201
|
Franceschini A, Hullugundi SK, van den Maagdenberg AMJM, Nistri A, Fabbretti E. Effects of LPS on P2X3 receptors of trigeminal sensory neurons and macrophages from mice expressing the R192Q Cacna1a gene mutation of familial hemiplegic migraine-1. Purinergic Signal 2012; 9:7-13. [PMID: 22836594 DOI: 10.1007/s11302-012-9328-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022] Open
Abstract
A knockin (KI) mouse model with the R192Q missense mutation in the Cacna1a gene commonly detected in familial hemiplegic migraine was used to study whether trigeminal ganglia showed a basal inflammatory profile that could be further enhanced by the lipopolysaccharide (LPS) toxin. Adenosine-5'-triphosphate (ATP)-gated purinergic ionotropic receptor 3 (P2X3) currents expressed by the large majority of trigeminal sensory neurons were taken as functional readout. Cultured R192Q KI trigeminal ganglia showed higher number of active macrophages, basal release of tumor necrosis factor alpha (TNFα), and larger P2X3 receptor currents with respect to wild type (WT) cells. After 5 h application of LPS in vitro, both WT and R192Q KI cultures demonstrated significant increase in macrophage activation, very large rise in TNFα mRNA content, and ambient protein levels together with fall in TNFα precursor, suggesting potent release of this inflammatory mediator. Notwithstanding the unchanged expression of P2X3 receptor protein in WT or R192Q KI cultures, LPS evoked a large rise in WT neuronal currents that recovered faster from desensitization. Basal R192Q KI currents were larger than WT ones and could not be further augmented by LPS. These data suggest that KI cultures had a basal neuroinflammatory profile that might facilitate the release of endogenous mediators (including ATP) to activate constitutively hyperfunctional P2X3 receptors and amplify nociceptive signaling by trigeminal sensory neurons.
Collapse
Affiliation(s)
- Alessia Franceschini
- Department of Neuroscience and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | | | | | | | | |
Collapse
|
202
|
Hanani M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res 2012; 1487:183-91. [PMID: 22771859 DOI: 10.1016/j.brainres.2012.03.070] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/24/2012] [Indexed: 02/07/2023]
Abstract
Peripheral injury can cause abnormal activity in sensory neurons, which is a major factor in chronic pain. Recent work has shown that injury induces major changes not only in sensory neurons but also in the main type of glial cells in sensory ganglia-satellite glial cells (SGCs), and that interactions between sensory neurons and SGCs contribute to neuronal activity in pain models. The main functional changes observed in SGCs after injury are an increased gap junction-mediated coupling among these cells, and augmented sensitivity to ATP. There is evidence that the augmented gap junctions contribute to neuronal hyperexcitability in pain models, but the mechanism underlying this effect is not known. The changes in SGCs described above have been found following a wide range of injuries (both axotomy and inflammation) in somatic, orofacial and visceral regions, and therefore appear to be a general feature in chronic pain. We have found that in cultures of sensory ganglia calcium signals can spread from an SGC to neighboring cells by calcium waves, which are mediated by gap junctions and ATP acting on purinergic P2 receptors. A model is proposed to explain how augmented gap junctions and greater sensitivity to ATP can combine to produce enhanced calcium waves, which can lead to neuronal excitation. Thus this simple scheme can account for several major changes in sensory ganglia that are common to a great variety of pain models.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
203
|
Trueta C, Kuffler DP, De-Miguel FF. Cycling of dense core vesicles involved in somatic exocytosis of serotonin by leech neurons. Front Physiol 2012; 3:175. [PMID: 22685436 PMCID: PMC3368391 DOI: 10.3389/fphys.2012.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/14/2012] [Indexed: 12/15/2022] Open
Abstract
We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.
Collapse
Affiliation(s)
- Citlali Trueta
- Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz," México D. F., México
| | | | | |
Collapse
|
204
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
205
|
Ristić D, Ellrich J. P2X7 receptor blockade reverses purinergic facilitation of neck muscle nociception in mice. Cephalalgia 2012; 32:544-53. [PMID: 22529194 DOI: 10.1177/0333102412444013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Facilitation of neck muscle nociception mediated via purinergic signalling may play a role in the pathophysiology of tension-type headache (TTH). The present study addressed reversal of purinergic facilitation of brainstem nociception via P2X7 antagonist action in anaesthetized mice. METHODS Following administration of α,β-meATP (i.m. 20 µL/min, 20 µL each) into semispinal neck muscles, the impact of neck muscle nociceptive input on brainstem processing was monitored by the jaw-opening reflex in anaesthetized mice (n = 20). The hypothesized involvement of the P2X7 receptor in the α,β-meATP effect was addressed with i.p. (systemic) and i.m. (semispinalis, 20 µL/min, 20 µL each) administration of P2X7 inhibitor A438079 during established facilitation; i.p. saline served as control. RESULTS α,β-meATP reliably induced jaw-opening reflex facilitation (256 ± 48% (mean ± SEM), n = 20). I.p. A438079 (150, 300 µmol/kg) completely reversed this α,β-meATP effect dose-dependently. Neither saline nor intramuscular A438079 (100 µM) altered facilitated brainstem nociceptive processing. DISCUSSION These data suggest that muscular structures are not directly involved in the P2X7 antagonist-mediated reversal of purinergic facilitation. Instead, involvement of neuronal structures, particularly of the central nervous system, seems more probable. The results from this animal experimental model may point to involvement of purinergic P2X7 receptors in TTH pathophysiology and may suggest potential future targets for its pharmacological treatment.
Collapse
|
206
|
Katagiri A, Shinoda M, Honda K, Toyofuku A, Sessle BJ, Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol Pain 2012; 8:23. [PMID: 22458630 PMCID: PMC3386019 DOI: 10.1186/1744-8069-8-23] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/30/2012] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that the P2Y12 receptor (P2Y12R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats. Conclusions The present findings provide the first evidence that the activation of P2Y12R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
207
|
Berta T, Liu T, Liu YC, Xu ZZ, Ji RR. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Mol Pain 2012; 8:18. [PMID: 22439811 PMCID: PMC3352126 DOI: 10.1186/1744-8069-8-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/22/2012] [Indexed: 12/26/2022] Open
Abstract
Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β). Matrix metalloprotease-9 (MMP-9) has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs) and up-regulation of IL-1β in dorsal root ganglia (DRGs), and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg) induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.
Collapse
Affiliation(s)
- Temugin Berta
- Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
208
|
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. ACTA ACUST UNITED AC 2012; 7:109-16. [DOI: 10.1017/s1740925x11000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present paper, we have further developed an in vitro model to study neuronal–glial interaction at trigeminal level by characterizing the effects of conditioned medium (CM) collected from activated primary cultures of satellite glial cells (SGCs) on calcitonin gene-related peptide (CGRP) release from rat trigeminal neurons. Moreover, we investigated whether such release is inhibited by a clinically relevant anti-migraine drug, sumatriptan. CM effects were tested on trigeminal neuronal cultures in different conditions of activation and at different time points. Long-term exposures of trigeminal neurons to CM increased directly neuronal CGRP release, which was further enhanced by the exposure to capsaicin. In this framework, the anti-migraine drug sumatriptan was able to inhibit the evoked CGRP release from naïve trigeminal neuron cultures, as well as from trigeminal cultures pre-exposed for 30 min to CM. On the contrary, sumatriptan failed to inhibit evoked CGRP release from trigeminal neurons after prolonged (4 and 8 h) pre-exposures to CM. These findings were confirmed in co-culture experiments (neurons and SGCs), where activation of SGCs or a bradykinin priming were used. Our data demonstrate that SGCs activation could influence neuronal excitability, and that this event affects the neuronal responses to triptans.
Collapse
|
209
|
Chen Y, Li G, Huang LYM. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Mol Pain 2012; 8:9. [PMID: 22314033 PMCID: PMC3292910 DOI: 10.1186/1744-8069-8-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022] Open
Abstract
Background The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
210
|
Gap junctions in dorsal root ganglia: Possible contribution to visceral pain. Eur J Pain 2012; 14:49.e1-11. [DOI: 10.1016/j.ejpain.2009.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/08/2023]
|
211
|
Glovatchcka V, Ennes H, Mayer EA, Bradesi S. Chronic stress-induced changes in pro-inflammatory cytokines and spinal glia markers in the rat: a time course study. Neuroimmunomodulation 2012; 19:367-76. [PMID: 23051934 PMCID: PMC3535433 DOI: 10.1159/000342092] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS Spinal glia activation has been proposed as one mechanism underlying visceral hyperalgesia in a rodent model of chronic stress. In order to assess the possible role of changes in circulating cytokines and in blood-spinal cord barrier (BSCB) permeability in spinal glia activation, we studied the time course of peripheral and spinal pro-inflammatory cytokines and of spinal and satellite glia markers in response to repeated water avoidance (WA) stress. METHODS Spinal cords and dorsal root ganglion cells (DRGs) were collected from control rats, rats exposed to 1-hour WA, or 1-hour WA daily for 5 days or 1-hour WA daily for 10 days. RESULTS We demonstrated a time-dependent change in circulating IL-1β and spinal IL-1β, IL-6 and TNF-α in stressed animals compared with controls. We found altered expression of the astrocyte markers GFAP and Connexin 43 in spinal and DRG samples at different time points. Finally, WA was associated with increased BSCB permeability. CONCLUSIONS These findings confirm the concept that both peripheral and spinal immune markers are altered after chronic WA and suggest a possible link between stress-induced increase of peripheral pro-inflammatory cytokines, changes in satellite glial cells, increase in BSCB permeability and increase in spinal pro-inflammatory mediators suggesting glia activation.
Collapse
Affiliation(s)
- Viktoriya Glovatchcka
- Oppenheimer Family Center for Neurobiology of Stress, UCLA David Geffen School of Medicine, Digestive Diseases Division, Los Angeles, 90095-7378, CA, USA
- GLA VA HS, Los Angeles, CA, 90073, CA, USA
| | - Helena Ennes
- Oppenheimer Family Center for Neurobiology of Stress, UCLA David Geffen School of Medicine, Digestive Diseases Division, Los Angeles, 90095-7378, CA, USA
- GLA VA HS, Los Angeles, CA, 90073, CA, USA
| | - Emeran A Mayer
- Oppenheimer Family Center for Neurobiology of Stress, UCLA David Geffen School of Medicine, Digestive Diseases Division, Los Angeles, 90095-7378, CA, USA
| | - Sylvie Bradesi
- Oppenheimer Family Center for Neurobiology of Stress, UCLA David Geffen School of Medicine, Digestive Diseases Division, Los Angeles, 90095-7378, CA, USA
- GLA VA HS, Los Angeles, CA, 90073, CA, USA
| |
Collapse
|
212
|
Csati A, Tajti J, Tuka B, Edvinsson L, Warfvinge K. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion — Interaction with the sensory system. Brain Res 2012; 1435:29-39. [DOI: 10.1016/j.brainres.2011.11.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/26/2011] [Accepted: 11/24/2011] [Indexed: 11/29/2022]
|
213
|
Bráz JM, Ackerman L, Basbaum AI. Sciatic nerve transection triggers release and intercellular transfer of a genetically expressed macromolecular tracer in dorsal root ganglia. J Comp Neurol 2011; 519:2648-57. [PMID: 21484801 DOI: 10.1002/cne.22645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently developed a genetic transneuronal tracing approach that allows for the study of circuits that are altered by nerve injury. We generated transgenic (ZW-X) mice in which expression of a transneuronal tracer, wheat germ agglutinin (WGA), is induced in primary sensory neurons, but only after transection of their peripheral axon. By following the transneuronal transport of the tracer into the central nervous system (CNS) we can label the circuits that are engaged by the WGA-expressing damaged neurons. Here we used the ZW-X mouse line to analyze dorsal root ganglia (DRG) for intraganglionic connections between injured sensory neurons and their neighboring "intact" neurons. Because neuropeptide Y (NPY) expression is strongly induced in DRG neurons after peripheral axotomy, we crossed the ZW-X mouse line with a mouse that expresses Cre recombinase under the influence of the NPY promoter. As expected, sciatic nerve transection triggered WGA expression in NPY-positive DRG neurons, most of which are of large diameter. As expected, double labeling for ATF-3, a marker of cell bodies with damaged axons, showed that the tracer predominated in injured (i.e., axotomized) neurons. However, we also found the WGA tracer in DRG cell bodies of uninjured sensory neurons. Importantly, in the absence of nerve injury there was no intraganglionic transfer of WGA. Our results demonstrate that intraganglionic, cell-to-cell communication, via transfer of large molecules, occurs between the cell bodies of injured and neighboring noninjured primary afferent neurons.
Collapse
Affiliation(s)
- João M Bráz
- Department of Anatomy, University of California San Francisco, San Francisco, California 94158, USA.
| | | | | |
Collapse
|
214
|
Illes P, Verkhratsky A, Burnstock G, Franke H. P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 2011; 18:422-38. [PMID: 22013151 DOI: 10.1177/1073858411418524] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Astrocytes are a class of neural cells that control homeostasis at all levels of the central and peripheral nervous system. There is a bidirectional neuron-glia interaction via a number of extracellular signaling molecules, glutamate and ATP being the most widespread. ATP activates ionotropic P2X and metabotropic P2Y receptors, which operate in both neurons and astrocytes. Morphological, biochemical, and functional evidence indicates the expression of astroglial P2X(1/5) heteromeric and P2X(7) homomeric receptors, which mediate physiological and pathophysiological responses. Activation of P2X(1/5) receptors triggers rapid increase of intracellular Na(+) that initiates immediate cellular reactions, such as the depression of the glutamate transporter to keep high glutamate concentrations in the synaptic cleft, the activation of the local lactate shuttle to supply energy substrate to pre- and postsynaptic neuronal structures, and the reversal of the Na(+)/Ca(2+) exchange resulting in additional Ca(2+) entry. The consequences of P2X(7) receptor activation are mostly but not exclusively mediated by the entry of Ca(2+) and result in reorganization of the cytoskeleton, inflammation, apoptosis/necrosis, and proliferation, usually at a prolonged time scale. Thus, astroglia detect by P2X(1/5) and P2X(7) receptors both physiological concentrations of ATP secreted from presynaptic nerve terminals and also much higher concentrations of ATP attained under pathological conditions.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
215
|
Xiong W, Liu T, Wang Y, Chen X, Sun L, Guo N, Zheng H, Zheng L, Ruat M, Han W, Zhang CX, Zhou Z. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis. PLoS One 2011; 6:e24573. [PMID: 22028769 PMCID: PMC3196490 DOI: 10.1371/journal.pone.0024573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
Aim Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yeshi Wang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaowei Chen
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lei Sun
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ning Guo
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hui Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Martial Ruat
- CNRS, UPR9040, Institut de Neurobiologie Alfred Fessard-IFR 2118, Gif sur Yvette, France
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| |
Collapse
|
216
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
217
|
Xu GY, Li G, Liu N, Huang LYM. Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 2011; 7:60. [PMID: 21851615 PMCID: PMC3168406 DOI: 10.1186/1744-8069-7-60] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy. RESULTS Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ). We showed that mechanical allodynia was induced two weeks after a STZ injection and lasted for at least another seven weeks. The mechanical allodynia was significantly attenuated by peripheral administration of the P2X receptor antagonists, PPADS or TNP-ATP. DiI was subcutaneously injected into the rat hindpaw to label hindpaw-innervated dorsal root ganglion (DRG) neurons. ATP activated fast-inactivating P2X3 receptor-mediated currents in the labeled DRG neurons were studied. ATP responses in STZ-treated rats were ~2-fold larger than those in control rats. Furthermore, the expression of P2X3 receptor proteins in the plasma membrane of L4-6 DRGs of STZ rats was significantly enhanced while the total expression of P2X3 receptors remained unaltered. CONCLUSIONS These results indicate that a large enhancement of P2X3 receptor activity and an increase in the membrane expression of P2X3 receptors contribute to the development of chronic pain in STZ-induced diabetic rats and suggest a possible target for the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Guang-Yin Xu
- Institute of Neuroscience and Department of Neurobiology and Psychology, Key lab of Pain Research and Therapy, Soochow University, Suzhou 215123, the People's Republic of China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA
| | - Guangwen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Ningang Liu
- Institute of Neuroscience and Department of Neurobiology and Psychology, Key lab of Pain Research and Therapy, Soochow University, Suzhou 215123, the People's Republic of China
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| |
Collapse
|
218
|
Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V. Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. ACTA ACUST UNITED AC 2011; 22:1203-14. [PMID: 21810784 DOI: 10.1093/cercor/bhr203] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP is known to be coreleased with glutamate at certain central synapses. However, the nature of its release is controversial. Here, we demonstrate that ATP release from cultured rat hippocampal neurons is sensitive to RNAi-mediated knockdown of the recently identified vesicular nucleotide transporter (VNUT or SLC17A9). In the intact brain, light microscopy showed particularly strong VNUT immunoreactivity in the cerebellar cortex, the olfactory bulb, and the hippocampus. Using immunoelectron microscopy, we found VNUT immunoreactivity colocalized with synaptic vesicles in excitatory and inhibitory terminals in the hippocampal formation. Moreover, VNUT immunolabeling, unlike that of the vesicular glutamate transporter VGLUT1, was enriched in preterminal axons and present in postsynaptic dendritic spines. Immunoisolation of synaptic vesicles indicated presence of VNUT in a subset of VGLUT1-containing vesicles. Thus, we conclude that VNUT mediates transport of ATP into synaptic vesicles of hippocampal neurons, thereby conferring a purinergic phenotype to these cells.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
219
|
Nishikawa S. Fluorescent AM1-43 and FM1-43 probes for dental sensory nerves and cells: Their labeling mechanisms and applications. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
220
|
Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 2011; 193:387-98. [PMID: 21807070 DOI: 10.1016/j.neuroscience.2011.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/28/2011] [Accepted: 07/18/2011] [Indexed: 12/27/2022]
Abstract
Nucleotide-activated P2X channels and P2Y metabotropic receptors participate in nociceptive signaling. Agonist availability is regulated by nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, a family of enzymes that hydrolyze extracellular ATP to generate ADP (a P2Y agonist) and AMP. They provide a major source of extracellular AMP, the substrate for adenosine production by ecto-5'-nucleotidase (NT5E), and thereby regulate adenosine (P1) receptor signaling. NTPDases vary in their efficiency of tri- and diphosphate hydrolysis; therefore, which family members are expressed impacts nucleotide availability and half-life. This study employed enzyme activity histochemistry to examine the distribution of ATPase activity and immunohistochemistry for NTPDase1, 2, 3, and 8 in dorsal root ganglion (DRG) and spinal cord. Nucleotidase activity was robust in spinal dorsal horn, confirming that nociceptive pathways are a major site of nucleotide transmission. In DRG, extensive staining revealed ATPase activity in a subset of neurons and in non-neuronal cells. mRNA for NTPDase1-3, but not NTPDase8, was detected in lumbar DRG and spinal cord. Immunoreactivity for NTPDase3 closely matched the distribution of ATPase activity, labeling DRG central projections in the dorsal root and superficial dorsal horn, as well as intrinsic spinal neurons concentrated in lamina II. In DRG, NTPDase3 co-localized with markers of nociceptors and with NT5E. In addition, labeling of a subset of larger-diameter neurons in DRG was consistent with intense staining of Meissner corpuscle afferents in glabrous skin. Merkel cells and terminal Schwann cells of hair follicle afferents were also labeled, but the axons themselves were negative. We propose that NTPDase3 is a key regulator of nociceptive signaling that also makes an unexpected contribution to innocuous tactile sensation.
Collapse
|
221
|
Lohr C, Thyssen A, Hirnet D. Extrasynaptic neuron-glia communication: The how and why. Commun Integr Biol 2011; 4:109-11. [PMID: 21509197 DOI: 10.4161/cib.4.1.14184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/11/2010] [Indexed: 01/05/2023] Open
Abstract
Chemical synaptic transmission between neurons is believed to take place at specialized sites of cell contact, comprising presynaptic terminals and postsynaptic membranes. Neurotransmitter release has been shown to occur also extrasynaptically, mainly targeting glial cells. In a recent study, we investigated the mechanism of extrasynaptic glutamate and ATP release along sensory axons in the olfactory nerve layer. Transmitter release was mediated by calcium-dependent vesicle fusion and triggered calcium transients in adjacent glial cells. These calcium transients were coupled to vasoresponses, indicating that glial calcium signaling mediates neurovascular coupling not only in synaptic brain regions such as gray matter, but also in brain regions devoid of synapses.
Collapse
Affiliation(s)
- Christian Lohr
- Division of Animal Physiology; University of Hamburg; Hamburg
| | | | | |
Collapse
|
222
|
Ng KY, Wong YH, Wise H. Glial cells isolated from dorsal root ganglia express prostaglandin E2 (EP4) and prostacyclin (IP) receptors. Eur J Pharmacol 2011; 661:42-8. [DOI: 10.1016/j.ejphar.2011.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/04/2011] [Accepted: 04/14/2011] [Indexed: 01/31/2023]
|
223
|
Liu T, Shang SJ, Liu B, Wang CH, Wang YS, Xiong W, Zheng LH, Zhang CX, Zhou Z. Two distinct vesicle pools for depolarization-induced exocytosis in somata of dorsal root ganglion neurons. J Physiol 2011; 589:3507-15. [PMID: 21646411 DOI: 10.1113/jphysiol.2011.208777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The somata of dorsal root ganglion (DRG) neurons release neurotransmitters and neuropeptides. In addition to the conventional Ca2+-dependent secretion (CDS), Ca2+-independent but voltage-dependent secretion (CIVDS) also occurs in the somata of DRG neurons. Electrical stimulation induces both CDS and CIVDS, which differ in size and are coupled with different types of endocytosis contributed by CIVDS and CDS, respectively. However, it is unclear whether they use a common vesicle pool, so we investigated the relationship between the vesicle pools of CDS and CIVDS. Membrane capacitance recording and photolysis of a caged-Ca2+ compound showed that, in low external Ca2+ solutions, the depolarization-induced exocytosis contained two (fast and slow) phases, which were contributed by CIVDS and CDS, respectively. Depletion of the CDS readily releasable pool using photolysis did not affect the CIVDS. When the CIVDS and CDS vesicle pools were depleted by electrical stimulation, the pools had different sizes. Their kinetics of exocytosis-coupled endocytosis were also different. Thus, CIVDS and CDS used different vesicle pools in DRG neurons.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Biomembrane Engineering, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Kushnir R, Cherkas PS, Hanani M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 2011; 61:739-46. [PMID: 21645532 DOI: 10.1016/j.neuropharm.2011.05.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 02/02/2023]
Abstract
Satellite glial cells (SGCs) in sensory ganglia are altered structurally and biochemically as a result of nerve injury. Whereas there is ample evidence that P2 purinergic receptors in central glial cells are altered after injury, there is very little information on similar changes in SGCs, although it is well established that SGCs are endowed with P2 receptors. Using calcium imaging, we characterized changes in P2 receptors in SGCs from mouse trigeminal ganglia in short-term cultures. Seven days after the induction of submandibular inflammation with complete Freund's adjuvant, there was a marked increase in the sensitivity of SGCs to ATP, with the threshold of activation decreasing from 5 μM to 10 nM. A similar observation was made in the intact trigeminal ganglion after infra-orbital nerve axotomy. Using pharmacological tools, we investigated the receptor mechanisms underlying these changes in cultured SGCs. We found that in control tissues response to ATP was mediated by P2Y (metabotropic) receptors, whereas after inflammation the response was mediated predominantly by P2X (ionotropic) receptors. As the contribution of P2X1,3,6 receptors was excluded, and the sensitivity to a P2X7 agonist did not change after inflammation, it appears that after inflammation the responses to ATP are largely due to P2X2 and/or 5 receptors, with a possible contribution of P2X4 receptors. We conclude that inflammation induced a large increase in the sensitivity of SGCs to ATP, which involved a switch from P2Y to P2X receptors. We propose that the over 100-fold augmented sensitivity of SGCs to ATP after injury may contribute to chronic pain states.
Collapse
Affiliation(s)
- Raya Kushnir
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
225
|
Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ. Role of glia in orofacial pain. Neuroscientist 2011; 17:303-20. [PMID: 21512131 DOI: 10.1177/1073858410386801] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several acute and chronic pain conditions in the face or mouth are very common, and some are unique to the orofacial region. However, the etiology and pathogenesis of most orofacial chronic pain conditions are unresolved, and they are difficult to diagnose and manage. This article provides a brief overview of the neural mechanisms underlying orofacial pain and then highlights recent findings indicating that nonneural cells, specifically satellite cells in the sensory ganglia and astroglia and microglia cells in the central nervous system, are important players in both acute and chronic inflammatory and neuropathic orofacial pain conditions and may offer new targets for management of these conditions.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
226
|
Bradley HJ, Baldwin JM, Goli GR, Johnson B, Zou J, Sivaprasadarao A, Baldwin SA, Jiang LH. Residues 155 and 348 contribute to the determination of P2X7 receptor function via distinct mechanisms revealed by single-nucleotide polymorphisms. J Biol Chem 2011; 286:8176-8187. [PMID: 21205829 PMCID: PMC3048704 DOI: 10.1074/jbc.m110.211284] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Indexed: 02/02/2023] Open
Abstract
P2X(7) receptors are important in mediating the physiological functions of extracellular ATP, and altered receptor expression and function have a causative role in the disease pathogenesis. Here, we investigated the mechanisms determining the P2X(7) receptor function by following two human single-nucleotide polymorphism (SNP) mutations that replace His-155 and Ala-348 in the human (h) P2X(7) receptor with the corresponding residues, Tyr-155 and Thr-348, in the rat (r) P2X(7) receptor. H155Y and A348T mutations in the hP2X(7) receptor increased ATP-induced currents, whereas the reciprocal mutations, Y155H and T348A, in the rP2X(7) receptor caused the opposite effects. Such a functional switch is a compelling indication that these residues are critical for P2X(7) receptor function. Additional mutations of His-155 and Ala-348 in the hP2X(7) receptor to residues with diverse side chains revealed a different dependence on the side chain properties, supporting the specificity of these two residues. Substitutions of the residues surrounding His-155 and Ala-348 in the hP2X(7) receptor with the equivalent ones in the rP2X(7) receptor also affected ATP-induced currents but were not fully reminiscent of the H155Y and A348T effects. Immunofluorescence imaging and biotin labeling assays showed that H155Y in the hP2X(7) receptor increased and Y155H in the rP2X(7) receptor decreased cell-surface expression. Such contrasting effects were not obvious with the reciprocal mutations of residue 348. Taken together, our results suggest that residues at positions 155 and 348 contribute to P2X(7) receptor function via determining the surface expression and the single-channel function, respectively. Such interpretations are consistent with the locations of the residues in the structural model of the hP2X(7) receptor.
Collapse
Affiliation(s)
- Helen J Bradley
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jocelyn M Baldwin
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Ranjan Goli
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Brian Johnson
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jie Zou
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Asipu Sivaprasadarao
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen A Baldwin
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lin-Hua Jiang
- From the Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
227
|
Li JY, Xie W, Strong JA, Guo QL, Zhang JM. Mechanical hypersensitivity, sympathetic sprouting, and glial activation are attenuated by local injection of corticosteroid near the lumbar ganglion in a rat model of neuropathic pain. Reg Anesth Pain Med 2011; 36:56-62. [PMID: 21455091 PMCID: PMC3076946 DOI: 10.1097/aap.0b013e318203087f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in pathologic pain states. Systemic administration of a common anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, spontaneous bursting activity, and cytokine and nerve growth factor production in the DRG. We hypothesized that systemic TA effects are primarily due to local effects on the DRG. METHODS Male Sprague-Dawley rats were divided into 4 groups: SNL (tight ligation and transection of spinal nerves) and normal with and without a single dose of TA injectable suspension slowly injected onto the surface of DRG and surrounding region at the time of SNL or sham surgery. Mechanical threshold was tested on postoperative days 1, 3, 5, and 7. Immunohistochemical staining examined tyrosine hydroxylase and glial fibrillary acidic protein in DRG and CD11B antibody (OX-42) in spinal cord. RESULTS Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation in the DRG and microglia activation in the spinal cord after SNL. CONCLUSIONS A single injection of corticosteroid in the vicinity of the axotomized DRG can mimic many effects of systemic TA, mitigating behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rationale for the use of localized steroid injections clinically and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model, commonly classified as neuropathic pain model.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Anesthesiology, Xiangya Hospital, Central-South University, Changsha, Hunan, 410008
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Qu-Lian Guo
- Department of Anesthesiology, Xiangya Hospital, Central-South University, Changsha, Hunan, 410008
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| |
Collapse
|
228
|
Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, Abbracchio MP. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain 2010; 6:89. [PMID: 21143950 PMCID: PMC3017032 DOI: 10.1186/1744-8069-6-89] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS). Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA) into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. RESULTS CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. CONCLUSIONS Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.
Collapse
Affiliation(s)
- Giovanni Villa
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Zanardelli
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Giulia Magni
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Luc Jasmin
- Department of Neurosurgery, Cedars Sinai Medical Center, Los Angeles CA 90013, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter T Ohara
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
229
|
Isolectin B4 binding in populations of rat trigeminal ganglion cells. Neurosci Lett 2010; 486:127-31. [DOI: 10.1016/j.neulet.2010.08.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/21/2010] [Accepted: 08/26/2010] [Indexed: 11/20/2022]
|
230
|
Barrette B, Calvo E, Vallières N, Lacroix S. Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration. Brain Behav Immun 2010; 24:1254-67. [PMID: 20688153 DOI: 10.1016/j.bbi.2010.07.249] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 12/21/2022] Open
Abstract
Wallerian degeneration (WD) involves the fragmentation of axonal segments disconnected from their cell bodies, segmentation of the myelin sheath, and removal of debris by Schwann cells and immune cells. The removal and downregulation of myelin-associated inhibitors of axonal regeneration and synthesis of growth factors by these two cell types are critical responses to successful nerve repair. Here, we analyzed the transcriptome of the sciatic nerve of mice carrying the Wallerian degeneration slow (Wld(S)) mutant gene, a gene that confers axonal protection in the distal stump after injury, therefore causing significant delays in WD, neuroinflammation, and axonal regeneration. Of the thousands of genes analyzed by microarray, 719 transcripts were differentially expressed between Wld(S) and wild-type (wt) mice. Notably, the Nmnat1, a transcript contained within the sequence of the Wld(S) gene, was upregulated by five to eightfold in the sciatic nerve of naive Wld(S) mice compared with wt. The injured sciatic nerve of wt could be further distinguished from the one of Wld(S) mice by the preferential upregulation of genes involved in axonal processes and plasticity (Chl1, Epha5, Gadd45b, Jun, Nav2, Nptx1, Nrcam, Ntm, Sema4f), inflammation and immunity (Arg1, Lgals3, Megf10, Panx1), growth factors/cytokines and their receptors (Clcf1, Fgf5, Gdnf, Gfrα1, Il7r, Lif, Ngfr/p75(NTR), Shh), and cell adhesion and extracellular matrix (Adam8, Gpc1, Mmp9, Tnc). These results will help understand how the nervous and immune systems interact to modulate nerve repair, and identify the molecules that drive these responses.
Collapse
Affiliation(s)
- Benoit Barrette
- Laboratory of Endocrinology and Genomics, Department of Molecular Medicine, Université Laval, CHUL Research Center, Québec, Canada
| | | | | | | |
Collapse
|
231
|
Merriam LA, Locknar SA, Girard BM, Parsons RL. Somatic ATP release from guinea pig sympathetic neurons does not require calcium-induced calcium release from internal stores. Am J Physiol Cell Physiol 2010; 299:C836-43. [PMID: 20668213 PMCID: PMC2957269 DOI: 10.1152/ajpcell.00036.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/22/2010] [Indexed: 11/22/2022]
Abstract
Prior studies indicated that a Ca(2+)-dependent release of ATP can be initiated from the soma of sympathetic neurons dissociated from guinea pig stellate ganglia. Previous studies also indicated that Ca(2+)-induced Ca(2+) release (CICR) can modulate membrane excitability in these same neurons. As Ca(2+) release from internal stores is thought to support somatodendritic transmitter release in other neurons, the present study investigated whether CICR is essential for somatic ATP release from dissociated sympathetic neurons. Caffeine increased intracellular Ca(2+) and activated two inward currents: a slow inward current (SIC) in 85% of cells, and multiple faster inward currents [asynchronous transient inward currents (ASTICs)] in 40% of cells voltage-clamped to negative potentials. Caffeine evoked both currents when cells were bathed in a Ca(2+)-deficient solution, indicating that both were initiated by Ca(2+) release from ryanodine-sensitive stores in the endoplasmic reticulum. Sodium influx contributed to generation of both SICs and ASTICs, but only ASTICs were inhibited by the presence of the P2X receptor blocker PPADs. Thus ASTICs, but not SICs, resulted from an ATP activation of P2X receptors. Ionomycin induced ASTICs in a Ca(2+)-containing solution, but not when it was applied in a Ca(2+)-deficient solution, demonstrating the key requirement for external Ca(2+) in initiating ASTICs by ionomycin. Pretreatment with drugs to deplete the internal stores of Ca(2+) did not block the ability of ionomycin or long depolarizing voltage steps to initiate ASTICs. Although a caffeine-induced release of Ca(2+) from internal stores can elicit both SICs and ASTICs in dissociated sympathetic neurons, CICR is not required for the somatic release of ATP.
Collapse
Affiliation(s)
- Laura A Merriam
- Department of Anatomy and Neurobiology, Univ. of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
232
|
Smith PJS, Collis LP, Messerli MA. Windows to cell function and dysfunction: signatures written in the boundary layers. Bioessays 2010; 32:514-23. [PMID: 20486138 DOI: 10.1002/bies.200900173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medium surrounding cells either in culture or in tissues contains a chemical mix varying with cell state. As solutes move in and out of the cytoplasmic compartment they set up characteristic signatures in the cellular boundary layers. These layers are complex physical and chemical environments the profiles of which reflect cell physiology and provide conduits for intercellular messaging. Here we review some of the most relevant characteristics of the extracellular/intercellular space. Our initial focus is primarily on cultured cells but we extend our consideration to the far more complex environment of tissues, and discuss how chemical signatures in the boundary layer can or may affect cell function. Critical to the entire essay are the methods used, or being developed, to monitor chemical profiles in the boundary layers. We review recent developments in ultramicro electrochemical sensors and tailored optical reporters suitable for the task in hand.
Collapse
Affiliation(s)
- Peter J S Smith
- BioCurrents Research Center, Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
233
|
Horvath RJ, Romero-Sandoval AE, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 2010; 150:401-413. [PMID: 20573450 PMCID: PMC2921455 DOI: 10.1016/j.pain.2010.02.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 02/04/2023]
Abstract
Anti-nociceptive tolerance to opioids is a well-described phenomenon, which severely limits the clinical efficacy of opioids for the treatment of chronic pain syndromes. The mechanisms that drive anti-nociceptive tolerance, however, are less well understood. We have previously shown that glia have a central role in the development of morphine tolerance and that administration of a glial modulating agent attenuated tolerance formation. Recently, we have demonstrated that morphine enhances microglial Iba1 expression and P2X4 receptor-mediated microglial migration via direct mu opioid receptor signaling in in vitro microglial cultures. We hypothesize that P2X4 receptors drive morphine tolerance and modulate morphine-induced spinal glial reactivity. Additionally, we hypothesize that perivascular microglia play a role in morphine tolerance and that P2X4 receptor expression regulates perivascular microglia ED2 expression. To test these hypotheses, rats were implanted with osmotic minipumps releasing morphine or saline subcutaneously for seven days. Beginning three days prior to morphine treatment, P2X4 receptor antisense oligonucleotide (asODN) was injected intrathecally daily, to selectively inhibit P2X4 receptor expression. P2X4 receptor asODN treatment inhibited morphine-induced P2X4 receptor expression and blocked anti-nociceptive tolerance to systemically administered morphine. P2X4 receptor asODN treatment also attenuated the morphine-dependent increase of spinal ionized calcium binding protein (Iba1), glial fibrillary acidic protein (GFAP) and mu opioid receptor protein expression. Chronic morphine also decreased perivascular microglial ED2 expression, which was reversed by P2X4 receptor asODN. Together, these data suggest that the modulation of P2X4 receptor expression on microglia and perivascular microglia may prove an attractive target for adjuvant therapy to attenuate opioid-induced anti-nociceptive tolerance.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Behavior, Animal/drug effects
- CD11b Antigen/metabolism
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Drug Interactions
- Drug Tolerance/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hyperalgesia/drug therapy
- Male
- Microfilament Proteins
- Microglia/drug effects
- Microglia/metabolism
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Nerve Tissue Proteins/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Pain Measurement
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Opioid/metabolism
- Receptors, Purinergic P2X4/genetics
- Receptors, Purinergic P2X4/metabolism
- Signal Transduction
- Spinal Cord/pathology
- Time Factors
- CD163 Antigen
Collapse
Affiliation(s)
- Ryan J Horvath
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA Neuroscience Center at Dartmouth, Lebanon, NH 03756, USA Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
234
|
Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling. Proc Natl Acad Sci U S A 2010; 107:15258-63. [PMID: 20696909 DOI: 10.1073/pnas.1003501107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neurotransmitter release generally is considered to occur at active zones of synapses, and ectopic release of neurotransmitters has been demonstrated in a few instances. However, the mechanism of ectopic neurotransmitter release is poorly understood. We took advantage of the intimate morphological and functional proximity of olfactory receptor axons and specialized glial cells, olfactory ensheathing cells (OECs), to study ectopic neurotransmitter release. Axonal stimulation evoked purinergic and glutamatergic Ca(2+) responses in OECs, indicating ATP and glutamate release. In axons expressing synapto-pHluorin, stimulation evoked an increase in synapto-pHluorin fluorescence, indicative of vesicle fusion. Transmitter release was dependent on Ca(2+) and could be inhibited by bafilomycin A1 and botulinum toxin A. Ca(2+) transients in OECs evoked by ATP, axonal stimulation, and laser photolysis of NP-EGTA resulted in constriction of adjacent blood vessels. Our results indicate that ATP and glutamate are released ectopically by vesicles along axons and mediate neurovascular coupling via glial Ca(2+) signaling.
Collapse
|
235
|
Durham PL, Garrett FG. Development of functional units within trigeminal ganglia correlates with increased expression of proteins involved in neuron-glia interactions. NEURON GLIA BIOLOGY 2010; 6:171-81. [PMID: 21205366 PMCID: PMC3196797 DOI: 10.1017/s1740925x10000232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell bodies of trigeminal nerves, which are located in the trigeminal ganglion, are completely surrounded by satellite glial cells and together form a functional unit that regulates neuronal excitability. The goals of this study were to investigate the cellular organization of the rat trigeminal ganglia during postnatal development and correlate those findings with expression of proteins implicated in neuron-glia interactions. During postnatal development there was an increase in the volume of the neuronal cell body, which correlated with a steady increase in the number of glial cells associated with an individual neuron from an average of 2.16 at birth to 7.35 on day 56 in young adults. Interestingly, while the levels of the inwardly rectifying K+ channel Kir4.1 were barely detectable during the first week, its expression in satellite glial cells increased by day 9 and correlated with initial formation of functional units. Similarly, expression of the vesicle docking protein SNAP-25 and neuropeptide calcitonin gene-related peptide was readily detected beginning on day 9 and remained elevated throughout postnatal development. Based on our findings, we propose that the expression of proteins involved in facilitating neuron-glia interactions temporally correlates with the formation of mature functional units during postnatal development of trigeminal ganglion.
Collapse
Affiliation(s)
- Paul L Durham
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO 65806, USA.
| | | |
Collapse
|
236
|
Gong K, Yue Y, Zou X, Li D, Lin Q. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection. Neurosci Lett 2010; 482:177-81. [PMID: 20654697 DOI: 10.1016/j.neulet.2010.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Psychology, University of Texas at Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
237
|
Li M, Lee SK, Yang SH, Ko JH, Han JS, Kim TJ, Suh JW. ATP modulates the growth of specific microbial strains. Curr Microbiol 2010; 62:84-9. [PMID: 20512647 DOI: 10.1007/s00284-010-9677-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/07/2010] [Indexed: 11/28/2022]
Abstract
The regulatory function of extracellular ATP (exATP) in bacteria is unknown, but recent studies have demonstrated exATP induced enhanced secondary metabolite production and morphological differentiation in Streptomyces coelicolor. The growth of Streptomyces coelicolor, however, was unaffected by exATP, although changes in growth are common phenotypes. To identify bacteria whose growth is altered by exATP, we measured exATP-induced population changes in fast-growing microbes and actinomycetes in compost. Compared with the water-treated control, the addition of 10 ml 100 μM ATP to 10 g of compost enhanced the actinomycetes population by 30% and decreased fast-growing microbial numbers by 20%. Eight microbes from each group were selected from the most populated colony, based on appearance. Of the eight isolated fast-growing microbes, the 16S rRNA sequences of three isolates were similar to the plant pathogens Serratia proteamaculans and Sphingomonas melonis, and one was close to a human pathogen, Elizabethkingia meningoseptica. The growth of all fast-growing microbes was inhibited by ATP, which was confirmed in Pseudomonas syringae DC3000, a pathogenic plant bacterium. The growth of six of eight isolated actinomycetes strains, all of which were identified as close to Streptomyces neyagawaensis, was enhanced by ATP treatment. This study suggests that exATP regulates bacterial physiology and that the exATP response system is a target for the control of bacterial ecology.
Collapse
Affiliation(s)
- Ming Li
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 449-728, South Korea
| | | | | | | | | | | | | |
Collapse
|
238
|
Shoji Y, Yamaguchi-Yamada M, Yamamoto Y. Glutamate- and GABA-mediated neuron–satellite cell interaction in nodose ganglia as revealed by intracellular calcium imaging. Histochem Cell Biol 2010; 134:13-22. [DOI: 10.1007/s00418-010-0711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 12/19/2022]
|
239
|
ATP in neuron-glia bidirectional signalling. ACTA ACUST UNITED AC 2010; 66:106-14. [PMID: 20451555 DOI: 10.1016/j.brainresrev.2010.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 11/24/2022]
Abstract
ATP accomplishes important roles in brain, where it functions as neurotransmitter or co-transmitter, being stored and released either as single mediator or together with other neuromodulators. In the last years, the purinergic system has emerged as the most relevant mechanism for intercellular signalling in the nervous system, affecting communication between many types of neurons and all types of glia. In this review, we will focus on recently reported data which describe the role of ATP in bidirectional signalling between neurons and different populations of glial cells, in both peripheral and central system.
Collapse
|
240
|
Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. ACTA ACUST UNITED AC 2010; 64:304-27. [PMID: 20441777 DOI: 10.1016/j.brainresrev.2010.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/14/2010] [Accepted: 04/27/2010] [Indexed: 01/08/2023]
Abstract
Glial cells are established as essential for many functions of the central nervous system, and this seems to hold also for glial cells in the peripheral nervous system. The main type of glial cells in most types of peripheral ganglia - sensory, sympathetic, and parasympathetic - is satellite glial cells (SGCs). These cells usually form envelopes around single neurons, which create a distinct functional unit consisting of a neuron and its attending SGCs. This review presents the knowledge on the morphology of SGCs in sympathetic and parasympathetic ganglia, and the (limited) available information on their physiology and pharmacology. It appears that SGCs carry receptors for ATP and can thus respond to the release of this neurotransmitter by the neurons. There is evidence that SGCs have an uptake mechanism for GABA, and possibly other neurotransmitters, which enables them to control the neuronal microenvironment. Damage to post- or preganglionic nerve fibers influences both the ganglionic neurons and the SGCs. One major consequence of postganglionic nerve section is the detachment of preganglionic nerve terminals, resulting in decline of synaptic transmission. It appears that, at least in sympathetic ganglia, SGCs participate in the detachment process, and possibly in the subsequent recovery of the synaptic connections. Unlike sensory neurons, neurons in autonomic ganglia receive synaptic inputs, and SGCs are in very close contact with synaptic boutons. This places the SGCs in a position to influence synaptic transmission and information processing in autonomic ganglia, but this topic requires much further work.
Collapse
|
241
|
Whitehead KJ, Smith CGS, Delaney SA, Curnow SJ, Salmon M, Hughes JP, Chessell IP. Dynamic regulation of spinal pro-inflammatory cytokine release in the rat in vivo following peripheral nerve injury. Brain Behav Immun 2010; 24:569-76. [PMID: 20035858 DOI: 10.1016/j.bbi.2009.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/02/2023] Open
Abstract
Spinal release of cytokines may play a critical role in the maladapted nociceptive signaling underlying chronic pain states. In order to investigate this biology, we have developed a novel 'high flux' intrathecal microdialysis approach in combination with multiplex bead-based immunoassay technology to concurrently monitor the spinal release of interleukin (IL)-1beta, IL-6 and tumour necrosis factor (TNF)alpha in rats with unilateral sciatic nerve chronic constriction injury (CCI). Intrathecal microdialysis was performed under isoflurane/N(2)O anaesthesia in rats with confirmed mechanical hypersensitivity. In a first study, C-fiber strength electrical stimulation of the operated nerve in neuropathic rats was found to evoke a dramatic increase in IL-1beta efflux ( approximately 15-fold) that was significantly greater than that observed in the sham-operated group. Spinal IL-6 efflux was also responsive to primary afferent stimulation, whereas TNFalpha was not. In a second study, treatment with the glial inhibitor propentofylline for 7days normalized CCI-induced mechanical hypersensitivity. In the same animals, this treatment also significantly reduced intrathecal IL-1beta, IL-6 and TNFalpha and prevented afferent stimulation-evoked cytokine release of both IL-1beta and IL-6. These results provide support for glia as the source of the majority of intrathecal IL-1beta, IL-6 and TNFalpha that accompanies mechanical hypersensitivity in the CCI rat. Moreover, our studies demonstrate the ability of a neurone-glia signaling mechanism to dynamically modulate this release and support a role of spinal IL-1beta in the phasic transmission of abnormal pain signals.
Collapse
Affiliation(s)
- K J Whitehead
- Pain Signalling Group, Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
242
|
Browne LE, Jiang LH, North RA. New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 2010; 31:229-37. [PMID: 20227116 PMCID: PMC2954318 DOI: 10.1016/j.tips.2010.02.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/07/2010] [Accepted: 02/12/2010] [Indexed: 01/26/2023]
Abstract
P2X receptors are ATP-gated membrane ion channels with multifarious roles, including afferent sensation, autocrine feedback loops, and inflammation. Their molecular operation has been less well elucidated compared with other ligand-gated channels (nicotinic acetylcholine receptors, ionotropic glutamate receptors). This will change with the recent publication of the crystal structure of a closed P2X receptor. Here we re-interpret results from 15 years of experiments using site-directed mutagenesis with a model based on the new structure. Previous predictions of receptor stoichiometry, the extracellular ATP binding site, inter-subunit contacts, and many details of the permeation pathway fall into place in three dimensions. We can therefore quickly understand how the channel operates at the molecular level. This is important not only for ion- channel aficionados, but also those engaged in developing effective antagonists at P2X receptors for potential therapeutic use.
Collapse
Affiliation(s)
- Liam E. Browne
- Faculty of Medical and Human Sciences, University of Manchester, UK
| | - Lin-Hua Jiang
- Faculty of Biological Sciences, University of Leeds, UK
| | - R. Alan North
- Faculty of Medical and Human Sciences, University of Manchester, UK
| |
Collapse
|
243
|
Effect of tetramethylpyrazine on DRG neuron P2X3 receptor involved in transmitting pain after burn. Burns 2010; 36:127-34. [DOI: 10.1016/j.burns.2009.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 11/16/2022]
|
244
|
Villa G, Fumagalli M, Verderio C, Abbracchio MP, Ceruti S. Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. NEURON GLIA BIOLOGY 2010; 6:31-42. [PMID: 20604978 DOI: 10.1017/s1740925x10000086] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of adenosine-5'-triphosphate (ATP) and of the ligand-gated P2X3 receptor in neuronal dorsal root ganglia (DRG) pain transmission is relatively well established. Much less is known about the purinergic system in trigeminal ganglia (TG), which are involved in certain types of untreatable neuropathic and inflammatory pain, as well as in migraine. Emerging data suggest that purinergic metabotropic P2Y receptors on both neurons and satellite glial cells (SGCs) may also participate in both physiological and pathological pain development. Here, we provide an updated literature review on the role of purinergic signaling in sensory ganglia, with special emphasis on P2Y receptors on SGCs. We also provide new original data showing a time-dependent downregulation of P2Y2 and P2Y4 receptor expression and function in purified SGCs cultures from TG, in comparison with primary mixed neuron-SGCs cultures. These data highlight the importance of the neuron-glia cross-talk in determining the SGCs phenotype. Finally, we show that, in mixed TG cultures, both adenine and guanosine induce intracellular calcium transients in neurons but not in SGCs, suggesting that also these purinergic-related molecules can participate in pain signaling. These findings may have relevant implications for the development of new therapeutic strategies for chronic pain treatment.
Collapse
Affiliation(s)
- Giovanni Villa
- Laboratory of Molecular and Cellular, Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
245
|
Gu Y, Chen Y, Zhang X, Li G, Wang CY, Huang LYM. Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. NEURON GLIA BIOLOGY 2010; 6:53-62. [PMID: 20604979 PMCID: PMC3120217 DOI: 10.1017/s1740925x10000116] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been known for some time that the somata of neurons in sensory ganglia respond to electrical or chemical stimulation and release transmitters in a Ca2+-dependent manner. The function of the somatic release has not been well delineated. A unique characteristic of the ganglia is that each neuronal soma is tightly enwrapped by satellite glial cells (SGCs). The somatic membrane of a sensory neuron rarely makes synaptic contact with another neuron. As a result, the influence of somatic release on the activity of adjacent neurons is likely to be indirect and/or slow. Recent studies of neuron-SGC interactions have demonstrated that ATP released from the somata of dorsal root ganglion neurons activates SGCs. They in turn exert complex excitatory and inhibitory modulation of neuronal activity. Thus, SGCs are actively involved in the processing of afferent information. In this review, we summarize our understanding of bidirectional communication between neuronal somata and SGCs in sensory ganglia and its possible role in afferent signaling under normal and injurious conditions. The participation of purinergic receptors is emphasized because of their dominant roles in the communication.
Collapse
Affiliation(s)
- Yanping Gu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yong Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiaofei Zhang
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| | - GuangWen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Cong Ying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
246
|
Takeda M, Kitagawa J, Nasu M, Takahashi M, Iwata K, Matsumoto S. Glial cell line-derived neurotrophic factor acutely modulates the excitability of rat small-diameter trigeminal ganglion neurons innervating facial skin. Brain Behav Immun 2010; 24:72-82. [PMID: 19679180 DOI: 10.1016/j.bbi.2009.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/14/2009] [Accepted: 08/05/2009] [Indexed: 12/31/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in adult sensory neuron function. However, the acute effects of GDNF on primary sensory neuron excitability remain to be elucidated. The aim of the present study was to investigate whether GDNF acutely modulates the excitability of adult rat trigeminal ganglion (TRG) neurons that innervate the facial skin by using perforated-patch clamping, retrograde-labeling and immunohistochemistry techniques. Fluorogold (FG) retrograde labeling was used to identify the TRG neurons innervating the facial skin. The FG-labeled small- and medium-diameter GDNF immunoreactive TRG neurons, and most of these neurons also expressed the GDNF family receptor alpha-1 (GFRalpha-1). In whole-cell voltage-clamp mode, GDNF application significantly inhibited voltage-gated K(+) transient (I(A)) and sustained (I(K)) currents in most dissociated FG-labeled small-diameter TRG neurons. This effect was concentration-dependent and was abolished by co-application of the protein tyrosine kinase inhibitor, K252b. Under current-clamp conditions, the repetitive firing during a depolarizing pulse were significantly increased by GDNF application. GDNF application also increased the duration of the repolarization phase and decreased the duration of the depolarization phase of the action potential, and these characteristic effects were also abolished by co-application of K252b. These results suggest that acute application of GDNF enhances the neuronal excitability of adult rat small-diameter TRG neurons innervating the facial skin, via activation of GDNF-induced intracellular signaling pathway. We therefore conclude that a local release of GDNF from TRG neuronal soma and/or nerve terminals may regulate normal sensory function, including nociception.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | |
Collapse
|
247
|
The role of glial cells in influencing neurite extension by dorsal root ganglion cells. ACTA ACUST UNITED AC 2009; 6:19-29. [PMID: 20025817 DOI: 10.1017/s1740925x09990433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When pretreated with pertussis toxin (PTX), the neurites of adult rat dorsal root ganglion (DRG) cells in mixed cell cultures retract over a period of 2 h following the initial stimulus of removal from the cell culture incubator for brief periods of observation. The purpose of this investigation was to determine whether this PTX-dependent response was specific to any one of the three subpopulations of DRG neurons. However, no neurite retraction response was observed in neuron-enriched populations of cells, or in cultures enriched in isolectin B4 (IB4)-positive neurons or in IB4-negative neurons. But, the addition of non-neuronal cells, and/or medium conditioned by non-neuronal cells, was sufficient to restore the PTX-dependent neurite retraction response, but only in large diameter IB4-negative neurons. In conclusion, we have identified a regulatory response, mediated by Gi/o-proteins, which prevents retraction of neurites in large diameter IB4-negative cells of adult rat DRG. The non-neuronal cells of adult rat DRG constitutively release factor/s that can stimulate neurite retraction of a subset of isolated DRG neurons, but this property of non-neuronal cells is only observed when the Gi/o-proteins of large diameter IB4-negative cells are inhibited.
Collapse
|
248
|
Xu C, Li G, Gao Y, Liu S, Lin J, Zhang J, Li X, Liu H, Liang S. Effect of puerarin on P2X3 receptor involved in hyperalgesia after burn injury in the rat. Brain Res Bull 2009; 80:341-6. [DOI: 10.1016/j.brainresbull.2009.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 08/30/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
|
249
|
Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. ACTA ACUST UNITED AC 2009; 6:43-51. [PMID: 19891813 DOI: 10.1017/s1740925x09990408] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes communicate with neurons, endothelial and other glial cells through transmission of intercellular calcium signals. Satellite glial cells (SGCs) in sensory ganglia share several properties with astrocytes, but whether this type of communication occurs between SGCs and sensory neurons has not been explored. In the present work we used cultured neurons and SGCs from mouse trigeminal ganglia to address this question. Focal electrical or mechanical stimulation of single neurons in trigeminal ganglion cultures increased intracellular calcium concentration in these cells and triggered calcium elevations in adjacent glial cells. Similar to neurons, SGCs responded to mechanical stimulation with increase in cytosolic calcium that spread to the adjacent neuron and neighboring glial cells. Calcium signaling from SGCs to neurons and among SGCs was diminished in the presence of the broad-spectrum P2 receptor antagonist suramin (50 muM) or in the presence of the gap junction blocker carbenoxolone (100 muM), whereas signaling from neurons to SGCs was reduced by suramin, but not by carbenoxolone. Following induction of submandibular inflammation by Complete Freund's Adjuvant injection, the amplitude of signaling among SGCs and from SGCs to neuron was increased, whereas the amplitude from neuron to SGCs was reduced. These results indicate for the first time the presence of bidirectional calcium signaling between neurons and SGCs in sensory ganglia cultures, which is mediated by the activation of purinergic P2 receptors, and to some extent by gap junctions. Furthermore, the results indicate that not only sensory neurons, but also SGCs release ATP. This form of intercellular calcium signaling likely plays key roles in the modulation of neuronal activity within sensory ganglia in normal and pathological states.
Collapse
|
250
|
Abstract
P2X and P2Y nucleotide receptors are described on sensory neurons and their peripheral and central terminals in dorsal root, nodose, trigeminal, petrosal, retinal and enteric ganglia. Peripheral terminals are activated by ATP released from local cells by mechanical deformation, hypoxia or various local agents in the carotid body, lung, gut, bladder, inner ear, eye, nasal organ, taste buds, skin, muscle and joints mediating reflex responses and nociception. Purinergic receptors on fibres in the dorsal spinal cord and brain stem are involved in reflex control of visceral and cardiovascular activity, as well as relaying nociceptive impulses to pain centres. Purinergic mechanisms are enhanced in inflammatory conditions and may be involved in migraine, pain, diseases of the special senses, bladder and gut, and the possibility that they are also implicated in arthritis, respiratory disorders and some central nervous system disorders is discussed. Finally, the development and evolution of purinergic sensory mechanisms are considered.
Collapse
|