201
|
Alvanou MV, Loukovitis D, Melfou K, Giantsis IA. Utility of dairy microbiome as a tool for authentication and traceability. Open Life Sci 2024; 19:20220983. [PMID: 39479351 PMCID: PMC11524395 DOI: 10.1515/biol-2022-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Milk microbiome contributes substantially to the formation of specific organoleptic and physicochemical characteristics of dairy products. The assessment of the composition and abundance of milk microbiota is a challenging task strongly influenced by many environmental factors. Specific dairy products may be designated by the Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) labeling, which however, occasionally fail to differentiate them according to specific quality characteristics, which are defined by different microbiota-driven reactions. Combining the above limitations, the scope of the present study, was to summarize the existing information toward three main issues. First, to assess the influence level of the diet type and grazing to rumen-GI tract, mammary gland, and udder microbiome formation in ruminants. Second, to discuss the factors affecting milk microbiota, as well as the effect of the endo-mammary route on milk microbial taxa. Lastly, to evaluate "milk microbiome" as a tool for product differentiation, according to origin, which will contribute to a more robust PDO and PGI labeling. Although the limitations are still a matter of fact (especially considering the sample collection, process, evaluation, and avoidance of its contamination), significant progress has been made, regarding the identification of the factors affecting dairy products' microbiota and its core composition. In conclusion, although so far not totally efficient in dairy products molecular identification, with the progress in soil, water, plant, and animal host's microbiota assembly's characterization, microbiomics could provide a powerful tool for authentication and traceability of dairy products.
Collapse
Affiliation(s)
- Maria V. Alvanou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Dimitrios Loukovitis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, 30200, Messolonghi, Greece
| | - Katerina Melfou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Ioannis A. Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54621, Thessaloniki, Greece
| |
Collapse
|
202
|
Long J, Chen J, Huang H, Liang J, Pang L, Yang K, Wei H, Liao Q, Gu J, Zeng X, Huang D, Qiu X. The associations between gut microbiota and fecal metabolites with intelligence quotient in preschoolers. BMC Microbiol 2024; 24:431. [PMID: 39455934 PMCID: PMC11515365 DOI: 10.1186/s12866-024-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The awareness of the association between the gut microbiota and human intelligence levels is increasing, but the findings are inconsistent. Furthermore, few research have explored the potential role of gut microbial metabolites in this association. This study aimed to investigate the associations of the gut microbiota and fecal metabolome with intelligence quotient (IQ) in preschoolers. METHODS The 16 S rRNA sequencing and widely targeted metabolomics were applied to analyze the gut microbiota and fecal metabolites of 150 children aged 3-6 years. The Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to assess the cognitive competence. RESULTS The observed species index, gut microbiome health index, and microbial dysbiosis index presented significant differences between children with full-scale IQ (FSIQ) below the borderline (G1) and those with average or above-average (all P < 0.05). The abundance of Acinetobacter, Blautia, Faecalibacterium, Prevotella_9, Subdoligranulum, Collinsella, Dialister, Holdemanella, and Methanobrevibacter was significantly associated with preschooler's WPPSI-IV scores (P < 0.05). In all, 87 differential metabolites were identified, mainly including amino acid and its metabolites, fatty acyl, and benzene and substituted derivatives. The differential fecal metabolites carnitine C20:1-OH, 4-hydroxydebrisoquine, pantothenol, creatine, N,N-bis(2-hydroxyethyl) dodecanamide, FFA(20:5), zerumbone, (R)-(-)-2-phenylpropionic acid, M-toluene acetic acid, trans-cinnamaldehyde, isonicotinic acid, val-arg, traumatin, and 3-methyl-4-hydroxybenzaldehyde were significantly associated with the preschooler's WPPSI-IV scores (P < 0.05). The combination of Acinetobacter, Isonicotinic acid, and 3-methyl-4-hydroxybenzaldehydenine may demonstrate increased discriminatory power for preschoolers in G1. CONCLUSION This study reveals a potential association between gut microbiome and metabolites with IQ in preschoolers, providing new directions for future research and practical applications. However, due to limitations such as the small sample size, unclear causality, and the complexity of metabolites, more validation studies are still needed to further elucidate the mechanisms and stability of these associations.
Collapse
Affiliation(s)
- Jinghua Long
- Department of Prevention and Healthcare, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiehua Chen
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huanni Wei
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junwang Gu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
203
|
Kou R, Mi F, Peng C, Ding X, Meng C, Liu F, Xiong L. Structural characterization and immunomodulatory activity of polysaccharides from the lateral roots of Aconitum carmichaelii. Int J Biol Macromol 2024; 282:136935. [PMID: 39490860 DOI: 10.1016/j.ijbiomac.2024.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Two polysaccharides, named FPS1-1 and FPS1-2, were separated from the neutral polysaccharides of the lateral roots of Aconitum carmichaelii, a widely used traditional Chinese medicine (Fuzi in Chinese). The monosaccharide composition analysis indicated that both FPS1-1 and FPS1-2 were glucans. However, further physicochemical analysis of FPS1-1 and FPS1-2 revealed distinct properties between the two glucans. FPS1-1 had a molecular weight (Mw) of 106.23 kDa with a spherical conformation, while FPS1-2 had a lower Mw of 19.23 kDa with a random coil conformation. The structure of FPS1-2 was further determined as a glucan whose backbone structure was composed of →4)-α-D-Glcp-(1→. The immunological activities of two polysaccharides were evaluated by a cyclophosphamide (CTX)-induced immunodeficiency model in mice. The result showed that FPS1-2 could restore CTX-induced immunosuppression by modulating CD4+ T cells differentiation and promoting cytokine secretion. Notably, FPS1-2 could modulate the colonic short-chain fatty acid (SCFA) levels and reverse the gut microbial dysbiosis induced by CTX. These findings reveal the potential benefits of Fuzi polysaccharides and provide evidences for developing immunologically functional products from Fuzi polysaccharides.
Collapse
Affiliation(s)
- Renbo Kou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuxin Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xingjie Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunwang Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
204
|
Šimiaková M, Bielik V. The pros and cons of probiotic use in pediatric oncology patients following treatment for acute lymphoblastic leukemia. Front Pediatr 2024; 12:1427185. [PMID: 39502562 PMCID: PMC11534854 DOI: 10.3389/fped.2024.1427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) treatment, involving chemotherapy, radiotherapy, and pharmacotherapy (antibiotics, antineoplastics) perturbs the gut microbiota in pediatric patients, with enduring effects post-treatment. ALL treatments diminish microbial richness and diversity, favoring pathogenic bacteria. Probiotics may offer promise in mitigating these disruptions and associated side effects. This mini-review explores the impact of ALL treatment on the gut microbiota and the potential benefits of probiotics in pediatric oncology. Probiotics have shown promise in restoring gut microbial balance, reducing treatment-associated side effects, and potentially improving quality of life. However, potential adverse effects, particularly in immunocompromised patients, warrant caution. Notably, there's emerging interest in probiotics' role in bone health and mineral bioaccessibility. Further research is needed to elucidate probiotics' mechanisms and their broader impact on pediatric health. Integration of probiotics into ALL treatment and post-treatment regimens offers significant potential for improving patient outcomes and reducing treatment-related complications and long-lasting disruptions, although careful monitoring is essential.
Collapse
Affiliation(s)
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sports, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
205
|
Jain M, Anand A, Sharma N, Shamim MA, Enioutina EY. Effect of Probiotics Supplementation on Cortisol Levels: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3564. [PMID: 39458560 PMCID: PMC11510182 DOI: 10.3390/nu16203564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Several randomized controlled trials (RCTs) have shown conflicting results on cortisol levels following probiotic administration in healthy and diseased populations. Previous analyses were inconclusive due to limited studies, and evidence is lacking on how these effects vary by health status; region; therapy duration; medications, and use of single or multiple strains. Methods: In this systematic review and meta-analysis (PROSPERO [CRD42024538539]), we searched PubMed, Cochrane Library, Embase, Scopus, Web of Science, CINAHL, ProQuest, and Web of Science Preprints until 13 August 2024, for RCTs on probiotic administration, either alone or combined, across all age groups and without specific medical condition requirements. We applied random-effects meta-analysis, assessed bias using the Cochrane RoB 2 tool, and evaluated evidence certainty with GRADE. Findings: We screened 1739 records and retrieved 46 RCTs (3516 participants). Probiotics supplementation decreased cortisol levels compared to the control arm [46 RCTs; SMD: -0.45; 95% CI: -0.83; -0.07; I2: 92.5%, low certainty]. Among various subgroups; probiotics supplementation decreased the cortisol levels in the subgroups without concomitant medications [37 RCTs; SMD: -0.30; 95% CI [-0.58; -0.03], I2: 88.7%] with a single probiotic strain [30 RCTs; SMD: -0.33; 95% CI: -0.63; -0.028; I2: 88.8%], in a healthy population [35 RCTs; SMD:-0.3; 95% CI: -0.58; -0.03; I2: 88.7] and in the Asia region [21 RCTs; SMD: -0.83; 95% CI: -1.58; -0.07; I2: 95%]. Interpretation: A low level of evidence suggests probiotics might reduce cortisol levels, but more targeted studies are needed to identify variables affecting the response in specific subgroups.
Collapse
Affiliation(s)
- Manav Jain
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Aishwarya Anand
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Nisha Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
206
|
Fu Q, DeJager J, Gardner EM. Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients 2024; 16:3567. [PMID: 39458561 PMCID: PMC11509913 DOI: 10.3390/nu16203567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
This systematic literature review aims to answer the question of how micronutrients might influence the development and progression of dementia. In the present work, we focused on an overview of an updated review of relevant literature published in the last two decades. This review aims to delineate the relationship between micronutrient supplementation and cognitive decline in older subjects. In carrying out this review, we followed PRISMA, and our literature search was performed on PubMed. This systematic review includes only primary studies that have investigated the efficacy of nutritional interventions for the prevention of dementia and improvement of cognitive function in subjects aged 65 years or older with normal cognition, mild cognitive impairment (MCI), or Alzheimer's disease (AD). A gross heterogeneity of studies forbids the possibility of a direct comparison of the results. A review of the inclusion criteria and restrictions has been conducted to check the validity and reliability of the results. In this review, thirty-three primary studies were included. Results have shown that supplementation with vitamin D, probiotics, and PUFAs would most likely reduce cognitive decline, dementia, or AD compared with vitamins A, B, C, and E, which were seen to be relatively ineffective. Of note, when considering vitamin B supplementation, positive effects were only observed in non-aspirin users having high ω-3 fatty acid (ω-3 FA) plasma levels. In some cases, however, there were genotypic differences in subjects in response to vitamin B supplementation.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (Q.F.); (J.D.)
| |
Collapse
|
207
|
Serrafi A, Chegdani F, Bennis F, Kepinska M. The Importance of Argan Oil in Medicine and Cosmetology. Nutrients 2024; 16:3573. [PMID: 39458566 PMCID: PMC11510224 DOI: 10.3390/nu16203573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Argan oil, rich in unsaturated fatty acids and polyphenols, exerts beneficial effects on both the intestinal and skin microbiotas. In the gut, it promotes the growth of beneficial bacteria, such as lactobacilli, while reducing pathogenic bacteria, due to its anti-inflammatory properties that help maintain microbial balance. Additionally, it improves the integrity of the intestinal mucosa, reducing the risk of dysbiosis. On the skin, argan oil hydrates and balances the lipid environment, creating a favorable setting for beneficial microorganisms, while also possessing antimicrobial and anti-inflammatory properties that soothe conditions like eczema and acne. Thus, argan oil is valuable for overall health, supporting digestion and skin health. The objective of this review is to provide a summary of the benefits of argan oil for alternative and complementary medicine. An exhaustive search of the literature was carried out using targeted keywords. A set of 83 articles were selected and analyzed. As the mechanisms of action of argan oil are not completely understood, this work highlighted the benefits of this oil by analyzing its nutritional properties and its beneficial effects on the intestinal and skin microbiotas. Indeed, argan oil is valuable for overall health.
Collapse
Affiliation(s)
- Agata Serrafi
- Department of Immunochemistry and Chemistry, Wroclaw Medical University, ul. M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Fatima Chegdani
- Laboratory of Immunology and Biodiversity, Department of Biology, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Route El Jadida, BP 5366 Maarif, Casablanca 20100, Morocco; (F.C.); (F.B.)
| | - Faïza Bennis
- Laboratory of Immunology and Biodiversity, Department of Biology, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Route El Jadida, BP 5366 Maarif, Casablanca 20100, Morocco; (F.C.); (F.B.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
208
|
Yu B, Wang KY, Wang NR, Zhang L, Zhang JP. Effect of probiotics and paraprobiotics on patients with sleep disorders and sub-healthy sleep conditions: a meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1477533. [PMID: 39479010 PMCID: PMC11521871 DOI: 10.3389/fneur.2024.1477533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Background The microbial-gut-brain axis has received much attention in recent years, and regulating intestinal flora can effectively improve sleep disorders, which hints the potential effects of probiotics on sleep disorders, but lack of research evidence for meta-analysis. Therefore, this study aims to quantitatively evaluate the influence of probiotics on sleep disorders and sub-healthy sleep conditions. Methods Up to 2023, online databases including Pubmed, Embase, Cochrane library, Web of science have been searched for studies involving adults who consume probiotics or paraprobiotics in controlled trials, during which, changes in subjective and/or objective sleep parameters and contributing factors in sleeping quality are examined. We conduct a meta-analysis of 11 clinical randomized controlled studies. Results Probiotic supplementation improves sleep states to some extent in adults with sleep disorders and healthy adults with condition-induced sleep disorders (-0.34 [-0.56 to -0.13]; I 2 = 42.6%; p = 0.001). Meanwhile, subgroup analysis shows that the effect of probiotics on improving sleep disorders is influenced by other factors such as the health states of the subjects, the duration of the intervention, the type of strain, and the test criteria. Conclusion Probiotics and paraprobiotics have a significant positive effect on the sleep quality of adults with sleep disorders or sub-healthy sleep conditions. However, the therapeutic effects of probiotics on sleep problems need future additional trials. Systematic review registration https://inplasy.com/inplasy-2022-12-0066/, identifier 2022120066.
Collapse
Affiliation(s)
- Bei Yu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke-Yi Wang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning-Rui Wang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Ping Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
209
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
210
|
Fritz J, Lamadrid-Figueroa H, Muñoz-Rocha TV, Huerta-García Y, Martínez-Silva G, Trejo-Valdivia B, Martínez-Medina S, Hernandez-Chavez C, Osorio-Valencia E, Burris HH, Peterson KE, Wright RO, Téllez-Rojo MM. Cesarean birth is associated with lower motor and language development scores during early childhood: a longitudinal analysis of two cohorts. Sci Rep 2024; 14:23438. [PMID: 39379499 PMCID: PMC11461664 DOI: 10.1038/s41598-024-73914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
With global C-section rates rising, understanding potential consequences is imperative. Previous studies suggested links between birth mode and psychological outcomes. This study evaluates the association of birth mode and neurodevelopment in young children across two prospective cohorts, using repeated psychometric assessments. Data from the ELEMENT (Early Life Exposures in Mexico to Environmental Toxicants) and PROGRESS (Programming Research in Obesity, Growth, and Environment and Social Stress) cohorts, comprising 7158 and 2202 observations of 1402 children aged 2 to 36 months, and 726 children aged 5 to 27 months, respectively, were analyzed. Exclusion criteria for the cohorts were maternal diseases such as preeclampsia, renal or heart disease, gestational diabetes, and epilepsy. Neurodevelopment was gauged via Bayley's Scales of Infant Development: 2nd edition for ELEMENT and 3rd edition for PROGRESS. Mixed-effects models longitudinally estimated associations between birth mode and neurodevelopment scores, adjusting for cofounders. In ELEMENT, psychomotor development composite scores were significantly affected by birth mode from ages 2 to 8 months; the largest estimate within this range was at 2 months (β =-1.93; 95% CI: [-3.64, -0.22], reference: vaginal delivery). For PROGRESS, a negative association was found with motor development composite scores over all the studied age range (β=-1.91; 95% CI: [-3.01, -0.81]). The association was stronger between ages 6 to 18 months, with the strongest estimate at 11 months (β=-2.58; 95% CI: [-4.37, -0.74]). A negative impact of C-section on language scores in girls was estimated for the PROGRESS cohort (β=-1.92; 95% CI: [-3.57, -0.27]), most marked in ages 22 to 25 months (largest β at 24.5 months=-3.04; 95% CI: [-5.79, -0.30]). Children born by C-section showed lower motor and language development scores during specific age windows in the first three years of life. Further research is necessary to understand the complexities and implications of these findings.
Collapse
Affiliation(s)
- Jimena Fritz
- Department of Perinatal Health, National Institute of Public Health, Av. Universidad 655, CP 62100, Cuernavaca, Mexico
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, National Institute of Public Health, Av. Universidad 655, CP 62100, Cuernavaca, Mexico.
| | - Teresa V Muñoz-Rocha
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Yanira Huerta-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Gisela Martínez-Silva
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Belem Trejo-Valdivia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | | | | | - Heather H Burris
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | | | | | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| |
Collapse
|
211
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
212
|
Hyder N, Abbas G, Ahmed A, Azhar M. Post-natal antibiotic exposure in mother rat (F0) induces anxiety like behavior in adult rat offspring (F1) by activating HPA axis and down-regulating the Nr3c1 gene. BRAZ J BIOL 2024; 84:e286928. [PMID: 39383417 DOI: 10.1590/1519-6984.286928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/03/2024] [Indexed: 10/11/2024] Open
Abstract
Early postnatal administration of antibiotics has been linked to lasting effects on brain development and behavior. Research conducted on animals that are free from germs has demonstrated that the impact of microbiome colonization on the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and neuroendocrine pathways is substantial, which play a crucial role in stress management. Nevertheless, it is still uncertain if the exposure to antibiotics in rat dams (F0-generation) before weaning is associated with neurobehavioral changes in rat offspring (F1-generation) during adulthood. In order to investigate the effects, we perturbed the intestinal microbiota of rat dams (F0 generation) by administering cefixime (CEF), an antibiotic commonly used for obstetric purposes, at clinically relevant doses (1 mg/kg, 2.5 mg/kg or 5 mg/kg). Anxiety-like behaviors in adult offspring was evaluated through the utilization of elevated plus maze (EPM) and open field paradigm (OFP) following a six-week interval from birth (PND42). Subsequent to behavioral assessments, the rats were euthanized, and their brains and blood was collected for biochemical analysis. Plasma corticosterone concentration was used to assess HPA activity, whereas the quantitative real-time polymerase chain reaction (PCR) was employed to determine the transcription levels of the glucocorticoid receptor (GR) Nr3c1. The offspring of F1 that were administered antibiotics before being weaned spent less time in the EPM open arm. The alterations were accompanied by increased levels of corticosterone in the bloodstream. The gene expression study revealed a decrease in the levels of mRNA transcription of Nr3c1. This research emphasizes the possible long-term effects of antibiotic exposure before weaning on the development of anxiety in offspring upon adulthood.
Collapse
Affiliation(s)
- N Hyder
- Hamdard University, Department of Pharmacology, Faculty of Pharmacy, Karachi, Pakistan
- University of Karachi, HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi, Pakistan
| | - G Abbas
- Ziauddin University, Faculty of Pharmacy, Department of Pharmacology, Karachi, Pakistan
| | - A Ahmed
- University of Karachi, International Center for Chemical and Biological Sciences, Panjwani Center for Molecular Medicine and Drug Research, Karachi, Pakistan
| | - M Azhar
- Salim Habib University, Faculty of Pharmacy, Karachi, Pakistan
| |
Collapse
|
213
|
Zhang H, Yan S, Du R, Xue Y, Yao W, Teligun, Zhao Y, Li Y, Bao H, Cao S, Li X, Bao S, Song Y. Cadmium exposure promotes inflammation through the PPAR signaling pathway in the small intestine and colon of Hu sheep. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117004. [PMID: 39270416 DOI: 10.1016/j.ecoenv.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
With the increase of cadmium content in the environment, the losses caused by cadmium-induced intestinal diseases to animal husbandry are increasing year by year. However, most of the on-going research activities focus on zoonotic diseases rather than exploring the mechanisms of animal disease occurrence from an anthropogenic environmental perspective. In this study, stressed Hu sheep under cadmium environmental exposure were selected to explore the mechanism of inflammatory bowel disease development. 16 s, untargeted metabolomics and transcriptomic multiomics were used to analyze the changes of their intestinal tract and intestinal contents. The results showed that the beneficial microorganisms (s_Ruminococcus_sp) in the Cd group were significantly decreased and the potentially harmful microorganisms were significantly enriched, and the changes of these microorganisms affected the changes of metabolites (caprylic acid) to a certain extent, resulting in a decrease in fatty acids in the intestine. Due to the combined effect of cadmium ion and fatty acid reduction, the PPAR signaling pathway was inhibited, and the fatty acid transport and binding were further reduced, causing very serious damage to the intestine. We revealed for the first time the mechanism of intestinal injury in Hu sheeps under cadmium environmental exposure and provided new prevention and treatment methods of intestinal diseases under the environmental exposure to trace metals.
Collapse
Affiliation(s)
- Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Teligun
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yongfa Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Hanggai Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| |
Collapse
|
214
|
Shukla V, Singh S, Verma S, Verma S, Rizvi AA, Abbas M. Targeting the microbiome to improve human health with the approach of personalized medicine: Latest aspects and current updates. Clin Nutr ESPEN 2024; 63:813-820. [PMID: 39178987 DOI: 10.1016/j.clnesp.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
The intricate ecosystem of microorganisms residing within and on the human body, collectively known as the microbiome, significantly influences human health. Imbalances in this microbiome, referred to as dysbiosis, have been associated with various diseases, prompting the exploration of novel therapeutic approaches. Personalized medicine, Tailors treatments to individual patient characteristics, offers a promising avenue for addressing microbiome-related health issues. This review highlights recent developments in utilizing personalized medicine to target the microbiome, aiming to enhance health outcomes. Noteworthy strategies include fecal microbiota transplantation (FMT), where healthy donor microbes are transferred to patients, showing promise in treating conditions such as recurrent Clostridium difficile infection. Additionally, probiotics, which are live microorganisms similar to beneficial gut inhabitants, and prebiotics, non-digestible compounds promoting microbial growth, are emerging as tools to restore microbiome balance. The integration of these approaches, known as synbiotics, enhances microbial colonization and therapeutic effects. Advances in metagenomics and sequencing technologies provide the means to understand individual microbiome profiles, enabling tailored interventions. This paper aims to present the latest insights in leveraging personalized medicine to address microbiome-related health concerns, envisioning a future where microbiome-based therapies reshape disease management and promote human health.
Collapse
Affiliation(s)
- Vani Shukla
- Department of Food and Nutrition, Era University, Lucknow 226003, Uttar Pradesh, India
| | - Shikha Singh
- Department of Food and Nutrition, Era University, Lucknow 226003, Uttar Pradesh, India.
| | - Shrikant Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow 226003, Uttar Pradesh, India
| | - Sushma Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow 226003, Uttar Pradesh, India
| | - Aliya Abbas Rizvi
- Department of Personalized and Molecular Medicine, Era University, Lucknow 226003, Uttar Pradesh, India
| | - Mohammad Abbas
- Department of Personalized and Molecular Medicine, Era University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
215
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
216
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
217
|
Li B, Ma Y, Wang X, Zhao D, Wang Z, Wang G, Li C, Yang L, Ji H, Liu K, Chen Q, Yang Y, Ma W, Du J, Ma L, Zhang L, Qiang Y. Ketogenic Diets Alter the Gut Microbiome, Resulting in Decreased Susceptibility to and Cognitive Impairment in Rats with Pilocarpine-Induced Status Epilepticus. Neurochem Res 2024; 49:2726-2742. [PMID: 38935224 DOI: 10.1007/s11064-024-04168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
A ketogenic diet (KD) is a high-fat, low-carbohydrate, and low-protein diet that exerts antiepileptic effects by attenuating spontaneous recurrent seizures, ameliorating learning and memory impairments, and modulating the gut microbiota composition. However, the role of the gut microbiome in the antiepileptic effects of a KD on temporal lobe epilepsy (TLE) induced by lithium-pilocarpine in adult rats is still unknown. Our study provides evidence demonstrating that a KD effectively mitigates seizure behavior and reduces acute-phase epileptic brain activity and that KD treatment alleviates hippocampal neuronal damage and improves cognitive impairment induced by TLE. We also observed that the beneficial effects of a KD are compromised when the gut microbiota is disrupted through antibiotic administration. Analysis of gut microbiota components via 16S rRNA gene sequencing in fecal samples collected from TLE rats fed either a KD or a normal diet. The Chao1 and ACE indices showed decreased species variety in KD-fed rats compared to TLE rats fed a normal diet. A KD increased the levels of Actinobacteriota, Verrucomicrobiota and Proteobacteria and decreased the level of Bacteroidetes. Interestingly, the abundances of Actinobacteriota and Verrucomicrobiota were positively correlated with learning and memory ability, and the abundance of Proteobacteria was positively correlated with seizure susceptibility. In conclusion, our study revealed the significant antiepileptic and neuroprotective effects of a KD on pilocarpine-induced epilepsy in rats, primarily mediated through the modulation of the gut microbiota. However, whether the gut microbiota mediates the antiseizure effects of a KD still needs to be better elucidated.
Collapse
Affiliation(s)
- Bianli Li
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yue Ma
- Shenzhen MicroBT Technology Co., LTD, Yuehai Street, Nanshan District, Shenzhen, 518000, Guangdong, China
| | - Xuhui Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Di Zhao
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, 301 Zhengyuan North Road, Yinchuan, 750001, Ningxia, China
| | - Ziqin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Guoyang Wang
- Third Clinical School of Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Chunyi Li
- Basic Medical School, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Lin Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Hui Ji
- Third Clinical School of Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Qiuyuan Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yong Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Wenqian Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Jianbin Du
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Lei Ma
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China.
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
218
|
Saha P, Sisodia SS. Role of the gut microbiome in mediating sex-specific differences in the pathophysiology of Alzheimer's disease. Neurotherapeutics 2024; 21:e00426. [PMID: 39054179 PMCID: PMC11585881 DOI: 10.1016/j.neurot.2024.e00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) presents distinct pathophysiological features influenced by biological sex, with women disproportionately affected due to sex-specific genetic, hormonal, and epigenetic factors. This review delves into three critical areas of sex differences in AD: First, we explore how genetic predisposition and hormonal changes, particularly those involving sex-specific modifications, influence susceptibility and progression of the disease. Second, we examine the neuroimmune dynamics in AD, emphasizing variations in microglial activity between sexes during crucial developmental stages and the effects of hormonal interventions on disease outcomes. Crucially, this review highlights the significant role of gut microbiome perturbations in shaping AD pathophysiology in a sex-specific manner, suggesting that these alterations can further influence microglial activity and overall disease trajectory. Third, we provide a viewpoint that advocates for personalized therapeutic strategies that integrate the understanding of hormonal fluctuations and microbiome dynamics into treatment plans in order to optimize patient outcomes.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
219
|
Navalpur Shanmugam NK, Eimer WA, Vijaya Kumar DK, Tanzi RE. The brain pathobiome in Alzheimer's disease. Neurotherapeutics 2024; 21:e00475. [PMID: 39510900 PMCID: PMC11585897 DOI: 10.1016/j.neurot.2024.e00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Nanda Kumar Navalpur Shanmugam
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - William A Eimer
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Deepak K Vijaya Kumar
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
220
|
Kazemian N, Pakpour S. Understanding the impact of the gut microbiome on opioid use disorder: Pathways, mechanisms, and treatment insights. Microb Biotechnol 2024; 17:e70030. [PMID: 39388360 PMCID: PMC11466222 DOI: 10.1111/1751-7915.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread use of opioids for chronic pain management not only poses a significant public health issue but also contributes to the risk of tolerance, dependence, and addiction, leading to opioid use disorder (OUD), which affects millions globally each year. Recent research has highlighted a potential bidirectional relationship between the gut microbiome and OUD. This emerging perspective is critical, especially as the opioid epidemic intensifies, emphasizing the need to investigate how OUD may alter gut microbiome dynamics and vice versa. Understanding these interactions could reveal new insights into the mechanisms of addiction and tolerance, as well as provide novel approaches for managing and potentially mitigating OUD impacts. This comprehensive review explores the intricate bidirectional link through the gut-brain axis, focusing on how opiates influence microbial composition, functional changes, and gut mucosal integrity. By synthesizing current findings, the review aims to inspire new strategies to combat the opioid crisis and leverage microbiome-centred interventions for preventing and treating OUD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Sepideh Pakpour
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
221
|
Pak SW, Shin YS, Park HJ. The Relationship between Gut Microbiota and Prostate Health. World J Mens Health 2024; 42:663-666. [PMID: 38772532 PMCID: PMC11439811 DOI: 10.5534/wjmh.240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Shang Weon Pak
- Department of Urology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Yu Seob Shin
- Department of Urology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea.
| | - Hyun Jun Park
- Department of Urology, Medical Research Institute of Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.
| |
Collapse
|
222
|
Zhu F, Sun K, Zhang H, Lu J, Guo P, Zhang J, Xu Y, Lyu B. Comparative Analyses of Lycodon rufozonatus and Lycodon rosozonatus Gut Microbiota in Different Regions. Ecol Evol 2024; 14:e70480. [PMID: 39440211 PMCID: PMC11495892 DOI: 10.1002/ece3.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The interactions between hosts and the gut microbiota are intricate and can significantly affect the ecology and evolution of both parties. Various host traits, including taxonomy, diet, social behaviour, and external factors such as prey availability and the local environment, all play an important role in shaping composition and diversity of the gut microbiogta. In this study, we explored the impact of intestinal microorganisms on the host in adapting to their respective ecological niches in two species of snakes. We collected feces from Lycodon rufozonatus and Lycodon rosozonatus from different geographical locations and used 16S rRNA gene sequencing technology to sequence the v3-v4 region. The results revealed that there was no significant difference in the alpha diversity of intestinal microorganisms between L. rufozonatus and L. rosozonatus. The gut microbiota of all individuals comprised four main phyla: Pseudomonadota, Bacteroidota, Bacillota, and Actinomycetota. At the genus level, the genus Salmonella dominated the enterobacterial microbiota in the samples from Hainan, while there was no obvious dominant genus in the enterobacterial microbiota of the samples from the other four localities. Comparative analysis of enzyme families annotated to the gut microbiota between L. rufozonatus and L. rosozonatus from the four sampling regions by CAZy carbohydrate annotation revealed that nine enzyme families differed significantly in terms of glycoside hydrolases (GHs). In addition, we compared the composition of gut microbial communities between L. rufozonatus and L. rosozonatus and investigated the impact of the differences on their functions. Our results will provide insights into the coevolution of host and gut microbes.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Ke Sun
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - He Zhang
- Guizhou Academy of ForestryGuiyangGuizhouChina
| | - Jing Lu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Jiaqi Zhang
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| |
Collapse
|
223
|
Costantini M, Videvall E, Foster J, Medeiros M, Gillece J, Paxton E, Crampton L, Mounce H, Wang A, Fleischer R, Campana M, Reed F. The Role of Geography, Diet, and Host Phylogeny on the Gut Microbiome in the Hawaiian Honeycreeper Radiation. Ecol Evol 2024; 14:e70372. [PMID: 39416467 PMCID: PMC11480636 DOI: 10.1002/ece3.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The animal gut microbiome can have a strong influence on the health, fitness, and behavior of its hosts. The composition of the gut microbial community can be influenced by factors such as diet, environment, and evolutionary history (phylosymbiosis). However, the relative influence of these factors is unknown in most bird species. Furthermore, phylosymbiosis studies have largely focused on clades that diverged tens of millions of years ago, and little is known about the degree of gut microbiome divergence in more recent species radiations. This study explores the drivers of microbiome variation across the unique and recent Hawaiian honeycreeper radiation (Fringillidae: Drepanidinae). Fecal samples were collected from 14 extant species spanning the main islands of the Hawaiian archipelago and were sequenced using three metabarcoding markers to characterize the gut microbiome, invertebrate diet, and plant diet of Hawaiian honeycreepers. We then used these metabarcoding data and the honeycreeper host phylogeny to evaluate their relative roles in shaping the gut microbiome. Microbiome variation across birds was highly individualized; however, source island had a small but significant effect on microbiome structure. The microbiomes did not recapitulate the host phylogenetic tree, indicating that evolutionary history does not strongly influence microbiome structure in the honeycreeper clade. These results expand our understanding of the roles of diet, geography, and phylogeny on avian microbiome structure, while also providing important ecological information about the diet and gut microbiota of wild Hawaiian honeycreepers.
Collapse
Affiliation(s)
- Maria S. Costantini
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- Department of Ecology, Evolution and Organismal BiologyBrown UniversityProvidenceRhode IslandUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRhode IslandUSA
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jeffrey T. Foster
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Matthew C. I. Medeiros
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - John D. Gillece
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research CenterU.S. Geological SurveyHawai'i National ParkHawai'iUSA
| | - Lisa H. Crampton
- Kaua'i Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - Hanna L. Mounce
- Maui Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaMakawaoHawai'iUSA
| | - Alex X. Wang
- Hawai'i Division of Forestry and WildlifeHiloHawai'iUSA
| | - Robert C. Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Floyd A. Reed
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| |
Collapse
|
224
|
Steckler R, Magzal F, Kokot M, Walkowiak J, Tamir S. Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids. Brain Behav Immun Health 2024; 40:100829. [PMID: 39184374 PMCID: PMC11342906 DOI: 10.1016/j.bbih.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Background Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with complex genetic and environmental underpinnings. Emerging evidence suggests a significant role of gut microbiota in ADHD pathophysiology. This study investigates variations in gut microbiota composition and Short-Chain Fatty Acid (SCFA) profiles between children and adolescents with ADHD and healthy controls. Methods The study included 42 ADHD patients and 31 healthy controls, aged 6-18 years. Fecal samples were analyzed for microbial composition using 16S rRNA gene sequencing and for SCFA profiles through gas chromatography-mass spectrometry (GC-MS). The study assessed both α and β diversity of gut microbiota and quantified various SCFAs to compare between the groups. Results ADHD subjects demonstrated significantly reduced gut microbiota diversity, as indicated by lower α-diversity indices (Shannon index, Observed species, Faith PD index) and a trend towards significance in β-diversity (Weighted UniFrac). Notably, the ADHD group exhibited significantly lower levels of key SCFAs, including acetic, propionic, isobutyric, isovaleric, and valeric acids, highlighting a distinct microbial and metabolic profile in these individuals. Conclusion This study uncovers significant alterations in gut microbiota and SCFA profiles in children with ADHD, compared to healthy controls. The observed changes in SCFAs, known for their associations with other behavioral and neurologic pathologies, and for their role in neural signaling. These findings offer a metabolite fingerprint that could potentially lead to novel diagnostic and treatment approaches for ADHD, emphasizing the importance of gut microbiota in the disorder's pathogenesis and management.
Collapse
Affiliation(s)
- Rafi Steckler
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Faiga Magzal
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Marta Kokot
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Snait Tamir
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| |
Collapse
|
225
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
226
|
Acton S, O'Donnell MM, Periyasamy K, Dixit B, Eishingdrelo H, Hill C, Paul Ross R, Chesnel L. LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models. Brain Behav Immun 2024; 121:384-402. [PMID: 39147172 DOI: 10.1016/j.bbi.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
227
|
Cao Y, Zhang X, Zhang Q, Fan X, Zang T, Bai J, Wu Y, Zhou W, Liu Y. Prenatal Gut Microbiota Predicts Temperament in Offspring at 1-2 Years. Biol Res Nurs 2024; 26:569-583. [PMID: 38865156 DOI: 10.1177/10998004241260894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The purpose of this study was to explore whether prenatal gut microbiota (GM) and its functions predict the development of offspring temperament. A total of 53 mothers with a 1-year-old child and 41 mothers with a 2-year-old child were included in this study using a mother-infant cohort from central China. Maternal fecal samples collected during the third trimester were analyzed using 16S rRNA V3-V4 gene sequences. Temperament of the child was measured by self-reported data according to the primary caregiver. The effects of GM in mothers on offspring's temperament were evaluated using multiple linear regression models. The results demonstrated that the alpha diversity index Simpson of prenatal GM was positively associated with the activity level of offspring at 1 year (adj. P = .036). Bifidobacterium was positively associated with high-intensity pleasure characteristics of offspring at 1 year (adj. P = .031). Comparatively, the presence of Bifidobacterium found in the prenatal microbiome was associated with low-intensity pleasure characteristics in offspring at 2 years (adj. P = .031). There were many significant associations noted among the functional pathways of prenatal GM and temperament of offspring at 2 years. Our findings support the maternal-fetal GM axis in the setting of fetal-placental development with subsequent postnatal neurocognitive developmental outcomes, and suggest that early childhood temperament is in part associated with specific GM in the prenatal setting.
Collapse
Affiliation(s)
- Yanan Cao
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Xu Zhang
- Wuhan University School of Nursing, Wuhan, China
| | - Qianping Zhang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Yuanyuan Wu
- Department of Nursing, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Wenjie Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan, China
| |
Collapse
|
228
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
229
|
Cabirol A, Chhun A, Liberti J, Kesner L, Neuschwander N, Schaerli Y, Engel P. Fecal transplant allows transmission of the gut microbiota in honey bees. mSphere 2024; 9:e0026224. [PMID: 39158277 PMCID: PMC11423570 DOI: 10.1128/msphere.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The study of the fecal microbiota is crucial for unraveling the pathways through which gut symbionts are acquired and transmitted. While stable gut microbial communities are essential for honey bee health, their modes of acquisition and transmission are yet to be confirmed. The gut of honey bees is colonized by symbiotic bacteria within 5 days after emergence from their wax cells as adults. Few studies have suggested that bees could be colonized in part via contact with fecal matter in the hive. However, the composition of the fecal microbiota is still unknown. It is particularly unclear whether all bacterial species can be found viable in the feces and can therefore be transmitted to newborn nestmates. Using 16S rRNA gene amplicon sequencing, we revealed that the composition of the honey bee fecal microbiota is strikingly similar to the microbiota of entire guts. We found that fecal transplantation resulted in gut microbial communities similar to those obtained from feeding gut homogenates. Our study shows that fecal sampling and transplantation are viable tools for the non-invasive analysis of bacterial community composition and host-microbe interactions. It also implies that contact of young bees with fecal matter in the hive is a plausible route for gut microbiota acquisition. IMPORTANCE Honey bees are crucial pollinators for many crops and wildflowers. They are also powerful models for studying microbiome-host interactions. However, current methods rely on gut tissue disruption to analyze microbiota composition and use gut homogenates to inoculate microbiota-deprived bees. Here, we provide two new and non-invasive approaches that will open doors to longitudinal studies: fecal sampling and transplantation. Furthermore, our findings provide insights into gut microbiota transmission in social insects by showing that ingestion of fecal matter can result in gut microbiota acquisition.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Neuschwander
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
230
|
Zhang J, Zhao X, Xu H, Liu X, He Y, Tan X, Gu J. NMN synbiotics intervention modulates gut microbiota and metabolism in APP/PS1 Alzheimer's disease mouse models. Biochem Biophys Res Commun 2024; 726:150274. [PMID: 38924882 DOI: 10.1016/j.bbrc.2024.150274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of β-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aβ deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jianing Zhang
- College of Biological Science and Technology, University of Jinan, 250022, China
| | - Xiaodong Zhao
- College of Biological Science and Technology, University of Jinan, 250022, China
| | - Huilian Xu
- College of Biological Science and Technology, University of Jinan, 250022, China
| | - Xiaoyong Liu
- College of Biological Science and Technology, University of Jinan, 250022, China
| | - Yan He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, 250022, China.
| |
Collapse
|
231
|
Værøy H, Skar-Fröding R, Hareton E, Fetissov SO. Possible roles of neuropeptide/transmitter and autoantibody modulation in emotional problems and aggression. Front Psychiatry 2024; 15:1419574. [PMID: 39381606 PMCID: PMC11458397 DOI: 10.3389/fpsyt.2024.1419574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The theoretical foundations of understanding psychiatric disorders are undergoing changes. Explaining behaviour and neuroendocrine cell communication leaning towards immunology represents a different approach compared to previous models for understanding complex central nervous system processes. One such approach is the study of immunoglobulins or autoantibodies, and their effect on peptide hormones in the neuro-endocrine system. In the present review, we provide an overview of the literature on neuropeptide/transmitter and autoantibody modulation in psychiatric disorders featuring emotional problems and aggression, including associated illness behaviour. Finally, we discuss the role of psycho-immunology as a growing field in the understanding of psychiatric disorders, and that modulation and regulation by IgG autoAbs represent a relatively new subcategory in psycho-immunology, where studies are currently being conducted.
Collapse
Affiliation(s)
- Henning Værøy
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Regina Skar-Fröding
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Elin Hareton
- Department of Multidiciplinary Laboratory Medicine and Medical Biochemistry, (TLMB), Akershus University Hospital, Lørenskog, Norway
| | - Sergueï O. Fetissov
- Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
232
|
Waddington JL, Wang X, Zhen X. 'Whole-Body' Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules 2024; 14:1185. [PMID: 39334950 PMCID: PMC11430658 DOI: 10.3390/biom14091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
A wide array of biological abnormalities in psychotic illness appear to reflect non-cerebral involvement. This review first outlines the evidence for such a whole-body concept of schizophrenia pathobiology, focusing particularly on cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. It then considers the roles of miRNAs in general and of miRNA-143 in particular as they relate to the epidemiology, pathobiology, and treatment of schizophrenia. This is followed by notable evidence that miRNA-143 is also implicated in each of these domains of cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. Thus, miRNA-143 is an exemplar of what may be a class of molecules that play a role across the multiple domains of bodily dysfunction that appear to characterize a whole-body perspective of illness in schizophrenia. Importantly, the existence of such an exemplary molecule across these multiple domains implies a coordinated rather than stochastic basis. One candidate process would be a pleiotropic effect of genetic risk for schizophrenia across the whole body.
Collapse
Affiliation(s)
- John L. Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| |
Collapse
|
233
|
Nekrasov E, Vita AA, Bradley R, Contractor N, Gunaratne NM, Kuehn M, Kitisin R, Patel D, Woods E, Zhou B. Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients 2024; 16:3173. [PMID: 39339773 PMCID: PMC11434699 DOI: 10.3390/nu16183173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A recent review proposed a role for multi-functional food or supplement products in priming the gut to support both digestive and systemic health. Accordingly, we designed and eva-luated the effect of a multi-functional gastrointestinal (GI) primer supplement on participant-reported measures for digestive health, quality-of-life (e.g., energy/vitality and general health), and reasons for satiation (e.g., attitudes towards food and eating). In this single-arm clinical trial, 68 participants with mild digestive symptoms consumed the GI primer supplement daily for 14 days. Digestive symptoms were evaluated daily from baseline (Day 0) through Day 14. At baseline and Day 14, participants reported their stool consistency, reasons for satiation, and quality-of-life measures using validated questionnaires. At Day 14, participants reported significant improvements in all (13/13) digestive symptom parameters (p-values < 0.05) and an increase in % of stools with normal consistencies. There were significant improvements (p-values < 0.05) in energy/vitality and general health, and in specific attitudes towards food and eating (e.g., physical satisfaction, planned amount, decreased eating priority, decreased food appeal, and self-consciousness). Results suggest the GI primer supplement promotes digestive health, improves quality of life, and impacts attitudes towards food/eating. This study provides preliminary support for the gut priming hypothesis through which multi-functional digestive products may improve GI health.
Collapse
Affiliation(s)
| | - Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Amway Innovation and Science, Buena Park, CA 90621, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, CA 92093, USA
| | | | | | - Marissa Kuehn
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Rick Kitisin
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Deval Patel
- Amway Innovation and Science, Ada, MI 49355, USA
| | - Erin Woods
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Bo Zhou
- Amway Innovation and Science, Buena Park, CA 90621, USA
| |
Collapse
|
234
|
Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo IE. Stress-sensitive neural circuits change the gut microbiome via duodenal glands. Cell 2024; 187:5393-5412.e30. [PMID: 39121857 PMCID: PMC11425084 DOI: 10.1016/j.cell.2024.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.
Collapse
Affiliation(s)
- Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Matthew H Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leonardo S Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tong Zhang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou 510180, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen 72074, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tübingen 72076, Germany
| | - Ruth E Ley
- Max-Planck Institute for Biology, Tübingen 72076, Germany
| | - Wenfei Han
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| |
Collapse
|
235
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
236
|
Shatunova S, Aktar R, Peiris M, Lee JYP, Vetter I, Starobova H. The role of the gut microbiome in neuroinflammation and chemotherapy-induced peripheral neuropathy. Eur J Pharmacol 2024; 979:176818. [PMID: 39029779 DOI: 10.1016/j.ejphar.2024.176818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Svetlana Shatunova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jia Yu Peppermint Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; The School of Pharmacy, The University of Queensland, Woollsiana, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
237
|
Geier TJ, Atkinson SN, Pan AY, Mantz-Wichman M, Jazinski-Chambers K, Hillard CJ, deRoon-Cassini TA. Differences in intestinal bacteria in traumatic injury survivors with and without probable posttraumatic stress disorder. J Affect Disord 2024; 361:528-535. [PMID: 38914163 DOI: 10.1016/j.jad.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a common consequence of traumatic injury, yet certain biological factors contributing to PTSD are poorly understood. The gut microbiome may influence mental health outcomes, but its role in heterogeneous PTSD presentations requires elucidation. METHODS Bacterial composition was examined in adults 2-4 years post-trauma with probable PTSD (n = 24) versus trauma-exposed controls without probable PTSD (n = 24). 16S rRNA sequencing and bioinformatic tools assessed microbial diversity and abundance. Relationships between taxa and PTSD symptom clusters were evaluated. RESULTS No differences were found in overall microbial community structure between groups. The probable PTSD group exhibited significantly reduced Actinobacteriota and increased Verrucomicrobiota phylum abundance compared to controls. Specific taxa showed notable inverse associations with negative mood/cognition versus hyperarousal symptoms. Prevotella and Ruminococcaceae were negatively associated with negative mood but positively associated with hyperarousal. CONCLUSIONS Results demonstrate microbial signatures of probable PTSD subtypes, highlighting the microbiome as a potential mediator of heterogeneous trauma psychopathology. Definition of PTSD microbial correlates provides a foundation for personalized psychobiotic interventions targeting predominant symptom profiles.
Collapse
Affiliation(s)
- Timothy J Geier
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Samantha N Atkinson
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amy Y Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Margo Mantz-Wichman
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kelley Jazinski-Chambers
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Terri A deRoon-Cassini
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America; Comprehensive Injury Center, Division of Data Surveillance and Informatics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
238
|
Liu Y, Zhang L, Yang C, Zhi L, Steven Xu X, Yuan M. Oral microbiome diversity shapes the association between sleep duration and depression. Front Neurol 2024; 15:1442557. [PMID: 39346766 PMCID: PMC11427320 DOI: 10.3389/fneur.2024.1442557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background Emerging research suggests the relationship between the oral microbiome and sleep duration with depression, however, the precise mechanisms by which oral microbial diversity influences the sleep-depression nexus remain to be elucidated. Methods We analyzed data from 4,692 participants in the National Health and Nutrition Examination Survey (NHANES), incorporating key demographic variables, oral microbiome diversity metrics, sleep duration, and depression assessment variables. Classical multidimensional scaling facilitated dimensionality reduction, while unsupervised clustering divided participants into groups based on β-diversity dissimilarity matrices. We examined the moderating effects of oral microbiome diversity on the sleep-depression relationship by incorporating interaction terms sleep-oral microbiome diversity into multiple linear regression models. Results Our analysis revealed a U-shaped relationship between sleep duration and depression. Specifically, α-diversity was a significant moderator, with reduced diversity linked to an increased depression risk in participants with insufficient sleep. Regarding β-diversity, using both Bray-Curtis and UniFrac distance measures, Cluster 2 exhibited the strongest associations in sleep-deprived individuals (Bray-Curtis: β = 1.02, p < 0.001; Weighted UniFrac: β = 0.91, p < 0.001). In contrast, Cluster 1 displayed notable effects in individuals with excessive sleep (Bray-Curtis: β = 0.63, p = 0.008). Additionally, Cluster 3 was prominently associated with depression in sleep-deprived participants using unweighted UniFrac distance (β = 0.93, p < 0.001), and Cluster 2 was significant among those with excessive sleep across both unweighted (β = 0.80, p = 0.0004) and weighted UniFrac distances (β = 0.60, p = 0.001). Conclusion This study highlights the crucial role of oral microbiome diversity in moderating the U-shaped relationship between sleep duration and depression risk.
Collapse
Affiliation(s)
- Yan Liu
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Ling Zhang
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Can Yang
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Liping Zhi
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Xu Steven Xu
- Clinical Pharmacology and Quantitative Science, Genmab Inc., Princeton, NJ, United States
| | - Min Yuan
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
| |
Collapse
|
239
|
Liberti J, Frank ET, Kay T, Kesner L, Monié--Ibanes M, Quinn A, Schmitt T, Keller L, Engel P. Gut microbiota influences onset of foraging-related behavior but not physiological hallmarks of division of labor in honeybees. mBio 2024; 15:e0103424. [PMID: 39072646 PMCID: PMC11389387 DOI: 10.1128/mbio.01034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbes can impact cognition and behavior, but whether they regulate the division of labor in animal societies is unknown. We addressed this question using honeybees since they exhibit division of labor between nurses and foragers and because their gut microbiota can be manipulated. Using automated behavioral tracking and controlling for co-housing effects, we show that gut microbes influence the age at which bees start expressing foraging-like behaviors in the laboratory but have no effects on the time spent in a foraging arena and number of foraging trips. Moreover, the gut microbiota did not influence hallmarks of behavioral maturation such as body weight, cuticular hydrocarbon profile, hypopharyngeal gland size, gene expression, and the proportion of bees maturing into foragers. Overall, this study shows that the honeybee gut microbiota plays a role in controlling the onset of foraging-related behavior without permanent consequences on colony-level division of labor and several physiological hallmarks of behavioral maturation. IMPORTANCE The honeybee is emerging as a model system for studying gut microbiota-host interactions. Previous studies reported gut microbiota effects on multiple worker bee phenotypes, all of which change during behavioral maturation-the transition from nursing to foraging. We tested whether the documented effects may stem from an effect of the microbiota on behavioral maturation. The gut microbiota only subtly affected maturation: it accelerated the onset of foraging without affecting the overall proportion of foragers or their average output. We also found no effect of the microbiota on host weight, cuticular hydrocarbon (CHC) profile, hypopharyngeal gland size, and the expression of behavioral maturation-related genes. These results are inconsistent with previous studies reporting effects of the gut microbiota on bee weight and CHC profile. Our experiments revealed that co-housed bees tend to converge in behavior and physiology, suggesting that spurious associations may emerge when rearing environments are not replicated sufficiently or accounted for analytically.
Collapse
Affiliation(s)
- Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Erik T. Frank
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Andrew Quinn
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
240
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
241
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
242
|
Cabirol A, Moriano-Gutierrez S, Engel P. Neuroactive metabolites modulated by the gut microbiota in honey bees. Mol Microbiol 2024; 122:284-293. [PMID: 37718573 DOI: 10.1111/mmi.15167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Honey bees have emerged as a new model to study the gut-brain axis, as they exhibit complex social behaviors and cognitive abilities, while experiments with gnotobiotic bees have revealed that their gut microbiota alters both brain and behavioral phenotypes. Furthermore, while honey bee brain functions supporting a broad range of behaviors have been intensively studied for over 50 years, the gut microbiota of bees has been experimentally characterized only recently. Here, we combined six published datasets from metabolomic analyses to provide an overview of the neuroactive metabolites whose abundance in the gut, hemolymph and brain varies in presence of the gut microbiota. Such metabolites may either be produced by gut bacteria, released from the pollen grains during their decomposition by bacteria, or produced by other organs in response to different bacterial products. We describe the current state of knowledge regarding the impact of such metabolites on brain function and behavior and provide further hypotheses to explore in this emerging field of research.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
243
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
244
|
Sun T, Chen G, Jiang W, Xu W, You L, Jiang C, Chen S, Wang D, Zheng X, Yuan Y. Distinguishing bipolar depression, bipolar mania, and major depressive disorder by gut microbial characteristics. Bipolar Disord 2024; 26:584-594. [PMID: 38647010 DOI: 10.1111/bdi.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
245
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
246
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
247
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
248
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
249
|
Zhang P, Jin W, Lyu Z, Lyu X, Li L. Study on the mechanism of gut microbiota in the pathogenetic interaction between depression and Parkinson 's disease. Brain Res Bull 2024; 215:111001. [PMID: 38852651 DOI: 10.1016/j.brainresbull.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Depression and Parkinson's disease share pathogenetic characteristics, meaning that they can impact each other and exacerbate their respective progression. From a pathogenetic perspective, depression can develop into Parkinson's disease and is a precursor symptom of Parkinson's disease; Parkinson's disease is also often accompanied by depression. From a pharmacological perspective, the use of antidepressants increases the risk of developing Parkinson's disease, and therapeutic medications for Parkinson's disease can exacerbate symptoms of depression. Therefore, identifying how Parkinson's disease and depression impact each other in their development is key to formulating preventive measures and targeted treatment. One commonality in the pathogenesis of depression and Parkinson's disease are alterations in the gut microbiota, with mechanisms interacting in neural, immune inflammatory, and neuroendocrine pathways. This paper reviews the role of gut microbiota in the pathogenesis of depression and Parkinson's disease; conducts a study of the relationship between both conditions and medication; and suggests that dysregulated gut microbiota may be a key factor in explaining the relationship between Parkinson's disease and depression. Finally, on the basis of these findings, this article hopes to provide suggestions that new ideas for the prevention and treatment of depression and Parkinson's disease.
Collapse
Affiliation(s)
- Peiyun Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhaoshun Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxuan Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lihong Li
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
250
|
Liu D, Mei Y, Ji N, Zhang B, Feng X. Causal effect of gut microbiota on the risk of prostatitis: a two-sample Mendelian randomization study. Int Urol Nephrol 2024; 56:2839-2850. [PMID: 38573543 PMCID: PMC11322328 DOI: 10.1007/s11255-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Recent studies demonstrated that chronic prostatitis (CP) is closely related to the gut microbiota (GM). Nevertheless, the causal relationship between GM and CP has not been fully elucidated. Therefore, the two-sample Mendelian randomization (MR) analysis was employed to investigate this association. METHODS The summary data of gut microbiota derived from a genome-wide association study (GWAS) involving 18,340 individuals in the MiBioGen study served as the exposure, and the corresponding summary statistics for CP risk, representing the outcome, were obtained from the FinnGen databases (R9). The causal effects between GM and CP were estimated using the inverse-variance weighted (IVW) method supplemented with MR-Egger, weighted median, weighted mode, and simple mode methods. Additionally, the false discovery rate (FDR) correction was performed to adjust results. The detection and quantification of heterogeneity and pleiotropy were accomplished through the MR pleiotropy residual sum and outlier method, Cochran's Q statistics, and MR-Egger regression. RESULTS The IVW estimates indicated that a total of 11 GM taxa were related to the risk of CP. Seven of them was correlated with an increased risk of CP, while the remained linked with a decreased risk of CP. However, only Methanobacteria (OR 0.86; 95% CI 0.74-0.99), Methanobacteriales (OR 0.86; 95% CI 0.74-0.99), NB1n (OR 1.16; 95% CI 1.16-1.34), Methanobacteriaceae (OR 0.86; 95% CI 0.74-0.99), Odoribactergenus Odoribacter (OR 1.43; 95% CI 1.05-1.94), and Sutterellagenus Sutterella (OR 1.33; 95% CI 1.01-1.76) still maintain significant association with CP after FDR correction. Consistent directional effects for all analyses were observed in the supplementary methods. Subsequently, sensitivity analyses indicated the absence of heterogeneity, directional pleiotropy, or outliers concerning the causal effect of specific gut microbiota on CP (p > 0.05). CONCLUSION Our study demonstrated a gut microbiota-prostate axis, offering crucial data supporting the promising use of the GM as a candidate target for CP prevention, diagnosis, and treatment. There is a necessity for randomized controlled trials to validate the protective effect of the linked GM against the risk of CP, and to further investigate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Dalu Liu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, Jiangsu, China
| | - Nuo Ji
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bo Zhang
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xingliang Feng
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|