201
|
Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, Chen Y, Johnson PF, Wu C, Bu G, Mobley WC, Zhang D, Gage FH, Ranscht B, Zhang YW, Lipton SA, Hong W, Xu H. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat Med 2013; 19:473-80. [PMID: 23524343 PMCID: PMC3911880 DOI: 10.1038/nm.3117] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/01/2013] [Indexed: 02/07/2023]
Abstract
Sorting nexin 27 (SNX27), a brain-enriched PDZ domain protein, regulates endocytic sorting and trafficking. Here we show that Snx27(-/-) mice have severe neuronal deficits in the hippocampus and cortex. Although Snx27(+/-) mice have grossly normal neuroanatomy, we found defects in synaptic function, learning and memory and a reduction in the amounts of ionotropic glutamate receptors (NMDA and AMPA receptors) in these mice. SNX27 interacts with these receptors through its PDZ domain, regulating their recycling to the plasma membrane. We demonstrate a concomitant reduced expression of SNX27 and CCAAT/enhancer binding protein β (C/EBPβ) in Down's syndrome brains and identify C/EBPβ as a transcription factor for SNX27. Down's syndrome causes overexpression of miR-155, a chromosome 21-encoded microRNA that negatively regulates C/EBPβ, thereby reducing SNX27 expression and resulting in synaptic dysfunction. Upregulating SNX27 in the hippocampus of Down's syndrome mice rescues synaptic and cognitive deficits. Our identification of the role of SNX27 in synaptic function establishes a new molecular mechanism of Down's syndrome pathogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson's disease. Mov Disord 2013; 28:569-75. [PMID: 23536430 DOI: 10.1002/mds.25430] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, is characterized by loss of dopaminergic and nondopaminergic neurons, leading to a variety of motor and nonmotor symptoms. In addition to environmental factors, genetic predisposition and specific gene mutations have been shown to play an important role in the pathogenesis of this disorder. Recently, the identification of the vacuolar protein sorting 35 homolog gene (VPS35), linked to autosomal dominant late-onset PD, has provided new clues to the pathogenesis of PD. Here we discuss the VPS35 gene, its protein function, and various pathways involved in Wnt/β-catenin signaling and in the role of DMT1 mediating the uptake of iron and iron translocation from endosomes to the cytoplasm. Further understanding of these mechanisms will undoubtedly provide new insights into the pathogenic mechanisms of PD and may lead to prevention and better treatment of the disorder.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
| | | | | |
Collapse
|
203
|
Bi F, Li F, Huang C, Zhou H. Pathogenic mutation in VPS35 impairs its protection against MPP(+) cytotoxicity. Int J Biol Sci 2013; 9:149-55. [PMID: 23411763 PMCID: PMC3572397 DOI: 10.7150/ijbs.5617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/18/2013] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP(+)) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson's disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP(+) toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson's disease.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Neurology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
204
|
Abstract
The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.
Collapse
|
205
|
Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci 2012; 70:2919-34. [PMID: 23132096 PMCID: PMC3722462 DOI: 10.1007/s00018-012-1201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 10/28/2022]
Abstract
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer's disease and other tauopathies, Parkinson's disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.
Collapse
|
206
|
Wang CL, Tang FL, Peng Y, Shen CY, Mei L, Xiong WC. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 2012; 1:1248-57. [PMID: 23259059 PMCID: PMC3522886 DOI: 10.1242/bio.20122451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase) and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.
Collapse
Affiliation(s)
- Chun-Lei Wang
- Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University , Augusta, GA 30912 , USA
| | | | | | | | | | | |
Collapse
|
207
|
Zhu L, Su M, Lucast L, Liu L, Netzer WJ, Gandy SE, Cai D. Dynamin 1 regulates amyloid generation through modulation of BACE-1. PLoS One 2012; 7:e45033. [PMID: 23024787 PMCID: PMC3443198 DOI: 10.1371/journal.pone.0045033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/11/2012] [Indexed: 11/25/2022] Open
Abstract
Background Several lines of investigation support the notion that endocytosis is crucial for Alzheimer’s disease (AD) pathogenesis. Substantial evidence have already been reported regarding the mechanisms underlying amyloid precursor protein (APP) traffic, but the regulation of beta-site APP-Cleaving Enzyme 1 (BACE-1) distribution among endosomes, TGN and plasma membrane remains unclear. Dynamin, an important adaptor protein that controls sorting of many molecules, has recently been associated with AD but its functions remain controversial. Here we studied possible roles for dynamin 1 (dyn1) in Aβ biogenesis. Principal Findings We found that genetic perturbation of dyn1 reduces both secreted and intracellular Aβ levels in cell culture. There is a dramatic reduction in BACE-1 cleavage products of APP (sAPPβ and βCTF). Moreover, dyn1 knockdown (KD) leads to BACE-1 redistribution from the Golgi-TGN/endosome to the cell surface. There is an increase in the amount of surface holoAPP upon dyn1 KD, with resultant elevation of α–secretase cleavage products sAPPα and αCTF. But no changes are seen in the amount of nicastrin (NCT) or PS1 N-terminal fragment (NTF) at cell surface with dyn1 KD. Furthermore, treatment with a selective dynamin inhibitor Dynasore leads to similar reduction in βCTF and Aβ levels, comparable to changes with BACE inhibitor treatment. But combined inhibition of BACE-1 and dyn1 does not lead to further reduction in Aβ, suggesting that the Aβ-lowering effects of dynamin inhibition are mainly mediated through regulation of BACE-1 internalization. Aβ levels in dyn1−/− primary neurons, as well as in 3-month old dyn1 haploinsufficient animals with AD transgenic background are consistently reduced when compared to their wildtype counterparts. Conclusions In summary, these data suggest a previously unknown mechanism by which dyn1 affects amyloid generation through regulation of BACE-1 subcellular localization and therefore its enzymatic activities.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology and Alzheimer’s Disease Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - Meng Su
- Department of Neurology and Alzheimer’s Disease Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pathology, John Hopkins Medical Center, Baltimore, Maryland, United States of America
| | - Louise Lucast
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Lijuan Liu
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - William J. Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Samuel E. Gandy
- Department of Neurology and Alzheimer’s Disease Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - Dongming Cai
- Department of Neurology and Alzheimer’s Disease Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
208
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
209
|
Deng H, Xu H, Deng X, Song Z, Zheng W, Gao K, Fan X, Tang J. VPS35mutation in Chinese Han patients with late-onset Parkinson's disease. Eur J Neurol 2012; 19:e96-7. [PMID: 22891780 DOI: 10.1111/j.1468-1331.2012.03800.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Deng
- Center for Experimental Medicine; The Third Xiangya Hospital; Central South University; Changsha China
- Department of Neurology; The Third Xiangya Hospital; Central South University; Changsha China
| | - H. Xu
- Center for Experimental Medicine; The Third Xiangya Hospital; Central South University; Changsha China
| | - X. Deng
- Center for Experimental Medicine; The Third Xiangya Hospital; Central South University; Changsha China
| | - Z. Song
- Department of Neurology; The Third Xiangya Hospital; Central South University; Changsha China
| | - W. Zheng
- Department of Neurology; The Third Xiangya Hospital; Central South University; Changsha China
| | - K. Gao
- Center for Experimental Medicine; The Third Xiangya Hospital; Central South University; Changsha China
| | - X. Fan
- Department of Neurology; The Third Xiangya Hospital; Central South University; Changsha China
| | - J. Tang
- Center for Experimental Medicine; The Third Xiangya Hospital; Central South University; Changsha China
| |
Collapse
|
210
|
Cuartero Y, Mellado M, Capell A, Álvarez-Dolado M, Verges M. Retromer Regulates Postendocytic Sorting of β-Secretase in Polarized Madin-Darby Canine Kidney Cells. Traffic 2012; 13:1393-410. [DOI: 10.1111/j.1600-0854.2012.01392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Yasmina Cuartero
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Maravillas Mellado
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Anja Capell
- German Center for Neurodegenerative Diseases & Adolf Butenandt Institute - Biochemistry; Ludwig Maximilians University; Munich; Germany
| | - Manuel Álvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine; Andalusian Center for Molecular Biology and Regenerative Medicine; Seville; Spain
| | | |
Collapse
|
211
|
Reitz C. The role of intracellular trafficking and the VPS10d receptors in Alzheimer's disease. FUTURE NEUROLOGY 2012; 7:423-431. [PMID: 23264752 DOI: 10.2217/fnl.12.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Alzheimer's disease, the key pathological culprit is the amyloid-β protein, which is generated through β- and γ-secretase cleavage of the amyloid-β precursor protein (APP). Both the secretases and amyloid-β precursor protein are transmembrane proteins that are sorted via the trans-Golgi network and the endosome through multiple membranous compartments of the cell. The coat complex clathrin controls the sorting from the cell surface and the trans-Golgi network to the endosome. Instead, the retromer controls the reverse transport from the endosome to the trans-Golgi network. The retromer contains two subprotein complexes: the cargo-selective subcomplex consisting of VPS35, VPS29 and VPS26 and the membrane deformation subcomplex consisting of Vps5p, Vps17p, SNX 1/2 and possibly SNX 5/6 or SNX 32 in mammals. Cargo molecules of the retromer include the VPS10 receptor proteins SORL1, SORT1, SORCS1, SORCS2 and SORCS3. There is increasing evidence through cell biology and animal and genetic studies that components of the retromer and the VPS10d receptor family play a role in the etiology of Alzheimer's disease. This article reviews and summarizes this current evidence.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease & the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, 630 W 168th Street, New York, NY 10032, USA ; The Department of Neurology, College of Physicians & Surgeons, Columbia University, 630 W 168th Street, New York, NY 10032, USA
| |
Collapse
|
212
|
Rajendran L, Annaert W. Membrane Trafficking Pathways in Alzheimer's Disease. Traffic 2012; 13:759-70. [DOI: 10.1111/j.1600-0854.2012.01332.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration; Division of Psychiatry Research; University of Zurich; August-Forel Str. 1; Zurich; 8008; Switzerland
| | - Wim Annaert
- Laboratory for Membrane Trafficking; Center for Human Genetics (KULeuven) & VIB-Center for the Biology of Disease; Gasthuisberg O&N4, Herestraat 49; Leuven; B-3000; Belgium
| |
Collapse
|
213
|
Lane RF, Shineman DW, Steele JW, Lee LBH, Fillit HM. Beyond amyloid: the future of therapeutics for Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:213-71. [PMID: 22840749 DOI: 10.1016/b978-0-12-394816-8.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the field is awaiting the results of several pivotal Phase III clinical Alzheimer's disease (AD) trials that target amyloid-β (Aβ). In light of the recent biomarker studies that indicate Aβ levels are at their most dynamic 5-10 years before the onset of clinical symptoms, it is becoming uncertain whether direct approaches to target Aβ will achieve desired clinical efficacy. AD is a complex neurodegenerative disease caused by dysregulation of numerous neurobiological networks and cellular functions, resulting in synaptic loss, neuronal loss, and ultimately impaired memory. While it is clear that Aβ plays a key role in the pathogenesis of AD, it may be a challenging and inefficient target for mid-to-late stage AD intervention. Throughout the course of AD, multiple pathways become perturbed, presenting a multitude of possible therapeutic avenues for design of AD intervention and prophylactic therapies. In this chapter, we sought to first provide an overview of Aβ-directed strategies that are currently in development, and the pivotal Aβ-targeted trials that are currently underway. Next, we delve into the biology and therapeutic designs associated with other key areas of research in the field including tau, protein trafficking and degradation pathways, ApoE, synaptic function, neurotrophic/neuroprotective strategies, and inflammation and energy utilization. For each area we have provided a comprehensive and balanced overview of the therapeutic strategies currently in preclinical and clinical development, which will shape the future therapeutic landscape of AD.
Collapse
Affiliation(s)
- Rachel F Lane
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | | | | | | | | |
Collapse
|
214
|
Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC. VPS35 haploinsufficiency increases Alzheimer's disease neuropathology. J Exp Med 2011. [DOI: 10.1084/jem20813oia35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
215
|
Leslie M. VPS35 leaves endosomes lost in transition. J Biophys Biochem Cytol 2011. [PMCID: PMC3257559 DOI: 10.1083/jcb.1955iti1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|