under which oral biofilms develop are tightly linked to the overall health and biology of the host. Advances in molecular techniques have led to a greater appreciation of the diversity of human microbiota, the extent of interactions with the human host, and how that relates to inter-individual variation. As a consequence, plaque development may no longer be thought of as a generic process, but rather as a highly individualized process, which has ramifications for the treatment of the diseases it causes.
Collapse
Affiliation(s)
- S Filoche
- Dental Research Group, Department of Pathology and Molecular Medicine, University of Otago-Wellington, Wellington School of Medicine and Health Sciences, PO Box 7343, Mein Street, Wellington 6242, New Zealand.
| | | | | |
Collapse
|
233
|
Zehr JP. Microbes in Earth's Aqueous Environments. Front Microbiol 2010; 1:4. [PMID: 21772828 PMCID: PMC3128466 DOI: 10.3389/fmicb.2010.00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 11/13/2022] Open
|
234
|
Pancaldi V, Schubert F, Bähler J. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast. ACTA ACUST UNITED AC 2010; 6:543-52. [DOI: 10.1039/b913876p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
235
|
Bowler C, Vardi A, Allen AE. Oceanographic and biogeochemical insights from diatom genomes. ANNUAL REVIEW OF MARINE SCIENCE 2010; 2:333-65. [PMID: 21141668 DOI: 10.1146/annurev-marine-120308-081051] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.
Collapse
Affiliation(s)
- Chris Bowler
- CNRS UMR8186, Department of Biology, Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
236
|
Norlund KLI, Southam G, Tyliszczak T, Hu Y, Karunakaran C, Obst M, Hitchcock AP, Warren LA. Microbial architecture of environmental sulfur processes: a novel syntrophic sulfur-metabolizing consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8781-8786. [PMID: 19943646 DOI: 10.1021/es803616k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell-cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO(2) atmospheric fluxes from H(2)SO(4) carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.
Collapse
Affiliation(s)
- Kelsey L I Norlund
- School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 Canada
| | | | | | | | | | | | | | | |
Collapse
|
237
|
|
238
|
Abstract
Microorganisms can form tightly knit communities such as biofilms. Many others include marine snow, anaerobic digester granules, the ginger beer plant and bacterial colonies. This chapter is devoted to a survey of the main properties of these communities, with an emphasis on biofilms. We start with attachment to surfaces and the nature of adhesion. The growing community then forms within a matrix, generally of organic macromolecules. Inevitably the environment within such a matrix is different from that outside. Organisms respond by forming crowd-detection and response units; these quorum sensing systems act as switches between planktonic life and the dramatically altered conditions found inside microbial aggregates. The community then matures and changes and may even fail and disappear. Antimicrobial resistance is discussed as an example of multicellular behavior. The multicellular lifestyle has been modeled mathematically and responded to powerful molecular biological techniques. Latterly, microbial systems have been used as models for fundamental evolutionary processes, mostly because of their high rates of reproduction and the ease of genetic manipulation. The life of most microbes is a duality between the yin of the community and the yang of planktonic existence. Sadly far less research has been devoted to adaptation to free-living forms than in the opposite direction.
Collapse
Affiliation(s)
- Julian Wimpenny
- Cardiff School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales
| |
Collapse
|
239
|
|
240
|
Beloqui A, Guazzaroni ME, Pazos F, Vieites JM, Godoy M, Golyshina OV, Chernikova TN, Waliczek A, Silva-Rocha R, Al-Ramahi Y, La Cono V, Mendez C, Salas JA, Solano R, Yakimov MM, Timmis KN, Golyshin PN, Ferrer M. Reactome array: forging a link between metabolome and genome. Science 2009; 326:252-7. [PMID: 19815770 DOI: 10.1126/science.1174094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a sensitive metabolite array for genome sequence-independent functional analysis of metabolic phenotypes and networks, the reactomes, of cell populations and communities. The array includes 1676 dye-linked substrate compounds collectively representing central metabolic pathways of all forms of life. Application of cell extracts to the array leads to specific binding of enzymes to cognate substrates, transformation to products, and concomitant activation of the dye signals. Proof of principle was shown by reconstruction of the metabolic maps of model bacteria. Utility of the array for unsequenced organisms was demonstrated by reconstruction of the global metabolisms of three microbial communities derived from acidic volcanic pool, deep-sea brine lake, and hydrocarbon-polluted seawater. Enzymes of interest are captured on nanoparticles coated with cognate metabolites, sequenced, and their functions unequivocally established.
Collapse
Affiliation(s)
- Ana Beloqui
- CSIC, Institute of Catalysis, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Baveye PC. To sequence or not to sequence the whole-soil metagenome? Nat Rev Microbiol 2009; 7:756; author reply 756-7. [PMID: 19756015 DOI: 10.1038/nrmicro2119-c2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
242
|
Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol 2009; 17:414-22. [DOI: 10.1016/j.tim.2009.05.010] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/28/2009] [Accepted: 05/13/2009] [Indexed: 12/21/2022]
|
243
|
Ashby MT, Kreth J, Soundarajan M, Sivuilu LS. Influence of a model human defensive peroxidase system on oral streptococcal antagonism. MICROBIOLOGY-SGM 2009; 155:3691-3700. [PMID: 19684069 DOI: 10.1099/mic.0.031310-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus is a dominant genus in the human oral cavity, making up about 20 % of the more than 800 species of bacteria that have been identified, and about 80 % of the early biofilm colonizers. Oral streptococci include both health-compatible (e.g. Streptococcus gordonii and Streptococcus sanguinis) and pathogenic strains (e.g. the cariogenic Streptococcus mutans). Because the streptococci have similar metabolic requirements, they have developed defence strategies that lead to antagonism (also known as bacterial interference). S. mutans expresses bacteriocins that are cytotoxic toward S. gordonii and S. sanguinis, whereas S. gordonii and S. sanguinis differentially produce H(2)O(2) (under aerobic growth conditions), which is relatively toxic toward S. mutans. Superimposed on the inter-bacterial combat are the effects of the host defensive mechanisms. We report here on the multifarious effects of bovine lactoperoxidase (bLPO) on the antagonism between S. gordonii and S. sanguinis versus S. mutans. Some of the effects are apparently counterproductive with respect to maintaining a health-compatible population of streptococci. For example, the bLPO system (comprised of bLPO+SCN(-)+H(2)O(2)) destroys H(2)O(2), thereby abolishing the ability of S. gordonii and S. sanguinis to inhibit the growth of S. mutans. Furthermore, bLPO protein (with or without its substrate) inhibits bacterial growth in a biofilm assay, but sucrose negates the inhibitory effects of the bLPO protein, thereby facilitating adherence of S. mutans in lieu of S. gordonii and S. sanguinis. Our findings may be relevant to environmental pressures that select early supragingival colonizers.
Collapse
Affiliation(s)
- Michael T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muthu Soundarajan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Laure Sita Sivuilu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
244
|
Brocks JJ, Banfield J. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat Rev Microbiol 2009; 7:601-9. [PMID: 19609261 DOI: 10.1038/nrmicro2167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our window into the Earth's ancient microbial past is narrow and obscured by missing data. However, we can glean information about ancient microbial ecosystems using fossil lipids (biomarkers) that are extracted from billion-year-old sedimentary rocks. In this Opinion article, we describe how environmental genomics and related methodologies will give molecular fossil research a boost, by increasing our knowledge about how evolutionary innovations in microorganisms have changed the surface of planet Earth.
Collapse
Affiliation(s)
- Jochen J Brocks
- Research School of Earth Sciences, and Centre for Macroevolution and Macroecology, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
245
|
Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol 2009; 587:4169-74. [PMID: 19596893 DOI: 10.1113/jphysiol.2009.176370] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotes and prokaryotes have developed mutually beneficial relationships over millennia of evolutionary adaptation. Bacteria in our gut rely on our diet and the protected environment of our bodies just as our health depends on byproducts of microbial metabolism. Microorganisms of the gut microbiota ferment carbohydrates into short-chain fatty acids, convert dietary and endogenous nitrogenous compounds into ammonia and microbial protein, and synthesize and activate B vitamins and vitamin K. The benefit from their activity is multiplex and translates into increased energy for the gut epithelial cells, balanced absorption of salt and water, nitrogen recycling, breakdown of complex lipids and cholesterol, and detoxification of waste compounds.
Collapse
Affiliation(s)
- Silvia C Resta
- Department of Medicine, UCSD, School of Medicine, 9500 Gilman Drive, UC 303, MC0063, La Jolla, CA 92093-0063, USA.
| |
Collapse
|
246
|
Crombach A, Hogeweg P. Evolution of resource cycling in ecosystems and individuals. BMC Evol Biol 2009; 9:122. [PMID: 19486519 PMCID: PMC2698886 DOI: 10.1186/1471-2148-9-122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 06/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned? RESULTS We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves. CONCLUSION In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.
Collapse
Affiliation(s)
- Anton Crombach
- Theoretical Biology and Bioinformatics Group, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
247
|
Camp JG, Kanther M, Semova I, Rawls JF. Patterns and scales in gastrointestinal microbial ecology. Gastroenterology 2009; 136:1989-2002. [PMID: 19457423 PMCID: PMC4841941 DOI: 10.1053/j.gastro.2009.02.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/10/2009] [Accepted: 02/17/2009] [Indexed: 02/06/2023]
Abstract
The body surfaces of humans and other animals are colonized at birth by microorganisms. The majority of microbial residents on the human body exist within gastrointestinal (GI) tract communities, where they contribute to many aspects of host biology and pathobiology. Recent technological advances have expanded our ability to perceive the membership and physiologic traits of microbial communities along the GI tract. To translate this information into a mechanistic and practical understanding of host-microbe and microbe-microbe relationships, it is necessary to recast our conceptualization of the GI tract and its resident microbial communities in ecological terms. This review depicts GI microbial ecology in the context of 2 fundamental ecological concepts: (1) the patterns of biodiversity within the GI tract and (2) the scales of time, space, and environment within which we perceive those patterns. We show how this conceptual framework can be used to integrate our existing knowledge and identify important open questions in GI microbial ecology.
Collapse
|
248
|
Koide T, Pang WL, Baliga NS. The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Microbiol 2009; 7:297-305. [PMID: 19252506 PMCID: PMC2734281 DOI: 10.1038/nrmicro2107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Technologies to synthesize and transplant a complete genome into a cell have opened limitless potential to redesign organisms for complex, specialized tasks. However, large-scale re-engineering of a biological circuit will require systems-level optimization that will come from a deep understanding of operational relationships among all the constituent parts of a cell. The integrated framework necessary for conducting such complex bioengineering requires the convergence of systems and synthetic biology. Here, we review the status of these rapidly developing interdisciplinary fields of biology and provide a perspective on plausible venues for their merger.
Collapse
Affiliation(s)
- Tie Koide
- Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98103, USA
| | | | | |
Collapse
|
249
|
Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M. Metagenomics as a new technological tool to gain scientific knowledge. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9971-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
250
|
Trail F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. PLANT PHYSIOLOGY 2009; 149:103-10. [PMID: 19126701 PMCID: PMC2613717 DOI: 10.1104/pp.108.129684] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/06/2008] [Indexed: 05/22/2023]
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312, USA.
| |
Collapse
|