201
|
Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA, Harsha HC, Shankar S, Prasad TSK, Mohan SS, Bader GD, Wani MR, Pandey A. A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar021. [PMID: 21742767 PMCID: PMC3170171 DOI: 10.1093/database/bar021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor activator of nuclear factor-kappa B ligand (RANKL) is a member of tumor necrosis factor (TNF) superfamily that plays a key role in the regulation of differentiation, activation and survival of osteoclasts and also in tumor cell migration and bone metastasis. Osteoclast activation induced by RANKL regulates hematopoietic stem cell mobilization as part of homeostasis and host defense mechanisms thereby linking regulation of hematopoiesis with bone remodeling. Binding of RANKL to its receptor, Receptor activator of nuclear factor-kappa B (RANK) activates molecules such as NF-kappa B, mitogen activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT) and phosphatidyl 3-kinase (PI3K). Although the molecular and cellular roles of these molecules have been reported previously, a systematic cataloging of the molecular events induced by RANKL/RANK interaction has not been attempted. Here, we present a comprehensive reaction map of the RANKL/RANK-signaling pathway based on an extensive manual curation of the published literature. We hope that the curated RANKL/RANK-signaling pathway model would enable new biomedical discoveries, which can provide novel insights into disease processes and development of novel therapeutic interventions. Database URL:http://www.netpath.org/pathways?path_id=NetPath_21
Collapse
Affiliation(s)
- Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Murthy MB. Osteoimmunology - Unleashing the concepts. J Indian Soc Periodontol 2011; 15:190-8. [PMID: 22028503 PMCID: PMC3200011 DOI: 10.4103/0972-124x.85659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/07/2011] [Indexed: 01/19/2023] Open
Abstract
Osteoimmunology is an emerging field of research dedicated to the relationship between the immune processes and the bone metabolism of various inflammatory bone diseases. The regulatory mechanisms governing the osteoclast and osteoblast are critical for understanding the health and disease of the skeletal system. These interactions are either by cell to cell contact or by the secretion of immune regulatory mediators like cytokines and chemokines by immune cells that are governed by the RANKL (TRANCE)-RANK- OPG axis. TRANCE-RANK signaling has served as a cornerstone of osteoimmunology research. There is increased recognition of the importance of the inflammatory and immune responses in the pathogenesis of periodontal disease. Thus, this field has provided a framework for studying the mechanisms underlying periodontal destruction. As bone homeostasis is mainly regulated by both the immune and endocrine systems, there emerged osteoimmunoendocrinology where adipokines take the lead. This review focuses on the underlying concepts of osteoimmunology, its relation to Periodontics.
Collapse
Affiliation(s)
- M. Bhanu Murthy
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Andhra Pradesh, India
| |
Collapse
|
203
|
Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest 2011; 121:2534-42. [PMID: 21737885 DOI: 10.1172/jci46262] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade and a half, the biomedical community has uncovered a previously unappreciated reciprocal relationship between cells of the immune and skeletal systems. Work in this field, which has been termed "osteoimmunology," has resulted in the development of clinical therapeutics for seemingly disparate diseases linked by the common themes of inflammation and bone remodeling. Here, the important concepts and discoveries in osteoimmunology are discussed in the context of the diseases bridging these two organ systems, including arthritis, osteoporosis, cancer, and infection, and the targeted treatments used by clinicians to combat them.
Collapse
Affiliation(s)
- Dallas Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
204
|
von Keyserlingk C, Hopkins R, Anastasilakis A, Toulis K, Goeree R, Tarride JE, Xie F. Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: a meta-analysis. Semin Arthritis Rheum 2011; 41:178-86. [PMID: 21616520 DOI: 10.1016/j.semarthrit.2011.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/21/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Clinical trials indicate that denosumab could be a potential treatment for postmenopausal osteoporosis. The objective of this meta-analysis was to assess the clinical efficacy and safety of offering denosumab to postmenopausal women with low bone mass. METHODS Data sources included MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to February 3, 2010 and bibliographies of reviews. Randomized controlled trials comparing the efficacy and safety of denosumab to placebo for treatment of low bone mass (low bone mineral density or osteoporosis) in postmenopausal women were selected. Two reviewers independently abstracted data on study general characteristics and outcomes. Review Manager 5.0 software was used for data syntheses and meta-analysis. RESULTS The database search revealed 4 studies (comprising 8864 patients randomized) that met the inclusion criteria and contributed to some or all of the meta-analysis outcomes. Relative risk (95% CI) of fractures for the denosumab compared with placebo group was 0.58 (0.52 to 0.66); relative risk (95% CI) of serious adverse events was 1.33 (0.83 to 2.14); relative risk (95% CI) of serious adverse events related to infection was 2.10 (0.64 to 6.90); relative risk (95% CI) of neoplasm was 1.11 (0.91 to 1.36); relative risk (95% CI) of study discontinuation due to adverse events was 1.10 (0.83 to 1.47); and relative risk (95% CI) of death was 0.78 (0.57 to 1.06). Findings remained robust to sensitivity analyses. CONCLUSION Our analysis found a significant reduction in relative fracture risk in the denosumab compared with the placebo group.
Collapse
Affiliation(s)
- Camilla von Keyserlingk
- Programs for Assessment of Technology in Health (PATH) Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
205
|
Schramek D, Sigl V, Penninger JM. RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 2011; 22:188-94. [PMID: 21470874 DOI: 10.1016/j.tem.2011.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 01/11/2023]
Abstract
The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL are best known for their essential function in bone remodeling and bone-related pathologies such as osteoporosis and arthritis. In humans, dysregulation of the RANK-RANKL system is the major cause of osteoporosis in postmenopausal women. Furthermore, appropriate RANKL signaling is also required for the formation of a lactating mammary gland. Both RANKL and RANK are expressed by mammary epithelial cells under the control of sex hormones. Recent data also indicate that RANK and RANKL control the preferential metastasis of breast cancer cells to the bone as well as sex hormone-driven primary mammary cancer. Here we critically review these data with special attention on mammary cancer development.
Collapse
Affiliation(s)
- Daniel Schramek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
206
|
Schramek D, Penninger JM. The many roles of RANKL-RANK signaling in bone, breast and cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.1138/20110512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
207
|
Bishop KA, Coy HM, Nerenz RD, Meyer MB, Pike JW. Mouse Rankl expression is regulated in T cells by c-Fos through a cluster of distal regulatory enhancers designated the T cell control region. J Biol Chem 2011; 286:20880-91. [PMID: 21487009 DOI: 10.1074/jbc.m111.231548] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor activator of NF-κB ligand (Rankl) is a TNF-like factor that induces the formation of osteoclasts responsible for bone resorption. Although T cell activation up-regulates this gene, the molecular mechanism of its transcriptional control remains unknown. We used ChIP-chip analysis in mouse primary T cells and a T cell hybridoma to define the regulatory enhancers responsible for this up-regulation and to characterize their properties. Elevated H3/H4 acetylation and increased RNA polymerase II density were evident at mRL-D5, a known enhancer located 76 kb upstream of the TSS, as well as at a cluster of regulatory sites located even further upstream between -123 to -156 kb, termed the T cell control region (TCCR). Based upon the ability of calcium signaling and MAPK inhibitors to block Rankl expression, we conducted further ChIP-chip analysis of the transcriptional mediators c-Fos, NF-κB, and Nfat. T cell activation induced c-Fos binding at the mRL-D5 enhancer and within the TCCR. The interaction of NF-κB was observed at the transcriptional start site and at mRL-D5. Both mRL-D5 and segments of the TCCR exhibited robust transcriptional activity in reporter assays, and site-specific mutagenesis of c-Fos and Nfat elements abrogated reporter activity, suggesting a role for both factors in the control of enhancer-mediated Rankl transcription. Finally, chromosome conformation capture analysis confirmed that mRL-D5 and segments of the TCCR were located in proximity to the Rankl gene promoter and thus potentially able to influence directly Rankl gene promoter activity. We conclude that both mRL-D5 and the TCCR represent control segments that play an integral role in Rankl expression in T cells.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
208
|
Anastasilakis AD, Polyzos SA, Anastasilakis CD, Toulis KA, Makras P. Denosumab and bisphosphonates: rivals or potential "partners"? A "hybrid" molecule hypothesis. Med Hypotheses 2011; 77:109-11. [PMID: 21482033 DOI: 10.1016/j.mehy.2011.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Bisphosphonates are well established as the treatment of choice for disorders of excessive bone resorption, including osteoporosis. They bind bone mineral with high affinity and through internalization by the resorbing osteoclasts, affect their function and survival. Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine essential for osteoclast differentiation, activation, and survival. Denosumab, a human monoclonal antibody that neutralizes RANKL, constitutes a promising antiresorptive agent for osteoporosis treatment. However, its presumable interaction with the immune system could adversely affect immune response resulting in increased risk of infections. We hypothesize that bisphosphonates could serve as a vehicle for the delivery of denosumab selectively to the skeleton. Thus, the effect on the immune system could be minimized, along with a potential increase in the antiresorptive efficacy, as a result of the combined action of denosumab and the bisphosphonate on the earlier and later stages of osteoclast life, respectively.
Collapse
|
209
|
Abstract
Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.
Collapse
|
210
|
Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 2011; 22:435-46. [PMID: 20571772 DOI: 10.1007/s00198-010-1326-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Receptor activator of nuclear factor kappa B ligand (RANKL) and its natural antagonist, osteoprotegerin (OPG), are, respectively, an indispensable factor and a potent inhibitor for osteoclast differentiation, activity, and survival. The development of a human monoclonal antibody to RANKL, denosumab, constitutes a novel approach to prevent fragility fractures in osteoporosis, skeletal complications of malignancy, and potentially bone erosions in rheumatoid arthritis (RA). In addition to being expressed by osteoblasts, RANKL is abundantly produced by activated T cells, and synoviocytes in RA, whereas its receptor, RANK, is also expressed by monocytes/macrophages and dendritic cells. However, in preclinical and clinical studies of RA-including patients with some degree of immunosuppression-RANKL inhibitors did not significantly alter inflammatory processes. RANKL, RANK, and OPG deficiency in murine models highlights the important role of this pathway in the development and maturation of the immune system in rodents, including functions of T and/or B cells, whereas OPG overexpression in mice and rats seems innocuous with regard to immunity. In contrast, loss-of-function mutations in humans have more limited effects on immune cells. In clinical studies, the overall rate of infections, cancer, and death was similar with denosumab and placebo. Nevertheless, the risk of severe infections and cancer in some specific tissues remains to be carefully scrutinized.
Collapse
Affiliation(s)
- S Ferrari-Lacraz
- Transplantation Immunology Unit, Division of Immunology and Allergy and Division of Laboratory Medicine, Department of Medical and Genetic Laboratories, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
211
|
Nemeth K, Schoppet M, Al-Fakhri N, Helas S, Jessberger R, Hofbauer LC, Goettsch C. The role of osteoclast-associated receptor in osteoimmunology. THE JOURNAL OF IMMUNOLOGY 2011; 186:13-8. [PMID: 21172874 DOI: 10.4049/jimmunol.1002483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term osteoimmunology is coined for molecular and cellular cross talk between the skeletal and immune system. Immunomodulatory signals have long been implicated as key regulators of bone metabolism. Recently, osteoclast-associated receptor (OSCAR), an IgG-like receptor, has been identified as an important osteoimmunological mediator. OSCAR expression in bone is highly conserved across different species, and the molecule is an important costimulatory receptor for osteoclast differentiation through activation of NFATc1. In humans, OSCAR is expressed by macrophages, monocytes, and monocyte-derived dendritic cells and modulates the response of the innate and adaptive immune systems by promoting cell activation and maturation, Ag presentation, and proinflammatory circuits. Human studies indicate that OSCAR may contribute to the pathogenesis and severity of osteoporosis and rheumatoid arthritis. In this paper, we review the structure-function relationship, expression pattern, and physiological role of OSCAR in osteoimmunology and summarize its potential implications for human diseases.
Collapse
Affiliation(s)
- Katharina Nemeth
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps-University, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
212
|
LTβR signaling in dendritic cells induces a type I IFN response that is required for optimal clonal expansion of CD8+ T cells. Proc Natl Acad Sci U S A 2011; 108:2046-51. [PMID: 21245292 DOI: 10.1073/pnas.1014188108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During an immune response, antigen-bearing dendritic cells (DCs) migrate to the local draining lymph node and present antigen to CD4(+) helper T cells. Antigen-activated CD4(+) T cells then up-regulate TNF superfamily members including CD40 ligand and lymphotoxin (LT)αβ. Although it is well-accepted that CD40 stimulation on DCs is required for DC licensing and cross-priming of CD8(+) T-cell responses, it is likely that other signals are integrated into a comprehensive DC activation program. Here we show that a cognate interaction between LTαβ on CD4(+) helper T cells and LTβ receptor on DCs results in unique signals that are necessary for optimal CD8(+) T-cell expansion via a type I IFN-dependent mechanism. In contrast, CD40 signaling appears to be more critical for CD8(+) T-cell IFNγ production. Therefore, different TNF family members provide integrative signals that shape the licensing potential of antigen-presenting DCs.
Collapse
|
213
|
Kautz-Neu K, Meyer RG, Clausen BE, von Stebut E. Leishmaniasis, contact hypersensitivity and graft-versus-host disease: understanding the role of dendritic cell subsets in balancing skin immunity and tolerance. Exp Dermatol 2011; 19:760-71. [PMID: 20590820 DOI: 10.1111/j.1600-0625.2010.01116.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DC) are key elements of the immune system. In peripheral tissues, they function as sentinels taking up and processing antigens. After migration to the draining lymph nodes, the DC either present antigenic peptides by themselves or transfer them to lymph node-resident DC. The skin is the primary interface between the body and the environment and host's various DC subsets, including dermal DC (dDC) and Langerhans cells (LC). Because of their anatomical position in the epidermis, LC are believed to be responsible for induction of adaptive cutaneous immune responses. The functions of LC and dDC in the skin immune system in vivo are manifold, and it is still discussed controversially whether the differentiation of T-cell subtypes (e.g. effector T cells and regulatory T cells) may be initiated by distinct DC subtypes. As skin DC are able to promote or downmodulate immune responses, we chose different skin diseases (cutaneous leishmaniasis, contact hypersensitivity, UV radiation-induced suppression, and graft-versus-host disease) to describe the biological interactions between different DC subtypes and T cells that lead to the development of efficient or unwanted immune responses. A detailed knowledge about the immune modulatory capacity of different cutaneous DC subsets might be helpful to specifically target these cells through the skin during therapeutic interventions.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
214
|
Tipton DA, Seshul BA, Dabbous MK. Effect of bisphosphonates on human gingival fibroblast production of mediators of osteoclastogenesis: RANKL, osteoprotegerin and interleukin-6. J Periodontal Res 2011; 46:39-47. [DOI: 10.1111/j.1600-0765.2010.01306.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
215
|
Leibbrandt A, Penninger JM. TNF Conference 2009: Beyond Bones – RANKL/RANK in the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:5-22. [DOI: 10.1007/978-1-4419-6612-4_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
216
|
The rheumatoid joint. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
217
|
|
218
|
Abstract
The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xu Feng
- Department of Pathology and the Center for Metabolic Bone Disease, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0007; ,
| | - Jay M. McDonald
- Department of Pathology and the Center for Metabolic Bone Disease, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0007; ,
- Veterans Administration Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
219
|
Summers Deluca L, Gommerman JL. The lymphotoxin pathway as a novel regulator of dendritic cell function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:363-74. [PMID: 21153340 DOI: 10.1007/978-1-4419-6612-4_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
220
|
Abstract
Inflammation perturbs normal bone homeostasis and is known to induce bone loss, as it promotes both local cartilage degradation and local and systemic bone destruction by osteoclasts, as well as inhibits bone formation by osteoblasts. Thus, not surprisingly, inflammatory autoimmune diseases often lead to local and/or general bone loss. However, the mechanisms that target the bone in autoimmune disease are complex and diverse, as they range from a direct attack on the bone and cartilage by the immune cells to indirect consequences of disturbances of the systemic control of bone remodeling. This Review discusses current understanding of the mechanisms of autoimmune-mediated bone loss in view of new insight from two new fields of research: osteoimmunology, which analyzes the direct effect of immune cells on bone, and the integrative metabolism approach, which established the existence of neuroendocrine loops that regulate bone remodeling.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Krankenhausstraβe 12, D-91054 Erlangen, Germany
| | | |
Collapse
|
221
|
Ashley JW, McCoy EM, Clements DA, Shi Z, Chen T, Feng X. Development of cell-based high-throughput assays for the identification of inhibitors of receptor activator of nuclear factor-kappa B signaling. Assay Drug Dev Technol 2010; 9:40-9. [PMID: 21050071 DOI: 10.1089/adt.2010.0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone loss due to metabolic or hormonal disorders and osteolytic tumor metastasis continues to be a costly health problem, but current therapeutics offer only modest efficacy. Unraveling of the critical role for the receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANK ligand (RANKL), in osteoclast biology provides an opportunity to develop more effective antiresorptive drugs. The in vivo effectiveness of RANKL inhibitors demonstrates the potency of the RANKL/RANK system as a drug target. Here, we report the development of cell-based assays for high-throughput screening to identify compounds that inhibit signaling from two RANK cytoplasmic motifs (PVQEET(559-564) and PVQEQG(604-609)), which play potent roles in osteoclast formation and function. Inhibitors of these motifs' signaling have the potential to be developed into new antiresorptive drugs that can complement current therapies. The cell-based assays consist of cell lines generated from RAW264.7 macrophages stably expressing a nuclear factor-kappa B-responsive luciferase reporter and a chimeric receptor containing the human Fas external domain linked to a murine RANK transmembrane and intracellular domain in which only one of the RANK motifs is functional. With these cells, specific RANK motif activation after chimeric receptor stimulation can be measured as an increase in luciferase activity. These assays demonstrated >300% increases in luciferase activity after RANK motif activation and Z '-factor values over 0.55. Our assays will be used to screen compound libraries for molecules that exhibit inhibitory activity. Follow-up assays will refine hits to a smaller group of more specific inhibitors of RANK signaling.
Collapse
Affiliation(s)
- Jason W Ashley
- Department of Pathology, University of Alabama at Birmingham, 1670 University Blvd., Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
222
|
Kim HJ, Hong J, Jung JW, Kim TH, Kim JA, Kim YH, Kim SY. Gymnasterkoreayne F inhibits osteoclast formation by suppressing NFATc1 and DC-STAMP expression. Int Immunopharmacol 2010; 10:1440-7. [DOI: 10.1016/j.intimp.2010.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
|
223
|
Antitumor efficacy of a photodynamic therapy-generated dendritic cell glioma vaccine. Med Oncol 2010; 28 Suppl 1:S453-61. [PMID: 20960074 DOI: 10.1007/s12032-010-9713-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/04/2010] [Indexed: 12/15/2022]
Abstract
The objective of this study is to generate dendritic cell (DC) vaccines by exposing DCs to C6 glioma cancer cell antigenic (tumor) peptides following the exposure of C6 cells to photodynamic therapy (PDT) and acid elution. Effects of these DCs on host immunity were assessed by measuring cytokine induction (following adaptive transfer into rats) and assessing DC-induced cytotoxic T lymphocyte (CTL)-mediated lysis of C6 target cells. Precursor dendritic cells were purified from rat bone marrow and matured in vitro. C6 cells were stimulated with PDT, and adherent cells were acid-eluted to obtain cell surface antigens, whole cell antigens were also isolated from supernatants. C6 cells not stimulated with PDT were also used to isolate antigens by acid elution or freeze-thaw methods for comparison purposes. The isolated antigens from the respective purification methods were used to sensitize DCs for the generation of DC vaccines subsequently transferred into SD rats. Following adoptive transfer, the changes in interleukin (IL)-12, IL-10, and TNF-α expression were measured in rat serum by ELISA. CTL-mediated lysis was assessed using the MTT assay. PDT-generated antigens further purified by acid elution had the greatest stimulatory effect on DCs based on the elevated serum IL-12 and TNF-α levels and decreased serum IL-10 levels. CTL activity in this group was also highest (percent lysis 95.5% ± 0.016) compared with that elicited by PDT-supernatants, acid elution, and freeze-thawing (or the control group), which had 90.2% ± 0.024, 73.3% ± 0.027, 63.6% ± 0.049, or 0.4% ± 0.063 lysis, respectively. PDT significantly enhanced tumor cell immunogenicity. These data suggested that DC vaccines prepared by treating tumor cells with PDT to generate antigen-specific CTL responses can be developed as novel cancer immunotherapeutic strategies.
Collapse
|
224
|
Jules J, Shi Z, Liu J, Xu D, Wang S, Feng X. Receptor activator of NF-{kappa}B (RANK) cytoplasmic IVVY535-538 motif plays an essential role in tumor necrosis factor-{alpha} (TNF)-mediated osteoclastogenesis. J Biol Chem 2010; 285:37427-35. [PMID: 20870724 DOI: 10.1074/jbc.m110.149484] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY(535-538) motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
225
|
Abstract
Bisphosphonates were the first bone-directed therapies used to treat skeletal complications resulting from malignant bone disease. Reducing the incidence of skeletal complications has significantly improved patient quality of life. Intravenous bisphosphonates also have been evaluated as an adjunct treatment to minimize bone loss from cancer therapy. In these settings, there is a suggested improvement in cancer-associated outcomes, in addition to their bone-protective benefits. Denosumab is a fully human antibody to the receptor activator of nuclear factor-kappaB ligand. Recently reported data suggest that denosumab is efficacious in decreasing skeletal-related events, but the long-term safety of denosumab remains to be determined. The available data for the approved intravenous bisphosphonates, including zoledronic acid, as well as for other investigational bone-directed therapies is reviewed, with a focus on the incidence and management of treatment-associated side effects.
Collapse
|
226
|
Zaiss MM, Sarter K, Hess A, Engelke K, Böhm C, Nimmerjahn F, Voll R, Schett G, David JP. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. ACTA ACUST UNITED AC 2010; 62:2328-38. [PMID: 20506516 DOI: 10.1002/art.27535] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Immune activation triggers bone loss. Activated T cells are the cellular link between immune activation and bone destruction. The aim of this study was to determine whether immune regulatory mechanisms, such as naturally occurring Treg cells, also extend their protective effects to bone homeostasis in vivo. METHODS Bone parameters in FoxP3-transgenic (Tg) mice were compared with those in their wild-type (WT) littermate controls. Ovariectomy was performed in FoxP3-Tg mice as a model of postmenopausal osteoporosis, and the bone parameters were analyzed. The bones of RAG-1(-/-) mice were analyzed following the adoptive transfer of isolated CD4+CD25+ T cells. CD4+CD25+ T cells and CD4+ T cells isolated from FoxP3-Tg mice and WT mice were cocultured with monocytes to determine their ability to suppress osteoclastogenesis in vitro. RESULTS FoxP3-Tg mice developed higher bone mass and were protected from ovariectomy-induced bone loss. The increase in bone mass was found to be the result of impaired osteoclast differentiation and bone resorption in vivo. Bone formation was not affected. Adoptive transfer of CD4+CD25+ T cells into T cell-deficient RAG-1(-/-) mice also increased the bone mass, indicating that Treg cells directly affect bone homeostasis without the need to engage other T cell lineages. CONCLUSION These data demonstrate that Treg cells can control bone resorption in vivo and can preserve bone mass during physiologic and pathologic bone remodeling.
Collapse
|
227
|
Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets 2010; 14:923-34. [PMID: 20678025 PMCID: PMC2929902 DOI: 10.1517/14728222.2010.511179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Osteoporosis has become a worldwide health and social issue due to an aging population. Four major antiresorptive drugs (agents capable of inhibiting osteoclast formation and/or function) are currently available on the market: estrogen, selective estrogen receptor modulators (SERMs), bisphosphonates and calcitonin. These drugs either lack satisfactory efficacy or have potential to cause serious side effects. Thus, development of more efficacious and safer drugs is warranted. AREAS COVERED IN THIS REVIEW The discovery of the receptor activator of NF-kappaB ligand (RANKL) and its two receptors, RANK and osteoprotegerin (OPG), has not only established a crucial role for the RANKL/RANK/OPG axis in osteoclast biology but also created a great opportunity to develop new drugs targeting this system for osteoporosis therapy. This review focuses on discussion of therapeutic targeting of RANK signaling. WHAT THE READER WILL GAIN An update on the functions of RANKL and an overview of the known RANK signaling pathways in osteoclasts. A discussion of rationales for exploring RANK signaling pathways as potent and specific therapeutic targets to promote future development of better drugs for osteoporosis. TAKE HOME MESSAGE Several RANK signaling components have the potential to serve as potent and specific therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Joel Jules
- University of Alabama at Birmingham, Department of Pathology, 35294, USA
| | | | | |
Collapse
|
228
|
Jurado S, Garcia-Giralt N, Díez-Pérez A, Esbrit P, Yoskovitz G, Agueda L, Urreizti R, Pérez-Edo L, Saló G, Mellibovsky L, Balcells S, Grinberg D, Nogués X. Effect of IL-1beta, PGE(2), and TGF-beta1 on the expression of OPG and RANKL in normal and osteoporotic primary human osteoblasts. J Cell Biochem 2010; 110:304-10. [PMID: 20225238 DOI: 10.1002/jcb.22538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The RANKL/RANK/OPG pathway is essential for bone remodeling regulation. Many hormones and cytokines are involved in regulating gene expression in most of the pathway components. Moreover, any deregulation of this pathway can alter bone metabolism, resulting in loss or gain of bone mass. Whether osteoblasts from osteoporotic and nonosteoporotic patients respond differently to cytokines is unknown. The aim of this study was to compare the effect of interleukin (IL)-1beta, proftaglandin E(2) (PGE(2)), and transforming growth factor-beta1 (TGF-beta1) treatments on OPG and RANKL gene expression in normal (n = 11) and osteoporotic (n = 8) primary osteoblasts. OPG and RANKL mRNA levels of primary human osteoblastic (hOB) cell cultures were assessed by real-time PCR. In all cultures, OPG mRNA increased significantly in response to IL-1beta treatment and decreased in response to TGF-beta1 whereas PGE(2) treatment had no effect. RANKL mRNA levels were significantly increased by all treatments. Differences in OPG and RANKL responses were observed between osteoporotic and nonosteoporotic hOB: in osteoporotic hOB, the OPG response to IL-1beta treatment was up to three times lower (P = 0.009), whereas that of RANKL response to TGF-beta1 was five times higher (P = 0.002) after 8 h of treatment, as compared with those in nonosteoporotic hOBs. In conclusion, osteoporotic hOB cells showed an anomalous response under cytokine stimulation, consistent with an enhanced osteoclastogenesis resulting in high levels of bone resorption.
Collapse
Affiliation(s)
- Susana Jurado
- Internal Medicine, URFOA, IMIM, RETICEF, Hospital del Mar, Autonomous University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
HMGB1-derived peptide acts as adjuvant inducing immune responses to peptide and protein antigen. Vaccine 2010; 28:7556-62. [PMID: 20800114 DOI: 10.1016/j.vaccine.2010.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 12/22/2022]
Abstract
There is a need for new adjuvants that will induce immune responses to subunit vaccines. We show that a short peptide, named Hp91, whose sequence corresponds to an area within the endogenous molecule high mobility group box (HMGB1) protein 1 potentiates cellular immune responses to peptide antigen and cellular and humoral immune responses to protein antigen in vivo. Hp91 promoted the in vivo production of the immunomodulatory cytokines, IFN-γ, TNF-α, IL-6, and IL-12 (p70), as well as antigen-specific activation of CD8+ T cells. These results demonstrate the ability of a short immunostimulatory peptide to serve as an adjuvant for subunit vaccines.
Collapse
|
230
|
Kushwah R, Hu J. Dendritic cell apoptosis: regulation of tolerance versus immunity. THE JOURNAL OF IMMUNOLOGY 2010; 185:795-802. [PMID: 20601611 DOI: 10.4049/jimmunol.1000325] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) apoptosis is an important event that regulates the balance between tolerance and immunity through multiple pathways, and defects in DC apoptosis can trigger autoimmunity. DC apoptosis is also associated with immunosuppression and has been observed under several pathologies and infections. Recent studies indicate that apoptotic DCs can also play an active role in induction of tolerance. This review discusses the regulatory pathways of DC apoptosis, stimuli inducing DC apoptosis, and the implications of DC apoptosis in the induction of immunosuppression and/or tolerance.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
231
|
Abstract
The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11c(high) DCs (conventional DCs, or cDCs), in particular, that of CD8-CD4+ (CD4+) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for the homeostasis of splenic CD4+ cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either macrophage-granulocyte colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4+ cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for the homeostasis of CD4+ cDCs and CD8-CD4- (double negative) cDCs in the spleen. SIRPα as well as its ligand, CD47, are thus important for the homeostasis of CD4+ cDCs or double negative cDCs in lymphoid tissues.
Collapse
|
232
|
Abstract
Conventional wisdom suggests that information is usually transmitted from the dendritic cell (DC) to the T cell. In this issue, Schwarz and Schwarz demonstrate that UV-induced T regulatory cells (Tregs) can influence the biology of naïve DC. They report that IL-10-secreting Tregs prime DC to activate additional Tregs when injected into naïve mice. It may be possible to use DCs that have been "educated" by Tregs to induce immune tolerance in vivo.
Collapse
Affiliation(s)
- Stephen E Ullrich
- Department of Immunology and the Center for Cancer Immunology Research, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
233
|
Abstract
Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen-presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo and in the maintenance of immune tolerance.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
234
|
Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M, Marshall AJ. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev 2010; 232:255-72. [PMID: 19909369 DOI: 10.1111/j.1600-065x.2009.00838.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signaling via phosphoinositide 3-kinases (PI3Ks) has emerged as a central component of lymphocyte activation via immunoreceptors, costimulatory receptors, cytokine receptors, and chemokine receptors. The discovery of phosphoinositide-binding pleckstrin homology (PH) domains has substantially increased understanding of how PI3Ks activate cellular responses. Accumulating evidence indicates that PH-domain containing adapter molecules provide important links between PI3K and lymphocyte function. Here, we review data on PI3K-regulated adapter proteins of the Grb-associated binder (GAB), Src kinase-associated phosphoprotein (SKAP), and B-lymphocyte adapter molecule of 32 kDa (Bam32)/ dual-adapter for phosphotyrosine and 3-phosphoinositides (DAPP)/TAPP families, with a focus on the latter group. Current data support the model that recruitment of these adapters to the plasma membrane of activated lymphocytes is driven by the phosphoinositides phosphatidylinositol-3,4,5-tris-phosphate and phosphatidylinositol-3,4-bisphosphate, generated through the action of PI3Ks and under the regulatory control of lipid phosphatases Src homology 2 domain-containing inositol phosphatase (SHIP), phosphatase and tensin homolog, and inositol polyphosphate 4-phosphatase. At the plasma membrane, these adapters serve to assemble distinct protein complexes. Bam32/DAPP1 and SKAPs function to promote activation of monomeric guanosine triphosphatases, including Rac and Rap, and promote integrin activation, lymphocyte adhesion to matrix proteins, and cell:cell interactions between B and T lymphocytes. GABs can provide feedforward amplification or feedback inhibition of PI3K signaling. Current work is further defining the molecular interactions driven by these molecules and identifying the functions of TAPP adapters, which also appear to be involved in lymphocyte adhesion and are specific effectors downstream of the SHIP product phosphatidylinositol-3,4-bisphosphate.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
A sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for the mouse RANKL-OPG complex was developed by utilizing a polyclonal antibody that recognizes mouse soluble RANKL as an immobilized capture component and mouse OPG IgG labeled with peroxidase. We could quantify the RANKL-OPG complex level (detection limit: 1 pmol/L). Employing this assay system, we demonstrated that the RANKL-OPG complex was constitutively present in the serum of OPG+/- mice, but not in that of OPG-/- or wild-type C57BL/6 J mice.
Collapse
Affiliation(s)
- Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan.
| | | |
Collapse
|
236
|
George S, Brenner A, Sarantopoulos J, Bukowski RM. RANK Ligand: Effects of Inhibition. Curr Oncol Rep 2010; 12:80-6. [DOI: 10.1007/s11912-010-0088-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
237
|
Anastasilakis AD, Toulis KA, Polyzos SA, Terpos E. RANKL inhibition for the management of patients with benign metabolic bone disorders. Expert Opin Investig Drugs 2010; 18:1085-102. [PMID: 19558335 DOI: 10.1517/13543780903048929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The receptor activator of NF-kappaB ligand (RANKL) is a member of the TNF receptor superfamily, essential for osteoclastogenesis. It binds to its receptor activator of NF-kappaB on the surface of osteoclast precursors and enhances their differentiation, survival and fusion, while it activates mature osteoclasts and inhibits their apoptosis. The effects of RANKL are counteracted by osteoprotegerin (OPG), a neutralizing decoy receptor. Derangement of the balance in RANKL/OPG action is implicated in the pathophysiology of metabolic bone diseases, including osteoporosis. Current therapies used to prevent or treat metabolic bone diseases are thought to act, at least in part, through modification of the RANKL/OPG dipole. The idea of using a molecule that could specifically bind and neutralize RANKL to decrease bone resorption and subsequent bone loss is appealing. Recombinant OPG was initially tested. Denosumab, a fully human monoclonal antibody against RANKL, is a promising antiresorptive agent under investigation. It rapidly decreases bone turnover markers resulting in a significant increase in bone mineral density and reduction in fracture risk. However, because receptor activator of NF-kappaB activation by RANKL is also essential for T-cell growth and dendritic-cell function, inhibition of its action could simultaneously affect the immune system, leading to susceptibility in infections or malignancies.
Collapse
|
238
|
McHugh KP, Shen Z, Crotti TN, Flannery MR, O'Sullivan RP, Purdue PE, Goldring SR. The role of cell-substrate interaction in regulating osteoclast activation: potential implications in targeting bone loss in rheumatoid arthritis. Ann Rheum Dis 2010; 69 Suppl 1:i83-85. [PMID: 19995752 DOI: 10.1136/ard.2009.120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Analysis of tissues retrieved from the bone-pannus interface from patients with rheumatoid arthritis (RA) and studies in animal models of inflammatory arthritis provide strong evidence that osteoclasts, the cells that are essential for physiological bone resorption, are responsible for articular bone destruction in RA. However, current treatments that specifically target osteoclast-mediated bone resorption in RA have not been successful in preventing bone erosions, and new therapeutic strategies are needed. It has been noted that, although osteoclast precursors are present within the bone microenvironment at sites of pathological bone resorption, cells expressing the full morphological and functional properties of mature osteoclasts are restricted to the immediate bone surface and adjacent calcified cartilage. These findings provide evidence that, in addition to requirements for specific cytokines, interaction of osteoclast precursors with these mineralised matrices results in activation of specific signal pathways and the induction of unique gene products that are essential for terminal osteoclast differentiation and activation. These studies are designed to define the gene products and signalling pathways regulated by bone and calcified cartilage, to identify new molecular targets and novel therapeutic approaches for preventing osteoclast-mediated joint destruction in RA and related forms of pathological bone loss.
Collapse
Affiliation(s)
- K P McHugh
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Stolina M, Schett G, Dwyer D, Vonderfecht S, Middleton S, Duryea D, Pacheco E, Van G, Bolon B, Feige U, Zack D, Kostenuik P. RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies. Arthritis Res Ther 2009; 11:R187. [PMID: 20003323 PMCID: PMC3003514 DOI: 10.1186/ar2879] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 11/17/2009] [Accepted: 12/11/2009] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFalpha, IL-1beta, and receptor activator of NF-kappaB ligand (RANKL). Anti-IL-1 or anti-TNFalpha therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation. Effects of these therapies on systemic markers of bone turnover and inflammation have not been directly compared. METHODS Lewis rats with established AIA or CIA were treated for 10 days (from day 4 post onset) with either PBS (Veh), TNFalpha inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was evaluated by monitoring hind paw swelling. Bone mineral density (BMD) of paws and lumbar vertebrae was assessed by dual X-ray absorptiometry. Markers and mediators of bone resorption (RANKL, tartrate-resistant acid phosphatase 5b (TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-phase protein alpha-1-acid glycoprotein (alpha1AGP), multiple cytokines) were measured in serum (day 14 post onset). RESULTS Arthritis progression significantly increased paw swelling and ankle and vertebral BMD loss. Anti-TNFalpha reduced paw swelling in both models, and reduced ankle BMD loss in AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and reduced ankle BMD loss in both models. Anti-TNFalpha and anti-IL-1 failed to prevent vertebral BMD loss in either model. OPG-Fc reduced BMD loss in ankles and vertebrae in both models, but had no effect on paw swelling. Serum RANKL was elevated in AIA-Veh and CIA-Veh rats. While antiTNFalpha and anti-IL-1 partially normalized serum RANKL without any changes in serum TRACP 5B, OPG-Fc treatment reduced serum TRACP 5B by over 90% in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had increased serum alpha1AGP, IL-1beta, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), and AIA-Veh rats also had significantly greater serum PGE2, TNFalpha and IL-17. Anti-TNFalpha reduced systemic alpha1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased systemic alpha1AGP, IL-8 and PGE2. In contrast, RANKL inhibition by OPG-Fc did not lessen systemic cytokine levels in either model. CONCLUSIONS Anti-TNFalpha or anti-IL-1 therapy inhibited parameters of local and systemic inflammation, and partially reduced local but not systemic bone loss in AIA and CIA rats. RANKL inhibition prevented local and systemic bone loss without significantly inhibiting local or systemic inflammatory parameters.
Collapse
Affiliation(s)
- Marina Stolina
- Department of Metabolic Disorders, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Liu YCG, Teng YTA. Dendritic Cell-Associated Osteoclastogenesis and Bone Loss. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
241
|
Abstract
Recent studies have elucidated unanticipated connections between the immune and skeletal systems, and this relationship has led to the development of a new field known as osteoimmunology. The goal of research in this field is to: (1) further understand how the bone microenvironment influences immune cell ontogeny and subsequent effector functions, and (2) translate basic science findings in bone biology to clinical applications for autoimmune diseases that target the skeleton such as rheumatoid arthritis (RA). In this review, we will examine the recent findings of the interplay between the immune and skeletal systems. This discussion will focus on the cells and signaling pathways in osteoimmune interactions and how innate and adaptive immune effector cells as well as cytokines and chemokines play a role in the maintenance and dysregulation of skeletal-immune homeostasis. We will also discuss how immunomodulatory biologic drugs, which specifically target these cells and effector molecules, have transformed the treatment of autoimmune mediated inflammatory diseases (IMIDs) and metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Kofi A Mensah
- The Department of Microbiology and Immunology, University of Rochester Medical Center, NY, USA.
| | | | | |
Collapse
|
242
|
Wasilewska A, Rybi-Szuminska AA, Zoch-Zwierz W. Serum osteoprotegrin (OPG) and receptor activator of nuclear factor kappaB (RANKL) in healthy children and adolescents. J Pediatr Endocrinol Metab 2009; 22:1099-104. [PMID: 20333868 DOI: 10.1515/jpem.2009.22.12.1099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
UNLABELLED Most metabolic bone diseases are characterized by a disturbance in bone resorption, therefore biochemical markers concerning this process are of special interest. Recent investigations in bone biology identified the RANKL/ RANK/OPG system, the set of cytokines or cytokine receptors belonging to the tumor necrosis factor (TNF) family that are required for control of bone modeling and remodeling. The imbalance between OPG and RANKL was found not only in pathology of bone, but also in the control of the immune and vascular systems. However, clinical application of new bone markers in children may be difficult due to lack of reference data in relation to age, sex and physiological development. AIM To investigate the relationship of serum concentrations of OPG, RANKL and OPG/RANKL ratio in relation to age, sex and parameters of physical development in healthy children and adolescents. CHILDREN AND METHODS The study was performed on a group of 70 healthy children and adolescents, divided into subgroups according to sex and age. OPG and sRANKL serum concentrations were determined using ELISA. RESULTS Serum OPG did not differ between boys and girls or younger and older children. There was no correlation between OPG level and height, weight and BMI percentiles. The level of sRANKL was 3 times higher in males than in females (p < 0.01) and almost 3 times higher in older than younger children (p < 0.01). There was a positive correlation between sRANKL concentration and body weight percentile (r = 0.268, p < 0.05). There was no correlation between serum OPG and sRANKL levels. CONCLUSION In healthy children and adolescents the serum level of OPG is not influenced by age, sex or parameters of physical development, in contrast to sRANKL and sRANKL/OPG ratio, which are dependent on these factors. Age and sex reference data should be established.
Collapse
Affiliation(s)
- A Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, Poland.
| | | | | |
Collapse
|
243
|
Rifas L, Weitzmann MN. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. ARTHRITIS AND RHEUMATISM 2009; 60:3324-35. [PMID: 19877052 PMCID: PMC2783420 DOI: 10.1002/art.24877] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Chronic T cell activation is central to the etiology of rheumatoid arthritis (RA), an inflammatory autoimmune disease that leads to severe focal bone erosions and generalized systemic osteoporosis. Previous studies have shown novel cytokine-like activities in medium containing activated T cells, characterized by potent induction of the osteoblastic production of interleukin-6 (IL-6), an inflammatory cytokine and stimulator of osteoclastogenesis, as well as induction of an activity that directly stimulates osteoclast formation in a manner independent of the key osteoclastogenic cytokine RANKL. This study was undertaken to identify the factors secreted by T cells that are responsible for these activities. METHODS Human T cells were activated using anti-human CD3 and anti-human CD28 antibodies for 72 hours in AIM V serum-free medium to obtain T cell-conditioned medium, followed by concentration and fractionation of the medium by fast-protein liquid chromatography. Biologically active fractions were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major bands were analyzed by mass spectrometry, and a major candidate protein was identified. This novel cytokine was cloned, and its expression was analyzed using recombinant DNA technologies. RESULTS A single novel cytokine that could induce both osteoblastic IL-6 production and functional osteoclast formation in the absence of osteoblasts or RANKL and that was insensitive to the effects of the RANKL inhibitor osteoprotegerin was identified in the activated T cell-conditioned medium; this cytokine was designated secreted osteoclastogenic factor of activated T cells (SOFAT). Further analysis of SOFAT revealed that it was derived from an unusual messenger RNA splice variant coded by the threonine synthase-like 2 gene homolog, which is a conserved gene remnant coding for threonine synthase, an enzyme that functions only in microorganisms and plants. CONCLUSION SOFAT may act to exacerbate inflammation and/or bone turnover under inflammatory conditions such as RA or periodontitis and in conditions of estrogen deficiency.
Collapse
Affiliation(s)
- Leonard Rifas
- Department Of Pediatrics, Washington University School Of Medicine, St. Louis, Missouri
| | - M. Neale Weitzmann
- Division of Endocrinology & Metabolism & Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033
| |
Collapse
|
244
|
Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, Akiba H, Yagita H, Kiyono H, Williams IR. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. THE JOURNAL OF IMMUNOLOGY 2009; 183:5738-47. [PMID: 19828638 DOI: 10.4049/jimmunol.0901563] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microfold cells (M cells) are specialized epithelial cells situated over Peyer's patches (PP) and other organized mucosal lymphoid tissues that transport commensal bacteria and other particulate Ags into intraepithelial pockets accessed by APCs. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL) is selectively expressed by subepithelial stromal cells in PP domes. We found that RANKL null mice have <2% of wild-type levels of PP M cells and markedly diminished uptake of 200 nm diameter fluorescent beads. Ab-mediated neutralization of RANKL in adult wild-type mice also eliminated most PP M cells. The M cell deficit in RANKL null mice was corrected by systemic administration of exogenous RANKL. Treatment with RANKL also induced the differentiation of villous M cells on all small intestinal villi with the capacity for avid uptake of Salmonella and Yersinia organisms and fluorescent beads. The RANK receptor for RANKL is expressed by epithelial cells throughout the small intestine. We conclude that availability of RANKL is the critical factor controlling the differentiation of M cells from RANK-expressing intestinal epithelial precursor cells.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Ezra N, Van Dyke GS, Binder SW. CD30 positive anaplastic large-cell lymphoma mimicking Langerhans cell histiocytosis. J Cutan Pathol 2009; 37:787-92. [DOI: 10.1111/j.1600-0560.2009.01430.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
246
|
Abstract
Completion of the human genome is one of the many significant milestones in the new era of systems biology. The current phase of genomic studies is focused upon parsing this new found genetic data with respect to scientific interest, and economic and health impact applications. As the sequences are now available and whole genome single nucleotide polymorphism maps for multiple human diseases will be available with the advent of modern genomics, the big challenge is to determine the function of these genes in the context of the entire organism. The emphasis is therefore on functional genomic analysis that represents the new front-line and limiting factor for realizing potential benefits of genome-based science. Defined gene targeting has been proven to be particularly useful as loss of expression mutants can reveal essential functions of molecules and the pathogenesis of disease. Using gene-targeted mice, my group has over the years identified genes that control heart and lung functions; apoptosis; lymphocyte activation; cancer; pain; diabetes; fertility or wound healing . In this study, I would like to review our work on RANKL in more detail.
Collapse
Affiliation(s)
- A Leibbrandt
- Institute for Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria
| | | |
Collapse
|
247
|
Abstract
In this review, we focus on the function of CD40-CD40L (CD154) interactions in the regulation of dendritic cell (DC)-T cell and DC-B cell crosstalk. In addition, we examine differences and similarities between the CD40 signaling pathway in DCs and other innate immune cell receptors, and how these pathways integrate DC functions. As research into DC vaccines and immunotherapies progresses, further understanding of CD40 and DC function will advance the applicability of DCs in immunotherapy for human diseases.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Immunology, 1959 NE Pacific Street, Health Sciences Building, Box 357650, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
248
|
Wojtusciszyn A, Andres A, Morel P, Charvier S, Armanet M, Toso C, Choi Y, Bosco D, Berney T. Immunomodulation by blockade of the TRANCE co-stimulatory pathway in murine allogeneic islet transplantation. Transpl Int 2009; 22:931-9. [PMID: 19453995 PMCID: PMC2858391 DOI: 10.1111/j.1432-2277.2009.00892.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We explore herein the effect of TNF-related activation-induced cytokine (TRANCE) co-stimulatory pathway blockade on islet survival after allograft transplantation. Expression of TRANCE on murine C57Bl/6 (B6) CD4+ T cells after allogeneic activation was analyzed by fluorescence-activated cell sorter (FACS). The effect of a TRANCE receptor fusion protein (TR-Fc) and anti-CD154 antibody (MR1) on B6 spleen cell proliferation after allogeneic activation was assessed by mixed lymphocyte reaction (MLR). Three groups of B6 mice were transplanted with allogeneic islets (DBA2): Control; short-term TR-Fc-treatment (days 0-4); and prolonged TR-Fc-treatment (days -1 to 13). Donor-specific transfusion (DST) was performed at the time of islet transplantation in one independent experiment. Transplantectomy samples were analyzed by immunohistochemistry. TRANCE expression was upregulated in stimulated CD4+ T cells in vitro. In MLR experiments, TR-Fc and MR1 both reduced spleen cell proliferation, but less than the combination of both molecules. Short-course TR-Fc treatment did not prolong islet graft survival when compared with controls (10.6 +/- 1.9 vs. 10.7 +/- 1.5 days) in contrast to prolonged treatment (20.7 +/- 3.2 days; P < 0.05). After DST, primary non function (PNF) was observed in half of control mice, but never in TR-Fc-treated mice. Immunofluorescence staining for Mac-1 showed a clear decrease in macrophage recruitment in the treated groups. TRANCE-targeting may be an effective strategy for the prolongation of allogeneic islet graft survival, thanks to its inhibitory effects on co-stimulatory signals and macrophage recruitment.
Collapse
Affiliation(s)
- Anne Wojtusciszyn
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Endocrinology, University of Montpellier Medical Center, Montpellier, France
| | - Axel Andres
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Philippe Morel
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Solange Charvier
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Mathieu Armanet
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christian Toso
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
249
|
Ang E, Pavlos NJ, Rea SL, Qi M, Chai T, Walsh JP, Ratajczak T, Zheng MH, Xu J. Proteasome inhibitors impair RANKL-induced NF-κB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IκBα signaling cascades. J Cell Physiol 2009; 220:450-9. [DOI: 10.1002/jcp.21787] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
250
|
Chino T, Draves KE, Clark EA. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J Leukoc Biol 2009; 86:933-40. [PMID: 19641036 DOI: 10.1189/jlb.0708419] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The TNF family ligand, RANKL, and its two TNFR family receptors, RANK and OPG, enable coordinated regulation between the skeletal and immune systems. Relatively little is known about how OPG influences RANKL-RANK interactions for the regulation of DCs. Here, we show that OPG KO bone marrow-derived DCs survive better and produce more TNF-alpha, IL-12p40, and IL-23 in response to Escherichia coli LPS than WT DCs. RANKL is induced on DCs within 24 h after LPS stimulation. OPG limits RANKL-RANK interactions between DCs, which can promote DC survival and elevated expression of proinflammatory cytokines. Survival of and cytokine production by OPG KO DCs are inhibited by soluble OPG; conversely, anti-OPG enhances survival and cytokine production by WT DCs. Bim KO DCs, like OPG KO, also survive longer and produce more TNF-alpha than WT DCs; however, unlike OPG KO, Bim KO DCs do not produce more IL-23. In addition, after inoculation with LPS, OPG KO mice produce more TNF-alpha and IL-12p40 than WT mice but not more IL-6. Thus, OPG regulates not only DC survival but also the nature of DC-dependent inflammatory responses.
Collapse
Affiliation(s)
- Takahiro Chino
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195-7132, USA.
| | | | | |
Collapse
|