201
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
202
|
Duerre DJ, Galmozzi A. Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Front Endocrinol (Lausanne) 2022; 13:847291. [PMID: 35399946 PMCID: PMC8990929 DOI: 10.3389/fendo.2022.847291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
As a central coordinator of physiologic metabolism, adipose tissue has long been appreciated as a highly plastic organ that dynamically responds to environmental cues. Once thought of as a homogenous storage depot, recent advances have enabled deep characterizations of the underlying structure and composition of adipose tissue depots. As the obesity and metabolic disease epidemics continue to accelerate due to modern lifestyles and an aging population, elucidation of the underlying mechanisms that control adipose and systemic homeostasis are of critical importance. Within the past decade, the emergence of deep cell profiling at tissue- and, recently, single-cell level has furthered our understanding of the complex dynamics that contribute to tissue function and their implications in disease development. Although many paradigm-shifting findings may lie ahead, profound advances have been made to forward our understanding of the adipose tissue niche in both health and disease. Now widely accepted as a highly heterogenous organ with major roles in metabolic homeostasis, endocrine signaling, and immune function, the study of adipose tissue dynamics has reached a new frontier. In this review, we will provide a synthesis of the latest advances in adipose tissue biology made possible by the use of single-cell technologies, the impact of epigenetic mechanisms on adipose function, and suggest what next steps will further our understanding of the role that adipose tissue plays in systemic physiology.
Collapse
Affiliation(s)
- Dylan J. Duerre
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
203
|
Kirschner KM, Scholz H. WT1 in Adipose Tissue: From Development to Adult Physiology. Front Cell Dev Biol 2022; 10:854120. [PMID: 35372335 PMCID: PMC8965737 DOI: 10.3389/fcell.2022.854120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Much of the fascination of the Wilms tumor protein (WT1) emanates from its unique roles in development and disease. Ubiquitous Wt1 deletion in adult mice causes multiple organ failure including a reduction of body fat. WT1 is expressed in fat cell progenitors in visceral white adipose tissue (WAT) but detected neither in energy storing subcutaneous WAT nor in heat producing brown adipose tissue (BAT). Our recent findings indicate that WT1 represses thermogenic genes and maintains the white adipose identity of visceral fat. Wt1 heterozygosity in mice is associated with molecular and morphological signs of browning including elevated levels of uncoupling protein 1 (UCP1) in epididymal WAT. Compared to their wild-type littermates, Wt1 heterozygous mice exhibit significantly improved whole-body glucose tolerance and alleviated hepatic steatosis under high-fat diet. Partial protection of heterozygous Wt1 knockout mice against metabolic dysfunction is presumably related to browning of their epididymal WAT. In the light of recent advancements, this article reviews the role of WT1 in the development of visceral WAT and its supposed function as a regulator of white adipose identity.
Collapse
|
204
|
Localization of aquaglyceroporins in human and murine white adipose tissue. Histochem Cell Biol 2022; 157:623-639. [PMID: 35235046 DOI: 10.1007/s00418-022-02090-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.
Collapse
|
205
|
Nahmgoong H, Jeon YG, Park ES, Choi YH, Han SM, Park J, Ji Y, Sohn JH, Han JS, Kim YY, Hwang I, Lee YK, Huh JY, Choe SS, Oh TJ, Choi SH, Kim JK, Kim JB. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab 2022; 34:458-472.e6. [PMID: 35021043 DOI: 10.1016/j.cmet.2021.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.
Collapse
Affiliation(s)
- Hahn Nahmgoong
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yul Ji
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Seul Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jung Oh
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
206
|
Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, McGonagle E, Strobel S, Laber S, Agrawal S, Westcott GP, Kar A, Veregge ML, Gulko A, Srinivasan H, Kramer Z, De Filippis E, Merkel E, Ducie J, Boyd CG, Gourash W, Courcoulas A, Lin SJ, Lee BT, Morris D, Tobias A, Khera AV, Claussnitzer M, Pers TH, Giordano A, Ashenberg O, Regev A, Tsai LT, Rosen ED. A single-cell atlas of human and mouse white adipose tissue. Nature 2022; 603:926-933. [PMID: 35296864 PMCID: PMC9504827 DOI: 10.1038/s41586-022-04518-2] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Anja M Jørgensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Hesam Dashti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Stefek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Saaket Agrawal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amrita Kar
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly L Veregge
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary Kramer
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Scottsdale, AZ, USA
| | - Erin Merkel
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jennifer Ducie
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher G Boyd
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William Gourash
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anita Courcoulas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samuel J Lin
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bernard T Lee
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Morris
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Adam Tobias
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amit V Khera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
207
|
Liao X, Zhou H, Deng T. The composition, function, and regulation of adipose stem and progenitor cells. J Genet Genomics 2022; 49:308-315. [PMID: 35240306 DOI: 10.1016/j.jgg.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
White adipose tissue (WAT) is a highly plastic organ that plays a central role in regulating whole-body energy metabolism. Adipose stem and progenitor cells (ASPCs) are essential components of the stromal vascular fraction (SVF) of adipose tissue. They give rise to mature adipocytes and play a critical role in maintaining adipose tissue function. However, the molecular heterogeneity and functional diversity of ASPCs are still poorly understood. Recently, single-cell RNA sequencing (scRNA-seq) analysis has identified distinct subtypes of ASPCs in murine and human adipose tissues, providing new insights into the cellular complexity of ASPCs among multiple fat depots. This review summarizes the current knowledge on ASPC populations, including their markers, functions, and regulatory mechanisms. Targeting one or several of these cell populations may ameliorate metabolic disorders by promoting adaptive hyperplastic adipose growth.
Collapse
Affiliation(s)
- Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
208
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
209
|
Abstract
PURPOSE OF REVIEW Lymphatic vessels are found in most tissues, with the exception of the cornea and the central nervous system. Tissues that have high exposure to antigens, such as the skin and the intestine, have especially extensive lymphatic vascular networks. Despite being densely vascularized with blood vessels, adipose tissue is poorly permeated with lymphatic vasculature. Here, we focus on the recent advances in the research on adipose tissue lymphatics and present a lymphatic-focused analysis of published single-cell and single-nucleus RNA sequencing datasets of adipose tissues. RECENT FINDINGS Although lymphatic expansion in obesity may limit inflammation and promote glycerol efflux from adipose tissue, lymphatic endothelial cells (LECs) secrete factors that reduce brown adipocyte thermogenesis. Transcriptomic analyses of these cells show that they express common lymphatic markers such as Prox1, but datasets from different studies show great variation in gene expression values due to the low number of captured LECs, depot differences, and species-specific gene expression patterns. SUMMARY As the importance of LECs in the homeostasis of adipose tissue has become evident, investigators want to shed light on the specific interactions of lymphatics with other cell types in adipose tissues. Extracting LECs from readily available transcriptomics datasets provides a standpoint for investigators for future research. However, systematic studies are needed to reveal unique identities according to depot and species-specific LEC signatures.
Collapse
|
210
|
Rabhi N, Desevin K, Belkina AC, Tilston-Lunel A, Varelas X, Layne MD, Farmer SR. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci Alliance 2022; 5:5/5/e202101286. [PMID: 35181634 PMCID: PMC8860101 DOI: 10.26508/lsa.202101286] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study demonstrates that senescent CD9+ macrophages in obese visceral fat of mice secrete osteopontin that promotes ECM deposition by adipogenic progenitor cells expressing Pdgfra and Pdgfrb. Adipose tissue fibrosis is regulated by the chronic and progressive metabolic imbalance caused by differences in caloric intake and energy expenditure. By exploring the cellular heterogeneity within fibrotic adipose tissue, we demonstrate that early adipocyte progenitor cells expressing both platelet-derived growth factor receptor (PDGFR) α and β are the major contributors to extracellular matrix deposition. We show that the fibrotic program is promoted by senescent macrophages. These macrophages were enriched in the fibrotic stroma and exhibit a distinct expression profile. Furthermore, we demonstrate that these cells display a blunted phagocytotic capacity and acquire a senescence-associated secretory phenotype. Finally, we determined that osteopontin, which was expressed by senescent macrophages in the fibrotic environment promoted progenitor cell proliferation, fibrotic gene expression, and inhibited adipogenesis. Our work reveals that obesity promotes macrophage senescence and provides a conceptual framework for the discovery of rational therapeutic targets for metabolic and inflammatory disease associated with obesity.
Collapse
Affiliation(s)
- Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen Desevin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
211
|
Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cell Mol Life Sci 2022; 79:139. [PMID: 35184223 PMCID: PMC8858922 DOI: 10.1007/s00018-022-04169-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
The adipose
organ comprises two main fat depots termed white and brown adipose tissues. Adipogenesis is a process leading to newly differentiated adipocytes starting from precursor cells, which requires the contribution of many cellular activities at the genome, transcriptome, proteome, and metabolome levels. The adipogenic program is accomplished through two sequential phases; the first includes events favoring the commitment of adipose tissue stem cells/precursors to preadipocytes, while the second involves mechanisms that allow the achievement of full adipocyte differentiation. While there is a very large literature about the mechanisms involved in terminal adipogenesis, little is known about the first stage of this process. Growing interest in this field is due to the recent identification of adipose tissue precursors, which include a heterogenous cell population within different types of adipose tissue as well as within the same fat depot. In addition, the alteration of the heterogeneity of adipose tissue stem cells and of the mechanisms involved in their commitment have been linked to adipose tissue development defects and hence to the onset/progression of metabolic diseases, such as obesity. For this reason, the characterization of early adipogenic events is crucial to understand the etiology and the evolution of adipogenesis-related pathologies, and to explore the adipose tissue precursors’ potential as future tools for precision medicine.
Collapse
|
212
|
Bonfante ILP, Monfort-Pires M, Duft RG, da Silva Mateus KC, de Lima Júnior JC, Dos Santos Trombeta JC, Finardi EAR, Brunelli DT, Morari J, de Lima JAB, Bellotto ML, de Araújo TMF, Ramos CD, Chacon-Mikahil MPT, Velloso LA, Cavaglieri CR. Combined training increases thermogenic fat activity in patients with overweight and type 2 diabetes. Int J Obes (Lond) 2022; 46:1145-1154. [PMID: 35173278 DOI: 10.1038/s41366-022-01086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exercise is an important strategy in the management of diabetes. Experimental studies have shown that exercise acts, at least in part, by inducing the production of myokines that improve metabolic control and activate brown/beige adipose tissue depots. Combined training (CT) is recommended by the major diabetes guidelines due to its metabolic and cardiovascular benefits, however, its impact on brown/beige adipose tissue activities has never been tested in humans with overweight and type 2 diabetes (T2D). Here, we evaluated the effects of 16-week combined training (CT) program on brown adipose tissue activity; browning and autophagy markers, and serum pro-thermogenic/inflammatory inducers in patients with overweight and T2D. METHODS Thirty-four patients with overweight and T2D were assigned to either a control group (CG) or a combined training group (CTG) in a randomized and controlled study. Functional/fitness parameters, anthropometry/body composition parameters, blood hormone/biochemical parameters, thermogenic/autophagic gene expression in subcutaneous adipose tissue were evaluated before and at the end of the intervention. In addition, cold-induced 18-Fluoroxyglucose Positron Emission Computed Tomography (18F-FDG PET/CT) was performed in the training group before and after the end of the intervention. RESULTS CT increased cervical/supraclavicular brown adipose tissue (BAT) thermogenic activity (p = 0.03) as well as in perirenal adipose tissue (p = 0.02). In addition, CT increased the expression of genes related to thermogenic profile (TMEM26: + 95%, p = 0.04; and EPSTI1: + 26%, p = 0.03) and decreased autophagic genes (ULK1: -15%, p = 0.04; LC3: -5%, p = 0.02; and ATG4: -22%, p < 0.001) in subcutaneous adipose tissue. There were positive correlations between Δ% BAT activity with Δ% of post training energy expenditure cold exposure, HDL-c, IL4, adiponectin, irisin, meteorin-like, and TMEM26 and ZIC1 genes, besides negative correlations with LDL-c, total cholesterol and C-reactive protein. CONCLUSION This is the first evidence of the beneficial actions of CT on adipose tissue thermogenic activity in humans, and it adds important support for the recommendation of CT as a strategy in the management of diabetes.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil. .,Federal Institute of Education, Science and Technology of São Paulo, Hortolândia campus, Hortolândia, SP, 13183-091, Brazil.
| | - Milena Monfort-Pires
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Keryma Chaves da Silva Mateus
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - José Carlos de Lima Júnior
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | | | - Diego Trevisan Brunelli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Maria Luisa Bellotto
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Thiago Matos Ferreira de Araújo
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
213
|
Muir LA, Cho KW, Geletka LM, Baker NA, Flesher CG, Ehlers AP, Kaciroti N, Lindsly S, Ronquist S, Rajapakse I, O'Rourke RW, Lumeng CN. Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight 2022; 7:146563. [PMID: 34990410 PMCID: PMC8855803 DOI: 10.1172/jci.insight.146563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.
Collapse
Affiliation(s)
| | | | | | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Niko Kaciroti
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Stephen Lindsly
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Mathematics and.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Carey N Lumeng
- Department of Pediatrics and.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
214
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
215
|
Gupta A, Shamsi F, Altemose N, Dorlhiac GF, Cypess AM, White AP, Yosef N, Patti ME, Tseng YH, Streets A. Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages. Genome Res 2022; 32:242-257. [PMID: 35042723 PMCID: PMC8805720 DOI: 10.1101/gr.275509.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/10/2021] [Indexed: 02/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicolas Altemose
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
| | - Gabriel F Dorlhiac
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew P White
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Aaron Streets
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
216
|
Abstract
When normalized to volume, adipose tissue is comprised mainly of large lipid metabolizing and storing cells called adipocytes. Strikingly, the numerical representation of non-adipocytes, composed of a wide variety of cell types found in the so-called stromal vascular fraction (SVF), outnumber adipocytes by far. Besides its function in energy storage, adipose tissue has emerged as a versatile organ that regulates systemic metabolism and has therefore constituted an attractive target for the treatment of metabolic diseases. Recent high-resolution single cells/nucleus RNA seq data exemplify an intriguingly profound diversity of both adipocytes and SVF cells in all adipose depots, and the current data, while limited, demonstrate the significance of the intra-tissue cell composition in shaping the overall functionality of this tissue. Due to the complexity of adipose tissue, our understanding of the biological relevance of this heterogeneity and plasticity is fractional. Therefore, establishing atlases of adipose tissue cell heterogeneity is the first step towards generating an understanding of these functionalities. In this review, we will describe the current knowledge on adipose tissue cell composition and the heterogeneity of single-cell RNA sequencing, including the technical limitations.
Collapse
Affiliation(s)
- Tongtong Wang
- Institute for Food, Nutrition, and Health, ETH Zurich, Schorenstrasse 16, Schwerzenbach, 8603, Switzerland
| | - Anand Kumar Sharma
- Institute for Food, Nutrition, and Health, ETH Zurich, Schorenstrasse 16, Schwerzenbach, 8603, Switzerland
| | - Christian Wolfrum
- Institute for Food, Nutrition, and Health, ETH Zurich, Schorenstrasse 16, Schwerzenbach, 8603, Switzerland.
| |
Collapse
|
217
|
Sun W. Analysis of Single-Cell/Nucleus Transcriptome Data in Adipose Tissue. Methods Mol Biol 2022; 2448:291-306. [PMID: 35167105 DOI: 10.1007/978-1-0716-2087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipose tissue is highly heterogeneous and plastic. Recent advances in single-cell/nucleus RNA sequencing technology have helped to study the cellular composition and dynamics of adipose tissue. In this protocol, I outline a typical workflow of analyzing single-cell/nucleus transcriptome data. Specifically, I show an example of how cellular populations are estimated and characterized from a single-nucleus RNAseq data set of frozen archived human adipose tissue.
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
218
|
Doncheva AI, Norheim FA, Hjorth M, Grujic M, Paivandy A, Dankel SN, Hertel JK, Valderhaug TG, Böttcher Y, Fernø J, Mellgren G, Dalen KT, Pejler G, Kolset SO. Serglycin Is Involved in Adipose Tissue Inflammation in Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:121-132. [PMID: 34872979 DOI: 10.4049/jimmunol.2100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.
Collapse
Affiliation(s)
- Atanaska I Doncheva
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Tone G Valderhaug
- Department of Endocrinology, Division of Medicine, Akershus University Hospital, Oslo, Norway
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; and.,EpiGen, Medical Division, Akershus University Hospital, Nordbyhagen, Norway
| | - Johan Fernø
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Knut T Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway;
| |
Collapse
|
219
|
Pincu Y, Yoel U, Haim Y, Makarenkov N, Maixner N, Shaco-Levy R, Bashan N, Dicker D, Rudich A. Assessing Obesity-Related Adipose Tissue Disease (OrAD) to Improve Precision Medicine for Patients Living With Obesity. Front Endocrinol (Lausanne) 2022; 13:860799. [PMID: 35574032 PMCID: PMC9098964 DOI: 10.3389/fendo.2022.860799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Obesity is a heterogenous condition that affects the life and health of patients to different degrees and in different ways. Yet, most approaches to treat obesity are not currently prescribed, at least in a systematic manner, based on individual obesity sub-phenotypes or specifically-predicted health risks. Adipose tissue is one of the most evidently affected tissues in obesity. The degree of adipose tissue changes - "adiposopathy", or as we propose to relate to herein as Obesity-related Adipose tissue Disease (OrAD), correspond, at least cross-sectionally, to the extent of obesity-related complications inflicted on an individual patient. This potentially provides an opportunity to better personalize anti-obesity management by utilizing the information that can be retrieved by assessing OrAD. This review article will summarize current knowledge on histopathological OrAD features which, beyond cross-sectional analyses, had been shown to predict future obesity-related endpoints and/or the response to specific anti-obesity interventions. In particular, the review explores adipocyte cell size, adipose tissue inflammation, and fibrosis. Rather than highly-specialized methods, we emphasize standard pathology laboratory approaches to assess OrAD, which are readily-available in most clinical settings. We then discuss how OrAD assessment can be streamlined in the obesity/weight-management clinic. We propose that current studies provide sufficient evidence to inspire concerted efforts to better explore the possibility of predicting obesity related clinical endpoints and response to interventions by histological OrAD assessment, in the quest to improve precision medicine in obesity.
Collapse
Affiliation(s)
- Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The Endocrinology Service, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ruthy Shaco-Levy
- Institute of Pathology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nava Bashan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Dror Dicker
- Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| |
Collapse
|
220
|
Mejhert N, Rydén M. Insights from Studies of White Adipose Tissue Using Single-Cell Approaches. Handb Exp Pharmacol 2022; 274:131-144. [PMID: 35318510 DOI: 10.1007/164_2021_578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Technologies allowing studies at single-cell resolution have provided important insights into how different cell populations contribute to tissue function. Application of these methods to white adipose tissue (WAT) has revealed how various metabolic aspects of this organ, such as insulin response, inflammation and tissue expansion, are regulated by specific WAT resident cells, including different subtypes of adipocytes, adipocyte progenitors as well as immune and endothelial cells. In this chapter, we provide an overview of the different technical approaches, their strengths and weaknesses, and summarize how these studies have improved our understanding of WAT function in health and disease.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Medicine (H7), Karolinska Institute, Stockholm, Sweden.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
221
|
Liu X, Chu H, Ji Y, Bosnjak Z, Ao H, Li T. Which BMI for Diabetes Patients is Better? From the View of the Adipose Tissue Macrophage-Derived Exosome. Diabetes Metab Syndr Obes 2022; 15:141-153. [PMID: 35046685 PMCID: PMC8763208 DOI: 10.2147/dmso.s345890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Diabetes, as a group of metabolic diseases, can elevate blood glucose, thus leading to the development of life-threatening complications. It is difficult to define the outcome for diabetics with different BMI. This review will illustrate the adipose tissue macrophage-derived exosome in the diabetics with different BMI. PATIENTS AND METHODS Insulin resistance in peripheral tissues can cause diabetes. The peripheral tissues include liver, muscle, or the adipose depots. Communication between these organs is fatal to the maintenance of glucose homeostasis. This review will illustrate this communication. Obesity is closely linked with diabetes. There are different changes in fat distribution in diabetic patients. Adipose tissue macrophages can secrete various hormones, including adiponectin, leptin, resistin and other classical cytokines, such as TNF-α and IL-6. Studies illustrated that exosomes from the adipose tissue, can modulate inter-organ cross-talk by regulating gene expression in other tissues. RESULTS Adipose tissue macrophages exosomes links thin and fat individuals in the development of diabetes. CONCLUSION The molecular pathways initiated by exosomes such as miRNA in the situations of metabolic stress could help us gain a deeper knowledge of the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haichen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Yuzhi Ji
- Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Zeljko Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Hushan Ao Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, People’s Republic of ChinaTel/Fax +86-10-68006210 Email
| | - Tianjun Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Tianjun Li Department of Oncology, Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, Shandong Province, People’s Republic of ChinaTel/Fax +86-10-82913035 Email
| |
Collapse
|
222
|
Constantin AM, Mihu CM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Ştefan RA, Alexandru BC, Moldovan IM, Şovrea AS, Sufleţel RT. Short histological kaleidoscope - recent findings in histology. Part I. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:7-29. [PMID: 36074664 PMCID: PMC9593135 DOI: 10.47162/rjme.63.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This article is a review of new advances in histology, concerning either classification or structure of different tissular elements (basement membrane, hemidesmosomes, urothelium, glandular epithelia, adipose tissue, astrocytes), and various organs' constituents (blood-brain barrier, human dental cementum, tubarial salivary glands, hepatic stellate cells, pineal gland, fibroblasts of renal interstitium, Leydig testicular cells, ovarian hilar cells), as well as novel biotechnological techniques (tissue engineering in angiogenesis), recently introduced.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yang Loureiro Z, Solivan-Rivera J, Corvera S. Adipocyte Heterogeneity Underlying Adipose Tissue Functions. Endocrinology 2022; 163:6314636. [PMID: 34223880 PMCID: PMC8660558 DOI: 10.1210/endocr/bqab138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Adipose tissue distribution in the human body is highly heterogeneous, and the relative mass of different depots is differentially associated with metabolic disease risk. Distinct functions of adipose depots are mediated by their content of specialized adipocyte subtypes, best exemplified by thermogenic adipocytes found in specific depots. Single-cell transcriptome profiling has been used to define the cellular composition of many tissues and organs, but the large size, buoyancy, and fragility of adipocytes have rendered it challenging to apply these techniques to understand the full complexity of adipocyte subtypes in different depots. Discussed here are strategies that have been recently developed for investigating adipocyte heterogeneity, including single-cell RNA-sequencing profiling of the stromal vascular fraction to identify diverse adipocyte progenitors, and single-nuclei profiling to characterize mature adipocytes. These efforts are yielding a more complete characterization of adipocyte subtypes in different depots, insights into the mechanisms of their development, and perturbations associated with different physiological states such as obesity. A better understanding of the adipocyte subtypes that compose different depots will help explain metabolic disease phenotypes associated with adipose tissue distribution and suggest new strategies for improving metabolic health.
Collapse
Affiliation(s)
- Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
- Correspondence: Silvia Corvera, MD, Program in Moelcular Medicine, UMass Chan Medical School, 373 Plantation Street, suite 107 Worcester, MA 01605, USA. E-mail:
| |
Collapse
|
224
|
Harlan B, Park HG, Spektor R, Cummings B, Brenna JT, Soloway PD. Single-cell chromatin accessibility and lipid profiling reveals SCD1-dependent metabolic shift in adipocytes induced by bariatric surgery. PLoS One 2021; 16:e0261783. [PMID: 34972124 PMCID: PMC8719700 DOI: 10.1371/journal.pone.0261783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity promotes type 2 diabetes and cardiometabolic pathologies. Vertical sleeve gastrectomy (VSG) is used to treat obesity resulting in long-term weight loss and health improvements that precede weight loss; however, the mechanisms underlying the immediate benefits remain incompletely understood. Because adipose plays a crucial role in energy homeostasis and utilization, we hypothesized that VSG exerts its influences, in part, by modulating adipose functional states. We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or VSG. We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.
Collapse
Affiliation(s)
- Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bethany Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Paul D. Soloway
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
225
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
226
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
227
|
Schmidt V, Horváth C, Dong H, Blüher M, Qvist P, Wolfrum C, Willnow TE. SORLA is required for insulin-induced expansion of the adipocyte precursor pool in visceral fat. J Cell Biol 2021; 220:e202006058. [PMID: 34779857 PMCID: PMC8598079 DOI: 10.1083/jcb.202006058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/24/2023] Open
Abstract
Visceral adipose tissue shows remarkable plasticity, constantly replacing mature adipocytes from an inherent pool of adipocyte precursors. The number of precursors is set in the juvenile organism and remains constant in adult life. Which signals drive precursor pool expansion in juveniles and why they operate in visceral but not in subcutaneous white adipose tissue (WAT) are unclear. Using mouse models, we identified the insulin-sensitizing receptor SORLA as a molecular factor explaining the distinct proliferative capacity of visceral WAT. High levels of SORLA activity in precursors of juvenile visceral WAT prime these cells for nutritional stimuli provided through insulin, promoting mitotic expansion of the visceral precursor cell pool in overfed juvenile mice. SORLA activity is low in subcutaneous precursors, blunting their response to insulin and preventing diet-induced proliferation of this cell type. Our findings provide a molecular explanation for the unique proliferative properties of juvenile visceral WAT, and for the genetic association of SORLA with visceral obesity in humans.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Carla Horváth
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Thomas E. Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
228
|
Marcelin G, Clément K. The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Rev Endocr Metab Disord 2021; 22:1111-1119. [PMID: 34105090 DOI: 10.1007/s11154-021-09662-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
While obesity is defined as an excessive fat accumulation conferring a risk to metabolic health, increased adipose mass by itself does not fully explain obesity's propensity to promote metabolic alterations. Adipose tissue regulates multiple processes critical for energy homeostasis and its dysfunction favors the development and perpetuation of metabolic diseases. Obesity drives inflammatory leucocyte infiltration in adipose tissue and fibrotic transformation of the fat depots. Both features associate with metabolic alterations such as impaired glucose control and resistance to fat mass loss. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to shape healthy or unhealthy adipose tissue expansion. We, here, outline the current understanding of adipose progenitor biology in the context of obesity-induced adipose tissue remodeling.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France.
- Nutrition Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, CRNH Ile de France, 75013, Paris, France.
| |
Collapse
|
229
|
Abstract
Cell membrane fusion and multinucleation in macrophages are associated with physiologic homeostasis as well as disease. Osteoclasts are multinucleated macrophages that resorb bone through increased metabolic activity resulting from cell fusion. Fusion of macrophages also generates multinucleated giant cells (MGCs) in white adipose tissue (WAT) of obese individuals. For years, our knowledge of MGCs in WAT has been limited to their description as part of crown-like structures (CLS) surrounding damaged adipocytes. However, recent evidence indicates that these cells can phagocytose oversized lipid remnants, suggesting that, as in osteoclasts, cell fusion and multinucleation are required for specialized catabolic functions. We thus reason that WAT MGCs can be viewed as functionally analogous to osteoclasts and refer to them in this article as adipoclasts. We first review current knowledge on adipoclasts and their described functions. In view of recent advances in single cell genomics, we describe WAT macrophages from a ‘fusion perspective’ and speculate on the ontogeny of adipoclasts. Specifically, we highlight the role of CD9 and TREM2, two plasma membrane markers of lipid-associated macrophages in WAT, which have been previously described as regulators of fusion and multinucleation in osteoclasts and MGCs. Finally, we consider whether strategies aiming to target WAT macrophages can be more selectively directed against adipoclasts.
Collapse
|
230
|
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol 2021; 32:351-364. [PMID: 34810062 DOI: 10.1016/j.tcb.2021.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
The important role of mitochondria in the regulation of white adipose tissue (WAT) remodeling and energy balance is increasingly appreciated. The remarkable heterogeneity of the adipose tissue stroma provides a cellular basis to enable adipose tissue plasticity in response to various metabolic stimuli. Regulating mitochondrial function at the cellular level in adipocytes, in adipose progenitor cells (APCs), and in adipose tissue macrophages (ATMs) has a profound impact on adipose homeostasis. Moreover, mitochondria facilitate the cell-to-cell communication within WAT, as well as the crosstalk with other organs, such as the liver, the heart, and the pancreas. A better understanding of mitochondrial regulation in the diverse adipose tissue cell types allows us to develop more specific and efficient approaches to improve adipose function and achieve improvements in overall metabolic health.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
231
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
232
|
Biagi CAO, Cury SS, Alves CP, Rabhi N, Silva WA, Farmer SR, Carvalho RF, Batista ML. Multidimensional Single-Nuclei RNA-Seq Reconstruction of Adipose Tissue Reveals Adipocyte Plasticity Underlying Thermogenic Response. Cells 2021; 10:cells10113073. [PMID: 34831295 PMCID: PMC8618495 DOI: 10.3390/cells10113073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue has been classified based on its morphology and function as white, brown, or beige/brite. It plays an essential role as a regulator of systemic metabolism through paracrine and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA sequencing technology, going beyond simply defined morphology but also by their cellular origin, adaptation to metabolic stress, and plasticity. Here, we performed an in-depth analysis of publicly available single-nuclei RNAseq from adipose tissue and utilized a workflow template to characterize adipocyte plasticity, heterogeneity, and secretome profiles. The reanalyzed dataset led to the identification of different subtypes of adipocytes including three subpopulations of thermogenic adipocytes, and provided a characterization of distinct transcriptional profiles along the adipocyte trajectory under thermogenic challenges. This study provides a useful resource for further investigations regarding mechanisms related to adipocyte plasticity and trans-differentiation.
Collapse
Affiliation(s)
- Carlos Alberto Oliveira Biagi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (C.A.O.B.J.); (W.A.S.J.)
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto 14051-140, Brazil
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Cleidson Pádua Alves
- Department of Translational Genomics, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
| | - Nabil Rabhi
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
| | - Wilson Araujo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (C.A.O.B.J.); (W.A.S.J.)
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto 14051-140, Brazil
| | - Stephen R. Farmer
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
- Correspondence: (R.F.C.); (M.L.B.J.)
| | - Miguel Luiz Batista
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
- Department of Integrated Biotechnology, University of Mogi das Cruzes, São Paulo 08747-000, Brazil
- Correspondence: (R.F.C.); (M.L.B.J.)
| |
Collapse
|
233
|
Huang X, Maguire OA, Walker JM, Jiang CS, Carroll TS, Luo JD, Tonorezos E, Friedman DN, Cohen P. Therapeutic radiation exposure of the abdomen during childhood induces chronic adipose tissue dysfunction. JCI Insight 2021; 6:153586. [PMID: 34554929 PMCID: PMC8663557 DOI: 10.1172/jci.insight.153586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUNDChildhood cancer survivors who received abdominal radiotherapy (RT) or total body irradiation (TBI) are at increased risk for cardiometabolic disease, but the underlying mechanisms are unknown. We hypothesize that RT-induced adipose tissue dysfunction contributes to the development of cardiometabolic disease in the expanding population of childhood cancer survivors.METHODSWe performed clinical metabolic profiling of adult childhood cancer survivors previously exposed to TBI, abdominal RT, or chemotherapy alone, alongside a group of healthy controls. Study participants underwent abdominal s.c. adipose biopsies to obtain tissue for bulk RNA sequencing. Transcriptional signatures were analyzed using pathway and network analyses and cellular deconvolution.RESULTSIrradiated adipose tissue is characterized by a gene expression signature indicative of a complex macrophage expansion. This signature includes activation of the TREM2-TYROBP network, a pathway described in diseases of chronic tissue injury. Radiation exposure of adipose is further associated with dysregulated adipokine secretion, specifically a decrease in insulin-sensitizing adiponectin and an increase in insulin resistance-promoting plasminogen activator inhibitor-1. Accordingly, survivors exhibiting these changes have early signs of clinical metabolic derangement, such as increased fasting glucose and hemoglobin A1c.CONCLUSIONChildhood cancer survivors exposed to abdominal RT or TBI during treatment exhibit signs of chronic s.c. adipose tissue dysfunction, manifested as dysregulated adipokine secretion that may negatively impact their systemic metabolic health.FUNDINGThis study was supported by Rockefeller University Hospital; National Institute of General Medical Sciences (T32GM007739); National Center for Advancing Translational Sciences (UL1 TR001866); National Cancer Institute (P30CA008748); American Cancer Society (133831-CSDG-19-117-01-CPHPS); American Diabetes Association (1-17-ACE-17); and an anonymous donor (MSKCC).
Collapse
Affiliation(s)
- Xiaojing Huang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Olivia A Maguire
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, New York, USA
| | | | | | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Tonorezos
- Office of Cancer Survivorship, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland, USA
| | | | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| |
Collapse
|
234
|
Antonyshyn JA, Mazzoli V, McFadden MJ, Gramolini AO, Hofer SOP, Simmons CA, Santerre JP. Mitigating the non-specific uptake of immunomagnetic microparticles enables the extraction of endothelium from human fat. Commun Biol 2021; 4:1205. [PMID: 34671074 PMCID: PMC8528810 DOI: 10.1038/s42003-021-02732-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells are among the fundamental building blocks for vascular tissue engineering. However, a clinically viable source of endothelium has continued to elude the field. Here, we demonstrate the feasibility of sourcing autologous endothelium from human fat – an abundant and uniquely dispensable tissue that can be readily harvested with minimally invasive procedures. We investigate the challenges underlying the overgrowth of human adipose tissue-derived microvascular endothelial cells by stromal cells to facilitate the development of a reliable method for their acquisition. Magnet-assisted cell sorting strategies are established to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the enrichment of endothelial cells to purities that prevent their overgrowth by stromal cells. This work delineates a reliable method for acquiring human adipose tissue-derived microvascular endothelial cells in large quantities with high purities that can be readily applied in future vascular tissue engineering applications. Antonyshyn et al. establish a methodology for acquiring human adipose tissue-derived microvascular endothelial cells that can be readily applied in future vascular tissue engineering applications. The authors developed strategies to mitigate the non-specific uptake of immunomagnetic microparticles to facilitate the immunoselection of endothelial cells by magnet-assisted cell sorting.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Vienna Mazzoli
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Meghan J McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stefan O P Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, ON, Canada.,Departments of Surgery and Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada. .,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
235
|
Moura Silva H, Kitoko JZ, Queiroz CP, Kroehling L, Matheis F, Yang KL, Reis BS, Ren-Fielding C, Littman DR, Bozza MT, Mucida D, Lafaille JJ. c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome. Sci Immunol 2021; 6:eabg7506. [PMID: 34597123 DOI: 10.1126/sciimmunol.abg7506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Jamil Zola Kitoko
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Camila Pereira Queiroz
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lina Kroehling
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Katharine Lu Yang
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Dan R Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
236
|
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev 2021; 22:e13319. [PMID: 34278703 DOI: 10.1111/obr.13319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Obesity is associated with widespread differential DNA methylation (DNAm) patterns, though there have been limited overlap in the obesity-associated cytosine-guanine nucleotide pair (CpG) sites that have been identified in the literature. We systematically searched four databases for studies published until January 2020. Eligible studies included cross-sectional, longitudinal, or intervention studies examining adiposity and genome-wide DNAm in non-pregnant adults aged 18-75 in all tissue types. Study design and results were extracted in the descriptive review. Blood-based DNAm results in body mass index (BMI) and waist circumference (WC) were meta-analyzed using weighted sum of Z-score meta-analysis. Of the 10,548 studies identified, 46 studies were included in the systematic review with 18 and nine studies included in the meta-analysis of BMI and WC, respectively. In the blood, 77 and four CpG sites were significant in three or more studies of BMI and WC, respectively. Using a genome-wide threshold for significance, 52 blood-based CpG sites were significantly associated with BMI. These sites have previously been associated with many obesity-related diseases including type 2 diabetes, cardiovascular disease, Crohn's disease, and depression. Our study shows that DNAm at 52 CpG sites represent potential mediators of obesity-associated chronic diseases and may be novel intervention or therapeutic targets to protect against obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jazib Gohar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karla I Galaviz
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
237
|
Understanding the heterogeneity and functions of metabolic tissue macrophages. Semin Cell Dev Biol 2021; 119:130-139. [PMID: 34561168 DOI: 10.1016/j.semcdb.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Growing evidence places tissue-resident macrophages as essential gatekeepers of metabolic organ homeostasis, including the adipose tissue and the pancreatic islets. Therein, macrophages may adopt specific phenotypes and ensure local functions. Recent advances in single cell genomic analyses provide a comprehensive map of adipose tissue macrophage subsets and their potential roles are now better apprehended. Whether they are beneficial or detrimental, macrophages overall contribute to the proper adipose tissue expansion under steady state and during obesity. By contrast, macrophages residing inside pancreatic islets, which may exert fundamental functions to fine tune insulin secretion, have only started to attract attention and their cellular heterogeneity remains to be established. The present review will focus on the latest findings exploring the phenotype and the properties of macrophages in adipose tissue and pancreatic islets, questioning early beliefs and future perspectives in the field of immunometabolism.
Collapse
|
238
|
DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc Natl Acad Sci U S A 2021; 118:2021073118. [PMID: 33836591 DOI: 10.1073/pnas.2021073118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
White adipose tissue (WAT) is a key regulator of systemic energy metabolism, and impaired WAT plasticity characterized by enlargement of preexisting adipocytes associates with WAT dysfunction, obesity, and metabolic complications. However, the mechanisms that retain proper adipose tissue plasticity required for metabolic fitness are unclear. Here, we comprehensively showed that adipocyte-specific DNA methylation, manifested in enhancers and CTCF sites, directs distal enhancer-mediated transcriptomic features required to conserve metabolic functions of white adipocytes. Particularly, genetic ablation of adipocyte Dnmt1, the major methylation writer, led to increased adiposity characterized by increased adipocyte hypertrophy along with reduced expansion of adipocyte precursors (APs). These effects of Dnmt1 deficiency provoked systemic hyperlipidemia and impaired energy metabolism both in lean and obese mice. Mechanistically, Dnmt1 deficiency abrogated mitochondrial bioenergetics by inhibiting mitochondrial fission and promoted aberrant lipid metabolism in adipocytes, rendering adipocyte hypertrophy and WAT dysfunction. Dnmt1-dependent DNA methylation prevented aberrant CTCF binding and, in turn, sustained the proper chromosome architecture to permit interactions between enhancer and dynamin-1-like protein gene Dnm1l (Drp1) in adipocytes. Also, adipose DNMT1 expression inversely correlated with adiposity and markers of metabolic health but positively correlated with AP-specific markers in obese human subjects. Thus, these findings support strategies utilizing Dnmt1 action on mitochondrial bioenergetics in adipocytes to combat obesity and related metabolic pathology.
Collapse
|
239
|
Bäckdahl J, Franzén L, Massier L, Li Q, Jalkanen J, Gao H, Andersson A, Bhalla N, Thorell A, Rydén M, Ståhl PL, Mejhert N. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab 2021; 33:1869-1882.e6. [PMID: 34380013 DOI: 10.1016/j.cmet.2021.07.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The contribution of cellular heterogeneity and architecture to white adipose tissue (WAT) function is poorly understood. Herein, we combined spatially resolved transcriptional profiling with single-cell RNA sequencing and image analyses to map human WAT composition and structure. This identified 18 cell classes with unique propensities to form spatially organized homo- and heterotypic clusters. Of these, three constituted mature adipocytes that were similar in size, but distinct in their spatial arrangements and transcriptional profiles. Based on marker genes, we termed these AdipoLEP, AdipoPLIN, and AdipoSAA. We confirmed, in independent datasets, that their respective gene profiles associated differently with both adipocyte and whole-body insulin sensitivity. Corroborating our observations, insulin stimulation in vivo by hyperinsulinemic-euglycemic clamp showed that only AdipoPLIN displayed a transcriptional response to insulin. Altogether, by mining this multimodal resource we identify that human WAT is composed of three classes of mature adipocytes, only one of which is insulin responsive.
Collapse
Affiliation(s)
- Jesper Bäckdahl
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Lovisa Franzén
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, SE-17165 Solna, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Qian Li
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition (H2), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, SE-17165 Solna, Sweden
| | - Nayanika Bhalla
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, SE-17165 Solna, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital and Department of Surgery, Ersta Hospital, Karolinska Institutet, 116 91 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, SE-17165 Solna, Sweden.
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| |
Collapse
|
240
|
Thorball CW, Oudot-Mellakh T, Ehsan N, Hammer C, Santoni FA, Niay J, Costagliola D, Goujard C, Meyer L, Wang SS, Hussain SK, Theodorou I, Cavassini M, Rauch A, Battegay M, Hoffmann M, Schmid P, Bernasconi E, Günthard HF, Mohammadi P, McLaren PJ, Rabkin CS, Besson C, Fellay J. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica 2021; 106:2233-2241. [PMID: 32675224 PMCID: PMC8327743 DOI: 10.3324/haematol.2020.247023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. In order to identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV-infected patients of European ancestry, including a total of 278 cases and 1,924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P=4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.
Collapse
Affiliation(s)
- Christian W Thorball
- Ecole Polytechnique Federale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tiphaine Oudot-Mellakh
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Nava Ehsan
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Christian Hammer
- Dept. of Cancer Immunology and Human Genetics, Genentech, South San Francisco, CA, USA
| | - Federico A Santoni
- Dept. of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Switzerland
| | - Jonathan Niay
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | | | - Cécile Goujard
- Paris-Sud University and Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Shehnaz K Hussain
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ioannis Theodorou
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Andri Rauch
- Dept. of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Manuel Battegay
- Dept. of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | | | | | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne and University of Lausanne, Switzerland
| |
Collapse
|
241
|
Single-cell analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing cancer-associated fibroblasts. PLoS Comput Biol 2021; 17:e1009228. [PMID: 34283835 PMCID: PMC8323949 DOI: 10.1371/journal.pcbi.1009228] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/30/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
During the last ten years, many research results have been referring to a particular type of cancer-associated fibroblasts associated with poor prognosis, invasiveness, metastasis and resistance to therapy in multiple cancer types, characterized by a gene expression signature with prominent presence of genes COL11A1, THBS2 and INHBA. Identifying the underlying biological mechanisms responsible for their creation may facilitate the discovery of targets for potential pan-cancer therapeutics. Using a novel computational approach for single-cell gene expression data analysis identifying the dominant cell populations in a sequence of samples from patients at various stages, we conclude that these fibroblasts are produced by a pan-cancer cellular transition originating from a particular type of adipose-derived stromal cells naturally present in the stromal vascular fraction of normal adipose tissue, having a characteristic gene expression signature. Focusing on a rich pancreatic cancer dataset, we provide a detailed description of the continuous modification of the gene expression profiles of cells as they transition from APOD-expressing adipose-derived stromal cells to COL11A1-expressing cancer-associated fibroblasts, identifying the key genes that participate in this transition. These results also provide an explanation to the well-known fact that the adipose microenvironment contributes to cancer progression.
Collapse
|
242
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
243
|
Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35:101518. [PMID: 33812853 PMCID: PMC8440665 DOI: 10.1016/j.beem.2021.101518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain lipid droplets. We name this cell type marrow adipogenic lineage precursor, MALP, and consider it as a major cellular component of marrow adipose tissue. Here, we review the discovery of MALPs and summarize their unique features and regulatory roles in bone. We further discuss how these findings advance our understanding of bone remodeling, mesenchymal niche regulation of hematopoiesis, and marrow vasculature maintenance.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
244
|
Cheong LY, Xu A. Intercellular and inter-organ crosstalk in browning of white adipose tissue: molecular mechanism and therapeutic complications. J Mol Cell Biol 2021; 13:466-479. [PMID: 34185049 PMCID: PMC8530522 DOI: 10.1093/jmcb/mjab038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue (AT) is highly plastic and heterogeneous in response to environmental and nutritional changes. The development of heat-dissipating beige adipocytes in white AT (WAT) through a process known as browning (or beiging) has garnered much attention as a promising therapeutic strategy for obesity and its related metabolic complications. This is due to its inducibility in response to thermogenic stimulation and its association with improved metabolic health. WAT consists of adipocytes, nerves, vascular endothelial cells, various types of immune cells, adipocyte progenitor cells, and fibroblasts. These cells contribute to the formation of beige adipocytes through the release of protein factors that significantly influence browning capacity. In addition, inter-organ crosstalk is also important for beige adipocyte biogenesis. Here, we summarize recent findings on fat depot-specific differences, secretory factors participating in intercellular and inter-organ communications that regulate the recruitment of thermogenic beige adipocytes, as well as challenges in targeting beige adipocytes as a potential anti-obese therapy.
Collapse
Affiliation(s)
- Lai Yee Cheong
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
245
|
Desharnais L, Walsh LA, Quail DF. Exploiting the obesity-associated immune microenvironment for cancer therapeutics. Pharmacol Ther 2021; 229:107923. [PMID: 34171329 DOI: 10.1016/j.pharmthera.2021.107923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Obesity causes chronic low-grade inflammation and leads to changes in the immune landscape of multiple organ systems. Given the link between chronic inflammatory conditions and cancer, it is not surprising that obesity is associated with increased risk and worse outcomes in many malignancies. Paradoxically, recent epidemiological studies have shown that high BMI is associated with increased efficacy of immune checkpoint inhibitors (ICI), and a causal relationship has been demonstrated in the preclinical setting. It has been proposed that obesity-associated immune dysregulation underlies this observation by inadvertently creating a favourable microenvironment for increased ICI efficacy. The recent success of ICIs in obese cancer patients raises the possibility that additional immune-targeted therapies may hold therapeutic value in this context. Here we review how obesity affects the immunological composition of the tumor microenvironment in ways that can be exploited for cancer immunotherapies. We discuss existing literature supporting a beneficial role for obesity during ICI therapy in cancer patients, potential opportunities for targeting the innate immune system to mitigate chronic inflammatory processes, and how to pinpoint obese patients who are most likely to benefit from immune interventions without relying solely on body mass index. Given that the incidence of obesity is expanding on an international scale, we propose that understanding obesity-associated inflammation is necessary to reduce cancer mortalities and capitalize on novel therapeutic opportunities in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
246
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
247
|
A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets. Genes (Basel) 2021; 12:genes12060898. [PMID: 34200671 PMCID: PMC8229796 DOI: 10.3390/genes12060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Technology to generate single cell RNA-sequencing (scRNA-seq) datasets and tools to annotate them have advanced rapidly in the past several years. Such tools generally rely on existing transcriptomic datasets or curated databases of cell type defining genes, while the application of scalable natural language processing (NLP) methods to enhance analysis workflows has not been adequately explored. Here we deployed an NLP framework to objectively quantify associations between a comprehensive set of over 20,000 human protein-coding genes and over 500 cell type terms across over 26 million biomedical documents. The resultant gene-cell type associations (GCAs) are significantly stronger between a curated set of matched cell type-marker pairs than the complementary set of mismatched pairs (Mann Whitney p = 6.15 × 10−76, r = 0.24; cohen’s D = 2.6). Building on this, we developed an augmented annotation algorithm (single cell Annotation via Literature Encoding, or scALE) that leverages GCAs to categorize cell clusters identified in scRNA-seq datasets, and we tested its ability to predict the cellular identity of 133 clusters from nine datasets of human breast, colon, heart, joint, ovary, prostate, skin, and small intestine tissues. With the optimized settings, the true cellular identity matched the top prediction in 59% of tested clusters and was present among the top five predictions for 91% of clusters. scALE slightly outperformed an existing method for reference data driven automated cluster annotation, and we demonstrate that integration of scALE can meaningfully improve the annotations derived from such methods. Further, contextualization of differential expression analyses with these GCAs highlights poorly characterized markers of well-studied cell types, such as CLIC6 and DNASE1L3 in retinal pigment epithelial cells and endothelial cells, respectively. Taken together, this study illustrates for the first time how the systematic application of a literature-derived knowledge graph can expedite and enhance the annotation and interpretation of scRNA-seq data.
Collapse
|
248
|
Sun W, Modica S, Dong H, Wolfrum C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat Metab 2021; 3:751-761. [PMID: 34158657 DOI: 10.1038/s42255-021-00417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
The perception of adipose tissue, both in the scientific community and in the general population, has changed dramatically in the past 20 years. While adipose tissue was thought for a long time to be a rather simple lipid storage entity, it is now recognized as a highly heterogeneous organ and a critical regulator of systemic metabolism, composed of many different subtypes of cells, with important endocrine functions. Additionally, adipose tissue is nowadays recognized to contribute to energy turnover, due to the presence of specialized thermogenic adipocytes, which can be found in many adipose depots. This review discusses the unprecedented insights that we have gained into the heterogeneity of thermogenic adipocytes and their respective precursors due to the technical developments in single-cell and nucleus technologies. These methodological advances have increased our understanding of how adipose tissue catabolic function is influenced by developmental and intercellular communication events.
Collapse
Affiliation(s)
- Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
249
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
250
|
Gago da Graça C, van Baarsen LGM, Mebius RE. Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. THE JOURNAL OF IMMUNOLOGY 2021; 206:273-281. [PMID: 33397741 DOI: 10.4049/jimmunol.2000873] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Lymph node stromal cells coordinate the adaptive immune response in secondary lymphoid organs, providing both a structural matrix and soluble factors that regulate survival and migration of immune cells, ultimately promoting Ag encounter. In several inflamed tissues, resident fibroblasts can acquire lymphoid-stroma properties and drive the formation of ectopic aggregates of immune cells, named tertiary lymphoid structures (TLSs). Mature TLSs are functional sites for the development of adaptive responses and, consequently, when present, can have an impact in both autoimmunity and cancer conditions. In this review, we go over recent findings concerning both lymph node stromal cells and TLSs function and formation and further describe what is currently known about their role in disease, particularly their potential in tolerance.
Collapse
Affiliation(s)
- Catarina Gago da Graça
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, the Netherlands; and.,Amsterdam Rheumatology and Immunology Center, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands;
| |
Collapse
|