201
|
Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G, Ghosh D, Davidson SM, Schoors S, Broekaert D, Cruys B, Govaerts K, De Legher C, Bouché A, Schoonjans L, Ramer MS, Hung G, Bossaert G, Cleveland DW, Himmelreich U, Voets T, Lemmens R, Bennett CF, Robberecht W, De Bock K, Dewerchin M, Ghesquière B, Fendt SM, Carmeliet P. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metab 2016; 23:280-91. [PMID: 26774962 PMCID: PMC4880550 DOI: 10.1016/j.cmet.2015.12.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023]
Abstract
The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Inmaculada Segura
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Roberta Schmieder
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ilaria Decimo
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Francesco Bifari
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Debapriva Ghosh
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra Schoors
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carla De Legher
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Matt S Ramer
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, Canada
| | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Goele Bossaert
- Leuven Statistics Research Centre (LStat), University of Leuven, Leuven, Belgium
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Medicine and Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Uwe Himmelreich
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Robin Lemmens
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Wim Robberecht
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.
| |
Collapse
|
202
|
Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C. Mediators Inflamm 2016; 2016:4854378. [PMID: 26884647 PMCID: PMC4738711 DOI: 10.1155/2016/4854378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor α (TNF-α) and interleukin- (IL-) 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1) expression and brain-derived neurotrophic factor (BDNF) release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC) inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.
Collapse
|
203
|
Kim EH, Kim DH, Kim HR, Kim SY, Kim HH, Bang OY. Stroke Serum Priming Modulates Characteristics of Mesenchymal Stromal Cells by Controlling the Expression miRNA-20a. Cell Transplant 2016; 25:1489-99. [PMID: 26762119 DOI: 10.3727/096368916x690430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) expanded with fetal bovine serum (FBS) has some limitations, including the requirement of a long culture period to obtain a sufficient amount of stem cells. Priming of MSCs with serum from patients with ischemic stroke (stroke serum) increased the proliferation rate and the neurorestorative capacity of MSCs. We hypothesized that this novel priming method increases the proliferation rate of MSCs via the regulation of microRNAs (miRs). Thus, we investigated miR profiling in stroke serum-primed MSCs and tested whether the regulation of certain miRs may affect the proliferation rate of rat MSCs. The proliferation rate of MSCs cultured with stroke serum was higher than that of MSCs cultured with normal serum or FBS. Using miR microarray analysis, we compared the miR expression profiles between MSCs cultured in FBS and in stroke serum. Among miRs associated with cell proliferation, miR-20a was most significantly increased. Similarly, miR-20a was increased in MSCs obtained from the bone marrow of stroke rats compared with MSCs from normal rats. Furthermore, the deregulation of miR-20a by the transfection of MSCs with pre-miR-20a or anti-miR-20a was significantly correlated with the increased proliferation rate of MSCs. The overexpression of miR-20a in MSCs cultured in FBS improved the proliferation rate, while the knockdown of endogenous miR-20a decreased the proliferation rate. In addition, miR-20a promoted proliferation by suppressing the expression of p21 cyclin-dependent kinase inhibitor 1 (CDKN1A). A dual-luciferase reporter assay showed that CDKN1A is a target of miR-20a. Our findings indicate that stroke serum priming upregulated the expression of miR-20a, which promoted MSC proliferation by regulating the cell cycle inhibitor p21 CDKN1A, and suggest the possible roles of priming methods in modulating the characteristics of MSCs by controlling the expression of miR in MSCs.
Collapse
Affiliation(s)
- Eun Hee Kim
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
204
|
Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:443-8. [PMID: 26427444 DOI: 10.1007/978-3-319-17121-0_59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities.
Collapse
|
205
|
Anrather J, Iadecola C, Hallenbeck J. Inflammation and Immune Response. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
206
|
Simon RP. Epigenetic modulation of gene expression governs the brain's response to injury. Neurosci Lett 2015; 625:16-9. [PMID: 26739198 DOI: 10.1016/j.neulet.2015.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury.
Collapse
Affiliation(s)
- Roger P Simon
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA; Grady Memorial Hospital, Atlanta, GA, USA.
| |
Collapse
|
207
|
Tülü S, Mulino M, Pinggera D, Luger M, Würtinger P, Grams A, Bodner T, Beer R, Helbok R, Matteucci-Gothe R, Unterhofer C, Gizewski E, Schmutzhard E, Thomé C, Ortler M. Remote ischemic preconditioning in the prevention of ischemic brain damage during intracranial aneurysm treatment (RIPAT): study protocol for a randomized controlled trial. Trials 2015; 16:594. [PMID: 26714784 PMCID: PMC4696326 DOI: 10.1186/s13063-015-1102-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment of intracranial aneurysms may be associated with cerebral ischemia. We hypothesize that pre-interventional remote ischemic preconditioning (RIPC) reduces ischemic cerebral tissue damage in patients undergoing elective intracranial aneurysm treatment. METHODS/DESIGN This study is a single-center, prospective, randomized, double-blind explorative trial. Patients with an unruptured intracranial aneurysm admitted to Innsbruck Medical University Hospital for coiling or clipping will be consecutively randomized to either the intervention group (= RIPC by inflating an upper extremity blood-pressure cuff for 3 x 5 min to 200 mmHg) or the control group after induction of anesthesia. Participants will be randomized 1:1 to either the preconditioning group or the sham group using a random allocation sequence and block randomization. The precalculated sample size is n = 24 per group. The primary endpoint is the area-under-the-curve concentration of serum biomarkers (S100B, NSE, GFAP, MMP9, MBP, and cellular microparticles) in the first five days after treatment. Secondary endpoints are the number and volume of new ischemic lesions in magnetic resonance imaging and clinical outcome evaluated with the National Institutes of Health Stroke Scale, the modified Rankin Scale, and neuropsychological tests at six and twelve months. All outcome variables will be determined by observers blinded to group allocation. This study was approved by the local institutional Ethics Committee (UN5164), version 3.0 of the study protocol, dated 20 October 2013. DISCUSSION This study uses the elective treatment of intracranial aneurysms as a paradigmatic situation to explore the neuroprotective effects of RIPC. If effects are demonstrable in this pilot trial, a larger, prospective phase III trial will be considered.
Collapse
Affiliation(s)
- Selma Tülü
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Miriam Mulino
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Markus Luger
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Philipp Würtinger
- Central Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Thomas Bodner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raffaella Matteucci-Gothe
- Department of Public Health and Health Technology Assessment, UMIT Health and Life Sciences University, Hall in Tirol, Austria.
| | - Claudia Unterhofer
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Martin Ortler
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| |
Collapse
|
208
|
Hong S, Ahn JY, Cho GS, Kim IH, Cho JH, Ahn JH, Park JH, Won MH, Chen BH, Shin BN, Tae HJ, Park SM, Cho JH, Choi SY, Lee JC. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia. Neural Regen Res 2015; 10:1604-11. [PMID: 26692857 PMCID: PMC4660753 DOI: 10.4103/1673-5374.167757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.
Collapse
Affiliation(s)
- Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
209
|
Guan J, Du S, Lv T, Qu S, Fu Q, Yuan Y. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways. Clin Exp Pharmacol Physiol 2015; 43:125-34. [PMID: 26385023 DOI: 10.1111/1440-1681.12492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Junhong Guan
- Department of Neurosurgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Shaonan Du
- Department of Neurosurgery; Shenyang Red Cross Hospital; Shenyang China
| | - Tao Lv
- Department of Neurosurgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Shengtao Qu
- Department of Neurosurgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Qiang Fu
- Department of Neurosurgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Ye Yuan
- Department of Neurosurgery; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
210
|
Dagogo-Jack S. Philip E. Cryer, MD: Seminal Contributions to the Understanding of Hypoglycemia and Glucose Counterregulation and the Discovery of HAAF (Cryer Syndrome). Diabetes Care 2015; 38:2193-9. [PMID: 26604275 PMCID: PMC4876742 DOI: 10.2337/dc15-0533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Optimized glycemic control prevents and slows the progression of long-term complications in patients with type 1 and type 2 diabetes. In healthy individuals, a decrease in plasma glucose below the physiological range triggers defensive counterregulatory responses that restore euglycemia. Many individuals with diabetes harbor defects in their defenses against hypoglycemia, making iatrogenic hypoglycemia the Achilles heel of glycemic control. This Profile in Progress focuses on the seminal contributions of Philip E. Cryer, MD, to our understanding of hypoglycemia and glucose counterregulation, particularly his discovery of the syndrome of hypoglycemia-associated autonomic failure (HAAF).
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, The University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
211
|
Zhang YB, Guo ZD, Li MY, Li SJ, Niu JZ, Yang MF, Ji XM, Lv GW. Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury. Neural Regen Res 2015; 10:1471-6. [PMID: 26604909 PMCID: PMC4625514 DOI: 10.4103/1673-5374.165519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hypoxic preconditioning activates endogenous mechanisms that protect against cerebral ischemic and hypoxic injury. To better understand these protective mechanisms, adult rats were housed in a hypoxic environment (8% O2/92% N2) for 3 hours, and then in a normal oxygen environment for 12 hours. Their cerebrospinal fluid was obtained to culture cortical neurons from newborn rats for 1 day, and then the neurons were exposed to oxygen-glucose deprivation for 1.5 hours. The cerebrospinal fluid from rats subjected to hypoxic preconditioning reduced oxygen-glucose deprivation-induced injury, increased survival rate, upregulated Bcl-2 expression and downregulated Bax expression in the cultured cortical neurons, compared with control. These results indicate that cerebrospinal fluid from rats given hypoxic preconditioning protects against oxygen-glucose deprivation-induced injury by affecting apoptosis-related protein expression in neurons from newborn rats.
Collapse
Affiliation(s)
- Yan-Bo Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong Province, China
| | - Zheng-Dong Guo
- Department of Endocrinology, Affiliated Hospital of Taishan Medical University, Taian, Shandong Province, China
| | - Mei-Yi Li
- Department of Neurology, Shandong Taishan Chronic Disease Hospital, Taian, Shandong Province, China
| | - Si-Jie Li
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing-Zhong Niu
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong Province, China
| | - Ming-Feng Yang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong Province, China
| | - Xun-Ming Ji
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo-Wei Lv
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
212
|
Pace M, Baracchi F, Gao B, Bassetti C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015; 38:1707-18. [PMID: 26085290 DOI: 10.5665/sleep.5148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.
Collapse
Affiliation(s)
- Marta Pace
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Baracchi
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Bo Gao
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Claudio Bassetti
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
213
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
214
|
Hsueh YY, Chang YJ, Huang CW, Handayani F, Chiang YL, Fan SC, Ho CJ, Kuo YM, Yang SH, Chen YL, Lin SC, Huang CC, Wu CC. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Sci Rep 2015; 5:14985. [PMID: 26447335 PMCID: PMC4597209 DOI: 10.1038/srep14985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 01/28/2023] Open
Abstract
Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage.
Collapse
Affiliation(s)
- Yuan-Yu Hsueh
- Division of Plastic Surgery, National Cheng Kung University Hospital, North District, Tainan City, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Ya-Ju Chang
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Chia-Wei Huang
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Fitri Handayani
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Yi-Lun Chiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Shih-Chen Fan
- Department of Occupational Therapy, I-Shou University, Kaohsiung City, Taiwan
| | - Chien-Jung Ho
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Pediatrics, Taipei Medical University, Xinyi District, Taipei City, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Physiology, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, National Cheng Kung University Hospital, North District, Tainan City, Taiwan
| | - Chao-Ching Huang
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Pediatrics, Taipei Medical University, Xinyi District, Taipei City, Taiwan
- Department of Pediatrics, Wan-fan Hospital, College of Medicine, Taipei Medical University, Xinyi District, Taipei City, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, North District, Tainan City, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, North District, Tainan City, Taiwan
| |
Collapse
|
215
|
Pusic AD, Kraig RP. Phasic Treatment with Interferon Gamma Stimulates Release of Exosomes that Protect Against Spreading Depression. J Interferon Cytokine Res 2015; 35:795-807. [PMID: 26083947 PMCID: PMC4589269 DOI: 10.1089/jir.2015.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/13/2015] [Indexed: 01/30/2023] Open
Abstract
The detrimental effects of T-cell-secreted interferon gamma (IFNγ) on oxidative stress (OS) and demyelination in multiple sclerosis (MS) are well recognized. Recently, we demonstrated that IFNγ-mediated damage to myelin also increases susceptibility to spreading depression (SD; the likely basis of migraine with aura). However, before onset of MS, induction of physiological levels of IFNγ, like that produced by environmental enrichment (EE), protects against demyelination and OS. Accordingly, we focused on the potential for physiological levels of IFNγ to protect against SD. EE, which occurs with a moderate and phasic increase in proinflammatory cytokines, reduces migraine frequency. Thus, we applied phasic or pulsed IFNγ to brain slice cultures to emulate EE. This treatment reduced OS, increased myelin basic protein, a marker for myelin, and reduced susceptibility to SD. Building on our research on exosomes in EE-based neuroprotection, we found that IFNγ stimulation of slice cultures induced release of exosomes, likely from the microglia that produce the same protective effects as IFNγ treatment when applied to naive cultures. Finally, nasal administration of IFNγ to rats recapitulated in vitro effects, reducing OS, increasing myelin, and reducing SD. These results support phasic IFNγ signaling as a therapeutic target for prevention of SD and, by extension, migraine.
Collapse
Affiliation(s)
- Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
216
|
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, Ji XM, Hu XM. Remote Ischemic Preconditioning-Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neurosci Ther 2015; 22:43-52. [PMID: 26384716 DOI: 10.1111/cns.12448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS Remote ischemic preconditioning (RIPC) of a limb is a clinically feasible strategy to protect against ischemia-reperfusion injury after stroke. However, the mechanism underlying RIPC remains elusive. METHODS We generated a rat model of noninvasive RIPC by four repeated cycles of brief blood flow constriction (5 min) in the hindlimbs using a tourniquet. Blood was collected 1 h after preconditioning and 3 days after brain reperfusion. The impact of RIPC on immune cell and cytokine profiles prior to and after transient middle cerebral artery occlusion (MCAO) was assessed. RESULTS Remote ischemic preconditioning protects against focal ischemia and preserves neurological functions 3 days after stroke. Flow cytometry analysis demonstrated that RIPC ameliorates the post-MCAO reduction of CD3(+)CD8(+) T cells and abolishes the reduction of CD3(+)/CD161a(+) NKT cells in the blood. In addition, RIPC robustly elevates the percentage of B cells in peripheral blood, thereby reversing the reduction in the B-cell population after stroke. RIPC also markedly elevates the percentage of CD43(+)/CD172a(+) noninflammatory resident monocytes, without any impact on the percentage of CD43(-)/CD172a(+) inflammatory monocytes. Finally, RIPC induces IL-6 expression and enhances the elevation of TNF-α after stroke. CONCLUSION Our results reveal dramatic immune changes during RIPC-afforded neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Zong-Jian Liu
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Rong Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yuan-Yuan Ran
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Tao Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Ying Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Kun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yu Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui-Shan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xun-Ming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Ming Hu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
217
|
Wong JK, Chen L, Huang Y, Sehba FA, Friedel RH, Zou H. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice. PLoS One 2015; 10:e0136967. [PMID: 26317208 PMCID: PMC4552810 DOI: 10.1371/journal.pone.0136967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/11/2015] [Indexed: 12/03/2022] Open
Abstract
Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP) signaling, results in neuroprotection in an ischemia-reperfusion (I/R) stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO) displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO), Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.
Collapse
Affiliation(s)
- Jamie K Wong
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Lei Chen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Yong Huang
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Fatima A Sehba
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Roland H Friedel
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Hongyan Zou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| |
Collapse
|
218
|
Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia. Neurochem Res 2015; 40:1984-95. [PMID: 26290267 DOI: 10.1007/s11064-015-1694-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 12/31/2022]
Abstract
Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.
Collapse
|
219
|
Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 2015; 89:75-82. [PMID: 26277384 DOI: 10.1016/j.neuint.2015.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/02/2023]
Abstract
Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
220
|
Cuomo O, Vinciguerra A, Cerullo P, Anzilotti S, Brancaccio P, Bilo L, Scorziello A, Molinaro P, Di Renzo G, Pignataro G. Ionic homeostasis in brain conditioning. Front Neurosci 2015; 9:277. [PMID: 26321902 PMCID: PMC4530315 DOI: 10.3389/fnins.2015.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1–3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+-ATPase (PMCA), the Na+/H+ exchange (NHE), the Na+/K+/2Cl− cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading cause of death and disability. Up until now, all clinical trials testing potential stroke neuroprotectants failed. For this reason attention of researchers has been focusing on the identification of brain endogenous neuroprotective mechanisms activated after cerebral ischemia. In this context, ischemic preconditioning and ischemic post-conditioning represent two neuroprotecive strategies to investigate in order to identify new molecular target to reduce the ischemic damage.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pierpaolo Cerullo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Leonilda Bilo
- Division of Neurology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| |
Collapse
|
221
|
HOU YUSEN, LIU LINGYING, CHAI JIAKE, YU YONGHUI, DUAN HONGJIE, HU QUAN, YIN HUINAN, WANG YIHE, ZHUANG SHUBO, FAN JUN, CHU WANLI, MA LI. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein. Mol Med Rep 2015; 12:2521-2528. [PMID: 25955291 PMCID: PMC4464426 DOI: 10.3892/mmr.2015.3723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based regenerative therapy is currently regarded as a novel approach with which to repair damaged tissues. However, the efficiency of MSC transplantation is limited due to the low survival rate of engrafted MSCs. Lipopolysaccharide (LPS) production is increased in numerous diseases and serves an essential function in the regulation of apoptosis in a variety of cell types. Previous studies have indicated that low-dose LPS pretreatment contributes to cytoprotection. In the current study, LPS was demonstrated to induce apoptosis in human umbilical cord mesenchymal stem cells (hUCMSCs) via the activation of caspase, in a dose-dependent manner. Low-dose LPS pretreatment may protect hUCMSCs against apoptosis induced by high-dose LPS, by upregulating the expression of cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP). The results of the present study indicate that pretreatment with an appropriate concentration of LPS may alleviate high-dose LPS-induced apoptosis.
Collapse
Affiliation(s)
- YU SEN HOU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
- Beijing Fengtai You’an Men Hospital, Beijing 100069, P.R. China
| | - LING YING LIU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - JIA KE CHAI
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - YONG HUI YU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - HONG JIE DUAN
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - QUAN HU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - HUI NAN YIN
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - YI HE WANG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - SHU BO ZHUANG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - JUN FAN
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - WAN LI CHU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - LI MA
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
222
|
Koronowski KB, Dave KR, Saul I, Camarena V, Thompson JW, Neumann JT, Young JI, Perez-Pinzon MA. Resveratrol Preconditioning Induces a Novel Extended Window of Ischemic Tolerance in the Mouse Brain. Stroke 2015; 46:2293-8. [PMID: 26159789 PMCID: PMC4519394 DOI: 10.1161/strokeaha.115.009876] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Prophylactic treatments that afford neuroprotection against stroke may emerge from the field of preconditioning. Resveratrol mimics ischemic preconditioning, reducing ischemic brain injury when administered 2 days before global ischemia in rats. This protection is linked to silent information regulator 2 homologue 1 (Sirt1) and enhanced mitochondrial function possibly through its repression of uncoupling protein 2. Brain-derived neurotrophic factor (BDNF) is another neuroprotective protein associated with Sirt1. In this study, we sought to identify the conditions of resveratrol preconditioning (RPC) that most robustly induce neuroprotection against focal ischemia in mice. METHODS We tested 4 different RPC paradigms against a middle cerebral artery occlusion model of stroke. Infarct volume and neurological score were calculated 24 hours after middle cerebral artery occlusion. Sirt1-chromatin binding was evaluated by ChIP-qPCR. Percoll gradients were used to isolate synaptic fractions, and changes in protein expression were determined via Western blot analysis. BDNF concentration was measured using a BDNF-specific ELISA assay. RESULTS Although repetitive RPC induced neuroprotection from middle cerebral artery occlusion, strikingly one application of RPC 14 days before middle cerebral artery occlusion showed the most robust protection, reducing infarct volume by 33% and improving neurological score by 28%. Fourteen days after RPC, Sirt1 protein was increased 1.5-fold and differentially bound to the uncoupling protein 2 and BDNF promoter regions. Accordingly, synaptic uncoupling protein 2 level decreased by 23% and cortical BDNF concentration increased 26%. CONCLUSIONS RPC induces a novel extended window of ischemic tolerance in the brain that lasts for at least 14 days. Our data suggest that this tolerance may be mediated by Sirt1 through upregulation of BDNF and downregulation of uncoupling protein 2.
Collapse
Affiliation(s)
- Kevin B Koronowski
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Kunjan R Dave
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Isabel Saul
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Vladimir Camarena
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - John W Thompson
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Jake T Neumann
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Juan I Young
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL
| | - Miguel A Perez-Pinzon
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), Department of Neurology (K.B.K., K.R.D., I.S., J.W.T., J.T.N., M.A.P.-P.), and Neuroscience Program (K.B.K., K.R.D., J.I.Y., M.A.P.-P.), Hussman Institute for Human Genetics (V.C., J.I.Y.), University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
223
|
Hypoxic Preconditioning Suppresses Glial Activation and Neuroinflammation in Neonatal Brain Insults. Mediators Inflamm 2015; 2015:632592. [PMID: 26273140 PMCID: PMC4530271 DOI: 10.1155/2015/632592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Perinatal insults and subsequent neuroinflammation are the major mechanisms of neonatal brain injury, but there have been only scarce reports on the associations between hypoxic preconditioning and glial activation. Here we use neonatal hypoxia-ischemia brain injury model in 7-day-old rats and in vitro hypoxia model with primary mixed glial culture and the BV-2 microglial cell line to assess the effects of hypoxia and hypoxic preconditioning on glial activation. Hypoxia-ischemia brain insult induced significant brain weight reduction, profound cell loss, and reactive gliosis in the damaged hemisphere. Hypoxic preconditioning significantly attenuated glial activation and resulted in robust neuroprotection. As early as 2 h after the hypoxia-ischemia insult, proinflammatory gene upregulation was suppressed in the hypoxic preconditioning group. In vitro experiments showed that exposure to 0.5% oxygen for 4 h induced a glial inflammatory response. Exposure to brief hypoxia (0.5 h) 24 h before the hypoxic insult significantly ameliorated this response. In conclusion, hypoxic preconditioning confers strong neuroprotection, possibly through suppression of glial activation and subsequent inflammatory responses after hypoxia-ischemia insults in neonatal rats. This might therefore be a promising therapeutic approach for rescuing neonatal brain injury.
Collapse
|
224
|
Cho YS, Cho JH, Shin BN, Cho GS, Kim IH, Park JH, Ahn JH, Ohk TG, Cho BR, Kim YM, Hong S, Won MH, Lee JC. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2015; 12:4939-46. [PMID: 26134272 PMCID: PMC4581829 DOI: 10.3892/mmr.2015.4021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/15/2015] [Indexed: 01/06/2023] Open
Abstract
Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia.
Collapse
Affiliation(s)
- Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Byung-Ryul Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
225
|
Aune SE, Herr DJ, Kutz CJ, Menick DR. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury. Front Neurol 2015; 6:145. [PMID: 26175715 PMCID: PMC4485035 DOI: 10.3389/fneur.2015.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain.
Collapse
Affiliation(s)
- Sverre E Aune
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Daniel J Herr
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Craig J Kutz
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Donald R Menick
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
226
|
Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Rajanikant GK. Cerebral Ischemic Preconditioning: the Road So Far…. Mol Neurobiol 2015; 53:2579-93. [PMID: 26081149 DOI: 10.1007/s12035-015-9278-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain.
Collapse
Affiliation(s)
- N Thushara Vijayakumar
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Amit Sangwan
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Bhargy Sharma
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Arshad Majid
- Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - G K Rajanikant
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
227
|
Blondeau N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2015; 120:49-55. [PMID: 26092420 DOI: 10.1016/j.biochi.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
Stroke is a worldwide major cause of mortality and morbidity. Preclinical studies have identified over 1000 molecules with brain-protective properties. More than 200 clinical trials have evaluated neuroprotective candidates for ischemic stroke yet, to date almost all failed, leading to a re-analysis of treatment strategies against stroke. An emerging view is to seek combinatory therapy, or discovering molecules able to stimulate multiple protective and regenerative mechanisms. A pertinent experimental approach to identify such candidates is the study of brain preconditioning, which refers to how the brain protects itself against ischemia and others stress-inducing stimuli. The recent discovery that nutrients like alpha-linolenic acid (ALA is an essential omega-3 polyunsaturated fatty acid required as part of our daily diet), may be an efficient brain preconditionner against stroke fosters the novel concept of brain preconditioning by nutraceuticals. This review stresses the underestimated role of nutrition in preventing and combating stroke. Although there is a consensus that increased consumption of salt, fatty foods and alcoholic beverages may promote pathologies like hypertension, obesity and alcoholism - all of which are well known risk factors of stroke - few risk factors are attributed to a deficiency in an essential nutrient in the diet. The ALA deficiency observed in the Western modern diets may itself constitute a risk factor. This review outlines how ALA supplementation by modification of the daily diet prevented mortality and cerebral damage in a rodent model of ischemic stroke. It also describes the pleiotropic ability of ALA to trigger responses that are multicellular, mechanistically diverse, resulting in neuronal protection, stimulation of neuroplasticity, and brain artery vasodilation. Overall, this review proposes a promising therapeutic opportunity by integrating a nutritional-based approach focusing on enriching the daily diet in ALA to prevent the devastating damage caused by stroke.
Collapse
Affiliation(s)
- Nicolas Blondeau
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
228
|
Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 2015; 153:90-106. [PMID: 26073311 DOI: 10.1016/j.pharmthera.2015.06.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Gießen, Germany.
| | | | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Luc Leybaert
- Physiology Group, Department Basic Medical Sciences, Ghent University, Belgium
| |
Collapse
|
229
|
Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Exp Neurol 2015; 271:351-7. [PMID: 26054883 DOI: 10.1016/j.expneurol.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. APPROACH & RESULTS The middle cerebral artery of C57BL/6J mice was occluded for 5 min, followed by 24h of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6(-/-)) mice. Bone marrow chimeras, produced by transplanting IL-6(-/-) marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
Collapse
|
230
|
Sisalli MJ, Annunziato L, Scorziello A. Novel Cellular Mechanisms for Neuroprotection in Ischemic Preconditioning: A View from Inside Organelles. Front Neurol 2015; 6:115. [PMID: 26074868 PMCID: PMC4443717 DOI: 10.3389/fneur.2015.00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
Ischemic preconditioning represents an important adaptation mechanism of CNS, which results in its increased tolerance to the lethal cerebral ischemia. The molecular mechanisms responsible for the induction and maintenance of ischemic tolerance in the brain are complex and not yet completely clarified. In the last 10 years, great attention has been devoted to unravel the intracellular pathways activated by preconditioning and responsible for the establishing of the tolerant phenotype. Indeed, recent papers have been published supporting the hypothesis that mitochondria might act as master regulators of preconditioning-triggered endogenous neuroprotection due to their ability to control cytosolic calcium homeostasis. More interestingly, the demonstration that functional alterations in the ability of mitochondria and endoplasmic reticulum (ER) managing calcium homeostasis during ischemia, opened a new line of research focused to the role played by mitochondria and ER cross-talk in the pathogenesis of cerebral ischemia in order to identify new molecular mechanisms involved in the ischemic tolerance. In line with these findings and considering that the expression of the three isoforms of the sodium calcium exchanger (NCX), NCX1, NCX2, and NCX3, mainly responsible for the regulation of Ca2+ homeostasis, was reduced during cerebral ischemia, it was investigated whether these proteins might play a role in neuroprotection induced by ischemic tolerance. In this review, evidence supporting the involvement of ER and mitochondria interaction within the preconditioning paradigm will be provided. In particular, the key role played by NCXs in the regulation of Ca2+-homeostasis at the different subcellular compartments will be discussed as new molecular mechanism proposed for the establishing of ischemic tolerant phenotype.
Collapse
Affiliation(s)
- Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Science, School of Medicine, Federico II University of Naples , Naples , Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Science, School of Medicine, Federico II University of Naples , Naples , Italy ; Fondazione IRCSS SDN , Naples , Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Science, School of Medicine, Federico II University of Naples , Naples , Italy
| |
Collapse
|
231
|
Meller R, Pearson A, Simon RP. Dynamic changes in DNA methylation in ischemic tolerance. Front Neurol 2015; 6:102. [PMID: 26029158 PMCID: PMC4432797 DOI: 10.3389/fneur.2015.00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023] Open
Abstract
Epigenetic mediators of gene expression are hypothesized to regulate transcriptomic responses to preconditioning ischemia and ischemic tolerance. Here, we utilized a methyl-DNA enrichment protocol and sequencing (ChIP-seq) to identify patterns of DNA methylation in an established model of ischemic tolerance in neuronal cultures (oxygen and glucose deprivation: OGD). We observed an overall decrease in global DNA methylation at 4 h following preconditioning ischemia (30 min OGD), harmful ischemia (120 min OGD), and in ischemic tolerant neuronal cultures (30 min OGD, 24 h recovery, 120 min OGD). We detected a smaller cohort of hypermethylated regions following ischemic conditions, which were further analyzed revealing differential chromosomal localization of methylation, and a differential concentration of methylation on genomic regions. Together, these data show that the temporal profiles of DNA methylation with respect to chromatin hyper- and hypo-methylation following various ischemic conditions are highly dynamic, and may reveal novel targets for neuroprotection.
Collapse
Affiliation(s)
- Robert Meller
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine , Atlanta, GA , USA
| | - Andrea Pearson
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine , Atlanta, GA , USA
| | - Roger P Simon
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine , Atlanta, GA , USA ; Grady Memorial Hospital , Atlanta, GA , USA
| |
Collapse
|
232
|
Meller R, Simon RP. A critical review of mechanisms regulating remote preconditioning-induced brain protection. J Appl Physiol (1985) 2015; 119:1135-42. [PMID: 25953834 DOI: 10.1152/japplphysiol.00169.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
Remote preconditioning (rPC) is the phenomenon whereby brief organ ischemia evokes an endogenous response such that a different (remote) organ is protected against subsequent, normally injurious ischemia. Experiments show rPC to be effective at evoking cardioprotection against ischemic heart injury and, more recently, neuroprotection against brain ischemia. Such is the enthusiasm for rPC that human studies have been initiated. Clinical trials suggest rPC to be safe (phase II trial) and effective in reducing stroke incidence in a population with high stroke risk. However, despite the therapeutic potential of rPC, there is a large gap in knowledge regarding the effector mechanisms of rPC and how it might be orchestrated to improve outcome after stroke. Here we provide a critical review of mechanisms that are directly attributable to rPC-induced neuroprotection in preclinical trials of rPC.
Collapse
Affiliation(s)
- Robert Meller
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia; and
| | - Roger P Simon
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia; and Grady Memorial Hospital, Atlanta, Georgia
| |
Collapse
|
233
|
Poinsatte K, Selvaraj UM, Ortega SB, Plautz EJ, Kong X, Gidday JM, Stowe AM. Quantification of neurovascular protection following repetitive hypoxic preconditioning and transient middle cerebral artery occlusion in mice. J Vis Exp 2015:e52675. [PMID: 25993394 DOI: 10.3791/52675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Experimental animal models of stroke are invaluable tools for understanding stroke pathology and developing more effective treatment strategies. A 2 week protocol for repetitive hypoxic preconditioning (RHP) induces long-term protection against central nervous system (CNS) injury in a mouse model of focal ischemic stroke. RHP consists of 9 stochastic exposures to hypoxia that vary in both duration (2 or 4 hr) and intensity (8% and 11% O2). RHP reduces infarct volumes, blood-brain barrier (BBB) disruption, and the post-stroke inflammatory response for weeks following the last exposure to hypoxia, suggesting a long-term induction of an endogenous CNS-protective phenotype. The methodology for the dual quantification of infarct volume and BBB disruption is effective in assessing neurovascular protection in mice with RHP or other putative neuroprotectants. Adult male Swiss Webster mice were preconditioned by RHP or duration-equivalent exposures to 21% O2 (i.e. room air). A 60 min transient middle cerebral artery occlusion (tMCAo) was induced 2 weeks following the last hypoxic exposure. Both the occlusion and reperfusion were confirmed by transcranial laser Doppler flowmetry. Twenty-two hr after reperfusion, Evans Blue (EB) was intravenously administered through a tail vein injection. 2 hr later, animals were sacrificed by isoflurane overdose and brain sections were stained with 2,3,5- triphenyltetrazolium chloride (TTC). Infarcts volumes were then quantified. Next, EB was extracted from the tissue over 48 hr to determine BBB disruption after tMCAo. In summary, RHP is a simple protocol that can be replicated, with minimal cost, to induce long-term endogenous neurovascular protection from stroke injury in mice, with the translational potential for other CNS-based and systemic pro-inflammatory disease states.
Collapse
Affiliation(s)
- Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center
| | - Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center
| | - Xiangmei Kong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center
| | - Jeffrey M Gidday
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center;
| |
Collapse
|
234
|
Interplay between histone acetylation/deacetylation and poly(ADP-ribosyl)ation in the development of ischemic tolerance in vitro. Neuropharmacology 2015; 92:125-34. [DOI: 10.1016/j.neuropharm.2015.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 02/04/2023]
|
235
|
Abstract
Preconditioning (PC) using a preceding sublethal ischemic insult is an attractive strategy for protecting neurons by inducing ischemic tolerance in the brain. Although the underlying molecular mechanisms have been extensively studied, almost all studies have focused on neurons. Here, using a middle cerebral artery occlusion model in mice, we show that astrocytes play an essential role in the induction of brain ischemic tolerance. PC caused activation of glial cells without producing any noticeable brain damage. The spatiotemporal pattern of astrocytic, but not microglial, activation correlated well with that of ischemic tolerance. Interestingly, such activation in astrocytes lasted at least 8 weeks. Importantly, inhibiting astrocytes with fluorocitrate abolished the induction of ischemic tolerance. To investigate the underlying mechanisms, we focused on the P2X7 receptor as a key molecule in astrocyte-mediated ischemic tolerance. P2X7 receptors were dramatically upregulated in activated astrocytes. PC-induced ischemic tolerance was abolished in P2X7 receptor knock-out mice. Moreover, our results suggest that hypoxia-inducible factor-1α, a well known mediator of ischemic tolerance, is involved in P2X7 receptor-mediated ischemic tolerance. Unlike previous reports focusing on neuron-based mechanisms, our results show that astrocytes play indispensable roles in inducing ischemic tolerance, and that upregulation of P2X7 receptors in astrocytes is essential.
Collapse
|
236
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
237
|
Shenoda B. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury. Transl Stroke Res 2015; 6:181-90. [PMID: 25860439 DOI: 10.1007/s12975-015-0395-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) plays an important role in the maintenance of Na(+) and Ca(2+) homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na(+) and Ca(2+) in either Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na(+) and Ca(2+) ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca(2+) levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies.
Collapse
Affiliation(s)
- Botros Shenoda
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop #488, Philadelphia, PA, 19102, USA,
| |
Collapse
|
238
|
Lee JC, Tae HJ, Cho GS, Kim IH, Ahn JH, Park JH, Chen BH, Cho JH, Shin BN, Cho JH, Bae EJ, Park J, Kim YM, Choi SY, Won MH. Ischemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia. Int J Mol Med 2015; 35:1537-44. [PMID: 25872573 PMCID: PMC4432926 DOI: 10.3892/ijmm.2015.2171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
Pyramidal neurons in region I of hippocampus proper (CA1) are particularly vulnerable to excitotoxic processes following transient forebrain ischemia. Kynurenic acid (KYNA) is a small molecule derived from tryptophan when this amino acid is metabolized through the kynurenine pathway. In the present study, we examined the effects of ischemic preconditioning (IPC) on the immunoreactivity and protein levels of KYNA following 5 min of transient forebrain ischemia in gerbils. The animals were randomly assigned to 4 groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated group, we observed a significant loss of pyramidal neurons in the CA1 stratum pyramidale (SP) at 5 days post-ischemia; however, in the IPC + ischemia-operated group, the pyramidal neurons were well protected. KYNA immunoreactivity in the SP of the ischemia-operated group was significantly altered following ischemia-reperfusion and was very low 5 days following ischemia-reperfusion. In the IPC + ischemia-operated group, however, KYNA immunoreactivity was constitutively detected in the SP of the CA1 region after the ischemic insult. We also found that the alteration pattern of the KYNA protein level in the CA1 region following ischemia was generally similar to the immunohistochemical changes observed. In brief, our findings demonstrated that IPC maintained and even increased KYNA immunoreactivity in the SP of the CA1 region following ischemia-reperfusion. The data from the present study thus indicate that the enhancement of KYNA expression by IPC may be necessary for neuronal survival following transient ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Joo Bae
- Department of Pediatrics, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 200-701, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
239
|
Novel Genes Critical for Hypoxic Preconditioning in Zebrafish Are Regulators of Insulin and Glucose Metabolism. G3-GENES GENOMES GENETICS 2015; 5:1107-16. [PMID: 25840431 PMCID: PMC4478541 DOI: 10.1534/g3.115.018010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Severe hypoxia is a common cause of major brain, heart, and kidney injury in adults, children, and newborns. However, mild hypoxia can be protective against later, more severe hypoxia exposure via "hypoxic preconditioning," a phenomenon that is not yet fully understood. Accordingly, we have established and optimized an embryonic zebrafish model to study hypoxic preconditioning. Using a functional genomic approach, we used this zebrafish model to identify and validate five novel hypoxia-protective genes, including irs2, crtc3, and camk2g2, which have been previously implicated in metabolic regulation. These results extend our understanding of the mechanisms of hypoxic preconditioning and affirm the discovery potential of this novel vertebrate hypoxic stress model.
Collapse
|
240
|
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset. Neurotherapeutics 2015; 12:502-14. [PMID: 25549850 PMCID: PMC4404439 DOI: 10.1007/s13311-014-0330-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The neuroprotective efficacy of adaptive epigenetics, wherein beneficial gene expression changes are induced by nonharmful "conditioning" stimuli, is now well established in several acute, preclinical central nervous system injury models. Recently, in a mouse model of glaucoma, we demonstrated retinal ganglion cell (RGC) protection by repetitively "preconditioning" with hypoxia prior to disease onset, indicating an epigenetic approach may also yield benefits in chronic neurodegenerative disease. Herein, we determined whether presenting the repetitive hypoxic stimulus after disease initiation [repetitive hypoxic "postconditioning" (RH-Post)] could afford similar functional and morphologic protection against glaucomatous RGC injury. Chronic elevations in intraocular pressure (IOP) were induced unilaterally in adult male C57BL/6 mice by episcleral vein ligation. Mice were randomized to an RH-Post [1 h of systemic hypoxia (11% oxygen) every other day, starting 4 days after IOP elevation] or an untreated control group. After 3 weeks of experimental glaucoma, the 21-27% reduction and 5-25% prolongation in flash visual-evoked potential amplitudes and latencies, respectively, and the 30% impairment in visual acuity were robustly improved in RH-Post-treated mice, as was the 17% loss in RGC soma number and 20% reduction in axon integrity. These protective effects were observed without RH-Post affecting IOP. The present findings demonstrate that functional and morphologic protection of RGCs can be realized by stimulating epigenetic responses during the early stages of disease, and thus constitute a new conceptual approach to glaucoma therapeutics.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA,
| | | | | | | |
Collapse
|
241
|
Lee JC, Cho JH, Kim IH, Ahn JH, Park JH, Cho GS, Chen BH, Shin BN, Tae HJ, Park SM, Ahn JY, Kim DW, Cho JH, Bae EJ, Yong JH, Kim YM, Won MH, Lee YL. Ischemic preconditioning inhibits expression of Na + /H + exchanger 1 (NHE1) in the gerbil hippocampal CA1 region after transient forebrain ischemia. J Neurol Sci 2015; 351:146-153. [DOI: 10.1016/j.jns.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022]
|
242
|
The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 2015; 36:411-20. [PMID: 25832421 PMCID: PMC4387298 DOI: 10.1038/aps.2014.151] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily conserved and lysosome-dependent process for degrading and recycling cellular constituents. Autophagy is activated following an ischemic insult or preconditioning, but it may exert dual roles in cell death or survival during these two processes. Preconditioning or lethal ischemia may trigger autophagy via multiple signaling pathways involving endoplasmic reticulum (ER) stress, AMPK/TSC/mTOR, Beclin 1/BNIP3/SPK2, and FoxO/NF-κB transcription factors, etc. Autophagy then interacts with apoptotic and necrotic signaling pathways to regulate cell death. Autophagy may also maintain cell function by removing protein aggregates or damaged mitochondria. To date, the dual roles of autophagy in ischemia and preconditioning have not been fully clarified. The purpose of the present review is to summarize the recent progress in the mechanisms underlying autophagy activation during ischemia and preconditioning. A better understanding of the dual effects of autophagy in ischemia and preconditioning could help to develop new strategies for the preventive treatment of ischemia.
Collapse
|
243
|
Thompson JW, Narayanan SV, Koronowski KB, Morris-Blanco K, Dave KR, Perez-Pinzon MA. Signaling pathways leading to ischemic mitochondrial neuroprotection. J Bioenerg Biomembr 2015; 47:101-10. [PMID: 25262285 PMCID: PMC4861652 DOI: 10.1007/s10863-014-9574-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
Abstract
There is extensive evidence that ischemic/reperfusion mediated mitochondrial dysfunction is a major contributor to ischemic damage. However data also indicates that mild ischemic stress induces mitochondrial dependent activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sub-injurious ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Current research demonstrates that mitochondria are not only the inducers of but are also an important target of ischemic preconditioning mediated protection. Numerous proteins and signaling pathways are activated by ischemic preconditioning which protect the mitochondria against ischemic damage. In this review we examine some of the proteins activated by ischemic precondition which counteracts the deleterious effects of ischemia/reperfusion thereby maintaining normal mitochondrial activity and lead to ischemic tolerance.
Collapse
Affiliation(s)
- John W Thompson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, Miller School of Medicine, University of Miami, P.O. Box 016960, Miami, FL, 33136, USA
| | | | | | | | | | | |
Collapse
|
244
|
Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol 2015; 113:3708-19. [PMID: 25867743 DOI: 10.1152/jn.01028.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
Brief bouts of sublethal ischemia have been shown to protect exposed tissue (ischemic conditioning) and tissues at remote sites (remote ischemic conditioning) against subsequent ischemic challenges. Given that the mechanisms of this protective phenomenon are multifactorial and epigenetic, we postulated that remote limb ischemic conditioning (RLIC) might enhance mechanisms responsible for neural plasticity, and thereby facilitate learning. Specifically, we hypothesized that conditioning of the nervous system with RLIC, achieved through brief repetitive limb ischemia prior to training, would facilitate the neurophysiological processes of learning, thus making training more effective and more long-lasting. Eighteen healthy adults participated in this study; nine were randomly allocated to RLIC and nine to sham conditioning. All subjects underwent seven consecutive weekday sessions and 2-wk and 4-wk follow-up sessions. We found that RLIC resulted in significantly greater motor learning and longer retention of motor performance gains in healthy adults. Changes in motor performance do not appear to be due to a generalized increase in muscle activation or muscle strength and were not associated with changes in serum brain-derived neurotrophic factor (BDNF) concentration. Of note, RLIC did not enhance cognitive learning on a hippocampus-dependent task. While future research is needed to establish optimal conditioning and training parameters, this inexpensive, clinically feasible paradigm might ultimately be implemented to enhance motor learning in individuals undergoing neuromuscular rehabilitation for brain injury and other pathological conditions.
Collapse
Affiliation(s)
- Kendra M Cherry-Allen
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Jeff M Gidday
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
245
|
Zhang XY, Zhang TT, Song DD, Zhou JH, Han R, Qin ZH, Sheng R. Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells. Mol Brain 2015; 8:20. [PMID: 25885223 PMCID: PMC4381498 DOI: 10.1186/s13041-015-0112-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/15/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Our previous finding showed that brain ischemic preconditioning mediates neuroprotection through endoplasmic reticulum (ER) stress-induced autophagy. This study was aimed at exploring the role of ER chaperone GRP78 in IPC induced autophagy activation in neural cells. RESULTS Ischemic preconditioning (IPC) and oxygen glucose deprivation (OGD) models were established in rat pheochromocytoma (PC12) cells and primary cultured murine cortical neurons. IPC exerted neuroprotection against subsequent OGD injury in both PC12 cells and primary cortical neurons. IPC increased GRP78 expression and activated autophagy, as evidenced by upregulated LC3 and Beclin1, increased autophagic flux and formation of autophagosomes. BAPTA(dibromo-1,2-bis(aminophenoxy)ethane N,N,N9,N9 - tetra acetic acid, 0.125-2 μM) and small interfering RNA targeted GRP78 abrogated IPC induced neuroprotection and decreased the expression of GRP78, LC3II/LC3I and Beclin1. In contrast, lentiviral vector mediated GRP78 overexpression (LV-GRP78) strengthened resistance of PC12 cells to OGD injury and increased LC3 and Beclin1 expression. Moreover, knockdown of GRP78 in stable GRP78 overexpressing PC12 cells abolished the upregulation of LC3II/LC3I. GRP78 might activate autophagy through AMPK - mTOR pathway. CONCLUSION These results suggest that IPC- induced GRP78 upregulation is involved in autophagy activation, and hence exerts protection against ischemic injury in neural cells.
Collapse
Affiliation(s)
- Xiang-Yang Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Tong-Tong Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Dan-Dan Song
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Jun- Hao Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou, 215123, China.
| |
Collapse
|
246
|
Wang F, Zhang G, Xing T, Lu Z, Li J, Peng C, Liu G, Wang N. Renalase contributes to the renal protection of delayed ischaemic preconditioning via the regulation of hypoxia-inducible factor-1α. J Cell Mol Med 2015; 19:1400-9. [PMID: 25781495 PMCID: PMC4459853 DOI: 10.1111/jcmm.12527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022] Open
Abstract
Ischaemic preconditioning (IPC) attenuates acute kidney injury (AKI) from renal ischaemia reperfusion. Renalase, an amine oxidase secreted by the proximal tubule, not only degrades circulating catecholamines but also protects against renal ischaemia reperfusion injury. Here, it has been suggested that the renoprotective effect of renal IPC is partly mediated by renalase. In a model of brief intermittent renal IPC, the increased cortex renalase expression was found to last for 48 hrs. IPC significantly reduced renal tubular inflammation, necrosis and oxidative stress following renal ischaemia reperfusion injury. Such effects were attenuated by blocking renalase with an anti-renalase monoclonal antibody. We further demonstrated that renalase expression was up-regulated by hypoxia in vitro via an hypoxia-inducible factor (HIF)-1α mechanism. The IPC-induced up-regulation of renalase in vivo was also reduced by pre-treatment with an HIF-1α inhibitor, 3-(5′-Hydroxymethyl-2′-furyl)-1-benzyl indazole. In summary, the renoprotective effect of IPC is partly dependent on the renalase expression, which may be triggered by hypoxia via an HIF-1α mechanism. Endogenous renalase shows potential as a therapeutic agent for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Feng Wang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyuan Zhang
- Department of Urology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Tao Xing
- St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Zeyuan Lu
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Li
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Peng
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guohua Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
247
|
Reynolds JP, Miller-Delaney SFC, Jimenez-Mateos EM, Sano T, McKiernan RC, Simon RP, Henshall DC. Transcriptional Response of Polycomb Group Genes to Status Epilepticus in Mice is Modified by Prior Exposure to Epileptic Preconditioning. Front Neurol 2015; 6:46. [PMID: 25806020 PMCID: PMC4354380 DOI: 10.3389/fneur.2015.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 12/23/2022] Open
Abstract
Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group (PcG) proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here, we explored the transcriptional response of genes associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1, and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes after SE in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed SE prompted an early (1 h) increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2 relative to the normal injury response to SE. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes PcG gene expression following SE and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.
Collapse
Affiliation(s)
- James P Reynolds
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland ; Department of Neurosurgery, Mie University School of Medicine , Tsu, Mie , Japan
| | - Ross C McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
248
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
249
|
Nathaniel TI, Soyinka JO, Adedeji A, Imeh-Nathaniel A. Molecular and Physiological Factors of Neuroprotection in Hypoxia-tolerant Models: Pharmacological Clues for the Treatment of Stroke. J Exp Neurosci 2015; 9:1-5. [PMID: 25780340 PMCID: PMC4346302 DOI: 10.4137/jen.s22512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
The naked mole-rat possesses several unique physiological and molecular features that underlie their remarkably and exceptional resistance to tissue hypoxia. Elevated pattern of Epo, an erythropoietin (Epo) factor; c-fos; vascular endothelial growth factor (VEGF); and hypoxia-inducible factors (HIF-1α) contribute to the adaptive strategy to cope with hypoxic stress. Moreover, the naked mole-rat has a lower metabolic rate than any other eutherian mammal of comparable size that has been studied. The ability to actively reduce metabolic rate represents a strategy widely used in the face of decreased tissue oxygen availability. Understanding the different molecular and physiological factors that induce metabolic suppression could guide the development of pharmacological agents for the clinical management of stroke patient.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adekunle Adedeji
- Department of Health Science, Eastern Tennessee State University, Johnson City, TN, USA
| | | |
Collapse
|
250
|
Sheng R, Zhang TT, Felice VD, Qin T, Qin ZH, Smith CD, Sapp E, Difiglia M, Waeber C. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J Biol Chem 2015; 289:20845-57. [PMID: 24928515 DOI: 10.1074/jbc.m114.578120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 2 (SPK2) and autophagy are both involved in brain preconditioning, but whether preconditioning-induced SPK2 up-regulation and autophagy activation are linked mechanistically remains to be elucidated. In this study, we used in vitro and in vivo models to explore the role of SPK2-mediated autophagy in isoflurane and hypoxic preconditioning. In primary mouse cortical neurons, both isoflurane and hypoxic preconditioning induced autophagy. Isoflurane and hypoxic preconditioning protected against subsequent oxygen glucose deprivation or glutamate injury, whereas pretreatment with autophagy inhibitors (3-methyladenine or KU55933) abolished preconditioning-induced tolerance. Pretreatment with SPK2 inhibitors (ABC294640 and SKI-II) or SPK2 knockdown prevented preconditioning-induced autophagy. Isoflurane also induced autophagy in mouse in vivo as shown by Western blots for LC3 and p62, LC3 immunostaining, and electron microscopy. Isoflurane-induced autophagy in mice lacking the SPK1 isoform (SPK1(-/-)), but not in SPK2(-/-)mice. Sphingosine 1-phosphate and the sphingosine 1-phosphate receptor agonist FTY720 did not protect against oxygen glucose deprivation in cultured neurons and did not alter the expression of LC3 and p62, suggesting that SPK2-mediated autophagy and protections are not S1P-dependent. Beclin 1 knockdown abolished preconditioning-induced autophagy, and SPK2 inhibitors abolished isoflurane-induced disruption of the Beclin 1/Bcl-2 association. These results strongly indicate that autophagy is involved in isoflurane preconditioning both in vivo and in vitro and that SPK2 contributes to preconditioning-induced autophagy, possibly by disrupting the Beclin 1/Bcl-2 interaction.
Collapse
|