201
|
Schaller T, Pollpeter D, Apolonia L, Goujon C, Malim MH. Nuclear import of SAMHD1 is mediated by a classical karyopherin α/β1 dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation. Retrovirology 2014; 11:29. [PMID: 24712655 PMCID: PMC4098787 DOI: 10.1186/1742-4690-11-29] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background The deoxynucleotide-triphosphate (dNTP) hydrolase sterile alpha motif domain and HD domain 1 (SAMHD1) is a nuclear protein that inhibits HIV-1 infection in myeloid cells as well as quiescent CD4 T-cells, by decreasing the intracellular dNTP concentration below a level that is required for efficient reverse transcription. The Vpx proteins of the SIVSMM/HIV-2 lineage of lentiviruses bind SAMHD1 and recruit an ubiquitin ligase, leading to polyubiquitination and proteasomal degradation. Results Here, we have investigated the importance of nuclear localization for SAMHD1′s antiviral function as well as its sensitivity to the Vpx protein of SIVMAC. Using GST pull down assays, as well as RNA silencing approaches, we show that SAMHD1 preferentially uses karyopherin α2 (KPNA2) and a classical N-terminal nuclear localization signal (14KRPR17) to enter the nucleus. Reduction of karyopherin β1 (KPNB1) or KPNA2 by RNAi also led to cytoplasmic re-distribution of SAMHD1. Using primary human monocyte-derived macrophages (MDM), a cell type in which SAMHD1 is naturally expressed to high levels, we demonstrate that nuclear localization is not required for its antiviral activity. Cytoplasmic SAMHD1 still binds to VpxMAC, is efficiently polyubiquitinated, but is not degraded. We also find that VpxMAC-induced SAMHD1 degradation was partially reversed by ubiquitin carrying the K48R or K11R substitution mutations, suggesting involvement of K48 and K11 linkages in SAMHD1 polyubiquitination. Using ubiquitin K-R mutants also revealed differences in the ubiquitin linkages between wild type and cytoplasmic forms of SAMHD1, suggesting a potential association with the resistance of cytoplasmic SAMHD1 to VpxMAC induced degradation. Conclusions Our work extends published observations on SAMHD1 nuclear localization to a natural cell type for HIV-1 infection, identifies KPNA2/KPNB1 as cellular proteins important for SAMHD1 nuclear import, and indicates that components of the nuclear proteasomal degradation machinery are required for SAMHD1 degradation.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK.
| | | | | | | | | |
Collapse
|
202
|
Identification of cellular proteins interacting with the retroviral restriction factor SAMHD1. J Virol 2014; 88:5834-44. [PMID: 24623419 DOI: 10.1128/jvi.00155-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human and mouse SAMHD1 proteins block human immunodeficiency virus type 1 (HIV-1) infection in noncycling human monocytic cells by reducing the intracellular deoxynucleoside triphosphate (dNTP) concentrations. Phosphorylation of human SAMHD1 at threonine 592 (T592) by cyclin-dependent kinase 1 (CDK1) and cyclin A2 impairs its HIV-1 restriction activity, but not the dNTP hydrolase activity, suggesting that dNTP depletion is not the sole mechanism of SAMHD1-mediated HIV-1 restriction. Using coimmunoprecipitation and mass spectrometry, we identified and validated two additional host proteins interacting with human SAMHD1, namely, cyclin-dependent kinase 2 (CDK2) and S-phase kinase-associated protein 2 (SKP2). We observed that mouse SAMHD1 specifically interacted with cyclin A2, cyclin B1, CDK1, and CDK2. Given the role of these SAMHD1-interacting proteins in cell cycle progression, we investigated the regulation of these host proteins by monocyte differentiation and activation of CD4+ T cells and examined their effect on the phosphorylation of human SAMHD1 at T592. Our results indicate that primary monocyte differentiation and CD4+ T-cell activation regulate the expression of these SAMHD1-interacting proteins. Furthermore, our results suggest that, in addition to CDK1 and cyclin A2, CDK2 phosphorylates T592 of human SAMHD1 and thereby regulates its HIV-1 restriction function. IMPORTANCE SAMHD1 is the first dNTP triphosphohydrolase found in mammalian cells. Human and mouse SAMHD1 proteins block HIV-1 infection in noncycling cells. Previous studies suggested that phosphorylation of human SAMHD1 at threonine 592 by CDK1 and cyclin A2 negatively regulates its HIV-1 restriction activity. However, it is unclear whether human SAMHD1 interacts with other host proteins in the cyclin A2 and CDK1 complex and whether mouse SAMHD1 shares similar cellular interacting partners. Here, we identify five cell cycle-related host proteins that interact with human and mouse SAMHD1, including three previously unknown cellular proteins (CDK2, cyclin B1, and SKP2). Our results demonstrate that several SAMHD1-interacting cellular proteins regulate phosphorylation of SAMHD1 and play an important role in HIV-1 restriction function. Our findings help define the role of these cellular interacting partners of SAMHD1 that regulate its HIV-1 restriction function.
Collapse
|
203
|
The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2014; 13:441-51. [PMID: 23601106 DOI: 10.1016/j.chom.2013.03.005] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/08/2023]
Abstract
SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.
Collapse
|
204
|
Dendritic cell-lymphocyte cross talk downregulates host restriction factor SAMHD1 and stimulates HIV-1 replication in dendritic cells. J Virol 2014; 88:5109-21. [PMID: 24574390 DOI: 10.1128/jvi.03057-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing.
Collapse
|
205
|
SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells. PLoS One 2014; 9:e89558. [PMID: 24586870 PMCID: PMC3929709 DOI: 10.1371/journal.pone.0089558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP), blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.
Collapse
|
206
|
Behrendt R, Roers A. Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin Exp Immunol 2014; 175:9-16. [PMID: 23713592 DOI: 10.1111/cei.12147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary autoimmune disease which overlaps clinically and pathogenetically with systemic lupus erythematosus (SLE), and can be regarded as a monogenic variant of SLE. Both conditions are characterized by chronic activation of anti-viral type I interferon (IFN) responses. AGS can be caused by mutations in one of several genes encoding intracellular enzymes all involved in nucleic acid metabolism. Mouse models of AGS-associated defects yielded distinct phenotypes and reproduced important features of the disease. Analysis of these mutant mouse lines stimulated a new concept of autoimmunity caused by intracellular accumulations of nucleic acids, which trigger a chronic cell-intrinsic antiviral type I IFN response and thereby autoimmunity. This model is of major relevance for our understanding of SLE pathogenesis. Findings in gene-targeted mice deficient for AGS associated enzymes are summarized in this review.
Collapse
Affiliation(s)
- R Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
207
|
Bloch N, O'Brien M, Norton TD, Polsky SB, Bhardwaj N, Landau NR. HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retroviruses 2014; 30:195-203. [PMID: 23924154 DOI: 10.1089/aid.2013.0119] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells of the immune system and are major producers of type-I interferon. Their role in HIV-1 infection is not well understood. They express CD4 and CCR5 yet appear to be resistant to infection. In culture, infection of the cells with HIV-1 is inhibited by the host cell restriction factor SAMHD1. Lentiviruses such as HIV-2/SIVmac counteract the restriction by encoding Vpx, a virion-packaged accessory protein that induces the proteasomal degradation of SAMHD1. In this study we investigated SAMHD1-mediated restriction in the two major dendritic cell subsets: plasmacytoid dendritic cells (pDC) and myeloid dendritic cells (mDC). The cells were highly resistant to HIV-1 and expressed high levels of SAMHD1. SAMHD1 amino acid residue T592, a target of CDK1 phosphorylation, was unphosphorylated, corresponding to the antiviral form of the enzyme. The resistance to infection was not counteracted by Vpx and SAMHD1 was not degraded in these cells. Treatment of pDCs with a cocktail of antibodies that blocked type-I interferon signaling partially restored the ability of Vpx to induce SAMHD1 degradation and caused the cells to become partially permissive to infection. pDCs and mDCs responded to HIV-1 virions by inducing an innate immune response but did not appear to sense newly produced Gag protein. The findings suggest that in vivo, dendritic cells serve as sentinels to alert the immune system to the virus but do not themselves become infected by virtue of high levels of SAMHD1.
Collapse
Affiliation(s)
- Nicolin Bloch
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Meagan O'Brien
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Thomas D. Norton
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Sylvie B. Polsky
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Nina Bhardwaj
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Nathaniel R. Landau
- Department of Microbiology, New York University School of Medicine, New York, New York
| |
Collapse
|
208
|
Chan E, Towers GJ, Qasim W. Gene therapy strategies to exploit TRIM derived restriction factors against HIV-1. Viruses 2014; 6:243-63. [PMID: 24424502 PMCID: PMC3917441 DOI: 10.3390/v6010243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Restriction factors are a collection of antiviral proteins that form an important aspect of the innate immune system. Their constitutive expression allows immediate response to viral infection, ahead of other innate or adaptive immune responses. We review the molecular mechanism of restriction for four categories of restriction factors; TRIM5, tetherin, APOBEC3G and SAMHD1 and go on to consider how the TRIM5 and TRIMCyp proteins in particular, show promise for exploitation using gene therapy strategies. Such approaches could form an important alternative to current anti-HIV-1 drug regimens, especially if combined with strategies to eradicate HIV reservoirs. Autologous CD4+ T cells or their haematopoietic stem cell precursors engineered to express TRIMCyp restriction factors, and provided in a single therapeutic intervention could then be used to restore functional immunity with a pool of cells protected against HIV. We consider the challenges ahead and consider how early clinical phase testing may best be achieved.
Collapse
Affiliation(s)
- Emma Chan
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Greg J Towers
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Waseem Qasim
- Centre for Gene Therapy, Institute of Child Health, University College London, London WC1N 1EH, UK.
| |
Collapse
|
209
|
Nguyen LA, Kim DH, Daly MB, Allan KC, Kim B. Host SAMHD1 protein promotes HIV-1 recombination in macrophages. J Biol Chem 2013; 289:2489-96. [PMID: 24352659 DOI: 10.1074/jbc.c113.522326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differentiated/nondividing macrophages, which serve as a key HIV-1 reservoir, contain extremely low dNTP concentrations (20-50 nm), which results from the cellular dNTP hydrolyzing sterile α motif and histidine aspartic domain containing protein 1 (SAMHD1) protein, when compared with activated CD4(+) T cells (2-5 μm). In this study, we first observed that HIV-1 template switching efficiency was nearly doubled in human primary macrophages when compared with activated CD4(+) T cells. Second, SAMHD1 degradation by viral protein X (Vpx), which elevates cellular dNTP concentrations, decreased HIV-1 template switching efficiency in macrophages to the levels comparable with CD4(+) T cells. Third, differentiated SAMHD1 shRNA THP-1 cells have a 2-fold increase in HIV-1 template switching efficiency. Fourth, SAMHD1 degradation by Vpx did not alter HIV-1 template switching efficiency in activated CD4(+) T cells. Finally, the HIV-1 V148I RT mutant that is defective in dNTP binding and has DNA synthesis delay promoted RT stand transfer when compared with wild type RT, particularly at low dNTP concentrations. Here, we report that SAMHD1 regulation of the dNTP concentrations influences HIV-1 template switching efficiency, particularly in macrophages.
Collapse
Affiliation(s)
- Laura A Nguyen
- From the Departments of Pathology and Laboratory Medicine and
| | | | | | | | | |
Collapse
|
210
|
Vorontsov II, Wu Y, DeLucia M, Minasov G, Mehrens J, Shuvalova L, Anderson WF, Ahn J. Mechanisms of allosteric activation and inhibition of the deoxyribonucleoside triphosphate triphosphohydrolase from Enterococcus faecalis. J Biol Chem 2013; 289:2815-24. [PMID: 24338016 DOI: 10.1074/jbc.m113.524207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EF1143 from Enterococcus faecalis, a life-threatening pathogen that is resistant to common antibiotics, is a homo-tetrameric deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase), converting dNTPs into the deoxyribonucleosides and triphosphate. The dNTPase activity of EF1143 is regulated by canonical dNTPs, which simultaneously act as substrates and activity modulators. Previous crystal structures of apo-EF1143 and the protein bound to both dGTP and dATP suggested allosteric regulation of its enzymatic activity by dGTP binding at four identical allosteric sites. However, whether and how other canonical dNTPs regulate the enzyme activity was not defined. Here, we present the crystal structure of EF1143 in complex with dGTP and dTTP. The new structure reveals that the tetrameric EF1143 contains four additional secondary allosteric sites adjacent to the previously identified dGTP-binding primary regulatory sites. Structural and enzyme kinetic studies indicate that dGTP binding to the first allosteric site, with nanomolar affinity, is a prerequisite for substrate docking and hydrolysis. Then, the presence of a particular dNTP in the second site either enhances or inhibits the dNTPase activity of EF1143. Our results provide the first mechanistic insight into dNTP-mediated regulation of dNTPase activity.
Collapse
Affiliation(s)
- Ivan I Vorontsov
- From the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | | | | | | | | | | | | | | |
Collapse
|
211
|
SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 2013; 123:1021-31. [PMID: 24335234 DOI: 10.1182/blood-2013-04-490847] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development.
Collapse
|
212
|
Shi Y, Lv G, Chu Z, Piao L, Liu X, Wang T, Jiang Y, Zhang P. Identification of natural splice variants of SAMHD1 in virus-infected HCC. Oncol Rep 2013; 31:687-92. [PMID: 24317272 DOI: 10.3892/or.2013.2895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/18/2013] [Indexed: 01/13/2023] Open
Abstract
It has been previously shown that the sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) can act as a retroviral restriction factor by inhibiting HIV‑1 infection, but whether it has any roles in cancer is still unclear. In the present study, we identified several SAMHD1 splice variants naturally occurring in liver cancer and investigated their roles in regulating drug susceptibility. SAMHD1 variants were identified by sequencing. RT-PCR and western blot analysis were performed to verify the expression level of the polymorphisms. Cell cycle analysis was carried out using flow cytometry, and data were analyzed using Multicycle software. Several deletions of SAMHD1 were identified in both the patients and the healthy controls with no significant difference in respective frequencies, while an insertion in the exon4 occurred at a higher frequency in HBV- and HCV-infected patients (36.4 and 30%, respectively) when compared to the control groups. Following cisplatin treatment and cell cycle analysis, SAMHD1 variants showed different activities in increasing the susceptibility to chemotherapy drugs. The insertion of exon4 correlated with the occurrence of virus infection in the HCC patients. In conclusion, analysis of the different activities of SAMHD1 splice variants in regulating drug sensitivity implied that the exon4 insertion might act as an indicator of the occurrence of liver cancer.
Collapse
Affiliation(s)
- Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhe Chu
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liling Piao
- Department of Endocrinology, The Fourth Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tuo Wang
- Hospital Management Section of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
213
|
Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J. SAMHD1 Host Restriction Factor: A Link with Innate Immune Sensing of Retrovirus Infection. J Mol Biol 2013; 425:4981-94. [DOI: 10.1016/j.jmb.2013.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023]
|
214
|
Strebel K. HIV accessory proteins versus host restriction factors. Curr Opin Virol 2013; 3:692-9. [PMID: 24246762 PMCID: PMC3855913 DOI: 10.1016/j.coviro.2013.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023]
Abstract
Primate immunodeficiency viruses, including HIV-1, are characterized by the presence of accessory genes such as vif, vpr, vpx, vpu, and nef. Current knowledge indicates that none of the primate lentiviral accessory proteins has enzymatic activity. Instead, these proteins interact with cellular ligands to either act as adapter molecules to redirect the normal function of host factors for virus-specific purposes or to inhibit a normal host function by mediating degradation or causing intracellular mislocalization/sequestration of the factors involved. This review aims at providing an update of our current understanding of how Vif, Vpu, and Vpx control the cellular restriction factors APOBEC3G, BST-2, and SAMHD1, respectively.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-0460, United States.
| |
Collapse
|
215
|
Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1. Retrovirology 2013; 10:131. [PMID: 24219908 PMCID: PMC3882887 DOI: 10.1186/1742-4690-10-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/10/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction. RESULTS Structural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109-626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection. CONCLUSIONS These results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection.
Collapse
|
216
|
Variation of two primate lineage-specific residues in human SAMHD1 confers resistance to N terminus-targeted SIV Vpx proteins. J Virol 2013; 88:583-91. [PMID: 24173216 DOI: 10.1128/jvi.02866-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection in myeloid cells but is inactivated by certain classes of simian immunodeficiency virus (SIV) Vpx proteins. Vpx proteins recruit the DCAF1-CRL4 E3 ubiquitin ligase to trigger species-specific SAMHD1 degradation. Determinants of SIV Vpx-mediated primate SAMHD1 degradation have been mapped to its C terminus. In this study, we have identified the N terminus of human SAMHD1 as a major species-specific determinant of Vpx-mediated suppression. The SIVmnd2 and SIVrcm Vpx proteins recognize the N terminus of rhesus, but not human, SAMHD1. We have also demonstrated that variation of two primate lineage-specific residues between human and rhesus SAMHD1 proteins determine resistance to SIVmnd2 and SIVrcm Vpx proteins. These residues (Cys15 and Ser52) are sequentially mutated to Phe in different lineages of Old World monkeys. Consequently, SIVmnd2 and SIVrcm Vpx proteins that could recognize Phe15- and Phe52-containing SAMHD1 could not inactivate human SAMHD1, which contains Cys15 and Ser52. In contrast, SIVmac Vpx, which targets the C terminus of SAMHD1 molecules, could inactivate various primate SAMHD1 molecules with divergent C-terminal sequences. Both C terminus-targeted SIVmac Vpx and N terminus-targeted SIVrcm Vpx require DCAF1 for the induction of SAMHD1 degradation. The ability of SIV Vpx to restrict SAMHD1 among different primate species is a manifestation of the SAMHD1 evolutionary pattern among those species.
Collapse
|
217
|
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol 2013; 4:343. [PMID: 24167505 PMCID: PMC3807056 DOI: 10.3389/fimmu.2013.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/06/2013] [Indexed: 12/17/2022] Open
Abstract
HIV and human defense mechanisms have co-evolved to counteract each other. In the process of infection, HIV takes advantage of cellular machinery and blocks the action of the host restriction factors (RF). A small subset of HIV+ individuals control HIV infection and progression to AIDS in the absence of treatment. These individuals known as long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that confer upon them an efficient resistance to infection and/or disease progression. The identification of some of these host factors led to the development of therapeutic approaches that attempted to mimic the natural control of HIV infection. Some of these approaches are currently being tested in clinical trials. While there are many genes which carry mutations and polymorphisms associated with non-progression, this review will be specifically focused on HIV host RF including both the main chemokine receptors and chemokines as well as intracellular RF including, APOBEC, TRIM, tetherin, and SAMHD1. The understanding of molecular profiles and mechanisms present in LTNPs should provide new insights to control HIV infection and contribute to the development of novel therapies against AIDS.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa , Lisboa , Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | | | | | | |
Collapse
|
218
|
Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 2013; 20:1304-9. [PMID: 24141705 PMCID: PMC3833828 DOI: 10.1038/nsmb.2692] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/10/2013] [Indexed: 01/21/2023]
Abstract
SAMHD1, a dNTP triphosphohydrolase (dNTPase), has a key role in human innate immunity. It inhibits infection of blood cells by retroviruses, including HIV, and prevents the development of the autoinflammatory Aicardi-Goutières syndrome (AGS). The inactive apo-SAMHD1 interconverts between monomers and dimers, and in the presence of dGTP the protein assembles into catalytically active tetramers. Here, we present the crystal structure of the human tetrameric SAMHD1-dGTP complex. The structure reveals an elegant allosteric mechanism of activation through dGTP-induced tetramerization of two inactive dimers. Binding of dGTP to four allosteric sites promotes tetramerization and induces a conformational change in the substrate-binding pocket to yield the catalytically active enzyme. Structure-based biochemical and cell-based biological assays confirmed the proposed mechanism. The SAMHD1 tetramer structure provides the basis for a mechanistic understanding of its function in HIV restriction and the pathogenesis of AGS.
Collapse
|
219
|
p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci U S A 2013; 110:E3997-4006. [PMID: 24082141 DOI: 10.1073/pnas.1306719110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macrophages are a major target cell for HIV-1, and their infection contributes to HIV pathogenesis. We have previously shown that the cyclin-dependent kinase inhibitor p21 inhibits the replication of HIV-1 and other primate lentiviruses in human monocyte-derived macrophages by impairing reverse transcription of the viral genome. In the attempt to understand the p21-mediated restriction mechanisms, we found that p21 impairs HIV-1 and simian immunodeficiency virus (SIV)mac reverse transcription in macrophages by reducing the intracellular deoxyribonucleotide (dNTP) pool to levels below those required for viral cDNA synthesis by a SAM domain and HD domain-containing protein 1 (SAMHD1)-independent pathway. We found that p21 blocks dNTP biosynthesis by down-regulating the expression of the RNR2 subunit of ribonucleotide reductase, an enzyme essential for the reduction of ribonucleotides to dNTP. p21 inhibits RNR2 transcription by repressing E2F1 transcription factor, its transcriptional activator. Our findings unravel a cellular pathway that restricts HIV-1 and other primate lentiviruses by affecting dNTP synthesis, thereby pointing to new potential cellular targets for anti-HIV therapeutic strategies.
Collapse
|
220
|
Nakagawa T, Mondal K, Swanson PC. VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases. BMC Mol Biol 2013; 14:22. [PMID: 24028781 PMCID: PMC3847654 DOI: 10.1186/1471-2199-14-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022] Open
Abstract
The terminal step in the ubiquitin modification system relies on an E3 ubiquitin ligase to facilitate transfer of ubiquitin to a protein substrate. The substrate recognition and ubiquitin transfer activities of the E3 ligase may be mediated by a single polypeptide or may rely on separate subunits. The latter organization is particularly prevalent among members of largest class of E3 ligases, the RING family, although examples of this type of arrangement have also been reported among members of the smaller HECT family of E3 ligases. This review describes recent discoveries that reveal the surprising and distinctive ability of VprBP (DCAF1) to serve as a substrate recognition subunit for a member of both major classes of E3 ligase, the RING-type CRL4 ligase and the HECT-type EDD/UBR5 ligase. The cellular processes normally regulated by VprBP-associated E3 ligases, and their targeting and subversion by viral accessory proteins are also discussed. Taken together, these studies provide important insights and raise interesting new questions regarding the mechanisms that regulate or subvert VprBP function in the context of both the CRL4 and EDD/UBR5 E3 ligases.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 900-8575, Japan.
| | | | | |
Collapse
|
221
|
Zhao K, Du J, Han X, Goodier JL, Li P, Zhou X, Wei W, Evans SL, Li L, Zhang W, Cheung LE, Wang G, Kazazian HH, Yu XF. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutières syndrome-related SAMHD1. Cell Rep 2013; 4:1108-15. [PMID: 24035396 PMCID: PMC3988314 DOI: 10.1016/j.celrep.2013.08.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/25/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
Long interspersed elements 1 (LINE-1) occupy at least 17% of the human genome and are its only active autonomous retrotransposons. However, the host factors that regulate LINE-1 retrotransposition are not fully understood. Here, we demonstrate that the Aicardi-Goutières syndrome gene product SAMHD1, recently revealed to be an inhibitor of HIV/simian immunodeficiency virus (SIV) infectivity and neutralized by the viral Vpx protein, is also a potent regulator of LINE-1 and LINE-1-mediated Alu/SVA retrotransposition. We also found that mutant SAMHD1s of Aicardi-Goutières syndrome patients are defective in LINE-1 inhibition. Several domains of SAMHD1 are critical for LINE-1 regulation. SAMHD1 inhibits LINE-1 retrotransposition in dividing cells. An enzymatic active site mutant SAMHD1 maintained substantial anti-LINE-1 activity. SAMHD1 inhibits ORF2p-mediated LINE-1 reverse transcription in isolated LINE-1 ribonucleoproteins by reducing ORF2p level. Thus, SAMHD1 may be a cellular regulator of LINE-1 activity that is conserved in mammals.
Collapse
Affiliation(s)
- Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, 519 E. Minzhu Avenue, Changchun, Jilin Province 130061, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA, Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C. SAMHD1-dependent retroviral control and escape in mice. EMBO J 2013; 32:2454-62. [PMID: 23872947 PMCID: PMC3770946 DOI: 10.1038/emboj.2013.163] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/01/2013] [Indexed: 12/12/2022] Open
Abstract
SAMHD1 is a host restriction factor for human immunodeficiency virus 1 (HIV-1) in cultured human cells. SAMHD1 mutations cause autoimmune Aicardi-Goutières syndrome and are found in cancers including chronic lymphocytic leukaemia. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of deoxynucleoside triphosphates, thereby preventing reverse transcription of retroviral genomes. However, in vivo evidence for SAMHD1's antiviral activity has been lacking. We generated Samhd1 null mice that do not develop autoimmune disease despite displaying a type I interferon signature in spleen, macrophages and fibroblasts. Samhd1(-/-) cells have elevated deoxynucleoside triphosphate (dNTP) levels but, surprisingly, SAMHD1 deficiency did not lead to increased infection with VSV-G-pseudotyped HIV-1 vectors. The lack of restriction is likely attributable to the fact that dNTP concentrations in SAMHD1-sufficient mouse cells are higher than the KM of HIV-1 reverse transcriptase (RT). Consistent with this notion, an HIV-1 vector mutant bearing an RT with lower affinity for dNTPs was sensitive to SAMHD1-dependent restriction in cultured cells and in mice. This shows that SAMHD1 can restrict lentiviruses in vivo and that nucleotide starvation is an evolutionarily conserved antiviral mechanism.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, UK
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rachel Rigby
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bruce Hayward
- Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, UK
| | - Rachel A Liberatore
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - Luis F Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - David T Bonthron
- Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|
223
|
Behrendt R, Schumann T, Gerbaulet A, Nguyen LA, Schubert N, Alexopoulou D, Berka U, Lienenklaus S, Peschke K, Gibbert K, Wittmann S, Lindemann D, Weiss S, Dahl A, Naumann R, Dittmer U, Kim B, Mueller W, Gramberg T, Roers A. Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Rep 2013; 4:689-96. [PMID: 23972988 PMCID: PMC4807655 DOI: 10.1016/j.celrep.2013.07.037] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 12/01/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS), a hereditary autoimmune disease, clinically and biochemically overlaps with systemic lupus erythematosus (SLE) and, like SLE, is characterized by spontaneous type I interferon (IFN) production. The finding that defects of intracellular nucleases cause AGS led to the concept that intracellular accumulation of nucleic acids triggers inappropriate production of type I IFN and autoimmunity. AGS can also be caused by defects of SAMHD1, a 3' exonuclease and deoxynucleotide (dNTP) triphosphohydrolase. Human SAMHD1 is an HIV-1 restriction factor that hydrolyzes dNTPs and decreases their concentration below the levels required for retroviral reverse transcription. We show in gene-targeted mice that also mouse SAMHD1 reduces cellular dNTP concentrations and restricts retroviral replication in lymphocytes, macrophages, and dendritic cells. Importantly, the absence of SAMHD1 triggered IFN-β-dependent transcriptional upregulation of type I IFN-inducible genes in various cell types indicative of spontaneous IFN production. SAMHD1-deficient mice may be instrumental for elucidating the mechanisms that trigger pathogenic type I IFN responses in AGS and SLE.
Collapse
|
224
|
Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 2013; 87:11516-24. [PMID: 23966382 DOI: 10.1128/jvi.01642-13] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SAMHD1 is a host protein responsible, at least in part, for the inefficient infection of dendritic, myeloid, and resting T cells by HIV-1. Interestingly, HIV-2 and SIVsm viruses are able to counteract SAMHD1 by targeting it for proteasomal degradation using their Vpx proteins. It has been proposed that SAMHD1 is a dGTP-dependent deoxynucleoside triphosphohydrolase (dNTPase) that restricts HIV-1 by reducing cellular dNTP levels to below that required for reverse transcription. However, nothing is known about SAMHD1 posttranslational modifications and their potential role in regulating SAMHD1 function. We used (32)P labeling and immunoblotting with phospho-specific antibodies to identify SAMHD1 as a phosphoprotein. Several amino acids in SAMHD1 were identified to be sites of phosphorylation using direct mass spectrometry. Mutation of these residues to alanine to prevent phosphorylation or to glutamic acid to mimic phosphorylation had no effect on the nuclear localization of SAMHD1 or its sensitivity to Vpx-mediated degradation. Furthermore, neither alanine nor glutamic acid substitutions had a significant effect on SAMHD1 dNTPase activity in an in vitro assay. Interestingly, however, we found that a T592E mutation, mimicking constitutive phosphorylation at a main phosphorylation site, severely affected the ability of SAMHD1 to restrict HIV-1 in a U937 cell-based restriction assay. In contrast, a T592A mutant was still capable of restricting HIV-1. These results indicate that SAMHD1 phosphorylation may be a negative regulator of SAMHD1 restriction activity. This conclusion is supported by our finding that SAMHD1 is hyperphosphorylated in monocytoid THP-1 cells under nonrestrictive conditions.
Collapse
|
225
|
Amie SM, Bambara RA, Kim B. GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 2013; 288:25001-25006. [PMID: 23880768 DOI: 10.1074/jbc.c113.493619] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SAMHD1 (SAM domain- and HD domain-containing protein 1) is a dGTP-dependent dNTP triphosphohydrolase that converts dNTPs into deoxyribonucleosides and triphosphates. Therefore, SAMHD1 expression, particularly in non-dividing cells, can restrict retroviral infections such as HIV and simian immunodeficiency virus by limiting cellular dNTPs, which are essential for reverse transcription. It has previously been established that dGTP acts as both an activator and a substrate of this enzyme, suggesting that phosphohydrolase activity of SAMHD1 is regulated by dGTP availability in the cell. However, we now demonstrate biochemically that the NTP GTP is equally capable of activating SAMHD1, but GTP is not hydrolyzed by the enzyme. Activation of SAMHD1 phosphohydrolase activity was tested under physiological concentrations of dGTP or GTP found in either dividing or non-dividing cells. Because GTP is 1000-fold more abundant than dGTP in cells, GTP was able to activate the enzyme to a greater extent than dGTP, suggesting that GTP is the primary activator of SAMHD1. Finally, we show that SAMHD1 has the ability to hydrolyze base-modified nucleotides, indicating that the active site of SAMHD1 is not restrictive to such modifications, and is capable of regulating the levels of non-canonical dNTPs such as dUTP. This study provides further insights into the regulation of SAMHD1 with regard to allosteric activation and active site specificity.
Collapse
Affiliation(s)
- Sarah M Amie
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Robert A Bambara
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Baek Kim
- the Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
226
|
Evolutionary toggling of Vpx/Vpr specificity results in divergent recognition of the restriction factor SAMHD1. PLoS Pathog 2013; 9:e1003496. [PMID: 23874202 PMCID: PMC3715410 DOI: 10.1371/journal.ppat.1003496] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. At least 40 primate species in the wild are infected with their own lentivirus. Many of these infections arose from cross-species transmission followed by adaptation to a new host. Host antiviral proteins, called restriction factors, work to defend against both known and novel viruses and are thus engaged in a constant arms race with viral proteins. SAMHD1 is a restriction factor that blocks lentiviral infection of certain immune cells. However, SAMHD1 is counteracted by the lentiviral proteins Vpx and Vpr. Here we show that both Vpx and Vpr have evolved to recognize distinct interfaces of SAMHD1, consistent with the idea that SAMHD1 is rapidly evolving to evade this recognition. Furthermore, we show that while the site of this antagonism has been changing back and forth throughout lentiviral evolution, the mechanism by which Vpx and Vpr antagonize SAMHD1 has remained constant. These data illustrate a novel phenomenon in which there is an evolutionary toggling of divergent recognition between a restriction factor and its viral antagonist.
Collapse
|
227
|
Abstract
Replication of HIV-1 and other retroviruses is dependent on numerous host proteins in the cells. Some of the host proteins, however, function as restriction factors to block retroviral infection of target cells. The host protein SAMHD1 has been identified as the first mammalian deoxynucleoside triphosphate triphosphohydrolase (dNTPase), which blocks the infection of HIV-1 and other retroviruses in non-cycling immune cells. SAMHD1 protein is highly expressed in human myeloid-lineage cells and CD4+ T-lymphocytes, but its retroviral restriction function is only observed in noncycling cells. Recent studies have revealed biochemical mechanisms of SAMHD1-mediated retroviral restriction. In this review, the latest progress on SAMHD1 research is summarized and the mechanisms by which SAMHD1 mediates retroviral restriction are analyzed. Although the physiological function of SAMHD1 is largely unknown, this review provides perspectives about the role of endogenous SAMHD1 protein in maintaining normal cellular function, such as nucleic acid metabolism and the proliferation of cells.
Collapse
|
228
|
The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:14272-7. [PMID: 23858451 DOI: 10.1073/pnas.1312033110] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a triphosphohydrolase converting deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The enzyme was recently identified as a component of the human innate immune system that restricts HIV-1 infection by removing dNTPs required for viral DNA synthesis. SAMHD1 has deep evolutionary roots and is ubiquitous in human organs. Here we identify a general function of SAMHD1 in the regulation of dNTP pools in cultured human cells. The protein was nuclear and variably expressed during the cell cycle, maximally during quiescence and minimally during S-phase. Treatment of lung or skin fibroblasts with specific siRNAs resulted in the disappearence of SAMHD1 accompanied by loss of the cell-cycle regulation of dNTP pool sizes and dNTP imbalance. Cells accumulated in G1 phase with oversized pools and stopped growing. Following removal of the siRNA, the pools were normalized and cell growth restarted, but only after SAMHD1 had reappeared. In quiescent cultures SAMHD1 down-regulation leads to a marked expansion of dNTP pools. In all cases the largest effect was on dGTP, the preferred substrate of SAMHD1. Ribonucleotide reductase, responsible for the de novo synthesis of dNTPs, is a cytosolic enzyme maximally induced in S-phase cells. Thus, in mammalian cells the cell cycle regulation of the two main enzymes controlling dNTP pool sizes is adjusted to the requirements of DNA replication. Synthesis by the reductase peaks during S-phase, and catabolism by SAMHD1 is maximal during G1 phase when large dNTP pools would prevent cells from preparing for a new round of DNA replication.
Collapse
|
229
|
Guo H, Wei W, Wei Z, Liu X, Evans SL, Yang W, Wang H, Guo Y, Zhao K, Zhou JY, Yu XF. Identification of critical regions in human SAMHD1 required for nuclear localization and Vpx-mediated degradation. PLoS One 2013; 8:e66201. [PMID: 23874389 PMCID: PMC3708934 DOI: 10.1371/journal.pone.0066201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/02/2013] [Indexed: 01/19/2023] Open
Abstract
The sterile alpha motif (SAM) and HD domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-β1 and other nuclear proteins. We also determined that the linker region between the SAM and HD domain and the HD domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-mediated degradation of SAMHD1. Since the linker region and HD domain may be involved in SAMHD1 multimerization, our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Zhenhong Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xianjun Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Sean L. Evans
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hong Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Guo
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian-Ying Zhou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
230
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
231
|
Abstract
Dendritic cells (DCs) are a diverse subset of innate immune cells that are key regulators of the host response to human immunodeficiency virus-1 (HIV-1) infection. HIV-1 directly and indirectly modulates DC function to hinder the formation of effective antiviral immunity and fuel immune activation. This review focuses upon the differential dysregulation of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) at various stages of HIV-1 infection providing insights into pathogenesis. HIV-1 evades innate immune sensing by mDCs resulting in suboptimal maturation, lending to poor generation of antiviral adaptive responses and contributing to T-regulatory cell (Treg) development. Dependent upon the stage of HIV-1 infection, mDC function is altered in response to Toll-like receptor ligands, which further hinders adaptive immunity and limits feasibility of therapeutic vaccine strategies. pDC interactions with HIV-1 are pleotropic, modulating immune responses on an axis between immunostimulatory and immunosuppressive. pDCs promote immune activation through an altered phenotype of persistent type I interferon secretion and weak antigen presentation capacity. Conversely, HIV-1 stimulates secretion of indolemine 2,3 dioxygenase (IDO) by pDCs resulting in Treg induction. An improved understanding of the roles and underlying mechanisms of DC dysfunction will be valuable to the development of therapeutics to enhance HIV-specific adaptive responses and to dampen immune activation.
Collapse
Affiliation(s)
- Elizabeth Miller
- Division of Infectious Diseases, New York University School of Medicine, New York, NY, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, NY, USA
- Division of Hematology and Oncology, Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
232
|
Hollenbaugh JA, Gee P, Baker J, Daly MB, Amie SM, Tate J, Kasai N, Kanemura Y, Kim DH, Ward BM, Koyanagi Y, Kim B. Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog 2013; 9:e1003481. [PMID: 23825958 PMCID: PMC3694861 DOI: 10.1371/journal.ppat.1003481] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 is a newly identified anti-HIV host factor that has a dNTP triphosphohydrolase activity and depletes intracellular dNTP pools in non-dividing myeloid cells. Since DNA viruses utilize cellular dNTPs, we investigated whether SAMHD1 limits the replication of DNA viruses in non-dividing myeloid target cells. Indeed, two double stranded DNA viruses, vaccinia and herpes simplex virus type 1, are subject to SAMHD1 restriction in non-dividing target cells in a dNTP dependent manner. Using a thymidine kinase deficient strain of vaccinia virus, we demonstrate a greater restriction of viral replication in non-dividing cells expressing SAMHD1. Therefore, this study suggests that SAMHD1 is a potential innate anti-viral player that suppresses the replication of a wide range of DNA viruses, as well as retroviruses, which infect non-dividing myeloid cells. Various viral pathogens such as HIV-1, herpes simplex virus (HSV) and vaccinia virus infect terminally-differentiated/non-dividing macrophages during the course of viral pathogenesis. Unlike dividing cells, non-dividing cells lack chromosomal DNA replication, do not enter the cell cycle, and harbor very low levels of cellular dNTPs, which are substrates of viral DNA polymerases. A series of recent studies revealed that the host protein SAMHD1 is dNTP triphosphohydrolase, which contributes to the poor dNTP abundance in non-dividing myeloid cells, and restricts proviral DNA synthesis of HIV-1 and other lentiviruses in macrophages, dendritic cells, and resting T cells. In this report, we demonstrate that SAMHD1 also controls the replication of large dsDNA viruses: vaccinia virus and HSV-1, in primary human monocyte-derived macrophages. SAMHD1 suppresses the replication of these DNA viruses to an even greater extent in the absence of viral genes that are involved in dNTP metabolism such as thymidine kinase. Therefore, this study supports that dsDNA viruses evolved to express enzymes necessary to increase the levels of dNTPs as a mechanism to overcome the restriction induced by SAMHD1 in myeloid cells.
Collapse
Affiliation(s)
- Joseph A. Hollenbaugh
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Peter Gee
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Jonathon Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Michele B. Daly
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Sarah M. Amie
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Jessica Tate
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Natsumi Kasai
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yuka Kanemura
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (BW); (YK); (BK)
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (BW); (YK); (BK)
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
- * E-mail: (BW); (YK); (BK)
| |
Collapse
|
233
|
Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B. Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 2013; 288:20683-91. [PMID: 23744077 DOI: 10.1074/jbc.m113.472159] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newly identified anti-HIV host factor, SAMHD1, restricts replication of lentiviruses such as HIV-1, HIV-2, and simian immunodeficiency virus in macrophages by enzymatically hydrolyzing and depleting cellular dNTPs, which are the substrates of viral DNA polymerases. HIV-2 and some simian immunodeficiency viruses express viral protein X (VPX), which counteracts SAMHD1 and elevates cellular dNTPs, enhancing viral replication in macrophages. Because nucleoside reverse transcriptase inhibitors (NRTIs), the most commonly used anti-HIV drugs, compete against cellular dNTPs for incorporation into proviral DNA, we tested whether SAMHD1 directly affects the efficacy of NRTIs in inhibiting HIV-1. We found that reduction of SAMHD1 levels with the use of virus-like particles expressing Vpx- and SAMHD1-specific shRNA subsequently elevates cellular dNTPs and significantly decreases HIV-1 sensitivity to various NRTIs in macrophages. However, virus-like particles +Vpx treatment of activated CD4(+) T cells only minimally reduced NRTI efficacy. Furthermore, with the use of HPLC, we could not detect SAMHD1-mediated hydrolysis of NRTI-triphosphates, verifying that the reduced sensitivity of HIV-1 to NRTIs upon SAMHD1 degradation is most likely caused by the elevation in cellular dNTPs.
Collapse
Affiliation(s)
- Sarah M Amie
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
234
|
Aringer M, Günther C, Lee-Kirsch MA. Innate immune processes in lupus erythematosus. Clin Immunol 2013; 147:216-22. [DOI: 10.1016/j.clim.2012.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/30/2022]
|
235
|
DeLucia M, Mehrens J, Wu Y, Ahn J. HIV-2 and SIVmac accessory virulence factor Vpx down-regulates SAMHD1 enzyme catalysis prior to proteasome-dependent degradation. J Biol Chem 2013; 288:19116-26. [PMID: 23677995 DOI: 10.1074/jbc.m113.469007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SAMHD1, a dGTP-regulated deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase, down-regulates dNTP pools in terminally differentiated and quiescent cells, thereby inhibiting HIV-1 infection at the reverse transcription step. HIV-2 and simian immunodeficiency virus (SIV) counteract this restriction via a virion-associated virulence accessory factor, Vpx (Vpr in some SIVs), which loads SAMHD1 onto CRL4-DCAF1 E3 ubiquitin ligase for polyubiquitination, programming it for proteasome-dependent degradation. However, the detailed molecular mechanisms of SAMHD1 recruitment to the E3 ligase have not been defined. Further, whether divergent, orthologous Vpx proteins, encoded by distinct HIV/SIV strains, bind SAMHD1 in a similar manner, at a molecular level, is not known. We applied surface plasmon resonance analysis to assess the requirements for and kinetics of binding between various primate SAMHD1 proteins and Vpx proteins from SIV or HIV-2 strains. Our data indicate that Vpx proteins, bound to DCAF1, interface with the C terminus of primate SAMHD1 proteins with nanomolar affinity, manifested by rapid association and slow dissociation. Further, we provide evidence that Vpx binding to SAMHD1 inhibits its catalytic activity and induces disassembly of a dGTP-dependent oligomer. Our studies reveal a previously unrecognized biochemical mechanism of Vpx-mediated SAMHD1 inhibition: direct down-modulation of its catalytic activity, mediated by the same binding event that leads to SAMHD1 recruitment to the E3 ubiquitin ligase for proteasome-dependent degradation.
Collapse
Affiliation(s)
- Maria DeLucia
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
236
|
Rice GI, Reijns MAM, Coffin SR, Forte GMA, Anderson BH, Szynkiewicz M, Gornall H, Gent D, Leitch A, Botella MP, Fazzi E, Gener B, Lagae L, Olivieri I, Orcesi S, Swoboda KJ, Perrino FW, Jackson AP, Crow YJ. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome. Hum Mutat 2013; 34:1066-70. [PMID: 23592335 DOI: 10.1002/humu.22336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
Abstract
Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.
Collapse
Affiliation(s)
- Gillian I Rice
- Genetic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Cribier A, Descours B, Valadão ALC, Laguette N, Benkirane M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 2013; 3:1036-43. [PMID: 23602554 DOI: 10.1016/j.celrep.2013.03.017] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022] Open
Abstract
SAMHD1 restricts HIV-1 replication in myeloid and quiescent CD4(+) T cells. Here, we show that SAMHD1 restriction activity is regulated by phosphorylation. SAMHD1 interacts with cyclin A2/cdk1 only in cycling cells. Cyclin A2/CDK1 phosphorylates SAMHD1 at the Threonine 592 residue both in vitro and in vivo. Phosphorylation of SAMHD1 Thr592 correlates with loss of its ability to restrict HIV-1. Indeed, while PMA treatment of proliferating THP1 cells results in reduced Thr592 phosphorylation, activation of resting peripheral blood mononuclear cells (PBMCs) and purified quiescent CD4(+) T cells results in increased phosphorylation of SAMHD1 Thr592. Interestingly, we found that treatment of cells by type 1 interferon reduced Thr592 phosphorylation, reinforcing the link between the phosphorylation of SAMHD1 and its antiviral activity. Unlike wild-type SAMHD1, a phosphorylation-defective mutant was able to restrict HIV-1 replication in both PMA-treated and untreated cells. Our results uncover the phosphorylation of SAMHD1 at Thr592 by cyclin A2/CDK1 as a key regulatory mechanism of its antiviral activity.
Collapse
Affiliation(s)
- Alexandra Cribier
- Institut de Génétique Humaine, CNRS UPR1142, Laboratoires de Virologie Moléculaire, Montpellier 34000, France.
| | | | | | | | | |
Collapse
|
238
|
Zack JA, Kim SG, Vatakis DN. HIV restriction in quiescent CD4⁺ T cells. Retrovirology 2013; 10:37. [PMID: 23557201 PMCID: PMC3626626 DOI: 10.1186/1742-4690-10-37] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/01/2013] [Indexed: 12/23/2022] Open
Abstract
The restriction of the Human Immunodeficiency Virus (HIV) infection in quiescent CD4+ T cells has been an area of active investigation. Early studies have suggested that this T cell subset is refractory to infection by the virus. Subsequently it was demonstrated that quiescent cells could be infected at low levels; nevertheless these observations supported the earlier assertions of debilitating defects in the viral life cycle. This phenomenon raised hopes that identification of the block in quiescent cells could lead to the development of new therapies against HIV. As limiting levels of raw cellular factors such as nucleotides did not account for the block to infection, a number of groups pursued the identification of cellular proteins whose presence or absence may impact the permissiveness of quiescent T cells to HIV infection. A series of studies in the past few years have identified a number of host factors implicated in the block to infection. In this review, we will present the progress made, other avenues of investigation and the potential impact these studies have in the development of more effective therapies against HIV.
Collapse
Affiliation(s)
- Jerome A Zack
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
239
|
Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, König R, Fackler OT, Keppler OT. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2013; 18:1682-7. [PMID: 22972397 DOI: 10.1038/nm.2964] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022]
Abstract
Unlike activated CD4(+) T cells, resting CD4(+) T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4(+) T cells. SAMHD1 is abundantly expressed in resting CD4(+) T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4(+) T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4(+) T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4(+) T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.
Collapse
Affiliation(s)
- Hanna-Mari Baldauf
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
HIV-1-specific antibodies and CD8(+) cytotoxic T cells are detected in most HIV-1-infected people, yet HIV-1 infection is not eradicated. Contributing to the failure to mount a sterilizing immune response may be the inability of antigen-presenting dendritic cells (DCs) to sense HIV-1 during acute infection, and thus the inability to effectively prime naive, HIV-1-specific T cells. Recent findings related to DC-expressed innate immune factors including SAMHD1, TREX1, and TRIM5 provide a molecular basis for understanding why DCs fail to adequately sense invasion by this deadly pathogen and suggest experimental approaches to improve T cell priming to HIV-1 in prophylactic vaccination protocols.
Collapse
Affiliation(s)
- Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
241
|
Dragin L, Nguyen LA, Lahouassa H, Sourisce A, Kim B, Ramirez BC, Margottin-Goguet F. Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply. Retrovirology 2013; 10:30. [PMID: 23497353 PMCID: PMC3599726 DOI: 10.1186/1742-4690-10-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
Background Interferon-α (IFN-α) is an essential mediator of the antiviral response, which potently inhibits both early and late phases of HIV replication. The SAMHD1 deoxynucleoside triphosphate (dNTP) hydrolase represents the prototype of a new antiviral strategy we referred to as “nucleotide depletion”. SAMHD1 depletes dNTP levels in myeloid cells below those required for optimal synthesis of HIV viral DNA. HIV-2 and its SIVsm and SIVmac close relatives encode a protein termed Vpx, which counteracts SAMHD1. The potentiality of IFN-α to cooperate with nucleotide depletion has been poorly investigated so far. Here we wondered whether IFN-α affects SAMHD1 expression, Vpx-induced SAMHD1 degradation, Vpx-mediated rescue of HIV-1 transduction and the dNTP supply in monocyte-derived macrophages (MDMs). Results IFN-α inhibited HIV-1 transduction in monocytes and in MDMs while SAMHD1 expression was not up-regulated. Vpx triggered SAMHD1 degradation in IFN-α treated cells, and weakly restored HIV-1 transduction from the IFN-α block. Vpx helper effect towards HIV-1 transduction was gradually inhibited with increasing doses of IFN-α. dNTP levels were not significantly affected in MDMs and CD4+ primary activated T lymphocytes by IFN-α and, in correlation with SAMHD1 degradation, restoration of dNTP levels by Vpx was efficient in MDMs treated with the cytokine. In contrast, IFN-α inhibited Vpx-mediated SAMHD1 degradation in THP-1 cells, where, accordingly, Vpx could not rescue HIV-1 transduction. Conclusion Our results suggest that the early antiviral effect of IFN-α results from a mechanism independent of nucleotide depletion in MDMs. In addition, they indicate that the macrophage-like THP-1 cell line may provide a system to characterize an IFN-α-induced cell response that inhibits Vpx-mediated SAMHD1 degradation.
Collapse
Affiliation(s)
- Loic Dragin
- Inserm, U1016, Institut Cochin, 22 rue Méchain, Paris, 75014, France
| | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Background SAMHD1 is a triphosphohydrolase that restricts the replication of HIV-1 and SIV in myeloid cells. In macrophages and dendritic cells, SAMHD1 restricts virus replication by diminishing the deoxynucleotide triphosphate pool to a level below that which supports lentiviral reverse transcription. HIV-2 and related SIVs encode the accessory protein Vpx to induce the proteasomal degradation of SAMHD1 following virus entry. While SAMHD1 has been shown to restrict HIV-1 and SIV, the breadth of its restriction is not known and whether other viruses have a means to counteract the restriction has not been determined. Results We show that SAMHD1 restricts a wide array of divergent retroviruses, including the alpha, beta and gamma classes. Murine leukemia virus was restricted by SAMHD1 in macrophages yet removal of SAMHD1 did not alleviate the block to infection because of an additional block to viral nuclear import. Prototype foamy virus (PFV) and Human T cell leukemia virus type I (HTLV-1) were the only retroviruses tested that were not restricted by SAMHD1. PFV reverse transcribes predominantly prior to entry and thus is unaffected by the dNTP level in the target cell. It is possible that HTLV-1 has a mechanism to render the virus resistant to SAMHD1-mediated restriction. Conclusion The results suggest that SAMHD1 has broad anti-retroviral activity against which most viruses have not found an escape.
Collapse
|
243
|
Yu H, Usmani SM, Borch A, Krämer J, Stürzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, Gruters RA, Kirchhoff F. The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 2013; 10:27. [PMID: 23497283 PMCID: PMC3599662 DOI: 10.1186/1742-4690-10-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hangxing Yu
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronski J. Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 2013; 288:10406-17. [PMID: 23426366 PMCID: PMC3624423 DOI: 10.1074/jbc.m112.443796] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
SAMHD1 is a dGTP-activated dNTPase that has been implicated as a modulator of the innate immune response. In monocytes and their differentiated derivatives, as well as in quiescent cells, SAMHD1 strongly inhibits HIV-1 infection and, to a lesser extent, HIV-2 and simian immunodeficiency virus (SIV) because of their virion-associated virulence factor Vpx, which directs SAMHD1 for proteasomal degradation. Here, we used a combination of biochemical and virologic approaches to gain insights into the functional organization of human SAMHD1. We found that the catalytically active recombinant dNTPase is a dGTP-induced tetramer. Chemical cross-linking studies revealed SAMHD1 tetramers in human monocytic cells, in which it strongly restricts HIV-1 infection. The propensity of SAMHD1 to maintain the tetrameric state in vitro is regulated by its C terminus, located outside of the catalytic domain. Accordingly, we show that the C terminus is required for the full ability of SAMHD1 to deplete dNTP pools and to inhibit HIV-1 infection in U937 monocytes. Interestingly, the human SAMHD1 C terminus contains a docking site for HIV-2/SIVmac Vpx and is known to have evolved under positive selection. This evidence indicates that Vpx targets a functionally important element in SAMHD1. Together, our findings imply that SAMHD1 tetramers are the biologically active form of this dNTPase and provide new insights into the functional organization of SAMHD1.
Collapse
Affiliation(s)
- Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
de Silva S, Hoy H, Hake TS, Wong HK, Porcu P, Wu L. Promoter methylation regulates SAMHD1 gene expression in human CD4+ T cells. J Biol Chem 2013; 288:9284-92. [PMID: 23426363 DOI: 10.1074/jbc.m112.447201] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The retrovirus restriction factor SAMHD1 is the first identified mammalian dNTP triphosphohydrolase that is highly expressed in human myeloid lineage cells and CD4(+) T lymphocytes. Although SAMHD1 expression is variable in human cell lines and tissue types, mechanisms underlying SAMHD1 gene regulation have not been defined. Recent studies showed that SAMHD1 is highly expressed in human primary CD4(+) T lymphocytes, but not in some CD4(+) T cell lines. Here, we report that SAMHD1 expression varies among four CD4(+) T cell lines and is transcriptionally regulated. Cloning and sequence analysis of the human SAMHD1 promoter revealed a CpG island that is methylated in CD4(+) T cell lines (such as Jurkat and Sup-T1), resulting in transcriptional repression of SAMHD1. We also found that the SAMHD1 promoter is unmethylated in primary CD4(+) T lymphocytes, which express high levels of SAMHD1, indicating a direct correlation between the methylation of the SAMHD1 promoter and transcriptional repression. SAMHD1 expression was induced in CD4(+) T cell lines by blocking DNA methyltransferase activity, suggesting that promoter methylation is one of the key epigenetic mechanisms by which SAMHD1 expression is regulated.
Collapse
Affiliation(s)
- Suresh de Silva
- Center for Retrovirus Research, Department of Veterinary Biosciences, The OhioState University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
246
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
247
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
248
|
Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berl) 2013; 91:759-70. [PMID: 23371319 DOI: 10.1007/s00109-013-0995-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/03/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.
Collapse
|
249
|
Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 2013; 288:8101-8110. [PMID: 23364794 DOI: 10.1074/jbc.m112.431148] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3'→5' exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3'-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.
Collapse
Affiliation(s)
- Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Bioscience Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
250
|
Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, Aronica E, Hol EM, Kuijpers TW. Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome. Brain 2013; 136:245-58. [DOI: 10.1093/brain/aws321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|