201
|
Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, Kennedy KA, Patierno SR. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 2000; 59:15-26. [PMID: 10752676 DOI: 10.1023/a:1006332011207] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 78 kDa glucose-regulated stress protein GRP78 is induced by physiological stress conditions such as hypoxia, low pH, and glucose deprivation which often exist in the microenvironments of solid tumors. Activation of this stress pathway occurs in response to several pro-apoptotic stimuli. In vitro studies have demonstrated a correlation between induced expression of GRP78 and resistance to apoptotic death induced by topoisomerase II-directed drugs. We were interested in characterizing this protein in human breast lesions for potential implications in chemotherapeutic intervention. Surgical specimens of human breast lesions and paired normal tissues from the same patients were flash frozen for these studies. Total RNA and/or protein were extracted from these tissues and used in northern and/or western blot analyses, respectively, to quantify the relative expression of GRP78. Northern blot analysis indicated that 0/5 benign breast lesions, 3/5 estrogen receptor positive (ER+) breast tumors, and 6/9 estrogen receptor negative (ER-) breast tumors exhibited overexpression of GRP78 mRNA compared to paired normal tissues, with fold overexpressions ranging from 1.8 to 20. Western blot analyses correlated with these findings since 0/5 benign breast lesions, 4/6 ER+ breast tumors, and 3/3 ER- breast tumors overexpressed GRP78 protein with fold overexpressions ranging from 1.8 to 19. Immunohistochemical analysis of these tissues demonstrated that the expression of GRP78 was heterogeneous among the cells comprising different normal and malignant glands, but confirmed the overexpression of GRP78 in most of the more aggressive ER- tumors. These results suggest that some breast tumors exhibit adverse microenvironment conditions that induce the overexpression of specific stress genes that may play a role in resistance to apoptosis and decreased chemotherapeutic efficacy.
Collapse
Affiliation(s)
- P M Fernandez
- Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Rottiers P, Desmedt M, Dooms H, Contreras R, Grooten J. Tumoral environment triggers transcript anomalies in established tumors: induction of altered gene expression and of aberrant, truncated and B2 repeat-containing gene transcripts. Neoplasia 1999; 1:557-67. [PMID: 10935503 PMCID: PMC1508124 DOI: 10.1038/sj.neo.7900070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR)-based subtraction suppression hybridization (SSH) to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.
Collapse
Affiliation(s)
- P Rottiers
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Gent, Belgium
| | | | | | | | | |
Collapse
|
203
|
Heike M, Weinmann A, Bethke K, Galle PR. Stress protein/peptide complexes derived from autologous tumor tissue as tumor vaccines. Biochem Pharmacol 1999; 58:1381-7. [PMID: 10513981 DOI: 10.1016/s0006-2952(99)00178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination of inbred mice with tumor-derived stress proteins hsp70, hsp90, and gp96/grp94 elicits a protective immunity to the tumor from which the vaccine was purified. There is now comprehensive experimental evidence that the antigenicity of tumor-derived hsp70, hsp90, and gp96 preparations results from diverse arrays of endogenous peptide antigens complexed with these stress proteins. Vaccination with tumor-derived stress protein/peptide complexes leads to their uptake and processing by professional antigen-presenting cells and to presentation of associated tumor peptide antigens to cytotoxic T cells. This induces a tumor-specific cytotoxic T cell response. The attractiveness of the concept of using tumor-derived stress proteins as vaccines is derived from two observations: (i) tumor stress protein vaccines mirror the individual antigenicity of a tumor, which results from random mutations due to genetic instability; and (ii) stress proteins represent powerful adjuvants for the peptide antigens complexed to them.
Collapse
Affiliation(s)
- M Heike
- I. Medizinische Klinik und Poliklinik, Johannes Gutenberg-Universität Mainz, Germany.
| | | | | | | |
Collapse
|
204
|
Reddy RK, Lu J, Lee AS. The Endoplasmic Reticulum Chaperone Glycoprotein GRP94 with Ca2+-binding and Antiapoptotic Properties Is a Novel Proteolytic Target of Calpain during Etoposide-induced Apoptosis. J Biol Chem 1999; 274:28476-83. [PMID: 10497210 DOI: 10.1074/jbc.274.40.28476] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GRP94 is a 94-kDa chaperone glycoprotein with Ca(2+)-binding properties. We report here that during apoptosis induced by the topoisomerase II inhibitor etoposide, a fraction of GRP94 associated with the endoplasmic reticulum membrane undergoes specific proteolytic cleavage, coinciding with the activation of the caspase CPP32 and initiation of DNA fragmentation. In vivo, inhibitors of caspases able to block etoposide-induced apoptosis can only partially protect GRP94 from proteolytic cleavage, whereas complete inhibition is observed with calpain inhibitor I but not with the proteasome inhibitor. In vitro, GRP94 is not a substrate for CPP32; rather, it can be completely cleaved by calpain, a Ca(2+)-regulated protease. The cleavage of GRP94 by calpain is Ca(2+)-dependent and generates a discrete polypeptide of 80 kDa. In contrast, calpain has no effect on other stress proteins such as GRP78 or HSP70. Further, immunohistochemical staining reveals specific co-localization of GRP94 with calpain in the perinuclear region following etoposide treatment. We further showed that reduction of GRP94 by antisense decreased cell viability in etoposide-treated Jurkat cells. Our studies provide new evidence that the cytoprotective GRP94, as in the case of the antiapoptotic protein Bcl-2, can be targets of proteolytic cleavage themselves during the apoptotic process.
Collapse
Affiliation(s)
- R K Reddy
- Department of Biochemistry, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
205
|
Ogiso Y, Tomida A, Kim HD, Tsuruo T. Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochem Biophys Res Commun 1999; 258:448-52. [PMID: 10329407 DOI: 10.1006/bbrc.1999.0635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solid tumors commonly contain regions with glucose-starved and hypoxic conditions. Tumor cells under the adverse conditions can survive through the stress response, such as cell cycle arrest. In this study, we found that the stress conditions stimulated nuclear accumulation of proteasomes, large multicatalytic protease complexes, in human colon cancer HT-29 cells. The nuclear proteasome levels both in amount and in activity were increased approximately 4 and 2 times by glucose starvation and hypoxia, respectively. No changes were detected in the total expression levels of proteasome. The nuclear proteasome accumulation was also observed in ovarian cancer A2780 cells under glucose starvation, suggesting that this response was regardless of the origin of cancer cells. Our results indicate that the nuclear proteasome distribution is enhanced by glucose starvation and hypoxia, and suggest that the proteolysis by proteasome in the nucleus may play roles in the stress response of solid tumor cells.
Collapse
Affiliation(s)
- Y Ogiso
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | | | | |
Collapse
|
206
|
Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TS. Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 1999; 73:3718-22. [PMID: 10196264 PMCID: PMC104147 DOI: 10.1128/jvi.73.5.3718-3722.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus E1 and E2 envelope proteins are targeted to the endoplasmic reticulum, but instead of being secreted, they are retained in a pre-Golgi compartment, at least partly in a misfolded state. Since secretory proteins which are retained in the endoplasmic reticulum frequently can activate the transcription of intraluminal chaperone proteins, we measured the effect of the E1 and E2 proteins on the promoters of two such chaperones, GRP78 (BiP) and GRP94. We found that E2 but not E1 protein activates these two promoters, as assayed by a reporter gene system. Furthermore, E2 but not E1 protein induces the synthesis of GRP78 from the endogenous cellular gene. We also found that E2 but not E1 protein expressed in mammalian cells is bound tightly to GRP78. This association may explain the ability of E2 protein to activate transcription, since GRP78 has been postulated to be a sensor of stress in the endoplasmic reticulum. Since overexpression of GRP78 has been shown to decrease the sensitivity of cells to killing by cytotoxic T lymphocytes and to increase tumorigenicity and resistance to antitumor drugs, this activity of E2 protein may be involved in the pathogenesis of hepatitis C virus-induced diseases.
Collapse
Affiliation(s)
- E Liberman
- Department of Pathology, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Gazit G, Lu J, Lee AS. De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 1999; 54:135-46. [PMID: 10424404 DOI: 10.1023/a:1006102411439] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The stress-inducible glucose regulated proteins (GRPs), a class of calcium-binding molecular chaperones localized in the endoplasmic reticulum, have been implicated in the development of tumorigenicity, drug resistance, and cytotoxic immunology. This study investigates the expression pattern of GRP94 and GRP78 in a panel of breast carcinoma cell lines, as compared to two independently derived normal human breast epithelial cell lines. Here we report that a 3- to 5-fold increase in the basal level of the GRP94 protein was observed in all five breast carcinoma cell lines examined. The increase was independent of either the p53 or estrogen receptor status of the breast carcinomas. In carcinoma cells deprived of glucose, mimicking the conditions in poorly vascularized solid tumors, up to 9-fold induction of GRP94 was observed relative to the basal level expressed in a normal breast epithelial cell line. Interestingly, while the majority of the breast cancer cell lines can respond to tunicamycin- and thapsigargin-induced stress by increasing the steady state levels of grp94 and grp78 transcripts, the induction at the GRP protein level is variable and does not always correspond with the transcript level. Further, we discovered that one of the human breast carcinoma cell lines, MCF-7, has specifically lost its ability to respond to tunicamycin stress.
Collapse
Affiliation(s)
- G Gazit
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, USA
| | | | | |
Collapse
|
208
|
Kass GE, Orrenius S. Calcium signaling and cytotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107 Suppl 1:25-35. [PMID: 10229704 PMCID: PMC1566353 DOI: 10.1289/ehp.99107s125] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The divalent calcium cation Ca(2+) is used as a major signaling molecule during cell signal transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the signaling role of Ca(2+) is an intricate network of cellular channels and transporters that allow a low resting concentration of Ca(2+) in the cytosol of the cell ([Ca(2+)]i) but that are also coupled to major dynamic and rapidly exchanging stores. This enables extracellular signals from hormones and growth factors to be transduced as [Ca(2+)]i spikes that are amplitude and frequency encoded. There is considerable evidence that a number of toxic environmental chemicals target these Ca(2+) signaling processes, alter them, and induce cell death by apoptosis. Two major pathways for apoptosis will be considered. The first one involves Ca(2+)-mediated expression of ligands that bind to and activate death receptors such as CD95 (Fas, APO-1). In the second pathway, Ca(2+) has a direct toxic effect and its primary targets include the mitochondria and the endoplasmic reticulum (ER). Mitochondria may respond to an apoptotic Ca(2+) signal by the selective release of cytochrome c or through enhanced production of reactive oxygen species and opening of an inner mitochondrial membrane pore. Toxic agents such as the environmental pollutant tributyltin or the natural plant product thapsigargin, which deplete the ER Ca(2+) stores, will induce as a direct result of this effect the opening of plasma membrane Ca(2+) channels and an ER stress response. In contrast, under some conditions, Ca(2+) signals may be cytoprotective and antagonize the apoptotic machinery.
Collapse
Affiliation(s)
- G E Kass
- School of Biological Sciences, University of Surrey, Guildford, United Kingdom.
| | | |
Collapse
|
209
|
Cai B, Tomida A, Mikami K, Nagata K, Tsuruo T. Down-regulation of epidermal growth factor receptor-signaling pathway by binding of GRP78/BiP to the receptor under glucose-starved stress conditions. J Cell Physiol 1998; 177:282-8. [PMID: 9766525 DOI: 10.1002/(sici)1097-4652(199811)177:2<282::aid-jcp10>3.0.co;2-c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GRP78/BiP, a molecular chaperone in the endoplasmic reticulum, is induced under such adverse conditions for cell survival as glucose starvation. Induction of GRP78 has been shown to coincide with G1 cell cycle arrest, which is an important cellular defense system. In this study, we investigated involvement of GRP78 in the mechanism of growth arrest by using human epidermoid carcinoma A431 cells. Under a chemical stress condition with 2-deoxyglucose, GRP78 was induced 3-4-fold. In the stressed cells, an underglycosylated form of epidermal growth factor receptor (EGFR) was produced and the mature form was decreased. We found that the molecular chaperone GRP78 in the endoplasmic reticulum formed a stable complex with the underglycosylated EGFR but did not with the mature form. This complex formation occurred specifically under the stress conditions, and the complex was dissociated upon removal of the stress. Treatment of the GRP78-underglycosylated EGFR complex with ATP resulted in a release of the underglycosylated EGFR from GRP78, indicating that the complex could be formed through the chaperone function of GRP78. In accordance with the complex formation with endoplasmic reticulum-resident GRP78, the underglycosylated EGFR could not be translocated to the cell surface. As a result, EGF could not induce expression of cyclin D3, a G1 cyclin, in the stressed cells, whereas it did in non-stressed cells. These results indicated that, in the stressed cells, GRP78 participated in down-regulation of EGF-signaling pathway by forming a stable complex with EGFR and inhibiting EGFR translocation to the cell surface.
Collapse
Affiliation(s)
- B Cai
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
210
|
Suzuki H, Tomida A, Tsuruo T. A novel mutant from apoptosis-resistant colon cancer HT-29 cells showing hyper-apoptotic response to hypoxia, low glucose and cisplatin. Jpn J Cancer Res 1998; 89:1169-78. [PMID: 9914786 PMCID: PMC5921724 DOI: 10.1111/j.1349-7006.1998.tb00512.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Solid tumors usually have regions of hypoxia and glucose deprivation. Human colon carcinoma HT-29 cells show an apoptosis-resistant phenotype in response to microenvironmental stresses. In this study, we isolated a novel mutant of HT-29, designated as HA511, that showed a high apoptotic response to hypoxia, glucose deprivation and treatment with the chemical stressors tunicamycin and glucosamine. The mutant HA511 cells exhibited nuclear condensation and fragmentation and activation of CPP32 (caspase-3) protease under the stress conditions, while the parental HT-29 cells did not. We found that apoptosis occurred in HA511 cells after prolonged cell cycle arrest at the G1 phase, while in the parental cells a progression to S phase occurred after the G1 arrest. Upon exposure to an anti-Fas antibody, HA511 cells underwent apoptosis, whereas the parental cells proliferated without substantial cell death. Furthermore, HA511 cells were preferentially hypersensitive to cisplatin. We found no alteration in expression of GRP78, anti-apoptotic protein Bcl-XL, or p53, of which the gene was mutated in HT-29 cells. The mutant HA511 cells could provide useful information on the mechanism of apoptosis of solid tumors.
Collapse
Affiliation(s)
- H Suzuki
- Laboratory of Biomedical Research, University of Tokyo
| | | | | |
Collapse
|
211
|
Haga N, Naito M, Seimiya H, Tomida A, Dong J, Tsuruo T. 2-Deoxyglucose inhibits chemotherapeutic drug-induced apoptosis in human monocytic leukemia U937 cells with inhibition of c-Jun N-terminal kinase 1/stress-activated protein kinase activation. Int J Cancer 1998; 76:86-90. [PMID: 9533766 DOI: 10.1002/(sici)1097-0215(19980330)76:1<86::aid-ijc14>3.0.co;2-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human monocytic leukemia U937 cells undergo apoptosis when treated with antitumor drugs, such as etoposide, camptothecin and mitomycin C. The molecular mechanism of the drug-induced apoptosis is not well understood. In this study, we found that 2-deoxyglucose (2DG), an analog of D-glucose and an inducer of glucose-regulated stress, inhibited anticancer drug-induced but not tumor necrosis factor-alpha-induced apoptosis of U937 cells. 2DG did not reduce initial cellular damage caused by etoposide, an inhibitor of topoisomerase II, suggesting that 2DG affected subsequent cellular responses involved in apoptosis. 2DG inhibited the etoposide-induced activation of c-Jun N-terminal kinase 1/stress-activated protein kinase (JNK1/SAPK) and the subsequent activation of CPP32, both of which are positive regulators for etoposide-induced apoptosis of U937 cells. Our results indicate that 2DG inhibits apoptosis by blocking the signals from cellular DNA damage for JNK1/SAPK activation.
Collapse
Affiliation(s)
- N Haga
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Zhou Y, Lee AS. Mechanism for the suppression of the mammalian stress response by genistein, an anticancer phytoestrogen from soy. J Natl Cancer Inst 1998; 90:381-8. [PMID: 9498488 DOI: 10.1093/jnci/90.5.381] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Soy products contain high levels of genistein, a phytoestrogen that is a potent inhibitor of cell proliferation and angiogenesis. Genistein has been found to inhibit the growth of carcinogen-induced cancers in rats and human leukemia cells transplanted into mice. The induction of stress proteins (e.g., glucose-related proteins and heat shock proteins) in tumor cells has been shown to protect them against programmed cell death; this stress response is inhibited by genistein. The mechanism(s) by which genistein affects certain stress response genes was explored in this study. METHODS Mammalian cell cultures were treated with azetidine, a proline analog, which elicits a stress response that includes the induction of the expression of glucose-regulated protein GRP78 and heat shock protein HSP70. The effects of azetidine and/or genistein treatment on cellular levels of grp78 and hsp70 messenger RNAs and proteins were measured by northern blot hybridization and western blot analyses, respectively, and the binding of nuclear factors to sequence motifs in the upstream (promoter) regions of these two genes were examined by electrophoretic mobility shift assays. RESULTS Genistein antagonized the binding of a specific transcription factor, nuclear factor-Y/CCAAT binding factor (NF-Y/CBF), to the CCAAT sequence element most proximal to the transcription start sites in the hsp70 and grp78 promoters; this CCAAT element was previously shown to be necessary for full-stress inducibility of both genes. Treatment of cells with genistein converted NF-Y/CBF into a nonbinding, transcriptionally inactive form. IMPLICATION The anticancer effects of genistein may be related to its ability to reduce the expression of stress response-related genes.
Collapse
Affiliation(s)
- Y Zhou
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | |
Collapse
|
213
|
Abstract
Molecular chaperones are ubiquitous, well-conserved proteins that account for 2-5 % of all cellular proteins in most cells. The present review summarizes our current knowledge about their involvement in the etiology and therapy of cancer with special emphasis on the expression of chaperones in malignant cells, their role in folding of (proto)oncogene products, cell cycle regulation, cell differentiation and apoptosis, development of metastasis, and their participation in the recognition of malignant cells. We also overview the importance of chaperones in hyperthermia, drug resistance, and recent approaches in chaperone-immunotherapy.
Collapse
Affiliation(s)
- C Soti
- Department of Medical Chemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|
214
|
Li WW, Hsiung Y, Zhou Y, Roy B, Lee AS. Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol 1997; 17:54-60. [PMID: 8972185 PMCID: PMC231729 DOI: 10.1128/mcb.17.1.54] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, we have identified a constitutive nuclear factor, p70CORE, from HeLa cell nuclear extract which interacts specifically with the stress-inducible change region (SICR) of the grp78 promoter. Here we report that p70CORE is identical to YY1, a member of the GLI zinc finger family, by criteria of biochemical properties including apparent molecular weight, binding site homology, immunoreactivity, and affinity purification. Recombinant YY1 binds the double-stranded SICR with high specificity but has no affinity for its single-stranded form. In cotransfection studies, YY1 specifically enhanced the transcriptional activation of the grp78 promoter under a variety of stress conditions: depletion of the endoplasmic reticulum calcium stores, protein glycosylation block, and formation of aberrant proteins by azetidine treatment. In contrast, YY1 has minimal effect on the stress induction of the hsp70 promoter. YY1 enhancement of the grp78 stress response is dependent on its DNA-binding domain, with little effect on the basal expression of the promoter. The effect of YY1 transactivation may be mediated by the highly conserved grp78 core element. This is the first example of the ubiquitous factor YY1 involved in regulating inducible gene expression and its involvement in mediating stress signals generated from the endoplasmic reticulum to the nucleus.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
215
|
Affiliation(s)
- G Dennert
- Department of Microbiology, Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| |
Collapse
|