201
|
The Innate Immune Sensor NLRC3 Acts as a Rheostat that Fine-Tunes T Cell Responses in Infection and Autoimmunity. Immunity 2019; 49:1049-1061.e6. [PMID: 30566882 DOI: 10.1016/j.immuni.2018.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/12/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.
Collapse
|
202
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
203
|
Miettinen TP, Kang JH, Yang LF, Manalis SR. Mammalian cell growth dynamics in mitosis. eLife 2019; 8:44700. [PMID: 31063131 PMCID: PMC6534395 DOI: 10.7554/elife.44700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The extent and dynamics of animal cell biomass accumulation during mitosis are unknown, primarily because growth has not been quantified with sufficient precision and temporal resolution. Using the suspended microchannel resonator and protein synthesis assays, we quantify mass accumulation and translation rates between mitotic stages on a single-cell level. For various animal cell types, growth rates in prophase are commensurate with or higher than interphase growth rates. Growth is only stopped as cells approach metaphase-to-anaphase transition and growth resumes in late cytokinesis. Mitotic arrests stop growth independently of arresting mechanism. For mouse lymphoblast cells, growth in prophase is promoted by CDK1 through increased phosphorylation of 4E-BP1 and cap-dependent protein synthesis. Inhibition of CDK1-driven mitotic translation reduces daughter cell growth. Overall, our measurements counter the traditional dogma that growth during mitosis is negligible and provide insight into antimitotic cancer chemotherapies.
Collapse
Affiliation(s)
- Teemu P Miettinen
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Lucy F Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
204
|
Follo C, Vidoni C, Morani F, Ferraresi A, Seca C, Isidoro C. Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR. Cell Commun Signal 2019; 17:39. [PMID: 31046771 PMCID: PMC6498594 DOI: 10.1186/s12964-019-0354-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the event of amino acid starvation, the cell activates two main protective pathways: Amino Acid starvation Response (AAR), to inhibit global translation, and autophagy, to recover the essential substrates from degradation of redundant self-components. Whether and how AAR and autophagy (ATG) are cross-regulated and at which point the two regulatory pathways intersect remain unknown. Here, we provide experimental evidence that the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) specifically located at the lysosome level links the AAR with the autophagy pathway. Methods As an inducer of the AAR, we used halofuginone (HF), an alkaloid that binds to the prolyl-tRNA synthetase thus mimicking the unavailability of proline (PRO). Induction of AAR was determined assessing the phosphorylation of the eukaryotic translation initiation factor (eIF) 2α. Autophagy was monitored by assessing the processing and accumulation of microtubule-associated protein 1 light chain 3 isoform B (LC3B) and sequestosome-1 (p62/SQSTM1) levels. The activity of mTORC1 was monitored through assessment of the phosphorylation of mTOR, (rp)S6 and 4E-BP1. Global protein synthesis was determined by puromycin incorporation assay. mTORC1 presence on the membrane of the lysosomes was monitored by cell fractionation and mTOR expression was determined by immunoblotting. Results In three different types of human cancer cells (thyroid cancer WRO cells, ovarian cancer OAW-42 cells, and breast cancer MCF-7 cells), HF induced both the AAR and the autophagy pathways time-dependently. In WRO cells, which showed the strongest induction of autophagy and of AAR, global protein synthesis was little if any affected. Consistently, 4E-BP1 and (rp)S6 were phosphorylated. Concomitantly, mTOR expression and activation declined along with its detachment from the lysosomes and its degradation by the proteasome, and with the nuclear translocation of transcription factor EB (TFEB), a transcription factor of many ATG genes. The extra supplementation of proline rescued all these effects. Conclusions We demonstrate that the AAR and autophagy are mechanistically linked at the level of mTORC1, and that the lysosome is the central hub of the cross-talk between these two metabolic stress responses. ![]()
Collapse
Affiliation(s)
- Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Present address: Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy. .,Dipartimento di Scienze della Salute, Università "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
205
|
Ruan XH, Liu XM, Yang ZX, Zhang SP, Li QZ, Lin CS. INPP4B promotes colorectal cancer cell proliferation by activating mTORC1 signaling and cap-dependent translation. Onco Targets Ther 2019; 12:3109-3117. [PMID: 31114251 PMCID: PMC6485035 DOI: 10.2147/ott.s186365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and objective Inositol polyphosphate 4-phosphatase type II (INPP4B) is over-expressed in CRC tissues, and emerges as an oncogene. However, the mechanism by which INPP4B regulates CRC cell proliferation remains largely unclear. In this study, we aimed to investigate the regulatory mechanisms of INPP4B in CRC. Materials and methods The expression levels of mRNA were detected by qRT-PCR. The expression levels of protein were determined by Western blot. Cell Counting Kit-8 (CCK-8) assays and BrdU incorporation assays were performed to evaluate cell proliferation abilities. Bicistronic luciferase assays and the m7GTP pull down assay were performed to measure the cap-dependent translation in cells. Results INPP4B promotes CRC cell proliferation by increasing mTORC1 activity. Furthermore, it was shown that the activation of mTORC1 signaling by INPP4B led to increased cap-dependent translation, which is essential for INPP4B-mediated CRC cell proliferation. Finally, it was demonstrated that increased AKT and serum and glucocorticoid-inducible kinase 1 activity contributed to the activation of cap-dependent translation induced by INPP4B. Conclusion Collectively, the present study reveals INPP4B promotes colorectal cancer cell proliferation by activating mTORC1 signaling and cap-dependent translation.
Collapse
Affiliation(s)
- Xin-Hua Ruan
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Xi-Mei Liu
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Zhi-Xiang Yang
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Shao-Peng Zhang
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Quan-Zheng Li
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Chun-Sheng Lin
- Department of Medical Service, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| |
Collapse
|
206
|
Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, Li N, Wang J, Zhou J, Wang Y, Li S. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci 2019; 15:929-941. [PMID: 31182914 PMCID: PMC6535796 DOI: 10.7150/ijbs.32489] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
The mTORC1 inhibitors, such as rapamycin and its analogs, show limited antitumor activity in clinic, reasons for which have not been clearly elucidated. Here, we undertook an effort to uncover the mechanisms underlying the limited efficacy of rapamycin, and found that the transit suppression of 4EBP1 phosphorylation led to cap-dependent translation and cell proliferation in breast cancer cells. AKT only partially contributed to 4EBP1 re-phosphorylation. By taking advantage of mass spectrometry-based phosphoproteomic analysis, we identified SGK3 as a potent kinase involved in 4EBP1 re-phosphorylation. SGK3 deletion inhibited 4EBP1 phosphorylation and cap-dependent translation. Importantly, 4EBP1 phosphorylation was positively correlated with SGK3 activity in 67 clinical breast cancer specimens. Moreover, SGK3 deletion in combination with AKT inhibition almost blocked the 4EBP1 re-phosphorylation that was induced by rapamycin and profoundly enhanced rapamycin-induced growth inhibition in vitro and in an MCF7 breast cancer mouse xenograft model in vivo. Mechanistically, the feedback activation of SGK3 by rapamycin was dependent on hVps34 and mTORC2, and reactivated mTORC1/4EBP1 axis by phosphorylating TSC2. Collectively, our study reveals a critical role of SGK3 in mediating rapamycin resistance, and provides a rationale for targeting SGK3 to improve mTOR-targeted therapies.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300200, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Zhe Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Peng Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hailiang Li
- Zhuhai People's Hospital, Zhuhai Hospital Affiliated Jinan University, Zhuhai 519000, China
| | - Na Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jian Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jianguang Zhou
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
207
|
Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, Jones KA. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev 2019; 33:418-435. [PMID: 30819820 PMCID: PMC6446539 DOI: 10.1101/gad.322339.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
Abstract
Here, Choi et al. show that CDK12, the RNA polymerase II C-terminal domain kinase, which regulates genome stability, expression of DNA repair genes, and cancer cell drug resistance, also phosphorylates the mRNA 5′ cap-binding repressor 4E-BP1 to promote translation of mTORC1-dependent mRNAs. Using RIP-seq and Ribo-seq, the authors found that CDK12 regulates binding of eIF4G to many mTORC1 target mRNAs, and identified specific CDK12 “translation-only” target mRNAs. The RNA polymerase II (RNAPII) C-terminal domain kinase, CDK12, regulates genome stability, expression of DNA repair genes, and cancer cell resistance to chemotherapy and immunotherapy. In addition to its role in mRNA biosynthesis of DNA repair genes, we show here that CDK12 phosphorylates the mRNA 5′ cap-binding repressor, 4E-BP1, to promote translation of mTORC1-dependent mRNAs. In particular, we found that phosphorylation of 4E-BP1 by mTORC1 (T37 and T46) facilitates subsequent CDK12 phosphorylation at two Ser–Pro sites (S65 and T70) that control the exchange of 4E-BP1 with eIF4G at the 5′ cap of CHK1 and other target mRNAs. RNA immunoprecipitation coupled with deep sequencing (RIP-seq) revealed that CDK12 regulates release of 4E-BP1, and binding of eIF4G, to many mTORC1 target mRNAs, including those needed for MYC transformation. Genome-wide ribosome profiling (Ribo-seq) further identified specific CDK12 “translation-only” target mRNAs, including many mTORC1 target mRNAs as well as many subunits of mitotic and centromere/centrosome complexes. Accordingly, confocal imaging analyses revealed severe chromosome misalignment, bridging, and segregation defects in cells deprived of CDK12 or CCNK. We conclude that the nuclear RNAPII-CTD kinase CDK12 cooperates with mTORC1, and controls a specialized translation network that is essential for mitotic chromosome stability.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Thomas F Martinez
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
208
|
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Transl Neurodegener 2019; 8:6. [PMID: 30740222 PMCID: PMC6360798 DOI: 10.1186/s40035-019-0145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Thevapriya Selvaratnam
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yin Xia Chao
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| |
Collapse
|
209
|
Johnson OT, Kaur T, Garner AL. A Conditionally Fluorescent Peptide Reporter of Secondary Structure Modulation. Chembiochem 2019; 20:40-45. [PMID: 30137694 PMCID: PMC6482830 DOI: 10.1002/cbic.201800377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Proteins containing intrinsic disorder often form secondary structure upon interaction with a binding partner. Modulating such structures presents an approach for manipulating the resultant functional outcomes. Translational repressor protein 4E-BP1 is an example of an intrinsically disordered protein that forms an α-helix upon binding to its protein ligand, eIF4E. Current biophysical methods for analyzing binding-induced structural changes are low-throughput, require large amounts of sample, or are extremely sensitive to signal interference by the ligand itself. Herein, we describe the discovery and development of a conditionally fluorescent 4E-BP1 peptide that reports structural changes of its helix in high-throughput format. This reporter peptide is based on conditional quenching of fluorescein by thioamides. In this case, fluorescence signal increases as the peptide becomes more ordered. Conversely, destabilization of the α-helix results in decreased fluorescence signal. The low concentration and low volume of peptide required make this approach amenable for high-throughput screening to discover ligands that alter peptide secondary structure.
Collapse
Affiliation(s)
- Oleta T. Johnson
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109 (USA),
| | - Tanpreet Kaur
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109 (USA)
| | - Amanda L. Garner
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109 (USA),
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109 (USA)
| |
Collapse
|
210
|
Jonus HC, Hanberry BS, Khatu S, Kim J, Luesch H, Dang LH, Bartlett MG, Zastre JA. The adaptive regulation of thiamine pyrophosphokinase-1 facilitates malignant growth during supplemental thiamine conditions. Oncotarget 2018; 9:35422-35438. [PMID: 30459934 PMCID: PMC6226039 DOI: 10.18632/oncotarget.26259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022] Open
Abstract
Supplemental levels of vitamin B1 (thiamine) have been implicated in tumor progression. Tumor cells adaptively up-regulate thiamine transport during hypoxic stress. Upon uptake, thiamine pyrophosphokinase-1 (TPK1) facilitates the rapid phosphorylation of thiamine into thiamine pyrophosphate (TPP). However, the regulation of TPK1 during hypoxic stress is undefined. Understanding how thiamine homeostasis changes during hypoxia will provide critical insight into the malignant advantage supplemental thiamine may provide cancer cells. Using Western blot analysis and RT-PCR, we have demonstrated the post-transcriptional up-regulation of TPK1 in cancer cells following hypoxic exposure. TPK1 expression was also adaptively up-regulated following alterations of redox status by chemotherapeutic and antioxidant treatments. Although TPK1 was functionally up-regulated by hypoxia, HPLC analysis revealed a reduction in intracellular TPP levels. This loss was reversed by treatment with cell-permeable antioxidants and corresponded with reduced ROS production and enhanced cellular proliferation during supplemental thiamine conditions. siRNA-mediated knockdown of TPK1 directly enhanced basal ROS levels and reduced tumor cell proliferation. These findings suggest that the adaptive regulation of TPK1 may be an essential component in the cellular response to oxidative stress, and that during supplemental thiamine conditions its expression may be exploited by tumor cells for a redox advantage contributing to tumor progression.
Collapse
Affiliation(s)
- Hunter C Jonus
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America
| | - Bradley S Hanberry
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Shivani Khatu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States of America
| | - Long H Dang
- Division of Hematology/Oncology, Department of Internal Medicine, University of Florida Shands Cancer Center, University of Florida, Gainesville, FL, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America
| | - Jason A Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
211
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. mTORC1/2 and Protein Translation Regulate Levels of CHK1 and the Sensitivity to CHK1 Inhibitors in Ewing Sarcoma Cells. Mol Cancer Ther 2018; 17:2676-2688. [PMID: 30282812 DOI: 10.1158/1535-7163.mct-18-0260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
The treatment of Ewing sarcoma has changed very little in the past two decades and novel treatment approaches are needed. We recently identified that Ewing sarcoma cells are uniquely vulnerable to inhibitors of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides. We subsequently found that the inhibition of checkpoint kinase 1 (CHK1) increases the sensitivity of Ewing sarcoma cells to inhibitors of RNR, such as gemcitabine. However, Ewing sarcoma cells exhibit high levels of the CHK1 protein, which may represent an adaptive response to elevated levels of endogenous DNA replication stress. Consequently, we began this work with the aim of determining the impact of CHK1 levels on drug sensitivity, as well as identifying the mechanisms and pathways that regulate CHK1 levels in Ewing sarcoma cells. In this report, we show that the high levels of the CHK1 protein in Ewing sarcoma cells limit the efficacy of CHK1 inhibitors. However, inhibition of mTORC1/2 activates the translational repressor 4E-BP1, reduces protein synthesis, and decreases levels of the CHK1 protein in Ewing sarcoma cells. Similarly, we identified that the CHK1 inhibitor prexasertib also activates 4E-BP1, inhibits protein synthesis, and reduces CHK1 protein levels in Ewing sarcoma cells. Moreover, the combination of prexasertib and gemcitabine was synergistic in vitro, caused tumor regression in vivo, and significantly prolonged mouse survival in a Ewing sarcoma xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and support further investigation of the CHK1 pathway as a therapeutic target in Ewing sarcoma tumors.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
212
|
Ichiyanagi O, Naito S, Ito H, Kabasawa T, Narisawa T, Kanno H, Kurota Y, Kurokawa M, Fukuhara H, Sakurai T, Nishida H, Kato T, Yamakawa M, Tsuchiya N. Levels of 4EBP1/eIF4E Activation in Renal Cell Carcinoma Could Differentially Predict Its Early and Late Recurrence. Clin Genitourin Cancer 2018; 16:e1029-e1058. [DOI: 10.1016/j.clgc.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
|
213
|
Lee YC, Wang LJ, Huang CH, Shi YJ, Chang LS. ABT-263-induced MCL1 upregulation depends on autophagy-mediated 4EBP1 downregulation in human leukemia cells. Cancer Lett 2018; 432:191-204. [DOI: 10.1016/j.canlet.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
|
214
|
Kaushik P, Henry M, Clynes M, Meleady P. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture. Biotechnol J 2018; 13:e1700221. [DOI: 10.1002/biot.201700221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Prashant Kaushik
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| |
Collapse
|
215
|
Gagat M, Krajewski A, Grzanka D, Grzanka A. Potential role of cyclin F mRNA expression in the survival of skin melanoma patients: Comprehensive analysis of the pathways altered due to cyclin F upregulation. Oncol Rep 2018; 40:123-144. [PMID: 29767233 PMCID: PMC6059736 DOI: 10.3892/or.2018.6435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Cyclin F is a part of the Skp, Cullin, F-box containing ligase complex. The activity of cyclin F includes cell cycle control, centrosome duplication and response to DNA damage. The cyclin F expression pattern is very similar to cyclin A, but cyclin F is an orphan cyclin without its cyclin-dependent kinase partner. There is little evidence concerning the role of cyclin F in cancer. In the present study, for the first time, we present analysis from The Cancer Genome Atlas (TCGA) data in the context of expression of cyclin F mRNA in melanoma patients. Our original in silico analysis, not published elsewhere before, revealed that high expression of cyclin F in melanoma patients is associated with worse overall survival. Cyclin F and ribonucleotide reductase family member 2 (RRM2) compose a functional axis responsible for nucleotide metabolism. Impairment in this pathway may contribute to increased DNA damage repair and drug resistance. Additionally, we analyzed the expression of RRM2 mRNA and discovered that high expression of RRM2 is associated with worse overall survival. To shed more light on cyclin F overexpression in melanoma, we analyzed all protein data available in the TCGA melanoma dataset. It was found that in patients with upregulated cyclin F mRNA, we noted increased activity of pathways related to cell cycle and DNA damage repair. These data will support further in vitro and in vivo studies on the involvement of cyclin F in skin cutaneous melanoma.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
216
|
Saengboonmee C, Sawanyawisuth K, Chamgramol Y, Wongkham S. Prognostic biomarkers for cholangiocarcinoma and their clinical implications. Expert Rev Anticancer Ther 2018; 18:579-592. [PMID: 29676221 DOI: 10.1080/14737140.2018.1467760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a poorly prognostic cancer with limited treatment options. Most patients have unresectable tumors when they are diagnosed and the chemotherapies provided are of limited benefit. Prognostic markers are therefore necessary to predict the disease outcome, risk of relapse, or to suggest the best treatment option. Areas covered: This article provides an up-to-date review of biomarkers with promising characteristics to be prognostic markers for CCA reported in the past 5 years. The biomarkers are sub-classified into tissue and serum markers. Proteins, RNAs, peripheral blood cells etc., that are associated with aggressive phenotypes, signal pathways, chemo-drug resistance, and those that reflect the survival time of CCA patients are evaluated for their prognostic prediction values. Expert commentary: CCAs are heterogeneous tumors of different histo-pathological subtypes and genetic influences and, therefore, potential markers should be validated in larger collectives with varied epidemiological backgrounds. A systematic review and meta-analysis should be done to clarify the impact of the reported biomolecules for their potential prognostic values. Non- or low-invasive sample collections, as well as the simple and affordable determination methods, should be constructed to make the prognostic biomarkers available in clinical practice.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| | - Kanlayanee Sawanyawisuth
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| | - Yaovalux Chamgramol
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
- c Department of Pathology, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
| | - Sopit Wongkham
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
217
|
Białopiotrowicz E, Górniak P, Noyszewska-Kania M, Puła B, Makuch-Łasica H, Nowak G, Bluszcz A, Szydłowski M, Jabłonska E, Piechna K, Sewastianik T, Polak A, Lech-Marańda E, Budziszewska BK, Wasylecka-Juszczyńska M, Borg K, Warzocha K, Czardybon W, Gałęzowski M, Windak R, Brzózka K, Juszczyński P. Microenvironment-induced PIM kinases promote CXCR4-triggered mTOR pathway required for chronic lymphocytic leukaemia cell migration. J Cell Mol Med 2018; 22:3548-3559. [PMID: 29665227 PMCID: PMC6010703 DOI: 10.1111/jcmm.13632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lymph node microenvironment provides chronic lymphocytic leukaemia (CLL) cells with signals promoting their survival and granting resistance to chemotherapeutics. CLL cells overexpress PIM kinases, which regulate apoptosis, cell cycle and migration. We demonstrate that BCR crosslinking, CD40 stimulation, and coculture with stromal cells increases PIMs expression in CLL cells, indicating microenvironment‐dependent PIMs regulation. PIM1 and PIM2 expression at diagnosis was higher in patients with advanced disease (Binet C vs. Binet A/B) and in those, who progressed after first‐line treatment. In primary CLL cells, inhibition of PIM kinases with a pan‐PIM inhibitor, SEL24‐B489, decreased PIM‐specific substrate phosphorylation and induced dose‐dependent apoptosis in leukaemic, but not in normal B cells. Cytotoxicity of SEL24‐B489 was similar in TP53‐mutant and TP53 wild‐type cells. Finally, inhibition of PIM kinases decreased CXCR4‐mediated cell chemotaxis in two related mechanisms‐by decreasing CXCR4 phosphorylation and surface expression, and by limiting CXCR4‐triggered mTOR pathway activity. Importantly, PIM and mTOR inhibitors similarly impaired migration, indicating that CXCL12‐triggered mTOR is required for CLL cell chemotaxis. Given the microenvironment‐modulated PIM expression, their pro‐survival function and a role of PIMs in CXCR4‐induced migration, inhibition of these kinases might override microenvironmental protection and be an attractive therapeutic strategy in this disease.
Collapse
Affiliation(s)
- Emilia Białopiotrowicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Monika Noyszewska-Kania
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Hanna Makuch-Łasica
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Grażyna Nowak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Aleksandra Bluszcz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłonska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Karolina Piechna
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Polak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Lech-Marańda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bożena K Budziszewska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Katarzyna Borg
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Krzysztof Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | | | | | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
218
|
Lamberti G, Brighi N, Maggio I, Manuzzi L, Peterle C, Ambrosini V, Ricci C, Casadei R, Campana D. The Role of mTOR in Neuroendocrine Tumors: Future Cornerstone of a Winning Strategy? Int J Mol Sci 2018; 19:ijms19030747. [PMID: 29509701 PMCID: PMC5877608 DOI: 10.3390/ijms19030747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (AkT)/mTOR pathway and owes its name to the inhibitory effect of rapamycin. The mTOR has a central converging role for many cell functions, serving as a sensor for extracellular signals from energy status and nutrients availability, growth factors, oxygen and stress. Thus, it also modulates switch to anabolic processes (protein and lipid synthesis) and autophagy, in order to regulate cell growth and proliferation. Given its functions in the cell, its deregulation is implicated in many human diseases, including cancer. Its predominant role in tumorigenesis and progression of neuroendocrine tumors (NETs), in particular, has been demonstrated in preclinical studies and late clinical trials. mTOR inhibition by everolimus is an established therapeutic target in NETs, but there are no identified predictive or prognostic factors. This review is focused on the role of mTOR and everolimus in NETs, from preclinical studies to major clinical trials, and future perspectives involving mTOR in the treatment of NETs.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Nicole Brighi
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Ilaria Maggio
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Chiara Peterle
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Valentina Ambrosini
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Claudio Ricci
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Riccardo Casadei
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Davide Campana
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| |
Collapse
|
219
|
Abstract
In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap-dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation.
Collapse
Affiliation(s)
- Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841,
Korea
- School of Life Sciences, Korea University, Seoul 02841,
Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841,
Korea
- School of Life Sciences, Korea University, Seoul 02841,
Korea
- Corresponding author. Tel: +82-2-3290-3410; Fax: +82-2-923-9923; E-mail:
| |
Collapse
|
220
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
221
|
Fibroblast-like synoviocyte migration is enhanced by IL-17-mediated overexpression of L-type amino acid transporter 1 (LAT1) via the mTOR/4E-BP1 pathway. Amino Acids 2017; 50:331-340. [PMID: 29198077 DOI: 10.1007/s00726-017-2520-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/28/2017] [Indexed: 01/25/2023]
Abstract
In rheumatoid arthritis (RA), activated synovial fibroblasts have the ability to invade joint cartilage, actively contributing to joint destruction in RA. The mechanisms underlying this cell migration and invasion remain unclear. Our previous results and data from the GEO profile indicate that the L-type amino acid transporter gene, LAT1, is overexpressed in the synovium of RA. To identify its potential role in RA, fibroblast-like synoviocytes (FLS) from patients with RA were used to determine the effects of suppressing the LAT1 genes using RNA interference and the LAT inhibitor, BCH. We found that BCH exposure reduced the phosphorylation of mTOR and its downstream target 4EBP1, radiolabeled leucine uptake, and migration of RA FLS. LAT1 silencing by siRNA presented effects similar to BCH inhibition. Treatment of cells with IL-17 stimulated the expression of LAT1. In contrast, applying an inhibitor of mTOR pathway, temsirolimus, or silencing eIF4E neutralized the stimulation of IL-17 on LAT1. BCH and siLAT1 also resulted in lower IL-17-stimulated leucine uptake and cell migration. These results suggest that the migration of RA FLS is aggravated by IL-17-mediated overexpression of LAT1 via mTOR/4E-BP1 pathway. In conclusion, further investigation is warranted into LAT1 as a potential target for drug therapies aimed at attenuating migration of transformed-appearing fibroblasts and subsequently preventing further erosion of bone and cartilage.
Collapse
|
222
|
Aung W, Tsuji AB, Sudo H, Sugyo A, Ukai Y, Kouda K, Kurosawa Y, Furukawa T, Saga T, Higashi T. Combined treatment of pancreatic cancer xenograft with 90Y-ITGA6B4-mediated radioimmunotherapy and PI3K/mTOR inhibitor. World J Gastroenterol 2017; 23:7551-7562. [PMID: 29204055 PMCID: PMC5698248 DOI: 10.3748/wjg.v23.i42.7551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 09/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic effect of combined integrin α6β4-targeted radioimmunotherapy (RIT) and PI3K/mTOR inhibitor BEZ235 in a pancreatic cancer model. METHODS Phosphorylation of Akt, mTOR, the downstream effectors eukaryotic initiation factor 4E binding protein 1 (4EBP1) and S6 ribosomal protein (S6) were evaluated in BxPC-3 human pancreatic cancer cells treated with Yttrium-90 (90Y) labeled anti-integrin α6β4 antibody (ITGA6B4) and BEZ235 by western blotting. The cytotoxic effect of BEZ235 was investigated using a colony formation assay. Therapeutic efficacy enhancement by oral BEZ235 administration was assessed using mice bearing BxPC-3 xenograft tumors. Tumor volume measurements and immunohistochemical analyses (cell proliferation marker Ki-67, DNA damage marker p-H2AX and p-4EBP1 staining) of tumors were performed for evaluation of combined treatment with 90Y-ITGA6B4 plus BEZ235, or each arm alone. RESULTS We found that phosphorylation of Akt (p-Akt), 4EBP1 (p-4EBP1) and S6 (p-S6) was inhibited by BEZ235. Colony formation in BxPC-3 cells was additively suppressed by the combination of 90Y-ITGA6B4 and BEZ235. Pretreatment with BEZ235 before 90Y-ITGA6B4 exposure resulted in significant reduction of cells plating efficiency (PE) (0.54 ± 0.11 vs 2.81 ± 0.14 with 185 kBq/mL 90Y-ITGA6B4 exposure, P < 0.01; 0.39 ± 0.08 vs 1.88 ± 0.09 with 370 kBq/mL 90Y-ITGA6B4 exposure, P < 0.01) when 5 × 103 cells per dish were plated. In vivo, the combined treatment with 90Y-ITGA6B4 plus BEZ235 enhanced the inhibition of tumor growth and statistically significant differences of relative tumor volume were observed for 27 d after the treatment start date when compared with the 90Y-ITGA6B4 single injection treatment (1.03 ± 0.38 vs 1.5 ± 0.15 at Day 27, P < 0.05), and for 41 d when compared with the BEZ235 treatment alone (1.8 ± 0.7 vs 3.14 ± 1.19 at Day 41, P < 0.05). Tumors from treatment groups showed reduction in volumes, decreased Ki-67-positive cells, increased p-H2AX-positive cells and decreased p-4EBP1 expression. CONCLUSION The therapeutic efficacy of 90Y-ITGA6B4-RIT can be improved by combining with dual PI3K and mTOR inhibitor, BEZ235, in a pancreatic cancer model suggesting potential clinical application.
Collapse
Affiliation(s)
- Winn Aung
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | | | | | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takako Furukawa
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| |
Collapse
|
223
|
Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA. Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget 2017; 8:18754-18772. [PMID: 27813490 PMCID: PMC5386645 DOI: 10.18632/oncotarget.13009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is upregulated in a range of cancer cell types, in part, by the activation of the mechanistic target of rapamycin (mTOR). Recently, TCTP has also been proposed to act as an indirect activator of mTOR. While it is known that mTOR plays a major role in the regulation of skeletal muscle mass, very little is known about the role and regulation of TCTP in this post-mitotic tissue. This study shows that muscle TCTP and mTOR signaling are upregulated in a range of mouse models (mdx mouse, mechanical load-induced hypertrophy, and denervation- and immobilization-induced atrophy). Furthermore, the increase in TCTP observed in the hypertrophic and atrophic conditions occurred, in part, via a rapamycin-sensitive mTOR-dependent mechanism. However, the overexpression of TCTP was not sufficient to activate mTOR signaling (or increase protein synthesis) and is thus unlikely to take part in a recently proposed positive feedback loop with mTOR. Nonetheless, TCTP overexpression was sufficient to induce muscle fiber hypertrophy. Finally, TCTP overexpression inhibited the promoter activity of the muscle-specific ubiquitin proteasome E3-ligase, MuRF1, suggesting that TCTP may play a role in inhibiting protein degradation. These findings provide novel data on the role and regulation of TCTP in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia.,Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Allison M Coenen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - John W Frey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Robert G Barker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
224
|
Tarum J, Folkesson M, Atherton PJ, Kadi F. Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study. Exp Physiol 2017; 102:1405-1413. [PMID: 28861930 DOI: 10.1113/ep086581] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is electrical pulse stimulation (EPS) an in vitro exercise model able to elicit the hypertrophy of human muscle cells? What is the main finding and its importance? The addition of a restitution period of 8 h after EPS induces the enlargement of human muscle cells, a major physiological end-point to resistance exercise. This is supported by downregulation of myostatin, a negative regulator of muscle mass, and increased phosphorylated mTOR and 4E-BP1, key factors in the growth cascade. This proof-of-concept study provides a model of physiologically mediated muscle growth, which will be the basis for future studies aiming to depict molecular events governing the hypertrophy of human muscle cells. Electrical pulse stimulation (EPS) of muscle cells has previously been used as an in vitro exercise model. The present study aimed to establish an EPS protocol promoting the hypertrophy of human muscle cells, which represents a major physiological end-point to resistance exercise in humans. We hypothesized that adding a resting period after EPS would be crucial for the occurrence of the morphological change. Myoblasts obtained from human muscle biopsies (n = 5) were differentiated into multinucleated myotubes and exposed to 8 h of EPS consisting of 2 ms pulses at 12 V, with a frequency of 1 Hz. Myotube size was assessed using immunohistochemistry immediately, 4 and 8 h after completed EPS. Gene expression and phosphorylation status of selected markers of hypertrophy were assessed using RT-PCR and Western blotting, respectively. Release of the myokine interleukin-6 in culture medium was measured using enzyme-linked immunosorbent assay. We demonstrated a significant increase (31 ± 14%; P = 0.03) in the size of myotubes when EPS was followed by an 8 h resting period, but not immediately or 4 h after completion of EPS. The response was supported by downregulation (P = 0.04) of the gene expression of myostatin, a negative regulator of muscle mass, and an increase in phosphorylated mTOR (P = 0.03) and 4E-BP1 (P = 0.01), which are important factors in the cellular growth signalling cascade. The present work demonstrates that EPS is an in vitro exercise model promoting the hypertrophy of human muscle cells, recapitulating a major physiological end-point to resistance exercise in human skeletal muscle.
Collapse
Affiliation(s)
- Janelle Tarum
- School of Health Sciences, Örebro University, 70182, Örebro, Sweden
| | | | - Philip J Atherton
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, 70182, Örebro, Sweden
| |
Collapse
|
225
|
Imamura S, Taki K, Tanaka K. Construction of a rapamycin-susceptible strain of the unicellular red alga Cyanidioschyzon merolae for analysis of the target of rapamycin (TOR) function. J GEN APPL MICROBIOL 2017; 63:305-309. [PMID: 28954966 DOI: 10.2323/jgam.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Keiko Taki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| |
Collapse
|
226
|
Esnault S, Shen ZJ, Malter JS. Protein Translation and Signaling in Human Eosinophils. Front Med (Lausanne) 2017; 4:150. [PMID: 28971096 PMCID: PMC5609579 DOI: 10.3389/fmed.2017.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023] Open
Abstract
We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
227
|
Dual abrogation of MNK and mTOR: a novel therapeutic approach for the treatment of aggressive cancers. Future Med Chem 2017; 9:1539-1555. [PMID: 28841037 DOI: 10.4155/fmc-2017-0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting the translational machinery has emerged as a promising therapeutic option for cancer treatment. Cancer cells require elevated protein synthesis and exhibit augmented activity to meet the increased metabolic demand. Eukaryotic translation initiation factor 4E is necessary for mRNA translation, its availability and phosphorylation are regulated by the PI3K/AKT/mTOR and MNK1/2 pathways. The phosphorylated form of eIF4E drives the expression of oncogenic proteins including those involved in metastasis. In this article, we will review the role of eIF4E in cancer, its regulation and discuss the benefit of dual inhibition of upstream pathways. The discernible interplay between the MNK and mTOR signaling pathways provides a novel therapeutic opportunity to target aggressive migratory cancers through the development of hybrid molecules.
Collapse
|
228
|
Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch ME. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. BREAST CANCER-TARGETS AND THERAPY 2017; 9:495-514. [PMID: 28744157 PMCID: PMC5513700 DOI: 10.2147/bctt.s139963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse - CRCT, UMR1037 Inserm/Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), Santander, Spain
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ran Goshen
- Eliaso Consulting Ltd., Tel Aviv-Yafo, Israel
| | | |
Collapse
|
229
|
Peng T, Dou QP. Everolimus Inhibits Growth of Gemcitabine-Resistant Pancreatic Cancer Cells via Induction of Caspase-Dependent Apoptosis and G2/M Arrest. J Cell Biochem 2017; 118:2722-2730. [DOI: 10.1002/jcb.25921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Tao Peng
- Pancreatic Disease Institute; Tongji Medical College; Union Hospital; Huazhong University of Science and Technology; Wuhan 430022 P. R. China
- Departments of Oncology, Pharmacology, and Pathology; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit Michigan
| | - Q. Ping Dou
- Departments of Oncology, Pharmacology, and Pathology; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit Michigan
| |
Collapse
|
230
|
Yu ZJ, Luo HH, Shang ZF, Guan H, Xiao BB, Liu XD, Wang Y, Huang B, Zhou PK. Stabilization of 4E-BP1 by PI3K kinase and its involvement in CHK2 phosphorylation in the cellular response to radiation. Int J Med Sci 2017; 14:452-461. [PMID: 28539821 PMCID: PMC5441037 DOI: 10.7150/ijms.18329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/01/2017] [Indexed: 11/16/2022] Open
Abstract
Objectives: 4E-BP1 is a family member of eIF4E binding proteins (4E-BPs) which act as the suppressors of cap-dependent translation of RNA via competitively associating with cap-bound eIF4E. RNA translation regulation is an important manner to control the cellular responses to a series of stress conditions such as ionizing radiation (IR)-induced DNA damage response and cell cycle controlling. This study aimed to determine the mechanism of 4E-BP1 stabilization and its potential downstream target(s) in the response to IR. Methods: PI3Ks kinase inhibitors were used to determine the signaling control of 4E-BP1 phosphorylation and protein stability. shRNA strategy was employed to silence the expression of 4E-BP1 in HeLa and HepG2 cells, and determine its effect on the irradiation-induced CHK2 phosphorylation. The protein degradation/stability was investigated by western blotting on the condition of blocking novel protein synthesis by cycloheximide (CHX). Results: The phosphorylation of 4E-BP1 at Thr37/46 was significantly increased in both HepG2 and HeLa cells by ionizing radiation. Depression of 4E-BP1 by shRNA strategy resulted in an incomplete G2 arrest at the early stage of 2 hours post-irradiation, as well as a higher accumulation of mitotic cells at 10 and 12 hours post-irradiation as compared to the control cells. Consistently, the CHK2 phosphorylation at Thr68 induced by IR was also attenuated by silencing 4E-BP1 expression. Both PI3K and DNA-PKcs kinase inhibitors significantly decreased the protein level of 4E-BP1, which was associated with the accelerated degradation mediated by ubiquitination-proteasome pathway. Conclusion: PI3K kinase activity is necessary for maintaining 4E-BP1 stability. Our results also suggest 4E-BP1 a novel biological role of regulating cell cycle G2 checkpoint in responding to IR stress in association with controlling CHK2 phosphorylation.
Collapse
Affiliation(s)
- Zi-Jian Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, P.R. China
| | - Hui-Hui Luo
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province 215123, P.R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Bei-Bei Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province 215123, P.R. China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| |
Collapse
|
231
|
Affiliation(s)
- Ren Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou , China
| | - Shridar Ganesan
- b Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - X F Steven Zheng
- b Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|