201
|
Leaphart JC, Zelmer DA. Wrecking the Curve: Altered Functional Response of Tetragoneuria (Odonata: Corduliidae) Naiads Infected with Metacercariae of Haematoloechus floedae. J Parasitol 2017; 103:147-151. [PMID: 28118094 DOI: 10.1645/16-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ubiquity of host-parasite interactions and their potential for substantial representation, in terms of overall biomass, within ecosystems suggests that parasites have the capacity to influence energy flow within an ecosystem. Although the influence of certain parasites on prey behavior has been well documented, parasites could also exert an influence on ecosystem dynamics by influencing predator feeding behavior. The functional response of Tetragoneuria naiads was characterized by presenting naiads with varying abundances of Daphnia magna , after which a subset of the naiads were exposed to cercariae of Haematoloechus floedae, and the feeding trials repeated for both the control and exposed odonates. A type II functional response was chosen as an appropriate model for comparison. An indicator variable approach to nonlinear regression of the functional response data indicated that infected odonate naiads spent significantly more time foraging than they did before infection, whereas there was no significant change in the functional response of the control naiads. Infected odonates also had a slower rate of growth. These results imply a metabolic cost to infection of Tetragoneuria naiads by H. floedae that might be associated with the encapsulating response to the metacercariae that was observed in infected naiads.
Collapse
Affiliation(s)
- James C Leaphart
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina 29801
| | - Derek A Zelmer
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina 29801
| |
Collapse
|
202
|
Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U. Chytridiomycosis of Marine Diatoms-The Role of Stress Physiology and Resistance in Parasite-Host Recognition and Accumulation of Defense Molecules. Mar Drugs 2017; 15:E26. [PMID: 28125065 PMCID: PMC5334607 DOI: 10.3390/md15020026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
Little is known about the role of chemotaxis in the location and attachment of chytrid zoospores to potential diatom hosts. Hypothesizing that environmental stress parameters affect parasite-host recognition, four chytrid-diatom tandem cultures (Chytridium sp./Navicula sp., Rhizophydium type I/Nitzschia sp., Rhizophydium type IIa/Rhizosolenia sp., Rhizophydium type IIb/Chaetoceros sp.) were used to test the chemotaxis of chytrid zoospores and the presence of potential defense molecules in a non-contact-co-culturing approach. As potential triggers in the chemotaxis experiments, standards of eight carbohydrates, six amino acids, five fatty acids, and three compounds known as compatible solutes were used in individual and mixed solutions, respectively. In all tested cases, the whole-cell extracts of the light-stressed (continuous light exposure combined with 6 h UV radiation) hosts attracted the highest numbers of zoospores (86%), followed by the combined carbohydrate standard solution (76%), while all other compounds acted as weak triggers only. The results of the phytochemical screening, using biomass and supernatant extracts of susceptible and resistant host-diatom cultures, indicated in most of the tested extracts the presence of polyunsaturated fatty acids, phenols, and aldehydes, whereas the bioactivity screenings showed that the zoospores of the chytrid parasites were only significantly affected by the ethanolic supernatant extract of the resistant hosts.
Collapse
Affiliation(s)
- Bettina Scholz
- BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland.
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland.
| | - Frithjof C Küpper
- Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, UK.
| | - Wim Vyverman
- Department of Biology, Section of Protistology and Aquatic Ecology, University of Ghent, Krijgslaan 281 S8, 9000 Ghent, Belgium.
| | | | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.
| |
Collapse
|
203
|
Immediate and lag effects of pesticide exposure on parasite resistance in larval amphibians. Parasitology 2017; 144:817-822. [DOI: 10.1017/s0031182016002560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARYAcross host–parasite systems, there is evidence that pesticide exposure increases parasite loads and mortality following infection. However, whether these effects are driven by reductions in host resistance to infection or slower rates of parasite clearance is often unclear. Using controlled laboratory experiments, we examined the ability of larval northern leopard frogs (Lithobates pipiens) and American toads (Anaxyrus americanus) to resist and clear trematode (Echinoparyphium sp.) infections following exposure to the insecticide carbaryl. Northern leopard frogs exposed to 1 mg L−1 of carbaryl had 61% higher parasite loads compared with unexposed individuals, while there was no immediate effect of carbaryl on parasite encystment in American toads. However, when tadpoles were exposed to carbaryl and moved to freshwater for 14 days before the parasite challenge, we recovered 37 and 63% more parasites from carbaryl-exposed northern leopard frogs and American toads, respectively, compared with the control. No effects on clearance were found for either species. Collectively, our results suggest that pesticide exposure can reduce the ability of amphibians to resist parasite infections and that these effects can persist weeks following exposure. It is critical for researchers to incorporate species interactions into toxicity studies to improve our understanding of how contaminants affect ecological communities.
Collapse
|
204
|
Cizauskas CA, Carlson CJ, Burgio KR, Clements CF, Dougherty ER, Harris NC, Phillips AJ. Parasite vulnerability to climate change: an evidence-based functional trait approach. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160535. [PMID: 28280551 PMCID: PMC5319317 DOI: 10.1098/rsos.160535] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 05/19/2023]
Abstract
Despite the number of virulent pathogens that are projected to benefit from global change and to spread in the next century, we suggest that a combination of coextinction risk and climate sensitivity could make parasites at least as extinction prone as any other trophic group. However, the existing interdisciplinary toolbox for identifying species threatened by climate change is inadequate or inappropriate when considering parasites as conservation targets. A functional trait approach can be used to connect parasites' ecological role to their risk of disappearance, but this is complicated by the taxonomic and functional diversity of many parasite clades. Here, we propose biological traits that may render parasite species particularly vulnerable to extinction (including high host specificity, complex life cycles and narrow climatic tolerance), and identify critical gaps in our knowledge of parasite biology and ecology. By doing so, we provide criteria to identify vulnerable parasite species and triage parasite conservation efforts.
Collapse
Affiliation(s)
- Carrie A. Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Author for correspondence: Carrie A. Cizauskas e-mail:
| | - Colin J. Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Kevin R. Burgio
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Chris F. Clements
- Institute of Evolutionary Biology and Environmental Studies, The University of Zurich, Zurich, Switzerland
| | - Eric R. Dougherty
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Nyeema C. Harris
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna J. Phillips
- Department of Invertebrate Zoology, Smithsonian's National Museum of Natural History, Washington, DC, USA
| |
Collapse
|
205
|
du Toit JT, Cross PC, Valeix M. Managing the Livestock–Wildlife Interface on Rangelands. RANGELAND SYSTEMS 2017. [DOI: 10.1007/978-3-319-46709-2_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
206
|
Médoc V, Firmat C, Sheath D, Pegg J, Andreou D, Britton J. Parasites and Biological Invasions. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
207
|
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F. Invasions Toolkit. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
208
|
Dutton HR, Barger MA. Comparison of Metazoan Parasite Diversity in Catfishes Within and Outside the Big Thicket National Preserve, Texas, U.S.A. COMP PARASITOL 2017. [DOI: 10.1654/1525-2647-84.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haley R. Dutton
- Department of Natural Science, Peru State College, Peru, Nebraska 68421, U.S.A
| | - Michael A. Barger
- Department of Natural Science, Peru State College, Peru, Nebraska 68421, U.S.A
| |
Collapse
|
209
|
Summer time predation on the obligatory off-host stage of an invasive ectoparasite. Parasitology 2016; 143:1960-1973. [DOI: 10.1017/s0031182016001748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPredation can regulate populations and strongly affect invasion success of novel prey. The deer ked (Lipoptena cervi; Linnaeus 1758) is an invasive ectoparasite of cervids that spends a long period of its life cycle outside the host. Prior to this study, virtually nothing was known about natural summer time predation on the deer ked. We aimed to evaluate the magnitude of summer time predation onL. cervipupae in different habitats and to identify potential predators. We conducted a set of field experiments, where we exposedL. cervipupae to various ground-dwelling vertebrate and invertebrate predators. The loss of pupae was monitored for different predator guilds. Three habitats of the moose, the main host species, were studied: (1) moist heath forest; (2) dry, logged heath forest; and (3) moist meadow. The results indicate notable summer time predation onL. cervipupae, and the pupal predation varied within and between habitats, being lowest in the meadow habitat. We found a positive correlation between pupal loss and abundance of the common lizard (Zootoca vivipara), harvestmen (Opiliones), ground spiders (Gnaphosidae) and Formicinae-ants. We conclude that summer time predation during the pupal phase can have a notable local importance for theL. cerviabundance.
Collapse
|
210
|
Born-Torrijos A, Poulin R, Pérez-del-Olmo A, Culurgioni J, Raga JA, Holzer AS. An optimised multi-host trematode life cycle: fishery discards enhance trophic parasite transmission to scavenging birds. Int J Parasitol 2016; 46:745-53. [DOI: 10.1016/j.ijpara.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
211
|
Narr CF, Frost PC. Exploited and excreting: parasite type affects host nutrient recycling. Ecology 2016; 97:2012-2020. [DOI: 10.1002/ecy.1437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Charlotte F. Narr
- Environmental and Life Sciences; Trent University; Peterborough Ontario K9J 7B8 Canada
| | - Paul C. Frost
- Department of Biology; Trent University; Peterborough Ontario K9J 7B8 Canada
| |
Collapse
|
212
|
Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA, Clements CF, Seidel DP, Harris NC. Paradigms for parasite conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:724-33. [PMID: 26400623 DOI: 10.1111/cobi.12634] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 05/03/2023]
Abstract
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.
Collapse
Affiliation(s)
- Eric R Dougherty
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, U.S.A
| | - Colin J Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, U.S.A
| | - Veronica M Bueno
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, CT, 06269, U.S.A
| | - Kevin R Burgio
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, CT, 06269, U.S.A
| | - Carrie A Cizauskas
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544, U.S.A
| | - Christopher F Clements
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dana P Seidel
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, U.S.A
| | - Nyeema C Harris
- Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI, 48109, U.S.A
| |
Collapse
|
213
|
Spatiotemporal distributions of intestinal helminths in female lesser scaup Aythya affinis during spring migration from the upper Midwest, USA. J Helminthol 2016; 91:479-490. [PMID: 27460259 DOI: 10.1017/s0022149x16000493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the associations between intestinal helminth infracommunity structure and infection parameters and the age, size, and year and region of collection of 130 female lesser scaup (Aythya affinis) during their 2014-2015 spring migrations through the upper Midwest, USA. We identified a total of 647,174 individual helminths from 40 taxa, including 20 trematodes, 14 cestodes, 4 nematodes and 2 acanthocephalans parasitizing lesser scaup within the study area. Lesser scaup were each infected with 2-23 helminth taxa. One digenean, Plenosoma minimum, is reported for the first time in lesser scaup and in the Midwest. Mean trematode abundance and total helminth abundance was significantly less in 2015 than 2014, and we suspect that colder weather late in 2015 impacted the intermediate host fauna and caused the observed differences. Brillouin's species diversity of helminths was greatest in the northernmost region of the study area, which coincides with the range of a non-indigenous snail that indirectly causes annual mortality events of lesser scaup. While host age and size were not determined to be influential factors of helminth infracommunity structure, non-parametric ordination and permutational analysis of co-variance revealed that year and region of collection explained differences in helminth infracommunities. Our results suggest that spatiotemporal variations play an important role in the structure of intestinal helminth infracommunities found in migrating lesser scaup hosts, and may therefore impact host ability to build endogenous reserves at certain stopover locations in the Midwest.
Collapse
|
214
|
Mougi A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci Rep 2016; 6:29929. [PMID: 27406267 PMCID: PMC4942820 DOI: 10.1038/srep29929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/24/2016] [Indexed: 02/05/2023] Open
Abstract
Ecological communities comprise diverse species and their interactions. Notably, ecological and evolutionary studies have revealed that reciprocal interactions such as predator–prey, competition, and mutualism, are key drivers of community dynamics. However, there is an argument that many species interactions are asymmetric, where one species unilaterally affects another species (amensalism or commensalism). This raises the unanswered question of what is the role of unilateral interactions in community dynamics. Here I use a theoretical approach to demonstrate that unilateral interactions greatly enhance community stability. The results suggested that amensalism and commensalism were more stabilizing than symmetrical interactions, such as competition and mutualism, but they were less stabilizing than an asymmetric antagonistic interaction. A mix of unilateral interactions increased stability. Furthermore, in communities with all interaction types, unilateral interactions tended to increase stability. This study suggests that unilateral interactions play a major role in maintaining communities, underlining the need to further investigate their roles in ecosystem dynamics.
Collapse
Affiliation(s)
- Akihiko Mougi
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| |
Collapse
|
215
|
Friesen OC, Roth JD. Alternative prey use affects helminth parasite infections in grey wolves. J Anim Ecol 2016; 85:1265-74. [PMID: 27155132 DOI: 10.1111/1365-2656.12544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics.
Collapse
Affiliation(s)
- Olwyn C Friesen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - James D Roth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
216
|
Britton JR, Andreou D. Parasitism as a Driver of Trophic Niche Specialisation. Trends Parasitol 2016; 32:437-445. [DOI: 10.1016/j.pt.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
|
217
|
Pagenkopp Lohan KM, Fleischer RC, Carney KJ, Holzer KK, Ruiz GM. Amplicon-Based Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships' Ballast Water: Implications for Biogeography and Infectious Diseases. MICROBIAL ECOLOGY 2016; 71:530-42. [PMID: 26476551 DOI: 10.1007/s00248-015-0684-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Ships' ballast water (BW) commonly moves macroorganisms and microorganisms across the world's oceans and along coasts; however, the majority of these microbial transfers have gone undetected. We applied high-throughput sequencing methods to identify microbial eukaryotes, specifically emphasizing the protistan parasites, in ships' BW collected from vessels calling to the Chesapeake Bay (Virginia and Maryland, USA) from European and Eastern Canadian ports. We utilized tagged-amplicon 454 pyrosequencing with two general primer sets, amplifying either the V4 or V9 domain of the small subunit (SSU) of the ribosomal RNA (rRNA) gene complex, from total DNA extracted from water samples collected from the ballast tanks of bulk cargo vessels. We detected a diverse group of protistan taxa, with some known to contain important parasites in marine systems, including Apicomplexa (unidentified apicomplexans, unidentified gregarines, Cryptosporidium spp.), Dinophyta (Blastodinium spp., Euduboscquella sp., unidentified syndinids, Karlodinium spp., Syndinium spp.), Perkinsea (Parvilucifera sp.), Opisthokonta (Ichthyosporea sp., Pseudoperkinsidae, unidentified ichthyosporeans), and Stramenopiles (Labyrinthulomycetes). Further characterization of groups with parasitic taxa, consisting of phylogenetic analyses for four taxa (Cryptosporidium spp., Parvilucifera spp., Labyrinthulomycetes, and Ichthyosporea), revealed that sequences were obtained from both known and novel lineages. This study demonstrates that high-throughput sequencing is a viable and sensitive method for detecting parasitic protists when present and transported in the ballast water of ships. These data also underscore the potential importance of human-aided dispersal in the biogeography of these microbes and emerging diseases in the world's oceans.
Collapse
Affiliation(s)
- K M Pagenkopp Lohan
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA.
| | - R C Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
| | - K J Carney
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - K K Holzer
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - G M Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| |
Collapse
|
218
|
Baudrot V, Perasso A, Fritsch C, Raoul F. Competence of hosts and complex foraging behavior are two cornerstones in the dynamics of trophically transmitted parasites. J Theor Biol 2016; 397:158-68. [PMID: 26992573 DOI: 10.1016/j.jtbi.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
Multi-host trophically transmitted parasite (TTP) is a common life cycle where prey and predators are respectively intermediate and definitive hosts of the parasite. In these systems, the foraging response of the predator toward variations in prey community composition underlies the dynamic of the parasite. Therefore, modeling epidemiological dynamic of infectious diseases considering ecological predator-prey interactions is essential to understand the spreading of parasites in ecosystems. However, two important weaknesses of previous TTP models including feeding interaction can be pointed out: (i) the choice of a linear density-dependent contact rate is faintly realistic as it supposes an unlimited ingestion rate with an increase of prey density and (ii) considering only one host prey species prevents the study of host biodiversity effect due to change in the prey community composition where species have different competences to be infected and to transmit the parasite. This article attempts to address the dynamics of parasite in a context of multiple intermediate hosts differentiated by their competences and of complex foraging behavior of the predator. We present and analyze a deterministic one predator-two prey model, which is then used to explore the transmission cycle of the cestode Echinococcus multilocularis. This study examines the foraging condition for the co-existence of the prey, and then, based on the computation of the threshold measure of disease risk, R0, we show that the pattern of feeding interactions changes the relationship between disease risk and prey community composition. Finally, we disentangle the mechanism leading to the counter-intuitive observation of a decrease of disease risk while the population density of intermediate hosts increases.
Collapse
Affiliation(s)
- Virgile Baudrot
- Laboratoire UMR 6249 CNRS Chrono-environnement - Université Bourgogne Franche-Comté. 25000 Besançon, France.
| | - Antoine Perasso
- Laboratoire UMR 6249 CNRS Chrono-environnement - Université Bourgogne Franche-Comté. 25000 Besançon, France.
| | - Clémentine Fritsch
- Laboratoire UMR 6249 CNRS Chrono-environnement - Université Bourgogne Franche-Comté. 25000 Besançon, France.
| | - Francis Raoul
- Laboratoire UMR 6249 CNRS Chrono-environnement - Université Bourgogne Franche-Comté. 25000 Besançon, France.
| |
Collapse
|
219
|
|
220
|
Silveira TS, Calegaro-Marques C. Helminth parasite diversity discloses age and sex differences in the foraging behaviour of southern lapwings (Vanellus chilensis
). AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tiago S. Silveira
- Departamento de Zoologia, Programa de Pós-graduação em Biologia Animal, Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Cláudia Calegaro-Marques
- Departamento de Zoologia, Programa de Pós-graduação em Biologia Animal, Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
221
|
|
222
|
Choudhury A, Aguirre-Macedo ML, Curran SS, de Núñez MO, Overstreet RM, de León GPP, Santos CP. Trematode diversity in freshwater fishes of the Globe II: 'New World'. Syst Parasitol 2016; 93:271-82. [PMID: 26898590 DOI: 10.1007/s11230-016-9632-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
We provide a summary overview of the diversity of trematode parasites in freshwater fishes of the 'New World', i.e. the Americas, with emphasis on adult forms. The trematode fauna of three regions, South America, Middle America, and USA and Canada (North America north of Mexico), are considered separately. In total, 462 trematode species have been reported as adults from the Americas. The proportion of host species examined for parasites varies widely across the Americas, from a high of 45% in the Mexican region of Middle America to less than 5% in South America. North and South America share no adult species, and one exclusively freshwater genus, Creptotrema Travassos, Artigas & Pereira, 1928 in the Allocreadiidae Looss, 1902 is the most widely distributed. Metacercariae of strigeiforms maturing in fish-eating birds (e.g. species of the Diplostomidae Poirier, 1886) are common and widely distributed. The review also highlights the paucity of known life-cycles. The foreseeable future of diversity studies belongs to integrative approaches and the application of molecular ecological methods. While opportunistic sampling will remain important in describing and cataloguing the trematode fauna, a better understanding of trematode diversity and biology will also depend on strategic sampling throughout the Americas.
Collapse
Affiliation(s)
- Anindo Choudhury
- Division of Natural Science, St. Norbert College, 100 Grant Street, De Pere, WI, 54115, USA.
| | - M Leopoldina Aguirre-Macedo
- CINVESTAV-IPN, Unidad Mérida, Km 6 Antigua Carretera a Progreso, Apartado Postal 73, Cordemex, 97310, Mérida, Yucatan, Mexico
| | - Stephen S Curran
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS, 39564, USA
| | - Margarita Ostrowski de Núñez
- Laboratorio de Helmintología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 EGA, Buenos Aires, Argentina
| | - Robin M Overstreet
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS, 39564, USA
| | - Gerardo Pérez-Ponce de León
- Instituto de Biología, Universidad Nacional Autónoma de México, Ap. Postal 70-153, CP 04510, México, D.F., México
| | - Cláudia Portes Santos
- Laboratório de Avaliação e Promoção e Saúde Ambiental, Instituto Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
223
|
Soldánová M, Selbach C, Sures B. The Early Worm Catches the Bird? Productivity and Patterns of Trichobilharzia szidati Cercarial Emission from Lymnaea stagnalis. PLoS One 2016; 11:e0149678. [PMID: 26895541 PMCID: PMC4760985 DOI: 10.1371/journal.pone.0149678] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Digenean trematodes are common and abundant in aquatic habitats and their free-living larvae, the cercariae, have recently been recognized as important components of ecosystems in terms of comprising a significant proportion of biomass and in having a potentially strong influence on food web dynamics. One strategy to enhance their transmission success is to produce high numbers of cercariae which are available during the activity peak of the next host. In laboratory experiments with 13 Lymnaea stagnalis snails infected with Trichobilharzia szidati the average daily emergence rate per snail was determined as 2,621 cercariae, with a maximum of 29,560. During a snail’s lifetime this summed up to a mass equivalent of or even exceeding the snail’s own body mass. Extrapolated for the eutrophic pond where the snails were collected, annual T. szidati biomass may reach 4.65 tons, a value equivalent to a large Asian elephant. Emission peaks were observed after the onset of illumination, indicating emission synchronizing with the high morning activities of the definitive hosts, ducks. However, high cercarial emission is possible throughout the day under favorable lightning conditions. Therefore, although bird schistosomes, such as T. szidati constitute only a fraction of the diverse trematode communities in the studied aquatic ecosystem, their cercariae can still pose a considerable risk for humans of getting cercarial dermatitis (swimmer's itch) due to the high number of cercariae emitted from infected snails.
Collapse
Affiliation(s)
- Miroslava Soldánová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- * E-mail:
| | - Christian Selbach
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
224
|
Haerter JO, Mitarai N, Sneppen K. Food Web Assembly Rules for Generalized Lotka-Volterra Equations. PLoS Comput Biol 2016; 12:e1004727. [PMID: 26828363 PMCID: PMC4734619 DOI: 10.1371/journal.pcbi.1004727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/03/2016] [Indexed: 11/18/2022] Open
Abstract
In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species. Human impact currently induces rapid reductions in global biodiversity. Assessing the consequences of such modifications requires that ecological science better understand the conditions under which the species in a community can coexist and when not. Fundamentally, two species can not coexist indefinitely when they exclusively compete for the same prey—one must inevitably become extinct. This paradigm is known as the competitive exclusion principle. We consider communities of any number of species and multiple trophic levels, i.e. the average number of steps between a predator and basic nutrient, e.g. sunlight or sugars. We show that the extension of the competitive exclusion principle to such large systems means that each species must be part of a “non-overlapping pairing”. Such pairings are exclusive connections between two species, e.g. a predator and a prey. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. The food web assembly rules are explicit conditions that specify sustainable combinations of species at the different trophic levels. As also seen in field data, our rules imply high species numbers at intermediate levels and few at the top and bottom. We further show that omnivorous species—those with hosts at multiple trophic levels—may take a special role in stabilizing food webs, as they combine several trophic levels.
Collapse
Affiliation(s)
- Jan O. Haerter
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
225
|
Doña J, Moreno-García M, Criscione CD, Serrano D, Jovani R. Species mtDNA genetic diversity explained by infrapopulation size in a host-symbiont system. Ecol Evol 2016; 5:5801-9. [PMID: 26811755 PMCID: PMC4717341 DOI: 10.1002/ece3.1842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023] Open
Abstract
Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host‐symbiont systems. Here, we studied mtDNA variation in a host‐symbiont non‐model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star‐like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.
Collapse
Affiliation(s)
- Jorge Doña
- Department of Evolutionary Ecology Estación Biológica de Doñana (CSIC) Avda. Americo Vespucio s/n Sevilla Spain
| | - Marina Moreno-García
- Department of Evolutionary Ecology Estación Biológica de Doñana (CSIC) Avda. Americo Vespucio s/n Sevilla Spain
| | - Charles D Criscione
- Department of Biology Texas A&M University 3258 TAMU College Station Texas 77843
| | - David Serrano
- Department of Conservation Biology Estación Biológica de Doñana (CSIC) Avda Americo Vespucio s/n Sevilla Spain
| | - Roger Jovani
- Department of Evolutionary Ecology Estación Biológica de Doñana (CSIC) Avda. Americo Vespucio s/n Sevilla Spain
| |
Collapse
|
226
|
Brose U, Blanchard JL, Eklöf A, Galiana N, Hartvig M, R Hirt M, Kalinkat G, Nordström MC, O'Gorman EJ, Rall BC, Schneider FD, Thébault E, Jacob U. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol Rev Camb Philos Soc 2016; 92:684-697. [PMID: 26756137 DOI: 10.1111/brv.12250] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022]
Abstract
Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.
Collapse
Affiliation(s)
- Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Faculty of Biology and Pharmacy, Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine Socioecology, University of Tasmania, 20 Castray Esplanade, Battery Point TAS 7004, Australia
| | - Anna Eklöf
- Theoretical Biology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Nuria Galiana
- Ecological Networks and Global Change Group, Experimental Ecology Station, Centre National de la Recherche Scientifique, 09200, Moulis, France
| | - Martin Hartvig
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen, Denmark.,National Institute of Aquatic Resources, Technical University of Denmark, DK-2920, Charlottenlund, Denmark.,Systemic Conservation Biology Group, J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University of Göttingen, 37073, Göttingen, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Faculty of Biology and Pharmacy, Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gregor Kalinkat
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.,Department of Fish Ecology and Evolution, Eawag, 6047, Kastanienbaum, Switzerland
| | - Marie C Nordström
- Environmental and Marine Biology, Åbo Akademi University, FI-20520, Åbo, Finland
| | - Eoin J O'Gorman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Björn C Rall
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Faculty of Biology and Pharmacy, Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Florian D Schneider
- Institut des Sciences de l'Evolution, Université Montpellier, CNRS, IRD, EPHE, CC065, 34095, Montpellier Cedex 05, France
| | - Elisa Thébault
- Institute of Ecology and Environmental Sciences - Paris, UMR 7618 (UPMC, CNRS, IRD, INRA, UPEC, Paris Diderot), Université Pierre et Marie Curie, 75005, Paris, France
| | - Ute Jacob
- Department of Biology, Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability (CEN), KlimaCampus, University of Hamburg, 22767, Hamburg, Germany
| |
Collapse
|
227
|
Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 2015; 143:343-9. [DOI: 10.1017/s003118201500164x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits.
Collapse
|
228
|
|
229
|
From population ecology to metabolism: growth of Trypanosoma evansi, and implications of glucose depletion, in a live host. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
230
|
Strona G. Past, present and future of host-parasite co-extinctions. Int J Parasitol Parasites Wildl 2015; 4:431-41. [PMID: 26835251 PMCID: PMC4699984 DOI: 10.1016/j.ijppaw.2015.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022]
Abstract
Human induced ecosystem alterations and climate change are expected to drive several species to extinction. In this context, the attention of public opinion, and hence conservationists' efforts, are often targeted towards species having emotional, recreational and/or economical value. This tendency may result in a high number of extinctions happening unnoticed. Among these, many could involve parasites. Several studies have highlighted various reasons why we should care about this, that go far beyond the fact that parasites are amazingly diverse. A growing corpus of evidence suggests that parasites contribute much to ecosystems both in terms of biomass and services, and the seemingly paradoxical idea that a healthy ecosystem is one rich in parasites is becoming key to the whole concept of parasite conservation. Although various articles have covered different aspects of host-parasite co-extinctions, I feel that some important conceptual issues still need to be formally addressed. In this review, I will attempt at clarifying some of them, with the aim of providing researchers with a unifying conceptual framework that could help them designing future studies. In doing this, I will try to draw a more clear distinction between the (co-)evolutionary and the ecological dimensions of co-extinction studies, since the ongoing processes that are putting parasites at risk now operate at a scale that is extremely different from the one that has shaped host-parasite networks throughout million years of co-evolution. Moreover, I will emphasize how the complexity of direct and indirect effects of parasites on ecosystems makes it much challenging to identify the mechanisms possibly leading to co-extinction events, and to predict how such events will affect ecosystems in the long run.
Collapse
|
231
|
Tellez M, Merchant M. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites. PLoS One 2015; 10:e0142522. [PMID: 26555363 PMCID: PMC4640838 DOI: 10.1371/journal.pone.0142522] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment.
Collapse
Affiliation(s)
- Marisa Tellez
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mark Merchant
- Department of Chemistry, McNeese State University, Lake Charles, Louisiana, United States of America
| |
Collapse
|
232
|
Leung TLF. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev Camb Philos Soc 2015; 92:410-430. [PMID: 26538112 DOI: 10.1111/brv.12238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/20/2023]
Abstract
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history.
Collapse
Affiliation(s)
- Tommy L F Leung
- Department of Zoology Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
233
|
Gómez-Gutiérrez J, López-Cortés A, Aguilar-Méndez MJ, Del Angel-Rodríguez JA, Tremblay N, Zenteno-Savín T, Robinson CJ. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process. DISEASES OF AQUATIC ORGANISMS 2015; 116:213-225. [PMID: 26503776 DOI: 10.3354/dao02922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.
Collapse
Affiliation(s)
- Jaime Gómez-Gutiérrez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Plancton y Ecología Marina, Av. Instituto Politécnico Nacional s/n, La Paz, BCS 23096, Mexico
| | | | | | | | | | | | | |
Collapse
|
234
|
|
235
|
Abstract
Host behavioural modification by parasites is a common and well-documented phenomenon. However, knowledge on the complexity and specificity of the underlying mechanisms is limited, and host specificity among manipulating parasites has rarely been experimentally verified. We tested the hypothesis that the ability to infect and manipulate host behaviour is restricted to phylogenetically closely related hosts. Our model system consisted of the brain-encysting trematode Euhaplorchis sp. A and six potential fish intermediate hosts from the Order Cyprinodontiformes. Five co-occurring cyprinids were examined for naturally acquired brain infections. Then we selected three species representing three levels of taxonomic relatedness to a known host to experimentally evaluate their susceptibility to infection, and the effect of infection status on behaviours presumably linked to increased trophic transmission. We found natural brain infections of Euhaplorchis sp. A metacercariae in three cyprinids in the shallow sublittoral zone. Of the three experimentally exposed species, Fundulus grandis and Poecilia latipinna acquired infections and displayed an elevated number of conspicuous behaviours in comparison with uninfected controls. Euhaplorchis sp. A was able to infect and manipulate fish belonging to two different families, suggesting that ecological similarity rather than genetic relatedness determines host range in this species.
Collapse
|
236
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|
237
|
Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proc Natl Acad Sci U S A 2015; 112:11294-9. [PMID: 26305975 DOI: 10.1073/pnas.1515309112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.
Collapse
|
238
|
Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler. Oecologia 2015; 179:969-79. [DOI: 10.1007/s00442-015-3412-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
239
|
Decaestecker E, Verreydt D, De Meester L, Declerck SAJ. Parasite and nutrient enrichment effects on Daphnia interspecific competition. Ecology 2015; 96:1421-30. [PMID: 26236854 DOI: 10.1890/14-1167.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.
Collapse
|
240
|
Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosyst 2015. [DOI: 10.1007/s11252-015-0494-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
241
|
Abstract
The group model is a useful tool to understand broad-scale patterns of interaction in a network, but it has previously been limited in use to food webs, which contain only predator-prey interactions. Natural populations interact with each other in a variety of ways and, although most published ecological networks only include information about a single interaction type (e.g., feeding, pollination), ecologists are beginning to consider networks which combine multiple interaction types. Here we extend the group model to signed directed networks such as ecological interaction webs. As a specific application of this method, we examine the effects of including or excluding specific interaction types on our understanding of species roles in ecological networks. We consider all three currently available interaction webs, two of which are extended plant-mutualist networks with herbivores and parasitoids added, and one of which is an extended intertidal food web with interactions of all possible sign structures (+/+, -/0, etc.). Species in the extended food web grouped similarly with all interactions, only trophic links, and only nontrophic links. However, removing mutualism or herbivory had a much larger effect in the extended plant-pollinator webs. Species removal even affected groups that were not directly connected to those that were removed, as we found by excluding a small number of parasitoids. These results suggest that including additional species in the network provides far more information than additional interactions for this aspect of network structure. Our methods provide a useful framework for simplifying networks to their essential structure, allowing us to identify generalities in network structure and better understand the roles species play in their communities.
Collapse
Affiliation(s)
- Elizabeth L. Sander
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - J. Timothy Wootton
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Stefano Allesina
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
242
|
Hancock LG, Walker SE, Pérez-Huerta A, Bowser SS. Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic Scallop Host with Their Carbonate Biomass Contributions. PLoS One 2015; 10:e0132534. [PMID: 26186724 PMCID: PMC4505869 DOI: 10.1371/journal.pone.0132534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha(-1) and Adamussium averaged 4987-6806 kg ha(-1) by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica.
Collapse
Affiliation(s)
- Leanne G. Hancock
- Department of Geology, University of Georgia, Athens, Georgia, United States of America
| | - Sally E. Walker
- Department of Geology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Alberto Pérez-Huerta
- Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Samuel S. Bowser
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| |
Collapse
|
243
|
Sanders JL, Jaramillo AG, Ashford JE, Feist SW, Lafferty KD, Kent ML. Two Myxozoans from the Urinary Tract of Topsmelt, Atherinops affinis. J Parasitol 2015; 101:577-86. [PMID: 26185949 DOI: 10.1645/15-726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Two myxozoan species were observed in the kidney of topsmelt, Atherinops affinis , during a survey of parasites of estuarine fishes in the Carpinteria Salt Marsh Reserve, California. Fish collected on 3 dates in 2012 and 2013 were sectioned and examined histologically. Large extrasporogonic stages occurred in the renal interstitium of several fish from the first 2 collections (5/8, 11/20, respectively) and, in some fish, these replaced over 80% of the kidney. In addition, presporogonic and polysporogonic stages occurred in the lumen of the renal tubules, collecting ducts, and mesonephric ducts. The latter contained subspherical spores with up to 4 polar capsules, consistent with the genus Chloromyxum. For the third collection (15 May 2013, n = 30), we portioned kidneys for examination by histology, wet mount, and DNA extraction for small subunit ribosomal (SSU rDNA) gene sequencing. Histology showed the large extrasporogonic forms in the kidney interstitium of 3 fish and showed 2 other fish with subspherical myxospores in the lumen of the renal tubules with smooth valves and 2 spherical polar capsules consistent with the genus Sphaerospora. Chloromyxum-type myxospores were observed in the renal tubules of 1 fish by wet mount. Sequencing of the kidney tissue from this fish yielded a partial SSU rDNA sequence of 1,769 base pairs (bp). Phylogenetic reconstruction suggested this organism to be a novel species of Chloromyxum, most similar to Chloromyxum careni (84% similarity). In addition, subspherical myxospores with smooth valves and 2 spherical polar capsules consistent with the genus Sphaerospora were observed in wet mounts of 2 fish. Sequencing of the kidney tissue from 1 fish yielded a partial SSU rDNA sequence of 1,937 bp. Phylogenetic reconstruction suggests this organism to be a novel species of Sphaerospora most closely related to Sphaerospora epinepheli (93%). We conclude that these organisms represent novel species of the genera Chloromyxum and Sphaerospora based on host, location, and SSU rDNA sequence. We further conclude that the formation of large, histozoic extrasporogonic stages in the renal interstitium represents developmental stages of Chloromyxum species for the following reasons: (1) Large extrasporogonic stages were only observed in fish with Chloromyxum-type spores developing within the renal tubules, (2) a DNA sequence consistent with the Chloromyxum sp. was only detected in fish with the large extrasporogonic stages, and (3) several Sphaerospora species have extrasporogonic forms, but they are considerably smaller and are composed of far fewer cells.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| | - Alejandra G Jaramillo
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| | - Jacob E Ashford
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| | - Stephen W Feist
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| | - Kevin D Lafferty
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331. Correspondence should be sent to:
| |
Collapse
|
244
|
Redón S, Amat F, Sánchez MI, Green AJ. Comparing cestode infections and their consequences for host fitness in two sexual branchiopods: alien Artemia franciscana and native A. salina from syntopic-populations. PeerJ 2015; 3:e1073. [PMID: 26157636 PMCID: PMC4493677 DOI: 10.7717/peerj.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022] Open
Abstract
The American brine shrimp Artemia franciscana is invasive in the Mediterranean region where it has displaced native species (the sexual A. salina, and the clonal A. parthenogenetica) from many salt pond complexes. Artemia populations are parasitized by numerous avian cestodes whose effects have been studied in native species. We present a study from the Ebro Delta salterns (NE Spain), in a salt pond where both A. franciscana and native A. salina populations coexist, providing a unique opportunity to compare the parasite loads of the two sexual species in syntopy. The native species had consistently higher infection parameters, largely because the dominant cestode in A. salina adults and juveniles (Flamingolepis liguloides) was much rarer in A. franciscana. The most abundant cestodes in the alien species were Eurycestus avoceti (in adults) and Flamingolepis flamingo (in juveniles). The abundance of E. avoceti and F. liguloides was higher in the A. franciscana population syntopic with A. salina than in a population sampled at the same time in another pond where the native brine shrimp was absent, possibly because the native shrimp provides a better reservoir for parasite circulation. Infection by cestodes caused red colouration in adult and juvenile A. salina, and also led to castration in a high proportion of adult females. Both these effects were significantly stronger in the native host than in A. franciscana with the same parasite loads. However, for the first time, significant castration effects (for E. avoceti and F. liguloides) and colour change (for six cestode species) were observed in infected A. franciscana. Avian cestodes are likely to help A. franciscana outcompete native species. At the same time, they are likely to reduce the production of A. franciscana cysts in areas where they are harvested commercially.
Collapse
Affiliation(s)
- Stella Redón
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Francisco Amat
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| |
Collapse
|
245
|
Chetouhi C, Panek J, Bonhomme L, ElAlaoui H, Texier C, Langin T, de Bekker C, Urbach S, Demettre E, Missé D, Holzmuller P, Hughes DP, Zanzoni A, Brun C, Biron DG. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us? INFECTION GENETICS AND EVOLUTION 2015; 33:84-94. [DOI: 10.1016/j.meegid.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
246
|
Bellay S, Oliveira EFD, Almeida-Neto M, Abdallah VD, Azevedo RKD, Takemoto RM, Luque JL. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river. Int J Parasitol 2015; 45:549-57. [DOI: 10.1016/j.ijpara.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
247
|
Decreased movement related to parasite infection in a diel migratory coral reef fish. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1956-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
248
|
de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D. Eukaryotic plankton diversity in the sunlit ocean. Science 2015; 348:1261605. [DOI: 10.1126/science.1261605] [Citation(s) in RCA: 1138] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
249
|
Boero F. From Darwin's Origin of Species toward a theory of natural history. F1000PRIME REPORTS 2015; 7:49. [PMID: 26097722 PMCID: PMC4447030 DOI: 10.12703/p7-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word “evolution” or the word “ecology”. “Ecology” was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used “the economy of nature”. The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life.
Collapse
|
250
|
Gauzens B, Thébault E, Lacroix G, Legendre S. Trophic groups and modules: two levels of group detection in food webs. J R Soc Interface 2015; 12:20141176. [PMID: 25878127 PMCID: PMC4424665 DOI: 10.1098/rsif.2014.1176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/12/2022] Open
Abstract
Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom-top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss.
Collapse
Affiliation(s)
- Benoit Gauzens
- UMR 7618-iEES Paris (CNRS, UPMC, UPEC, Paris Diderot, IRD, INRA), Université Pierre et Marie Curie, Bâtiment A, 7 quai St Bernard, 75252 Paris cedex 05, France UMR 6553 Ecobio, Université de Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042 RENNES Cedex, France
| | - Elisa Thébault
- UMR 7618-iEES Paris (CNRS, UPMC, UPEC, Paris Diderot, IRD, INRA), Université Pierre et Marie Curie, Bâtiment A, 7 quai St Bernard, 75252 Paris cedex 05, France
| | - Gérard Lacroix
- UMR 7618-iEES Paris (CNRS, UPMC, UPEC, Paris Diderot, IRD, INRA), Université Pierre et Marie Curie, Bâtiment A, 7 quai St Bernard, 75252 Paris cedex 05, France UMS 3194 (CNRS, ENS), CEREEP - Ecotron Ile De France, Ecole Normale Supérieure, 78 rue du Château, 77140 St-Pierre-lès-Nemours, France
| | - Stéphane Legendre
- UMR 8197 IBENS (CNRS, ENS), École Normale Supérieure, 46, rue d'Ulm, 75230 Paris cedex 05, France
| |
Collapse
|