201
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
202
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
203
|
Cao Y, Ding S, Hu Y, Zeng L, Zhou J, Lin L, Zhang X, Ma Q, Cai R, Zhang Y, Duan G, Bian XW, Tian G. An Immunocompetent Hafnium Oxide-Based STING Nanoagonist for Cancer Radio-immunotherapy. ACS NANO 2024; 18:4189-4204. [PMID: 38193384 DOI: 10.1021/acsnano.3c09293] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.
Collapse
Affiliation(s)
- Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ling Lin
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| |
Collapse
|
204
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
205
|
Xu D, Lu X, Yang F, Jiang Z, Yang S, Bi L, Liu J, Shan H, Li D. STING-targeted PET tracer for early assessment of tumor immunogenicity in colorectal cancer after chemotherapy. Eur J Nucl Med Mol Imaging 2024; 51:641-655. [PMID: 37924341 DOI: 10.1007/s00259-023-06485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE To optimize chemotherapy regimens and improve the effectiveness of chemotherapy combined with immunotherapy, a PET tracer specifically targeting the stimulator of interferon genes (STING), denoted as [18F]FBTA was used to monitor the early changes in tumor immunogenicity after chemotherapy in colorectal cancer (CRC) mice. METHODS The toluene sulfonate precursor was labeled with 18F to produce the STING targeted probe-[18F]FBTA. [18F]FBTA-PET imaging and biodistribution were performed using CRC mice treated with oxaliplatin (OXA) or cisplatin (CDDP). CRC mice were also treated with low (CDDP-LD: 1 mg/kg) or medium (CDDP-MD: 2.5 mg/kg) doses of CDDP, and subjected to PET imaging and biodistribution. The effects of different chemotherapeutic agents and different doses of CDDP on tumor innate immunity were verified by flow cytometry and immunohistochemistry. RESULTS PET imaging of CRC mice exhibited notably enhanced tumor uptake in the early phase of chemotherapy with treatment with OXA (3.09 ± 0.25%ID/g) and CDDP (4.01 ± 0.18%ID/g), especially in the CDDP group. The PET-derived tumor uptake values have strong correlations with STING immunohistochemical score. Flow cytometry showed both agents led to DCs and macrophages infiltration in tumors. Compared with OXA, CDDP treatment recruits more DCs and macrophages in CRC tumors. Both CDDP-LD and CDDP-MD treatment elevated uptake in CRC tumors, especially in CDDP-MD group. Immunohistochemistry and flow cytometry confirmed CDDP-MD treatment recruits more DCs and macrophages than CDDP-LD treatment. CONCLUSION Overall, the STING-targeted tracer-[18F]FBTA was demonstrated to monitor early changes in tumor immunogenicity in CRC mice after chemotherapy. Besides, the STING-targeted strategy may help to select the appropriate chemotherapy regimen, including chemotherapeutic agents and doses, which further improve clinical decision making for combination immunotherapy after chemotherapy for CRC.
Collapse
Affiliation(s)
- Duo Xu
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xin Lu
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Fan Yang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Pediatrics, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zebo Jiang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shirui Yang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiani Liu
- Cancer Center, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Hong Shan
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
206
|
Wang L, Zhou H, Chen Q, Lin Z, Jiang C, Chen X, Chen M, Liu L, Shao L, Liu X, Pan J, Wu J, Song J, Wu J, Zhang D. STING Agonist-Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon-Dependent Radioimmunotherapy in Rectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307858. [PMID: 38063844 PMCID: PMC10870073 DOI: 10.1002/advs.202307858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Indexed: 02/17/2024]
Abstract
Hypoxia-associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X-ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon-dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD-1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
- Department of Oncologythe Second Affiliated Hospital of Nanchang UniversityNanchang360000P. R. China
| | - Han Zhou
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Chenwei Jiang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xingte Chen
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Mingdong Chen
- Department of Radiation OncologyMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Libin Liu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Lingdong Shao
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Jianji Pan
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Jingcheng Wu
- Department of Health ScienceTechnology and EducationNational Health Commission of the People's Republic of ChinaBeijing100088China
| | - Jibin Song
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Junxin Wu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| |
Collapse
|
207
|
Hu X, Li G, Li S, Wang Q, Wang Y, Zhang P, Yang T, Yang B, Yu L, Liu Z. TTK inhibition activates STING signal and promotes anti-PD1 immunotherapy in breast cancer. Biochem Biophys Res Commun 2024; 694:149388. [PMID: 38150917 DOI: 10.1016/j.bbrc.2023.149388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Despite progress in the application of checkpoint immunotherapy against various tumors, attempts to utilize immune checkpoint blockade (ICB) agents in triple negative breast cancer (TNBC) have yielded limited clinical benefits. The low overall response rate of checkpoint immunotherapy in TNBC may be attributed to the immunosuppressive tumor microenvironment (TME). In this study, we investigated the role of mitogen-associated kinase TTK in reprogramming immune microenvironment in TNBC. Notably, TTK inhibition by BAY-1217389 induced DNA damage and the formation of micronuclei containing dsDNA in the cytosol, resulting in elicition of STING signal pathway and promoted antitumor immunity via the infiltration and activation of CD8+ T cells. Moreover, TTK inhibition also upregulated the expression of PD-L1, demonstrating a synergistic effect with anti-PD1 therapy in 4T1 tumor-bearing mice. Taken together, TTK inhibition facilitated anti-tumor immunity mediated by T cells and enhanced sensitivity to PD-1 blockade, providing a rationale for the combining TTK inhibitors with immune checkpoint blockade in clinical trials.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangmei Li
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sisi Li
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qiwei Wang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225007, Jiangsu, China
| | - Yuerong Wang
- Department of Oncology and Hematology, Western Theater Command Air Force Hospital of PLA, Chengdu, 610083, Sichuan, China
| | - Peidong Zhang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianqiong Yang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Yang
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 6091248, Sichuan, China
| | - Luoting Yu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
208
|
Xu Y, Wang X, Yuan W, Zhang L, Chen W, Hu K. Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via in-vitro and in-vivo experiments. Aging (Albany NY) 2024; 16:1808-1828. [PMID: 38261746 PMCID: PMC10866416 DOI: 10.18632/aging.205461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei 230022, China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang 236000, China
| |
Collapse
|
209
|
Zhou H, Zhang W, Li H, Xu F, Yinwang E, Xue Y, Chen T, Wang S, Wang Z, Sun H, Wang F, Mou H, Yao M, Chai X, Zhang J, Diarra MD, Li B, Zhang C, Gao J, Ye Z. Osteocyte mitochondria inhibit tumor development via STING-dependent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadi4298. [PMID: 38232158 DOI: 10.1126/sciadv.adi4298] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fan Xu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mohamed Diaty Diarra
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Zhaoming Ye
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
210
|
Wang M, Xu P, Wu Q. Cell-to-cell communications of cGAS-STING pathway in tumor immune microenvironment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:15-24. [PMID: 38229499 PMCID: PMC10945497 DOI: 10.3724/zdxbyxb-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Targeting cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway is a promising strategy for tumor treatment. The pattern recognition receptor cGAS identifies dsDNA and catalyzes the formation of a second messenger 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), activating the downstream interferons and pro-inflammatory cytokines through the adaptor protein STING. Notably, in tumor immune microenvironment, key components of cGAS-STING pathway are transferred among neighboring cells. The intercellular transmission under these contexts serves to sustain and amplify innate immune responses while facilitating the emergence of adaptive immunity. The membrane-based system, including extracellular vesicles transport, phagocytosis and membrane fusion transmit dsDNA, cGAMP and activated STING, enhances the immune surveillance and inflammatory responses. The membrane proteins, including a specific protein channel and intercellular gap junctions, transfer cGAMP and dsDNA, which are crucial to regulate immune responses. The ligand-receptor interactions for interferon transmission amplifies the anti-tumor response. This review elaborates on the regulatory mechanisms of cell-to-cell communications of cGAS-STING pathway in tumor immune microenvironment, explores how these mechanisms modulate immunological processes and discusses potential interventions and immunotherapeutic strategies targeting these signaling cascades.
Collapse
Affiliation(s)
- Mengqiu Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Qirou Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
211
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
212
|
Wang R, Hussain A, Guo Q, Ma M. cGAS-STING at the crossroads in cancer therapy. Crit Rev Oncol Hematol 2024; 193:104194. [PMID: 37931770 DOI: 10.1016/j.critrevonc.2023.104194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
DNA is highly immunogenic, both exogenous and endogenous DNA can activate the pathogen-associated molecular pattern (PAMP) and danger-associated molecular pattern (DAMP), respectively, and hence activate the evolutionarily conserved cGAS-STING pathway for inflammatory responses. The cGAS-STING signaling pathway plays a very important role in the pathogenesis and progression of neoplastic diseases. For cancer therapy, there are some discrepancies on whether cGAS-STING should be inhibited or activated. Deregulated cGAS-STING signaling pathway might be the origin and pathogenesis of tumor, understanding and modulating cGAS-STING signaling holds great promise for cancer therapy. In this review article, we discuss the molecular mechanisms underlying cGAS-STING deregulation, highlighting the tumor inhibiting and promoting roles and challenges with cGAS-STING agonists in the context of cancer therapies.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, 223800 Suqian, China.
| | - Aashiq Hussain
- Cancer Science Institute of Singapore, National University of Singapore, 119077 CSI, Singapore
| | - Quanquan Guo
- Department of Hematology, the Second Affiliated Hospital of Soochow University, 215004 Suzhou, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, 223800 Suqian, China
| | - Meimei Ma
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, 223800 Suqian, China
| |
Collapse
|
213
|
Khorasani M. Role of cGAS-STING in colorectal cancer: A new window for treatment strategies. Cytokine 2024; 173:156422. [PMID: 37948979 DOI: 10.1016/j.cyto.2023.156422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Colorectal cancer (CRC) is a common and deadly form of cancer, leading to the need for new therapeutic targets and strategies for treatment. Recent studies have shown the cGAS-STING pathway to be a promising target for cancer therapy. The cGAS-STING pathway is a part of the innate immune system and serves to identify DNA damage and viral infection, promoting an immune response. Activation of this pathway leads to the production of immune mediators, such as type I interferons, that activate immune cells to attack cancer cells. Research has identified the cGAS-STING pathway as a frequently dysregulated component in CRC, promoting tumor growth and metastasis, or leading to chronic inflammation and tissue damage. The modulation of this pathway presents a potential therapeutic approach, either activating or inhibiting the pathway to enhance the immune response and prevent inflammation, respectively. Developing drugs that can modulate the cGAS-STING pathway offers promise for improving treatment outcomes for CRC patients. The present review explores recent research on the role of cGAS-STING in CRC and highlights the potential therapeutic benefits of targeting this pathway.
Collapse
Affiliation(s)
- Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Biochemistry and Nutrition, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
214
|
Monticelli S, Cejka P. DNA sensing and repair systems unexpectedly team up against cancer. Nature 2024; 625:457-458. [PMID: 38200334 DOI: 10.1038/d41586-023-03994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
215
|
Cossu C, Di Lorenzo A, Fiorilla I, Todesco AM, Audrito V, Conti L. The Role of the Toll-like Receptor 2 and the cGAS-STING Pathways in Breast Cancer: Friends or Foes? Int J Mol Sci 2023; 25:456. [PMID: 38203626 PMCID: PMC10778705 DOI: 10.3390/ijms25010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment (TME) that fuel progression and treatment resistance. Dysregulated innate immunity in breast cancer triggers chronic inflammation, fostering cancer development and therapy resistance. Innate immune pattern recognition receptors (PRRs) have emerged as crucial regulators of the immune response as well as of several immune-mediated or cancer cell-intrinsic mechanisms that either inhibit or promote tumor progression. In particular, several studies showed that the Toll-like receptor 2 (TLR2) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways play a central role in breast cancer progression. In this review, we present a comprehensive overview of the role of TLR2 and STING in breast cancer, and we explore the potential to target these PRRs for drug development. This information will significantly impact the scientific discussion on the use of PRR agonists or inhibitors in cancer therapy, opening up new and promising avenues for breast cancer treatment.
Collapse
Affiliation(s)
- Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| |
Collapse
|
216
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
217
|
Yu B, Lu X, Feng X, Zhao T, Li J, Lu Y, Ye F, Liu X, Zheng X, Shen Z, Jin X, Chen W, Li Q. Gadolinium Oxide Nanoparticles Reinforce the Fractionated Radiotherapy-Induced Immune Response in Tri-Negative Breast Cancer via cGAS-STING Pathway. Int J Nanomedicine 2023; 18:7713-7728. [PMID: 38115988 PMCID: PMC10729773 DOI: 10.2147/ijn.s428044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Radiotherapy is a widely recognized first-line clinical treatment for cancer, but its efficacy may be impeded by the radioresistance of advanced tumors. It is urgent to improve the sensitivity of radioresistant tumors to radiotherapy. In this work, gadolinium oxide nanocrystals (GONs) were utilized as radiosensitizers to enhance the killing effect and reinforce the immune activation of X-ray irradiation on 4T1 breast cancer cells in vitro and in vivo. Methods 1.0 T small animal MR imaging (MRI) system was employed to trace GONs in vivo, while 225 kVp X-ray irradiation equipment was utilized for investigating the radiosensitization of GONs in 4T1 breast cancer cells in vitro and in vivo. Western blot, quantitative real-time PCR (RT-qPCR), immunohistochemistry, immunofluorescence, clonal survival assay, flow cytometry and reactive oxygen species assay were used to explore the biological mechanism of GON sensitization. Results GONs exhibited exceptional utility as contrast agents for both in vivo and in vitro MRI imaging. Interestingly, a single dose of 8.0 Gy X-rays together with GONs failed to confer superior therapeutic effects in tumor-bearing mice, while only 3.0 Gy × 3 fractions X-rays combined with GONs exhibited effective tumor growth inhibition. Moreover, fractionated X-ray irradiation with GONs demonstrated a superior capacity to activate the cGAS-STING pathway. Discussion Fractionated X-ray irradiation in the presence of GONs has demonstrated the most significant activation of the anti-tumor immune response by boosting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Boyi Yu
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianglong Feng
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ting Zhao
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiaxin Li
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Fei Ye
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiongxiong Liu
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaogang Zheng
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaodong Jin
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiqiang Chen
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiang Li
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
218
|
Xiang W, Lv H, Xing F, Sun X, Ma Y, Wu L, Lv G, Zong Q, Wang L, Wu Z, Feng Q, Yang W, Wang H. Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. SCIENCE ADVANCES 2023; 9:eadi2465. [PMID: 38055816 DOI: 10.1126/sciadv.adi2465] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Adenosine 5'-triphosphate citrate lyase (ACLY) is a cytosolic enzyme that converts citrate into acetyl-coenzyme A for fatty acid and cholesterol biosynthesis. ACLY is up-regulated or activated in many cancers, and targeting ACLY by inhibitors holds promise as potential cancer therapy. However, the role of ACLY in cancer immunity regulation remains poorly understood. Here, we show that ACLY inhibition up-regulates PD-L1 immune checkpoint expression in cancer cells and induces T cell dysfunction to drive immunosuppression and compromise its antitumor effect in immunocompetent mice. Mechanistically, ACLY inhibition causes polyunsaturated fatty acid (PUFA) peroxidation and mitochondrial damage, which triggers mitochondrial DNA leakage to activate the cGAS-STING innate immune pathway. Pharmacological and genetic inhibition of ACLY overcomes cancer resistance to anti-PD-L1 therapy in a cGAS-dependent manner. Furthermore, dietary PUFA supplementation mirrors the enhanced efficacy of PD-L1 blockade by ACLY inhibition. These findings reveal an immunomodulatory role of ACLY and provide combinatorial strategies to overcome immunotherapy resistance in tumors.
Collapse
Affiliation(s)
- Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoyan Sun
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Wu
- Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| |
Collapse
|
219
|
Mao H, Lin X, Sun Y. Neddylation Regulation of Immune Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0283. [PMID: 38434245 PMCID: PMC10907026 DOI: 10.34133/research.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
Neddylation plays a vital role in post-translational modification, intricately shaping the regulation of diverse biological processes, including those related to cellular immune responses. In fact, neddylation exerts control over both innate and adaptive immune systems via various mechanisms. Specifically, neddylation influences the function and survival of innate immune cells, activation of pattern recognition receptors and GMP-AMP synthase-stimulator of interferon genes pathways, as well as the release of various cytokines in innate immune reactions. Moreover, neddylation also governs the function and survival of antigen-presenting cells, which are crucial for initiating adaptive immune reactions. In addition, neddylation regulates T cell activation, proliferation, differentiation, survival, and their effector functions, thereby ensuring an appropriate adaptive immune response. In this review, we summarize the most recent findings in these aspects and delve into the connection between dysregulated neddylation events and immunological disorders, especially inflammatory diseases. Lastly, we propose future directions and potential treatments for these diseases by targeting neddylation.
Collapse
Affiliation(s)
- Hongmei Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province, China
- Research Center for Life Science and Human Health,
Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
220
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
221
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
222
|
Wang L, Zhang T, Zheng Y, Li Y, Tang X, Chen Q, Mao W, Li W, Liu X, Zhu J. Combination of irinotecan silicasome nanoparticles with radiation therapy sensitizes immunotherapy by modulating the activation of the cGAS/STING pathway for colorectal cancer. Mater Today Bio 2023; 23:100809. [PMID: 37779919 PMCID: PMC10540048 DOI: 10.1016/j.mtbio.2023.100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Our previous clinical trial (Identifier: NCT02605265) revealed that addition of irinotecan (IRIN) to neoadjuvant chemoradiotherapy for rectal cancer could improve the curative effect. However, the adverse effects caused by IRIN limited the wide application of IRIN chemoradiotherapy. This study aimed to explore the mechanism under the synergistic effects of IRIN plus radiation therapy in colorectal cancer (CRC) cells and optimization of IRIN delivery via a silicasome nanocarrier in vivo. Our results revealed that compared with single IRIN or radiation treatment, IRIN combined with radiation therapy remarkably activated the intracellular cGAS/STING pathway, and promoted the expression levels of major histocompatibility complex class I (MHC-I) and programmed death ligand 1 (PD-L1). Further, a silicasome (mesoporous silica nanoparticle coated with lipid bilayer) nanocarrier was utilized to improve the delivery of IRIN with enhanced efficacy and reduced side effects. In the MC38 CRC syngeneic tumor model, IRIN silicasome combined with radiation therapy demonstrated a greater antitumor efficacy than free IRIN plus radiation therapy. Flow cytometry showed the increased number of CD4+ T cells, CD8+ T cells, and dendritic cells (DCs) in tumor in the IRIN silicasome plus radiation group. The immunofluorescence staining further confirmed the activated immune microenvironment with the elevated interferon-γ (IFN-γ) deposition. Besides, the antitumor effect of IRIN silicasome plus radiation therapy was synergistically enhanced by anti-PD-1 immunotherapy. These findings indicated that the combination of IRIN silicasome with radiation therapy could sensitize immunotherapy by manipulating the cGAS/STING pathway serving as a new strategy for CRC treatment.
Collapse
Affiliation(s)
- Lu Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Tianyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yile Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuting Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiyuan Tang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Qianping Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Wei Mao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Weiwei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Ji Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
223
|
Lin MS, Jo SY, Luebeck J, Chang HY, Wu S, Mischel PS, Bafna V. Transcriptional immune suppression and upregulation of double stranded DNA damage and repair repertoires in ecDNA-containing tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537925. [PMID: 37162993 PMCID: PMC10168239 DOI: 10.1101/2023.04.24.537925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here we show that ecDNA containing tumors impact four major biological processes. Specifically, ecDNA containing tumors upregulate DNA damage and repair, cell cycle control, and mitotic processes, but downregulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA containing tumors, shedding light on molecular processes that give rise to their development and progression.
Collapse
Affiliation(s)
- Miin S. Lin
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Se-Young Jo
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sihan Wu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul S. Mischel
- Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
224
|
Lin S. DTX3L mediated ubiquitination of cGAS suppresses antitumor immunity in pancreatic cancer. Biochem Biophys Res Commun 2023; 681:106-110. [PMID: 37774567 DOI: 10.1016/j.bbrc.2023.09.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The global incidence of pancreatic cancer is associated with a high mortality rate and one of the lowest survival rates among all types of cancer. The clinical management modalities for pancreatic cancer encompass surgical intervention, chemotherapy, radiation therapy, targeted therapy, immunotherapy, or a combination thereof. Nevertheless, the diagnosis of pancreatic cancer often occurs at an advanced stage, thereby restricting treatment options and diminishing the prospects of achieving a cure. The cGAS-STING pathway has emerged as a potential target for antitumor therapy due to its role in promoting immune responses against cancer cells. Activation of the cGAS-STING pathway in tumor cells can lead to the production of pro-inflammatory cytokines and type I interferons, which can enhance the recruitment and activation of immune cells to the tumor microenvironment. The cGAS protein was detected in only a half of tumor tissues in pancreatic cancer patients and the underlying mechanism is still elusive. In this study, we have identified the E3 ligase DTX3L as a key regulator of cGAS-STING signaling in pancreatic cancer cells by mediating the ubiquitination and degradation of cGAS. The expression levels of DTX3L were found to be upregulated in pancreatic tumor tissues and correlated with a poor prognosis for patients with pancreatic cancer. Silencing of DTX3L resulted in enhanced activation of the cGAS-STING signaling pathway and improved antitumor immunity for pancreatic cancer, suggesting that targeting the DTX3L-cGAS axis could hold promise for the treatment of this disease.
Collapse
Affiliation(s)
- Shan Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
225
|
Qiao H, Li H. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Pharmgenomics Pers Med 2023; 16:991-1009. [PMID: 37964785 PMCID: PMC10642424 DOI: 10.2147/pgpm.s425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
Collapse
Affiliation(s)
- Hao Qiao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Huanting Li
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
226
|
Li J, Han X, Gao S, Yan Y, Li X, Wang H. Tumor microenvironment-responsive DNA-based nanomedicine triggers innate sensing for enhanced immunotherapy. J Nanobiotechnology 2023; 21:382. [PMID: 37858171 PMCID: PMC10585899 DOI: 10.1186/s12951-023-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Lack of proper innate sensing inside the tumor microenvironment could reduce both innate and adaptive immunity, which remains a critical cause of immunotherapy failure in various tumor treatments. Double-stranded DNA (dsDNA) has been evidenced to be a promising immunostimulatory agent to induce type I interferons (IFN-Is) production for innate immunity activation through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, yet the unsatisfactory delivery and susceptibility to nuclease degradation hindered its feasibility for further clinical applications. Herein, we report on the constructed tumor microenvironment-responsive DNA-based nanomedicine loaded by dendritic mesoporous organosilica nanoparticles (DMONs), which provide efficient delivery of dsDNA to induce intratumoral IFN-Is production for triggering innate sensing for enhanced anti-tumor immunotherapy. Extensive in vitro and in vivo evaluations have demonstrated the dramatic IFN-Is production induced by dsDNA@DMONs in both immune cells and tumor cells, which facilitates dendritic cells (DCs) maturation and T cells activation for eliciting the potent innate immune and adaptive immune responses. Desirable biosafety and marked therapeutic efficacy with a tumor growth inhibition (TGI) of 51.0% on the murine B16-F10 melanoma model were achieved by the single agent dsDNA@DMONs. Moreover, dsDNA@DMONs combined with anti-PD-L1 antibody further enhanced the anti-tumor efficacy and led to almost complete tumor regression. Therefore, this work highlighted the immunostimulatory DNA-based nanomedicine as a promising strategy for overcoming the resistance to immunotherapy, by promoting the IFN-Is production for innate immunity activation and remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyu Han
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanshan Gao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yumeng Yan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
227
|
Xiao B, Xu H, Xu X, Pan Y, Shi X, Yuan P, Slater NKH, Sun W, Tang J, Shen Y, Gao J. Multifunctional Nanoassembly for MRI-Trackable Dendritic Cell Dependent and Independent Photoimmunotherapy. NANO LETTERS 2023; 23:9133-9142. [PMID: 37767907 DOI: 10.1021/acs.nanolett.3c03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Immunotherapy has emerged as a triumph in the treatment of malignant cancers. Nevertheless, current immunotherapeutics are insufficient in addressing tumors characterized by tumor cells' inadequate antigenicity and the tumor microenvironment's low immunogenicity (TME). Herein, we developed a novel multifunctional nanoassembly termed FMMC through the self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor 1-methyl-tryptophan prodrug (FM), Ce6, and ionic manganese (Mn2+) via noncovalent interactions. The laser-ignited FMMC treatment could induce effective immunogenic cell death and activate the STING/MHC-I signaling pathway, thus deeply sculpting the tumor-intrinsic antigenicity to achieve dendritic cell (DC)-dependent and -independent T cell responses against tumors. Meanwhile, by inhibiting IDO-1, FMMC could lead to immunosuppressive TME reversion to an immunoactivated one. FMMC-based phototherapy led to the up-regulation of programmed death-ligand 1 (PD-L1), enhancing the sensitivity of tumors to anti-PD-1 therapy. Furthermore, the incorporation of Mn2+ into FMMC resulted in an augmented longitudinal relaxivity and enhanced the MRI for monitoring the growth of primary tumors and lung metastases. Collectively, the superior reprogramming performance of immunosuppressive tumor cells and TME, combined with excellent anticancer efficacy and MRI capability, made FMMC a promising immune nanosculptor for cancer theranostics.
Collapse
Affiliation(s)
| | | | - Xiaodan Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009 China
| | | | | | - Pengcheng Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | | | - Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Jianbin Tang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | | | | |
Collapse
|
228
|
Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via In Situ Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma. ACS NANO 2023; 17:19441-19458. [PMID: 37733578 DOI: 10.1021/acsnano.3c08064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for treating hepatocellular carcinoma (HCC), which could destroy tumors through hyperthermia and generate massive tumor-associated antigens (TAAs). However, residual malignant tissues or small satellite lesions are hard to eliminate, generally resulting in metastases and recurrence. Herein, an advanced in situ nanovaccine formed by layered double hydroxides carrying cGAMP (STING agonist) (LDHs-cGAMP) and adsorbed TAAs was designed to potentiate the RFA-induced antitumor immune response. As-prepared LDHs-cGAMP could effectively enter cancerous or immune cells, inducing a stronger type I interferon (IFN-I) response. After further adsorption of TAAs, nanovaccine generated sustained immune stimulation and efficiently promoted activation of dendritic cells (DCs). Notably, infiltrations of cytotoxic lymphocytes (CTLs) and activated DCs in tumor and lymph nodes were significantly enhanced after nanovaccine treatment, which distinctly inhibited primary, distant, and metastasis of liver cancer. Furthermore, such a nanovaccine strategy greatly changed the tumor immune microenvironment and promoted the response efficiency of anti-programmed death ligand 1 (αPD-L1) immunotherapy, significantly arresting the poorly immunogenic hepa1-6 liver cancer progression. These findings demonstrate the potential of nanovaccine as a booster for RFA in liver cancer therapy and provide a promising in situ cancer vaccination strategy.
Collapse
Affiliation(s)
- Zhou Tian
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Qitao Hu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhouyi Sun
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Huiling He
- Department of Ultrasonography, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhe Tang
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, Zhejiang 310000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
229
|
Sasaki N, Homme M, Kitajima S. Targeting the loss of cGAS/STING signaling in cancer. Cancer Sci 2023; 114:3806-3815. [PMID: 37475576 PMCID: PMC10551601 DOI: 10.1111/cas.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The cGAS/STING pathway provides a key host defense mechanism by detecting the accumulation of cytoplasmic double-stranded DNA (dsDNA) and mediating innate and adaptive immune signaling. In addition to detecting pathogen-derived dsDNA, cGAS senses intrinsic dsDNA, such as those associated with defective cell cycle progression and mitophagy that has leaked from the nucleus or mitochondria, and subsequently evokes host immunity to eliminate pathogenic cells. In cancer cells, dysregulation of DNA repair and cell cycle caused at the DNA replication checkpoint and spindle assembly checkpoint results in aberrant cytoplasmic dsDNA accumulation, stimulating anti-tumor immunity. Therefore, the suppression of cGAS/STING signaling is beneficial for survival and frequently observed in cancer cells as a way to evade detection by the immune system, and is likely to be related to immune checkpoint blockade (ICB) resistance. Indeed, the mechanisms of ICB resistance overlap with those acquired in cancers during immunoediting to evade immune surveillance. This review highlights the current understanding of cGAS/STING suppression in cancer cells and discusses how to establish effective strategies to regenerate effective anti-tumor immunity through reactivation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mizuki Homme
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shunsuke Kitajima
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
230
|
Metcalf CJE, Downie AE. The diversity of cGLR receptors: shedding new light on innate immunity. Trends Immunol 2023; 44:763-765. [PMID: 37718173 DOI: 10.1016/j.it.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The characterization of a new group of innate pattern recognition receptors detected in >500 species across the tree of life by Li et al. reveals surprising commonalities and peculiarities shared with other innate receptors. Receptor diversity within and among species opens the way to reconsidering the costs and benefits of innate immune recognition.
Collapse
Affiliation(s)
- C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
231
|
Bastianello G, Foiani M. Mechanisms controlling the mechanical properties of the nuclei. Curr Opin Cell Biol 2023; 84:102222. [PMID: 37619290 DOI: 10.1016/j.ceb.2023.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The mechanical properties of the nucleus influence different cellular and nuclear functions and have relevant implications for several human diseases. The nucleus protects genetic information while acting as a mechano-sensory hub in response to internal and external forces. Cells have evolved mechano-transduction signaling to respond to physical cellular and nuclear perturbations and adopted a multitude of molecular pathways to maintain nuclear shape stability and prevent morphological abnormalities of the nucleus. Here we describe those key biological processes that control nuclear mechanics and discuss emerging perspectives on the mechanobiology of the nucleus as a diagnostic tool and clinical target.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Oncology and Haemato-Oncology Department, University of Milan, Milan 20122, Italy.
| | - Marco Foiani
- IFOM, The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Oncology and Haemato-Oncology Department, University of Milan, Milan 20122, Italy.
| |
Collapse
|
232
|
Liu Y, Pu F. Updated roles of cGAS-STING signaling in autoimmune diseases. Front Immunol 2023; 14:1254915. [PMID: 37781360 PMCID: PMC10538533 DOI: 10.3389/fimmu.2023.1254915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Natural immunity, the first line for the body to defense against the invasion of pathogen, serves as the body's perception of the presence of pathogens depends on nucleic acid recognition mechanisms. The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons and some other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. Also, STING, with the same character of inflammatory molecules, is inseparable from the body's inflammatory response. In particular, when the expression of STING is upregulated or its related signaling pathways are overactivated, the body may develop serious infectious disorders due to the generation of excessive inflammatory responses, non-infectious diseases, and autoimmune diseases. In recent years, accumulating studies indicated that the abnormal activation of the natural immune cGAS-STING signaling pathway modulated by the nucleic acid receptor cGAS closely associated with the development and occurrence of autoimmune diseases (AID). Thereof, to explore an in-depth role of STING and its related signaling pathways in the diseases associated with inflammation may be helpful to provide new avenues for the treatment of these diseases in the clinic. This article reviews the activation process of the cGAS-STING signaling pathways and its related important roles, and therapeutic drugs in AID, aiming to improve our understanding of AID and achieve better diagnosis and treatment of AID.
Collapse
Affiliation(s)
- Ya Liu
- Department of Rheumatology and Immunology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Feifei Pu
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
233
|
Cheng G, Wu J, Ji M, Hu W, Wu C, Jiang J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer 2023; 23:825. [PMID: 37667220 PMCID: PMC10478367 DOI: 10.1186/s12885-023-11343-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui Cheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Jun Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Mei Ji
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| |
Collapse
|
234
|
Qin Z, Liu H, Sheng Q, Dan J, Wu X, Li H, Wang L, Zhang S, Yuan C, Yuan H, Wang H, Zhou R, Luo Y, Xie X. Mutant p53 leads to low-grade IFN-I-induced inflammation and impairs cGAS-STING signalling in mice. Eur J Immunol 2023; 53:e2250211. [PMID: 37377275 DOI: 10.1002/eji.202250211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and environmental stimulations, resulting in chronic inflammation and even carcinogenesis. However, the connection between IFN-I and p53 mutation is poorly understood. Here, we investigated IFN-I status in the context of mutant p53 (p53N236S , p53S). We observed significant cytosolic double-stranded DNA (dsDNA) derived from nuclear heterochromatin in p53S cells, along with an increased expression of IFN-stimulated genes. Further study revealed that p53S promoted cyclic GMP-AMP synthase (cGAS) and IFN-regulatory factor 9 (IRF9) expression, thus activating the IFN-I pathway. However, p53S/S mice were more susceptible to herpes simplex virus 1 infection, and the cGAS-stimulator of IFN genes (STING) pathway showed a decline trend in p53S cells in response to poly(dA:dT) accompanied with decreased IFN-β and IFN-stimulated genes, whereas the IRF9 increased in response to IFN-β stimulation. Our results illustrated the p53S mutation leads to low-grade IFN-I-induced inflammation via consistent low activation of the cGAS-STING-IFN-I axis, and STAT1-IRF9 pathway, therefore, impairs the protective cGAS-STING signalling and IFN-I response encountered with exogenous DNA attack. These results suggested the dual molecular mechanisms of p53S mutation in inflammation regulation. Our results could be helping in further understanding of mutant p53 function in chronic inflammation and provide information for developing new therapeutic strategies for chronic inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Ziyi Qin
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huan Liu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qihuan Sheng
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoming Wu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Li
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lulin Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuojie Zhang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hongjun Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruoyu Zhou
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoli Xie
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
235
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
236
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
237
|
Guo Y, Ma R, Zhang M, Cao Y, Zhang Z, Yang W. Nanotechnology-Assisted Immunogenic Cell Death for Effective Cancer Immunotherapy. Vaccines (Basel) 2023; 11:1440. [PMID: 37766117 PMCID: PMC10534761 DOI: 10.3390/vaccines11091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor vaccines have been used to treat cancer. How to efficiently induce tumor-associated antigens (TAAs) secretion with host immune system activation is a key issue in achieving high antitumor immunity. Immunogenic cell death (ICD) is a process in which tumor cells upon an external stimulus change from non-immunogenic to immunogenic, leading to enhanced antitumor immune responses. The immune properties of ICD are damage-associated molecular patterns and TAA secretion, which can further promote dendritic cell maturation and antigen presentation to T cells for adaptive immune response provocation. In this review, we mainly summarize the latest studies focusing on nanotechnology-mediated ICD for effective cancer immunotherapy as well as point out the challenges.
Collapse
Affiliation(s)
- Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
238
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
239
|
He Y, Yang Y, Huang W, Yang S, Xue X, Zhu K, Tan H, Sun T, Yang W. Manganese facilitated cGAS-STING-IFNI pathway activation induced by ionizing radiation in glioma cells. Int J Radiat Biol 2023; 99:1890-1907. [PMID: 37406172 DOI: 10.1080/09553002.2023.2232011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE After irradiation, double-stranded DNA leaked into the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, leading to the production of type I interferon (IFNI). In this study, we sought to probe the effect of ionizing radiation on activity of cGAS-STING-IFNI pathway in normoxic or hypoxic glioma cells and explore a more effective method to activate the signaling pathway, thereby activating the anti-tumor immune response and improving the therapeutic effect of radiotherapy for glioma. MATERIALS AND METHODS Human glioma cells U251 and T98G cultured in normoxia or hypoxia (1% O2) were irradiated with different doses of X-ray. The relative expressions of cGAS, IFN-I stimulated genes (ISGs), and three-prime repair exonuclease 1 (TREX1) were detected by qPCR. The expression levels of interferon regulatory factor 3 (IRF3) and p-IRF3 proteins were detected by Western blot. The production of cGAMP and IFN-β in the supernatant was detected by ELISA assay. U251 and T98G cell lines with stable knockdown of TREX1 were established after transfection with lentivirus vectors. EdU cell proliferation assay was used to screen suitable metal ions concentrations. The phagocytosis of DCs was observed by immunofluorescence microscope. The phenotype of DCs was detected by flow cytometry. The migration ability of DCs was detected by a transwell experiment. RESULTS We found that cytosolic dsDNA, 2'3'-cGAMP, cGAS and ISGs expression, and IFN-β in cell supernatant were all increased with the doses of X-ray in the range of 0-16 Gy in normoxic glioma cells. Nevertheless, hypoxia significantly inhibited the radiation-induced dose-dependent activation of cGAS-STING-IFNI pathway. Furthermore, manganese (II) ion (Mn2+) significantly improved cGAS-STING-IFNI pathway activation induced by X-ray in both normoxic and hypoxic glioma cells, thereby promoting the maturation and migration of DCs. CONCLUSIONS The responses of cGAS-STING-IFNI pathway to ionizing radiation were mainly investigated under normoxic condition, but the experiments described here indicated that hypoxia could hinder the pathway activation. However, Mn2+ showed radiosensitizing effects on the pathway under either normoxic or hypoxic conditions demonstrating its potential as a radiosensitizer for glioma through activating an anti-tumor immune response.
Collapse
Affiliation(s)
- Yuping He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Wenpeng Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Xuefei Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kun Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Huiling Tan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
240
|
Mankan AK, Czajka-Francuz P, Prendes M, Ramanan S, Koziej M, Vidal L, Saini KS. Intracellular DNA sensing by neutrophils and amplification of the innate immune response. Front Immunol 2023; 14:1208137. [PMID: 37483598 PMCID: PMC10361817 DOI: 10.3389/fimmu.2023.1208137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
As the first responders, neutrophils lead the innate immune response to infectious pathogens and inflammation inducing agents. The well-established pathogen neutralizing strategies employed by neutrophils are phagocytosis, the action of microbicide granules, the production of ROS, and the secretion of neutrophil extracellular traps (NETs). Only recently, the ability of neutrophils to sense and respond to pathogen-associated molecular patterns is being appreciated. This review brings together the current information about the intracellular recognition of DNA by neutrophils and proposes models of signal amplification in immune response. Finally, the clinical relevance of DNA sensing by neutrophils in infectious and non-infectious diseases including malignancy are also discussed.
Collapse
Affiliation(s)
| | | | - Maria Prendes
- Labcorp Drug Development Inc., Princeton, NJ, United States
| | - Sriram Ramanan
- Labcorp Drug Development Inc., Princeton, NJ, United States
| | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
241
|
Chen B, Xiao L, Wang W, Xu L, Jiang Y, Zhang G, Liu L, Li X, Yu Y, Qian H. Bi 2-xMn xO 3 Nanospheres Engaged Radiotherapy with Amplifying DNA Damage. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410709 DOI: 10.1021/acsami.3c06838] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Radiotherapy efficacy was greatly limited by hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME), which maintained the immunosuppressive microenvironment and promoted DNA repair. In this work, 4T1 cell membrane-coated Bi2-xMnxO3 nanospheres have been achieved via a facile protocol, which showed enhanced therapeutic efficacy for a combination of radiotherapy and immunotherapy. Bi2-xMnxO3 nanospheres showed appreciable performance in generating O2 in situ and depleting GSH to amplify DNA damage and remodel the tumor immunosuppressive microenvironment, thus enhancing radiotherapy efficacy. Cancer cell membrane-coated Bi2-xMnxO3 nanospheres (T@BM) prolonged blood circulation time and enriched the accumulation of the materials in the tumor. Meanwhile, the released Mn2+ could activate STING pathway-induced immunotherapy, resulting in the immune infiltration of CD8+ T cells on in situ mammary tumors and the inhibition of pulmonary nodules. As a result, approximately 1.9-fold recruitment of CD8+ T cells and 4.0-fold transformation of mature DC cells were observed compared with the phosphate-buffered saline (PBS) group on mammary tumors (in situ). In particular, the number of pulmonary nodules significantly decreased and the proliferation of pulmonary metastatic lesions was substantially inhibited, which provided a longer survival period. Therefore, T@BM exhibited great potential for the treatment of 4T1 tumors in situ and lung metastasis.
Collapse
Affiliation(s)
- Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Liang Xiao
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Guoqiang Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Lin Liu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Xiaohu Li
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Yongqiang Yu
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| |
Collapse
|
242
|
Viculin J, Degoricija M, Vilović K, Gabela I, Franković L, Vrdoljak E, Korac-Prlic J. Elevated Tumor Cell-Intrinsic STING Expression in Advanced Laryngeal Cancer. Cancers (Basel) 2023; 15:3510. [PMID: 37444620 DOI: 10.3390/cancers15133510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Laryngeal cancer is the second most common malignancy of the head and neck, worldwide. Immunotherapy targeting checkpoint inhibitors has been approved for the treatment of patients with recurrent or metastatic laryngeal cancer but has a relatively low response rate and outcomes that leave many patients underserved. Targeting the cGAS-STING signaling pathway can potentially improve the activation of immune effector cells, although its role in the development and progression of laryngeal cancer has not yet been investigated in depth. Fifty-nine tumor samples from patients with pathologically confirmed squamous cell carcinoma of the larynx, stage I-IV non-metastatic disease, who were treated at the University Hospital of Split, were immunohistochemically stained for the expression of STING, cGAS, CD8, CD68, and CD163. Elevated tumor cell-intrinsic STING expression was positively associated with stage IV (p = 0.0031), pT3, and pT4 laryngeal cancers (p = 0.0336) as well as with higher histological grades (G2 and G3) (p = 0.0204) and lymph node-positive tumors (p = 0.0371). After adjusting for age, sex, location, and cGAS expression, elevated STING expression was significantly associated with stage IV cancer in a multiple logistic regression model (β = 1.849, SE = ±0.8643, p = 0.0324). Elevated STING expression represents a potentially favorable predictive biomarker for new therapeutic approaches involving STING agonists combined with immunotherapy and DNA-damaging agents (radiotherapy, cisplatin, and PARP inhibitors) in laryngeal cancer.
Collapse
Affiliation(s)
- Jelena Viculin
- Department of Oncology and Radiotherapy, University Hospital of Split, 21000 Split, Croatia
| | - Marina Degoricija
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Gabela
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia
| | - Lucija Franković
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia
| | - Eduard Vrdoljak
- Department of Oncology and Radiotherapy, University Hospital of Split, 21000 Split, Croatia
- Department of Clinical Oncology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
243
|
Podar K. Targeting mtDAMPed macrophages for MM therapy. Blood 2023; 141:3012-3014. [PMID: 37347499 DOI: 10.1182/blood.2023020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Affiliation(s)
- Klaus Podar
- Karl Landsteiner University of Health Sciences and University Hospital Krems
| |
Collapse
|
244
|
Xiang D, Han X, Li J, Zhang J, Xiao H, Li T, Zhao X, Xiong H, Xu M, Bi W. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma. Mater Today Bio 2023; 20:100675. [PMID: 37304579 PMCID: PMC10250924 DOI: 10.1016/j.mtbio.2023.100675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, immune checkpoint blockades (ICBs) have made great progress in the treatment of cancer. However, most ICBs have not yet been observed to be satisfactory in the treatment of osteosarcoma. Herein, we designed composite nanoparticles (NP-Pt-IDOi) from a reactive oxygen species (ROS) sensitive amphiphilic polymer (PHPM) with thiol-ketal bonds in the main chain to encapsulate a Pt(IV) prodrug (Pt(IV)-C12) and an indoleamine-(2/3)-dioxygenase (IDO) inhibitor (IDOi, NLG919). Once NP-Pt-IDOi enter the cancer cells, the polymeric nanoparticles could dissociate due to the intracellular ROS, and release Pt(IV)-C12 and NLG919. Pt(IV)-C12 induces DNA damage and activates the cGAS-STING pathway, increasing infiltration of CD8+ T cells in the tumor microenvironment. In addition, NLG919 inhibits tryptophan metabolism and enhances CD8+ T cell activity, ultimately activating anti-tumor immunity and enhancing the anti-tumor effects of platinum-based drugs. NP-Pt-IDOi were shown to have superior anti-cancer activity in vitro and in vivo in mouse models of osteosarcoma, providing a new clinical paradigm for combining chemotherapy with immunotherapy for osteosarcoma.
Collapse
Affiliation(s)
- Dongquan Xiang
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xinli Han
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Medicine, Nankai University, Tianjin, 300074, PR China
| | - Jianxiong Li
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiabing Zhang
- Xidian University, Xi'an, 710071, PR China
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, 100853, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ting Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Xuelin Zhao
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Meng Xu
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Wenzhi Bi
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| |
Collapse
|
245
|
Zhang B, Zhang J, Li Y, Li N, Wang Y, Jang R, Xu X, Li R, Chen Z, Duan S, Wang Y, Zhang L. In Situ STING-Activating Nanovaccination with TIGIT Blockade for Enhanced Immunotherapy of Anti-PD-1-Resistant Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300171. [PMID: 37053496 DOI: 10.1002/adma.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Indexed: 06/16/2023]
Abstract
Immunotherapies comprising programmed cell death protein 1/PD ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors are effective cancer treatments. However, the low response rate and immunoresistance resulting from alternative immune checkpoint upregulation and inefficient immune stimulation by T cells are problematic. The present report describes a biomimetic nanoplatform that simultaneously blocks the alternative T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) checkpoint and activates the stimulator of interferon genes (STING) signaling pathway in situ for enhanced antitumor immunity. The nanoplatform is engineered by fusing a red blood cell membrane with glutathione-responsive liposome-encapsulated cascade-activating chemoagents (β-lapachone and tirapazamine), and anchoring them with a detachable TIGIT block peptide (named as RTLT). In the tumor environment, the peptide is spatiotemporally released to reverse T-cell exhaustion and restore antitumor immunity. The cascade activation of chemotherapeutic agents causes DNA damage and inhibits the repair of double-stranded DNA, which induces robust in situ STING activation for an efficient immune response. The RTLT inhibits anti-PD-1-resistant tumor growth, and prevents tumor metastasis and recurrence in vivo by inducing antigen-specific immune memory. This biomimetic nanoplatform thus provides a promising strategy for in situ cancer vaccination.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
- School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, China
| | - Juan Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yaqiong Li
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Na Li
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yuzhou Wang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Ru Jang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Xiaoxia Xu
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobo Duan
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| |
Collapse
|
246
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
247
|
Mowat C, Dhatt J, Bhatti I, Hamie A, Baker K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front Immunol 2023; 14:1190810. [PMID: 37304266 PMCID: PMC10248408 DOI: 10.3389/fimmu.2023.1190810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Dhatt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ilsa Bhatti
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Angela Hamie
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
248
|
Chen C, Hu M, Cao Y, Zhu B, Chen J, Li Y, Shao J, Zhou S, Shan P, Zheng C, Li Z, Li Z. Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy. Biomacromolecules 2023. [PMID: 37125731 DOI: 10.1021/acs.biomac.3c00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyclic dinucleotides (CDNs) are a promising class of immune agonists that trigger the stimulator of interferon genes (STING) to activate both innate and acquired immunity. However, the efficacy of CDNs is limited by drug delivery barriers. Therefore, we developed a combined immunotherapy strategy based on injectable reactive oxygen species (ROS)-responsive hydrogels, which sustainably release 5,6-dimethylxanthenone-4-acetic acid (DMXAA) as known as a STING agonist and indocyanine green (ICG) by utilizing a high level of ROS in the tumor microenvironment (TME). The STING agonist combined with photothermal therapy (PTT) can improve the biological efficacy of DMXAA, transform the immunosuppressive TME into an immunogenic and tumoricidal microenvironment, and completely kill tumor cells. In addition, this bioreactive gel can effectively leverage local ROS to facilitate the release of immunotherapy drugs, thereby enhancing the efficacy of combination therapy, improving the TME, inhibiting tumor growth, inducing memory immunity, and protecting against tumor rechallenge.
Collapse
Affiliation(s)
- Cunguo Chen
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P. R. China
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Murong Hu
- Department of Dermatology and Venereology, Hangzhou Third Hospital, Hangzhou, Zhejiang 321000, P. R. China
| | - Yunyun Cao
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Binbin Zhu
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jiashe Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yashi Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Junyi Shao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Sen Zhou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Pengfei Shan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Chen Zheng
- Department of Breast Cancer Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
249
|
Zhang Y, Lei MZ, Yin M, Lei QY. A metabolic clue for STING suppression. Trends Cell Biol 2023:S0962-8924(23)00077-6. [PMID: 37100634 DOI: 10.1016/j.tcb.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
A recent report by Heath et al. reveals that obesity could impair cancer immunogenicity and foster a type I interferon (IFN-I)-deprived tumor microenvironment through saturated fatty acid-mediated stimulator of interferon genes (STING) inhibition.
Collapse
Affiliation(s)
- Yifan Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China; Department of Oncology, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Ming-Zhu Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China; Department of Oncology, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China; Department of Oncology, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China; Department of Oncology, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
250
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|