201
|
Li X, Ding X, Liu M, Wang J, Sun W, Teng Y, Xu Y, Wu H, Li W, Zhou L, Chen J. A multicenter prospective study of TACE combined with lenvatinib and camrelizumab for hepatocellular carcinoma with portal vein tumor thrombus. Cancer Med 2023; 12:16805-16814. [PMID: 37387602 PMCID: PMC10501288 DOI: 10.1002/cam4.6302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/25/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) predicts a poor prognosis. The aim of the present study was to evaluate the efficacy and safety of using lenvatinib and camrelizumab combined with transarterial chemoembolization (TACE) to treat HCC with PVTT. METHODS This was a single-arm, open-label, multicenter, and prospective study. Eligible patients with advanced HCC accompanied by PVTT were enrolled to receive TACE combined with lenvatinib and camrelizumab. The primary endpoint was progression-free survival (PFS), while the secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety. RESULTS Between April 2020 and April 2022, 69 patients were successfully enrolled. With a median follow-up time of 17.3 months, the median age of the patient cohort was 57 years (range: 49-64 years). According to modified Response Evaluation Criteria in Solid Tumors, the ORR was 26.1% (18 partial responses [PRs]) and the DCR was 78.3% (18 PRs, 36 stable diseases [SDs]). The median PFS (mPFS) and median OS (mOS) were 9.3 and 18.2 months, respectively. And tumor number >3 was identified as an adverse risk factor for both PFS and OS. The most common adverse events across all grades included fatigue (50.7%), hypertension (46.4%), and diarrhea (43.5%). Twenty-four patients (34.8%) experienced Grade 3 toxicity that was relieved by dose adjustment and symptomatic treatment. No treatment-related deaths occurred. CONCLUSIONS TACE combined with lenvatinib and camrelizumab is a well-tolerated modality treatment with promising efficacy for advanced HCC with PVTT.
Collapse
Affiliation(s)
- Xiaomi Li
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoyan Ding
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Mei Liu
- Department of Oncology, Beijing You'an HospitalCapital Medical UniversityBeijingChina
| | - Jingyan Wang
- Department of Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Wei Sun
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Ying Teng
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yawen Xu
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Hongxiao Wu
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Wendong Li
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Lin Zhou
- Department of Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Jinglong Chen
- Department of Cancer Center, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
202
|
Jiang N, Zhong B, Huang J, Li W, Zhang S, Zhu X, Ni C, Shen J. Transarterial chemoembolization combined with molecularly targeted agents plus immune checkpoint inhibitors for unresectable hepatocellular carcinoma: a retrospective cohort study. Front Immunol 2023; 14:1205636. [PMID: 37583693 PMCID: PMC10425157 DOI: 10.3389/fimmu.2023.1205636] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose To retrospectively evaluate and compare treatment effectiveness and safety between transarterial chemoembolization (TACE) combined with molecularly targeted agents plus immune checkpoint inhibitors (TACE+T+I) and TACE combined with molecularly targeted agents (TACE+T) for unresectable hepatocellular carcinoma (uHCC). Methods We retrospectively analyzed the data of patients with unresectable HCC from January 2018 to June 2022. The patients were screened based on the inclusion criteria and were divided into the triple combination group (TACE+T+I) and the double combination group (TACE+T). The primary outcomes were overall survival (OS), progression-free survival (PFS), and adverse events (AEs). The secondary outcomes were objective response rate (ORR) and disease control rate (DCR). Risk factors associated with PFS and OS were determined by Cox regression analysis. Results A total of 87 patients were enrolled in this study, including 42 patients in the TACE+T+I group and 45 patients in the TACE+T group. Over a median follow-up of 29.00 and 26.70 months, patients who received TACE+T+I therapy achieved a significantly longer median OS (24.00 vs. 21.40 months, p = 0.007) and median PFS (9.70 vs. 7.00 months, p = 0.017); no grade 4 AEs or treatment-related death occurred in the two groups. Grade 3 AEs attributed to systemic agents in the two groups showed no significant difference (19.0% vs. 15.6%, p = 0.667). Patients in the TACE+T+I group demonstrated better tumor response when compared with patients in the TACE+T group, with an ORR of 52.4% vs. 17.8% (p = 0.001). No significant difference was observed in DCR between the two groups (83.3% vs. 77.8%, p = 0.514). Cox regression analysis showed that only the treatment method was an independent factor of OS, and both age and treatment method were independent factors related to PFS. Conclusion Compared with TACE plus molecularly targeted agents (TACE+T), the triple therapy (TACE+T+I) could improve survival and tumor response in unresectable HCC with manageable toxicities.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Shen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
203
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
204
|
Moshe DL, Baghaie L, Leroy F, Skapinker E, Szewczuk MR. Metamorphic Effect of Angiogenic Switch in Tumor Development: Conundrum of Tumor Angiogenesis Toward Progression and Metastatic Potential. Biomedicines 2023; 11:2142. [PMID: 37626639 PMCID: PMC10452636 DOI: 10.3390/biomedicines11082142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of angiogenesis has significantly expanded over the past five decades. More recently, research has focused on this process at a more molecular level, looking at it through the signaling pathways that activate it and its non-direct downstream effects. This review discusses current findings in molecular angiogenesis, focusing on its impact on the immune system. Moreover, the impairment of this process in cancer progression and metastasis is highlighted, and current anti-angiogenic treatments and their effects on tumor growth are discussed.
Collapse
Affiliation(s)
- Daniel Leon Moshe
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fleur Leroy
- Faculté de médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
205
|
Martin SD, Bhuiyan I, Soleimani M, Wang G. Biomarkers for Immune Checkpoint Inhibitors in Renal Cell Carcinoma. J Clin Med 2023; 12:4987. [PMID: 37568390 PMCID: PMC10419620 DOI: 10.3390/jcm12154987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized renal cell carcinoma treatment. Patients previously thought to be palliative now occasionally achieve complete cures from ICI. However, since immunotherapies stimulate the immune system to induce anti-tumor immunity, they often lead to adverse autoimmunity. Furthermore, some patients receive no benefit from ICI, thereby unnecessarily risking adverse events. In many tumor types, PD-L1 expression levels, immune infiltration, and tumor mutation burden predict the response to ICI and help inform clinical decision making to better target ICI to patients most likely to experience benefits. Unfortunately, renal cell carcinoma is an outlier, as these biomarkers fail to discriminate between positive and negative responses to ICI therapy. Emerging biomarkers such as gene expression profiles and the loss of pro-angiogenic proteins VHL and PBRM-1 show promise for identifying renal cell carcinoma cases likely to respond to ICI. This review provides an overview of the mechanistic underpinnings of different biomarkers and describes the theoretical rationale for their use. We discuss the effectiveness of each biomarker in renal cell carcinoma and other cancer types, and we introduce novel biomarkers that have demonstrated some promise in clinical trials.
Collapse
Affiliation(s)
- Spencer D. Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Ishmam Bhuiyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Maryam Soleimani
- Division of Medical Oncology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
206
|
Tao M, Han J, Shi J, Liao H, Wen K, Wang W, Mui S, Li H, Yan Y, Xiao Z. Application and Resistance Mechanisms of Lenvatinib in Patients with Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1069-1083. [PMID: 37457652 PMCID: PMC10348321 DOI: 10.2147/jhc.s411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lenvatinib, a multitargeted tyrosine kinase inhibitor (TKI), is one of the preferred targeted drugs for the treatment of advanced hepatocellular carcinoma (aHCC). Since the REFLECT study showed that lenvatinib was noninferior to sorafenib in overall survival (OS), lenvatinib monotherapy has been widely used for aHCC. Moreover, lenvatinib combination therapy, especially lenvatinib combined with immune checkpoint inhibitors (ICIs), has shown more encouraging clinical results. However, drug development and comprehensive treatment have not significantly improved the prognosis, and lenvatinib resistance is often encountered in treatment. The underlying molecular mechanism of lenvatinib resistance is still unclear, and studies to solve drug resistance are ongoing. The molecular mechanisms of lenvatinib resistance in patients with aHCC include the regulation of signaling pathways, the regulation of noncoding RNAs, the impact of the immune microenvironment, tumor stem cell activation and other mechanisms. This review aims to (1) summarize the progress of lenvatinib in treating aHCC, (2) delineate the known lenvatinib resistance mechanisms of current therapy, and (3) describe the development of therapeutic methods intended to overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jing Han
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| |
Collapse
|
207
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
208
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
209
|
Iso H, Miyanaga A, Kadoma N, Shinbu K, Tozuka T, Murata A, Nishima S, Sato Y, Nakamichi S, Matsumoto M, Noro R, Terasaki Y, Kubota K, Seike M. Remarkable Clinical Response of ALK-Rearranged/ TP53-Mutant Lung Adenocarcinoma with Liver Metastasis to Atezolizumab-Bevacizumab-Carboplatin-Paclitaxel After ALK Inhibitors: A Case Report. Onco Targets Ther 2023; 16:465-470. [PMID: 37384219 PMCID: PMC10296560 DOI: 10.2147/ott.s404035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Anaplastic lymphoma kinase-positive (ALK-positive) lung adenocarcinoma with multiple liver metastases accounts for a relatively small number of cases of non-small cell lung cancer. Several ALK-tyrosine kinase inhibitors (ALK-TKIs) are available for the treatment of lung cancer. However, there is limited evidence on the treatment of multiple liver metastases in patients with lung cancer that are refractory to ALK-TKIs. We report the case of a 42-year-old male patient with ALK-positive lung adenocarcinoma who experienced rapid progression to multiple liver metastases while receiving treatment with alectinib. Biopsy of the liver metastases revealed echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) fusion and tumor protein p53 (TP53) mutation; notably, ALK secondary mutations were not detected. Despite the sequential administration of third-generation ALK-TKIs, the liver metastases did not respond, the serum levels of total bilirubin and biliary enzymes continued to increase, and the patient's general appearance worsened. Finally, the patient exhibited a remarkable clinical response to treatment with a combination of atezolizumab, bevacizumab, carboplatin, and paclitaxel (ABCP). ABCP is one of the optimal options for ALK-positive lung cancer with liver metastasis that is refractory to ALK-TKIs therapy.
Collapse
Affiliation(s)
- Hirokazu Iso
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Naohiro Kadoma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kaoruko Shinbu
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akari Murata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shunichi Nishima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yozo Sato
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
210
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
211
|
Yoon WH, DeFazio A, Kasherman L. Immune checkpoint inhibitors in ovarian cancer: where do we go from here? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:358-377. [PMID: 37457131 PMCID: PMC10344730 DOI: 10.20517/cdr.2023.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and despite advancements in therapeutics, most women unfortunately still succumb to their disease. Immunotherapies, in particular immune checkpoint inhibitors (ICI), have been therapeutically transformative in many tumour types, including gynaecological malignancies such as cervical and endometrial cancer. Unfortunately, these therapeutic successes have not been mirrored in ovarian cancer clinical studies. This review provides an overview of the ovarian tumour microenvironment (TME), particularly factors associated with survival, and explores current research into immunotherapeutic strategies in EOC, with an exploratory focus on novel therapeutics in navigating drug resistance.
Collapse
Affiliation(s)
- Won-Hee Yoon
- Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown 2148, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Gynecological Oncology, Westmead Hospital, Westmead 2145, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney 2011, Australia
| | - Lawrence Kasherman
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong 2500, Australia
| |
Collapse
|
212
|
Tu J, Liang H, Li C, Huang Y, Wang Z, Chen X, Yuan X. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front Immunol 2023; 14:1198972. [PMID: 37334350 PMCID: PMC10272381 DOI: 10.3389/fimmu.2023.1198972] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Tumor immunotherapy, as the focus of scientific research and clinical tumor treatment in recent years, has received extensive attention. Due to its remarkable curative effect and fewer side effects than traditional treatments, it has significant clinical benefits for the treatment of various advanced cancers and can improve cancer patient survival in the long term. Currently, most patients cannot benefit from immunotherapy, and some patients may experience tumor recurrence and drug resistance even if they achieve remission overcome. Numerous studies have shown that the abnormal angiogenesis state of tumors can lead to immunosuppressive tumor microenvironment, which affects the efficacy of immunotherapy. Actually, to improve the efficacy of immunotherapy, the application of anti-angiogenesis drugs to normalize abnormal tumor vessel has been widely confirmed in basic and clinical research. This review not only discusses the risk factors, mechanisms, and effects of abnormal and normalized tumor angiogenesis state on the immune environment, but summarizes the latest progress of immunotherapy combined with anti-angiogenic therapy. We hope this review provides an applied reference for anti-angiogenesis drugs and synergistic immunotherapy therapy.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
213
|
Kessler ER, Callihan E, Hu J, Eule C, Srivastava G, Kemme DJ, Iruku P, Rana V, Moore J, Schuster SR, Amirault M, Flaig TW, Lam ET. A Phase I/II Clinical Trial of Pembrolizumab and Cabozantinib in Metastatic Renal Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1004-1012. [PMID: 37377613 PMCID: PMC10249509 DOI: 10.1158/2767-9764.crc-23-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Purpose Immune checkpoint inhibitor and VEGFR inhibitor combinations are effective treatments for patients with metastatic renal cell carcinoma (mRCC). This phase I/II clinical trial evaluated the safety and efficacy of pembrolizumab and cabozantinib in patients with mRCC. Experimental Design Eligible patients had mRCC with clear-cell or non-clear cell histology, adequate organ function, Eastern Cooperative Oncology Group 0-1 performance status, and no prior exposure to pembrolizumab or cabozantinib. The primary endpoint was objective response rate (ORR) at the recommended phase II dose (RP2D). Secondary endpoints included safety, disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), and overall survival (OS). Results Forty-five patients were enrolled. A total of 40 patients were treated at the RP2D of pembrolizumab 200 mg i.v. every 3 weeks and cabozantinib 60 mg orally once daily, 38 of which were evaluable for response. The ORR was 65.8% [95% confidence interval (CI), 49.9-78.8] for all evaluable patients [78.6% as first-line therapy, 58.3% as second-line therapy]. The DCR was 97.4% (95% CI, 86.5-99.9). Median DoR was 8.3 months (interquartile range, 4.6-15.1). At a median follow-up of 23.54 months, the median PFS was 10.45 months (95% CI, 6.25-14.63) and median OS was 30.81 months (95% CI, 24.2-not reached). The most common grade 1 and/or 2 treatment-related adverse events (TRAE) were diarrhea, anorexia, dysgeusia, weight loss, and nausea. The most common grade 3 and/or 4 TRAEs were hypertension, hypophosphatemia, alanine transaminase elevation, diarrhea, and fatigue. There was one grade 5 TRAE of reversible posterior encephalopathy syndrome related to cabozantinib. Conclusions Pembrolizumab and cabozantinib treatment in patients with mRCC demonstrated encouraging preliminary efficacy and a manageable toxicity profile comparable with other available checkpoint inhibitor-tyrosine kinase inhibitor combinations. Trial Registration ClinicalTrials.gov Identifier: NCT03149822 https://clinicaltrials.gov/ct2/show/NCT03149822. Significance This study evaluated the safety and effectiveness of the combination of pembrolizumab and cabozantinib in patients with mRCC. The safety profile was manageable. The combination showed promising activity with an objective response rate of 65.8%, median PFS of 10.45 months, and median OS of 30.81 months.
Collapse
Affiliation(s)
- Elizabeth R. Kessler
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eryn Callihan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Junxiao Hu
- University of Colorado Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Corbin Eule
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Geetika Srivastava
- UCHealth Cancer Care and Hematology Clinic, Memorial Hospital Central, Colorado Springs, Colorado
| | - Douglas J. Kemme
- UCHealth Cancer Center Harmony Campus, Poudre Valley Hospital, Fort Collins, Colorado
| | - Praveena Iruku
- UCHealth Cancer Care and Hematology Clinic, Memorial Hospital Central, Colorado Springs, Colorado
| | - Vishal Rana
- UCHealth Cancer Care and Hematology Clinic, Memorial Hospital Central, Colorado Springs, Colorado
| | - James Moore
- UCHealth Cancer Center Harmony Campus, Poudre Valley Hospital, Fort Collins, Colorado
| | - Steven R. Schuster
- UCHealth Cancer Center Harmony Campus, Poudre Valley Hospital, Fort Collins, Colorado
| | - Mali Amirault
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas W. Flaig
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elaine T. Lam
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- UCHealth Lone Tree Medical Center, Lone Tree, Colorado
| |
Collapse
|
214
|
Qiao S, Hou Y, Rong Q, Han B, Liu P. Tregs are involved in VEGFA/ VASH1-related angiogenesis pathway in ovarian cancer. Transl Oncol 2023; 32:101665. [PMID: 37018867 PMCID: PMC10106963 DOI: 10.1016/j.tranon.2023.101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.
Collapse
Affiliation(s)
- Sijing Qiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Qing Rong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China
| | - Bing Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; College of Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China; Shandong Engineering Laboratory for Urogynecology; Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
215
|
Brisson L, Henrique Geraldo L, Bikfalvi A, Mathivet T. The strange Microenvironment of Glioblastoma. Rev Neurol (Paris) 2023; 179:490-501. [PMID: 36964121 PMCID: PMC11195635 DOI: 10.1016/j.neurol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor, with poor patient survival and lack of effective therapies. Late advances trying to decipher the composition of the GB tumor microenvironment (TME) emphasized its role in tumor progression and potentialized it as a therapeutic target. Many components participate critically to tumor development and expansion such as blood vessels, immune cells or components of the nervous system. Dysmorphic tumor vasculature brings challenges to optimal delivery of cytotoxic agents currently used in clinics. Also, massive infiltration of immunosuppressive myeloid cells and limited recruitment of T cells limits the success of conventional immunotherapies. Neuronal input seems also be required for tumor expansion. In this review, we provide a comprehensive report of vascular and immune component of the GB TME and their cross talk during GB progression.
Collapse
Affiliation(s)
- L Brisson
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| | - L Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - A Bikfalvi
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France.
| | - T Mathivet
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| |
Collapse
|
216
|
Shibutani T, Goto R, Miyazaki I, Hashimoto A, Suzuki T, Ishida K, Haruma T, Osada T, Harada T, Fujita H, Ohkubo S. Modulation of tumor immune microenvironment by TAS-115, a multi-receptor tyrosine kinase inhibitor, promotes antitumor immunity and contributes anti-PD-1 antibody therapy. Sci Rep 2023; 13:8821. [PMID: 37258621 PMCID: PMC10232527 DOI: 10.1038/s41598-023-35985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
TAS-115 is an oral multi-receptor tyrosine kinase inhibitor that strongly inhibits kinases implicated in antitumor immunity, such as colony stimulating factor 1 receptor and vascular endothelial growth factor receptor. Because these kinases are associated with the modulation of immune pathways, we investigated the immunomodulatory activity of TAS-115. An in vitro cytokine assay revealed that TAS-115 upregulated interferon γ (IFNγ) and interleukin-2 secretion by T cells, suggesting that TAS-115 activated T cells. Gene expression analysis suggested that TAS-115 promoted M1 macrophage differentiation. In in vivo experiments, although TAS-115 exerted a moderate antitumor effect in the MC38 mouse colorectal cancer model under immunodeficient conditions, this effect was enhanced under immunocompetent conditions. Furthermore, combination of TAS-115 and anti-PD-1 antibody exhibited greater antitumor activity than either treatment alone. Flow cytometry analysis showed the increase in IFNγ- and granzyme B (Gzmb)-secreting tumor-infiltrating T cells by TAS-115 treatment. The combination treatment further increased the percentage of Gzmb+CD8+ T cells and decreased the percentage of macrophages compared with either treatment alone. These results highlight the potential therapeutic effect of TAS-115 in combination with PD-1 blockade, mediated via activation of antitumor immunity by TAS-115.
Collapse
Affiliation(s)
- Toshihiro Shibutani
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan.
| | - Risa Goto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Isao Miyazaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akihiro Hashimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takamasa Suzuki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Keiji Ishida
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Tomonori Haruma
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Toshihiro Osada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takafumi Harada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hidenori Fujita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
217
|
Nevola R, Delle Femine A, Rosato V, Kondili LA, Alfano M, Mastrocinque D, Imbriani S, Perillo P, Beccia D, Villani A, Ruocco R, Criscuolo L, La Montagna M, Russo A, Marrone A, Sasso FC, Marfella R, Rinaldi L, Esposito N, Barberis G, Claar E. Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era? Cancers (Basel) 2023; 15:2950. [PMID: 37296912 PMCID: PMC10251995 DOI: 10.3390/cancers15112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Despite maximizing techniques and patient selection, liver resection and ablation for HCC are still associated with high rates of recurrence. To date, HCC is the only cancer with no proven adjuvant or neoadjuvant therapy used in association to potentially curative treatment. Perioperative combination treatments are urgently needed to reduce recurrence rates and improve overall survival. Immunotherapy has demonstrated encouraging results in the setting of adjuvant and neoadjuvant treatments for non-hepatic malignancies. Conclusive data are not yet available in the context of liver neoplasms. However, growing evidence suggests that immunotherapy, and in particular immune checkpoint inhibitors, could represent the cornerstone of an epochal change in the treatment of HCC, improving recurrence rates and overall survival through combination treatments. Furthermore, the identification of predictive biomarkers of treatment response could drive the management of HCC into the era of a precision medicine. The purpose of this review is to analyze the state of the art in the setting of adjuvant and neoadjuvant therapies for HCC in association with loco-regional treatments in patients not eligible for liver transplantation and to hypothesize future scenarios.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
| | | | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.F.); (M.A.); (S.I.); (D.B.); (A.V.); (R.R.); (L.C.); (M.L.M.); (A.M.); (F.C.S.); (R.M.); (L.R.)
| | - Nicolino Esposito
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
| | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (N.E.); (E.C.)
| |
Collapse
|
218
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
219
|
Ferrarotto R, Sousa LG, Feng L, Mott F, Blumenschein G, Altan M, Bell D, Bonini F, Li K, Marques-Piubelli ML, Dal Lago EA, Johnson JJ, Mitani Y, Godoy M, Lee A, Kupferman M, Hanna E, Glisson BS, Elamin Y, El-Naggar A. Phase II Clinical Trial of Axitinib and Avelumab in Patients With Recurrent/Metastatic Adenoid Cystic Carcinoma. J Clin Oncol 2023; 41:2843-2851. [PMID: 36898078 PMCID: PMC10414730 DOI: 10.1200/jco.22.02221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE We conducted a phase II trial evaluating the efficacy of VEGFR inhibitor axitinib and PD-L1 inhibitor avelumab in patients with recurrent/metastatic adenoid cystic carcinoma (R/M ACC). PATIENTS AND METHODS Eligible patients had R/M ACC with progression within 6 months before enrollment. Treatment consisted of axitinib and avelumab. The primary end point was objective response rate (ORR) per RECIST 1.1; secondary end points included progression-free survival (PFS), overall survival (OS), and toxicity. Simon's optimal two-stage design tested the null hypothesis of ORR ≤5% versus ORR ≥20% at 6 months; ≥4 responses in 29 patients would reject the null hypothesis. RESULTS Forty patients enrolled from July 2019 to June 2021; 28 were evaluable for efficacy (six screen failures; six evaluable for safety only). The confirmed ORR was 18% (95% CI, 6.1 to 36.9); there was one unconfirmed partial response (PR). Two patients achieved PR after 6 months; thus, the ORR at 6 months was 14%. The median follow-up time for surviving patients was 22 months (95% CI, 16.6 to 39.1 months). The median PFS was 7.3 months (95% CI, 3.7 to 11.2 months), 6-month PFS rate was 57% (95% CI, 41 to 78), and median OS was 16.6 months (95% CI, 12.4 to not reached months). Most common treatment-related adverse events (TRAEs) included fatigue (62%), hypertension (32%), and diarrhea (32%). Ten (29%) patients had serious TRAEs, all grade 3; four patients (12%) discontinued avelumab, and nine patients (26%) underwent axitinib dose reduction. CONCLUSION The study reached its primary end point with ≥4 PRs in 28 evaluable patients (confirmed ORR of 18%). The potential added benefit of avelumab to axitinib in ACC requires further investigation.
Collapse
Affiliation(s)
- Renata Ferrarotto
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luana G. Sousa
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frank Mott
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mehmet Altan
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Diana Bell
- Department of Pathology, City of Hope, Duarte, CA
| | - Flavia Bonini
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kaiyi Li
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo A. Dal Lago
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason J. Johnson
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Myrna Godoy
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Kupferman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ehab Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bonnie S. Glisson
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yasir Elamin
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
220
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
221
|
Wang-Bishop L, Kimmel BR, Ngwa VM, Madden MZ, Baljon JJ, Florian DC, Hanna A, Pastora LE, Sheehy TL, Kwiatkowski AJ, Wehbe M, Wen X, Becker KW, Garland KM, Schulman JA, Shae D, Edwards D, Wolf MM, Delapp R, Christov PP, Beckermann KE, Balko JM, Rathmell WK, Rathmell JC, Chen J, Wilson JT. STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci Immunol 2023; 8:eadd1153. [PMID: 37146128 PMCID: PMC10226150 DOI: 10.1126/sciimmunol.add1153] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.
Collapse
Affiliation(s)
- Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Blaise R. Kimmel
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Verra M. Ngwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jessalyn J. Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - David C. Florian
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lucinda E. Pastora
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Taylor L. Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Kyle W. Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jacob A. Schulman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Deanna Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Melissa M. Wolf
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Rossane Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Kathryn E. Beckermann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jin Chen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
222
|
Bai R, Cui J. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria. Cancer Lett 2023; 564:216223. [PMID: 37172686 DOI: 10.1016/j.canlet.2023.216223] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cancer cells adapt to increasing energy and biosynthetic demands by reprogramming their metabolic pathways. Mitochondria are important organelles for the metabolic reprogramming of tumor cells. In addition to supplying energy, they play crucial roles in the survival, immune evasion, tumor progression, and treatment resistance of the hypoxic tumor microenvironment (TME) in cancer cells. With the development of the life sciences, scientists have gained an in-depth understanding of immunity, metabolism, and cancer, and numerous studies have emphasized that mitochondria are essential for tumor immune escape and the regulation of immune cell metabolism and activation. Moreover, recent evidence suggests that targeting the mitochondria-related pathway with anticancer drugs can initiate the killing of cancer cells by increasing the ability of cancer cells to be recognized by immune cells, tumor antigen presentation ability, and the anti-tumor function of immune cells. This review discusses the effects of mitochondrial morphology and function on the phenotype and function of immune cells under normal and TME conditions, the effects of mitochondrial changes in tumors and microenvironments on tumor immune escape and immune cell function, and finally focuses on the recent research progress and future challenges of novel anti-tumor immunotherapy strategies targeting mitochondria.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
223
|
Mohanty SK, Mishra SK, Amin MB, Agaimy A, Fuchs F. Role of Surgical Pathologist for the Detection of Immuno-oncologic Predictive Factors in Non-small Cell Lung Cancers. Adv Anat Pathol 2023; 30:174-194. [PMID: 37037418 DOI: 10.1097/pap.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Until very recently, surgery, chemotherapy, and radiation therapy have been the mainstay of treatment in non-small cell carcinomas (NSCLCs). However, recent advances in molecular immunology have unveiled some of the complexity of the mechanisms regulating cellular immune responses and led to the successful targeting of immune checkpoints in attempts to enhance antitumor T-cell responses. Immune checkpoint molecules such as cytotoxic T-lymphocyte associated protein-4, programmed cell death protein-1, and programmed death ligand (PD-L) 1 have been shown to play central roles in evading cancer immunity. Thus, these molecules have been targeted by inhibitors for the management of cancers forming the basis of immunotherapy. Advanced NSCLC has been the paradigm for the benefits of immunotherapy in any cancer. Treatment decisions are made based on the expression of PD-L1 on the tumor cells and the presence or absence of driver mutations. Patients with high PD-L1 expression (≥50%) and no driver mutations are treated with single-agent immunotherapy whereas, for all other patients with a lower level of PD-L1 expression, a combination of chemotherapy and immunotherapy is preferred. Thus, PD-L1 blockers are the only immunotherapeutic agents approved in advanced NSCLC without any oncogenic driver mutations. PD-L1 immunohistochemistry, however, may not be the best biomarker in view of its dynamic nature in time and space, and the benefits may be seen regardless of PD -L1 expression. Each immunotherapy molecule is prescribed based on the levels of PD-L1 expression as assessed by a Food and Drug Administration-approved companion diagnostic assay. Other biomarkers that have been studied include tumor mutational burden, the T-effector signature, tumor-infiltrating lymphocytes, radiomic assays, inflammation index, presence or absence of immune-related adverse events and specific driver mutations, and gut as well as local microbiome. At the current time, none of these biomarkers are routinely used in the clinical decision-making process for immunotherapy in NSCLC. However, in individual cases, they can be useful adjuncts to conventional therapy. This review describes our current understanding of the role of biomarkers as predictors of response to immune checkpoint molecules. To begin with a brief on cancer immunology in general and in NSCLC, in particular, is discussed. In the end, recent advancements in laboratory techniques for refining biomarker assays are described.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India and CORE Diagnostics, Gurgaon, HR
| | - Sourav K Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, DL, India
| | - Mahul B Amin
- Departments of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science Center, Memphis, TN
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Fuchs
- Department of Internal Medicine-1, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
224
|
Lazzaro A, Hartshorn KL. A Comprehensive Narrative Review on the History, Current Landscape, and Future Directions of Hepatocellular Carcinoma (HCC) Systemic Therapy. Cancers (Basel) 2023; 15:cancers15092506. [PMID: 37173972 PMCID: PMC10177076 DOI: 10.3390/cancers15092506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We provide a comprehensive review of current approved systemic treatment strategies for advanced hepatocellular carcinoma (HCC), starting with the phase III clinical trial of sorafenib which was the first to definitively show a survival benefit. After this trial, there was an initial period of little progress. However, in recent years, an explosion of new agents and combinations of agents has resulted in a markedly improved outlook for patients. We then provide the authors' current approach to therapy, i.e., "How We Treat HCC". Promising future directions and important gaps in therapy that persist are finally reviewed. HCC is a highly prevalent cancer worldwide and the incidence is growing due not only to alcoholism, hepatitis B and C, but also to steatohepatitis. HCC, like renal cell carcinoma and melanoma, is a cancer largely resistant to chemotherapy but the advent of anti-angiogenic, targeted and immune therapies have improved survival for all of these cancers. We hope this review will heighten interest in the field of HCC therapies, provide a clear outline of the current data and strategy for treatment, and sensitize readers to new developments that are likely to emerge in the near future.
Collapse
Affiliation(s)
- Alexander Lazzaro
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Kevan L Hartshorn
- Section of Hematology Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
225
|
Omoboyede V, Ibrahim O, Umar HI, Oke GA, Onile OS, Chukwuemeka PO. Computer-aided analysis of quercetin mechanism of overcoming docetaxel resistance in docetaxel-resistant prostate cancer. J Genet Eng Biotechnol 2023; 21:47. [PMID: 37099169 PMCID: PMC10133427 DOI: 10.1186/s43141-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Prostate cancer (PC) is a silent but potent killer among men. In 2018, PC accounted for more than 350, 000 death cases while more than 1.2 million cases were diagnosed. Docetaxel, a chemotherapeutic drug belonging to the taxane family of drugs, is one of the most potent drugs in combating advanced PC. However, PC cells often evolve resistance against the regimen. Hence, necessitating the search for complementary and alternative therapies. Quercetin, a ubiquitous phytocompound with numerous pharmacological properties, has been reported to reverse docetaxel resistance (DR) in docetaxel-resistant prostate cancer (DRPC). Therefore, this study aimed to explore the mechanism via which quercetin reverses DR in DRPC using an integrative functional network and exploratory cancer genomic data analyses. RESULTS The putative targets of quercetin were retrieved from relevant databases, while the differentially expressed genes (DEGs) in docetaxel-resistant prostate cancer (DRPC) were identified by analysing microarray data retrieved from the Gene Expression Omnibus (GEO) database. Subsequently, the protein-protein interaction (PPI) network of the overlapping genes between the DEGs and quercetin targets was retrieved from STRING, while the hub genes, which represent the key interacting genes of the network, were identified using the CytoHubba plug-in of Cytoscape. The hub genes were further subjected to a comprehensive analysis aimed at identifying their contribution to the immune microenvironment and overall survival (OS) of PC patients, while their alterations in PC patients were also revealed. The biological roles played by the hub genes in chemotherapeutic resistance include the positive regulation of developmental process, positive regulation of gene expression, negative regulation of cell death, and epithelial cell differentiation among others. CONCLUSION Further analysis revealed epidermal growth factor receptor (EGFR) as the most pertinent target of quercetin in reversing DR in DRPC, while molecular docking simulation revealed an effective interaction between quercetin and EGFR. Ultimately, this study provides a scientific rationale for the further exploration of quercetin as a combinational therapy with docetaxel.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
| | - Ochapa Ibrahim
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology (SAAT), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Grace Ayomide Oke
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology (SAAT), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Prosper Obed Chukwuemeka
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| |
Collapse
|
226
|
Schirizzi A, De Leonardis G, Lorusso V, Donghia R, Rizzo A, Vallarelli S, Ostuni C, Troiani L, Lolli IR, Giannelli G, Ricci AD, D'Alessandro R, Lotesoriere C. Targeting Angiogenesis in the Era of Biliary Tract Cancer Immunotherapy: Biological Rationale, Clinical Implications, and Future Research Avenues. Cancers (Basel) 2023; 15:cancers15082376. [PMID: 37190304 DOI: 10.3390/cancers15082376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Although biliary tract cancers are traditionally considered rare in Western countries, their incidence and mortality rates are rising worldwide. A better knowledge of the genomic landscape of these tumor types has broadened the number of molecular targeted therapies, including angiogenesis inhibitors. The role of immune checkpoint inhibitors (ICIs) could potentially change the first-line therapeutic approach, but monotherapy with ICIs has shown disappointing results in CCA. Several clinical trials are evaluating combination strategies that include immunotherapy together with other anticancer agents with a synergistic activity. The tumor microenvironment (TME) composition plays a pivotal role in the prognosis of BTC patients. The accumulation of immunosuppressive cell types, such as tumor-associated macrophages (TAMs) and regulatory T-cells, together with the poor infiltration of cytotoxic CD8+ T-cells, is known to predispose to a poor prognosis owing to the establishment of resistance mechanisms. Likewise, angiogenesis is recognized as a major player in modulating the TME in an immunosuppressive manner. This is the mechanistic rationale for combination treatment schemes blocking both immunity and angiogenesis. In this scenario, this review aims to provide an overview of the most recent completed or ongoing clinical trials combining immunotherapy and angiogenesis inhibitors with/without a chemotherapy backbone.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Vincenza Lorusso
- Clinical Trial Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Laura Troiani
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Ivan Roberto Lolli
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| |
Collapse
|
227
|
Baggio C, Ramaschi GE, Oliviero F, Ramonda R, Sfriso P, Trevisi L, Cignarella A, Bolego C. Sex-dependent PD-L1/sPD-L1 trafficking in human endothelial cells in response to inflammatory cytokines and VEGF. Biomed Pharmacother 2023; 162:114670. [PMID: 37068331 DOI: 10.1016/j.biopha.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) expressed in non-immune cells is involved in immune-mediated tissue damage in the context of inflammatory conditions and tumor immune escape. Emerging evidence suggests soluble (s)PD-L1 as a marker of inflammation. Based on well-established sex-specific differences in immunity, we tested the novel hypotheses that (i) endothelial cell PD-L1 is modulated by inflammatory cytokines and vascular endothelial growth factor (VEGF) in a sex-specific fashion, and (ii) the endothelium is a source of sPD-L1. After exposure of human umbilical vein endothelial cells (HUVECs) to lipopolysaccharide, interleukin (IL)1β or VEGF for 24 h, total PD-L1 levels were upregulated solely in cells from female donors, while being unchanged in those from male donors. Accordingly, exposure to synovial fluids from patients with inflammatory arthritis upregulated PD-L1 levels in HUVECs from female donors only. Membrane PD-L1 expression as measured by flow cytometry was unchanged in response to inflammatory stimuli. However, exposure to 2 ng/mL IL-1β or 50 ng/mL VEGF time-dependently increased sPD-L1 release by HUVECs from female donors. Treatment with the metalloproteinase (MMP) inhibitor GM6001 (10 μM) prevented IL-1β-induced sPD-L1 release and enhanced membrane PD-L1 levels. The anti-VEGF agents bevacizumab and sunitinib reduced both VEGF-induced PD-L1 accumulation and sPD-L1 secretion. Thus, inflammatory agents and VEGF rapidly increased endothelial PD-L1 levels in a sex-specific fashion. Furthermore, the vascular endothelium may be a sPD-L1 source, whose production is MMP-dependent and modulated by anti-VEGF agents. These findings may have implications for sex-specific immunity, vascular inflammation and response to anti-angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Sfriso
- Department of Medicine, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
228
|
Lei Y, Lin L, Cheng S, Shao Q, Ding C, Zuo R, Chen W, Liao Q, Liu G. Acute inflammatory reaction during anti-angiogenesis therapy combined with immunotherapy as a possible indicator of the therapeutic effect: Three case reports and literature review. Front Oncol 2023; 13:1072480. [PMID: 37124541 PMCID: PMC10140593 DOI: 10.3389/fonc.2023.1072480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The posterior line treatment of unresectable advanced or metastatic gastrointestinal (GI) tumors has always been a challenging point. In particular, for patients with microsatellite stable (MSS)/mismatch repair proficient (pMMR) 0GI tumors, the difficulty of treatment is exacerbated due to their insensitivity to immune drugs. Accordingly, finding a new comprehensive therapy to improve the treatment effect is urgent. In this study, we report the treatment histories of three patients with MSS/pMMR GI tumors who achieved satisfactory effects by using a comprehensive treatment regimen of apatinib combined with camrelizumab and TAS-102 after the failure of first- or second-line regimens. The specific contents of the treatment plan were as follows: apatinib (500 mg/d) was administered orally for 10 days, followed by camrelizumab (200 mg, ivgtt, day 1, 14 days/cycle) and TAS-102 (20 mg, oral, days 1-21, 28 days/cycle). Apatinib (500 mg/d) was maintained during treatment. Subsequently, we discuss the possible mechanism of this combination and review the relevant literature, and introduce clinical trials on anti-angiogenesis therapy combined with immunotherapy.
Collapse
Affiliation(s)
- Yihui Lei
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
| | - Li Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Qiming Shao
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
| | - Chenchun Ding
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Renjie Zuo
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Weiping Chen
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
| | - Quan Liao
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guoyan Liu
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
229
|
Wang Z, Shi X, Zhao Y, Zhou J, Zhang S, Wang J, Yu W, Zhang X, Ren X, Zhao H. DC101, an anti-VEGFR2 agent, promotes high-endothelial venule formation and immune infiltration versus SAR131675 and fruquintinib. Biochem Biophys Res Commun 2023; 661:10-20. [PMID: 37084488 DOI: 10.1016/j.bbrc.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
There is an increasing interest in combining immune checkpoint inhibitors (ICIs) with anti-angiogenic drugs to enhance their anti-tumor effects. In this study, three anti-angiogenic agents, DC101 (acting on VEGFR2), SAR131675 (acting on VEGFR3), and fruquintinib (a small-molecule inhibitor acting on multiple targets) were administered to B16F1-OVA-loaded C57BL/6 mice. Immune cells infiltration in the tumor tissues, vascular normalization, and high-endothelial venule (HEV) formation were assessed to provide evidence for drug combination. Both DC101 and fruquintinib significantly slowed the melanoma growth and increased the proportion of CD3+ and CD8+ T cells infiltration compared with SAR131675, of note, the effect of DC101 was more pronounced. Moreover, DC101 and fruquintinib increased the interferon-γ and perforin levels, meanwhile, DC101 increased the granzyme B levels, whereas fruquintinib and SAR131675 did not. Only the fruquintinib-treated group showed decreased regulatory T cells infiltration. We found upregulation of PD-L1 expression in tumor cells and CD45+ immune cells in DC101-treated group as well as upregulation of PD-1 expression on CD3+ T cells. However, fruquintinib only increased PD-L1 expression in tumors. Both DC101 and fruquintinib reduced the proportion of CD31+ vessels, while DC101 increased the ratio of α-SMA +/CD31+ cells and reduced the expression of HIF-1α more than fruquintinib. Moreover, DC101 enhanced the infiltration of dendritic cells and B cells, and local HEV formation. In conclusion, our data indicate that DC101 may be a better choice for the combined clinical application of ICIs and anti-angiogenic agents.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiuhuan Shi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Yu Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Jian Zhou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Siyuan Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Jiahui Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China.
| |
Collapse
|
230
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
231
|
Merle P, Blanc JF, Edeline J, Le Malicot K, Allaire M, Assenat E, Guarssifi M, Bouattour M, Péron JM, Laurent-Puig P, Levrero M, Costentin C, Guiu B, Sokol H, Tougeron D, Aparicio T, Nault JC, Phelip JM. Ipilimumab with atezolizumab-bevacizumab in patients with advanced hepatocellular carcinoma: The PRODIGE 81-FFCD 2101-TRIPLET-HCC trial. Dig Liver Dis 2023; 55:464-470. [PMID: 36804053 DOI: 10.1016/j.dld.2023.01.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
A substantial proportion of patients with hepatocellular carcinoma have to face up, sooner or later, to systemic therapy. The current standards as first line systemic therapies are either atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF), or durvalumab (anti-PD-L1) plus tremelimumab (anti-CTLA-4). However, the median overall survival remains below 20 months, and a minority of patients become long-term survivors. Of interest in immune-oncology strategies for hepatocellular carcinoma, the objective response seems to be the most reliable surrogate marker of better overall survival. TRIPLET-HCC (NCT05665348) is a multicentre, randomised, open-label phase II-III trial designed to evaluate efficacy and safety of the triple combination by the addition of ipilimumab (anti-CTLA-4) to atezolizumab/bevacizumab, versus the double atezolizumab/bevacizumab combination. The main inclusion criteria are histologically proven BCLC-B/C HCC without previous systemic therapy. The primary objective of the phase II is the objective response rate in the triple arm, and OS in the triple versus double arms in the phase III. Secondary endpoints common to the phases II and III are the comparisons of progression-free survival, objective response rates, tolerance and quality of life. In addition, genetic and epigenetic studies from tissue and circulating DNA/RNA will be conducted to assess their prognostic or predictive value.
Collapse
Affiliation(s)
- Philippe Merle
- Hepatology Unit, University Hospital La Croix-Rousse, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
| | | | - Julien Edeline
- INSERM, Univ Rennes, Department of Medical Oncology, CLCC Eugène Marquis, COSS [(Chemistry Oncogenesis Stress Signaling)] - UMR_S 1242, Rennes, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM LNC-UMR 1231, Bourgogne Franche-Comté University, Dijon, France
| | - Manon Allaire
- AP-HP Sorbonne Université, Hôpital Universitaire Pitié-Salpêtrière, Service d'Hépato-gastroentérologie, Paris, France
| | - Eric Assenat
- Medical Oncology, St-Eloi University Hospital, Montpellier, France
| | - Meriem Guarssifi
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM LNC-UMR 1231, Bourgogne Franche-Comté University, Dijon, France
| | - Mohamed Bouattour
- AP-HP, Hôpital Universitaire Beaujon, Unité Fonctionnelle Oncologie Hépatique et Innovation Thérapeutique, Clichy France
| | - Jean-Marie Péron
- Service d'Hépato-Gastroentérologie, Hôpital Purpan, Toulouse, France
| | - Pierre Laurent-Puig
- INSERM U 775 - Faculté des Sciences Fondamentales et Biomédicales, Center Universitaire des Saints-Pères, Université des Saints Pères, Paris Descartes, Paris, France
| | - Massimo Levrero
- Hepatology Unit, University Hospital La Croix-Rousse, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Charlotte Costentin
- Grenoble Alpes University, Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, Gastroenterology, hepatology and GI oncology department, Digidune, Grenoble Alpes University Hospital, La Tronche, France
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital, Montpellier, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David Tougeron
- Department of Hepato-Gastroenterology, University Hospital of Poitiers, Poitiers, France
| | - Thomas Aparicio
- Service de Gastroentérologie, Hôpital Saint Louis, APHP, Université de Paris, Paris, France
| | - Jean-Charles Nault
- AP-HP Paris Nord, Hôpital Universitaire Avicenne, Service d'hépatologie, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, team « Functional Genomics of Solid Tumors », Paris, France; Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, France
| | - Jean-Marc Phelip
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Nord de Saint -Etienne, Saint Priest en Jarez, France
| |
Collapse
|
232
|
Tanizaki S, Matsumoto K, Tamiya A, Taniguchi Y, Matsuda Y, Uchida J, Ueno K, Kawachi H, Tamiya M, Yanase T, Suzuki H, Okishio K. Sequencing strategies with ramucirumab and docetaxel following prior treatments for advanced non-small cell lung cancer: a multicenter retrospective cohort study. Eur J Clin Pharmacol 2023; 79:503-511. [PMID: 36773042 DOI: 10.1007/s00228-023-03452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES Ramucirumab (RAM) and docetaxel (DOC) are commonly used after first-line therapy for advanced non-small cell lung cancer (NSCLC). Therefore, we aimed to elucidate sequencing strategies of RAM and DOC following prior treatments, including immune checkpoint inhibitor (ICI), cytotoxic agent (CTx) alone, bevacizumab (BEV), and tyrosine kinase inhibitor (TKI). METHODS We recruited patients with NSCLC who received RAM and DOC and compared the groups with and without prior ICI, CTx alone, BEV, and TKI, respectively. By tumor response to such treatments, the patients were further classified into "complete response (CR) + partial response (PR)," "stable disease," and "progressive disease" groups, respectively. We compared RAM and DOC efficacy among these groups. RESULTS In total, 237 patients were registered. In the group with prior ICI, the objective response rate and disease control rate were significantly higher than those without prior ICI (p = 0.012 and 0.028, respectively), and the median progression-free survival (PFS) was also significantly longer (p = 0.027). There were no significant differences in PFS between the groups with and without CTx alone, BEV, and TKI. Multivariate analysis revealed that prior ICI was an independent factor associated with better PFS. Furthermore, the prior ICI group with CR + PR significantly prolonged PFS compared to the group without prior ICI (p = 0.013). CONCLUSION RAM and DOC may be preferably administered after ICI, rather than after CTx alone, BEV, or TKI, and, furthermore, enhanced if the prior ICI has a favorable tumor response.
Collapse
Affiliation(s)
- Satoshi Tanizaki
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Akihiro Tamiya
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan.
| | - Yoshihiko Taniguchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yoshinobu Matsuda
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Junji Uchida
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka, Japan
| | - Kiyonobu Ueno
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka, Japan
| | - Hayato Kawachi
- Department of Respiratory Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Motohiro Tamiya
- Department of Respiratory Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Takafumi Yanase
- Department of Respiratory Medicine, Osaka Habikino Medical Center, Osaka, Japan
| | - Hidekazu Suzuki
- Department of Respiratory Medicine, Osaka Habikino Medical Center, Osaka, Japan
| | - Kyoichi Okishio
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| |
Collapse
|
233
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
234
|
Liu X, Li Z, Sun J, Zhang Z, Li W. Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages. BMC Cancer 2023; 23:259. [PMID: 36941554 PMCID: PMC10026501 DOI: 10.1186/s12885-023-10733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE The combined application of immune checkpoint inhibitors (ICIs) and anti-angiogenesis therapy has shown synergistic effects on glioblastoma (GBM). As important resources of PD-L1 in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) have significant impact of the efficiency of ICIs. However, the effects of anti-angiogenesis agents on immune checkpoints expression are not fully understood. METHOD GBM-educated macrophages were generated from circulating monocytes of healthy controls and GBM patients under the education of GBM cell line. Surface expression of PD-L1 and VEGFR1 on GBM-educated macrophages was analyzed. VEGFR1 NAb and soluble VEGFR1 (sVEGFR1) were added and their effects on PD-L1 expression on TAMs was investigated. Serum soluble PD-L1 (sPD-L1) and sVEGFR1 levels in GBM patients were measured and their correlation was analyzed. RESULT The expression intensity of PD-L1 on GBM-educated macrophages was higher and its up-regulation partially depends on VEGFR1 signaling pathway. GBM-educated macrophages secreted less levels of soluble VEGFR1 (sVEGFR1), and exogenous sVEGFR1 down-regulated PD-L1 expression intensity. PD-L1 blockade promoted the secretion of sVEGFR1. Finally, sVEGFR1 and sPD-L1 in serum of GBM patients were overexpressed, and a positive correlation was found. CONCLUSION These findings reveal the interaction between PD-L1 and VEGFR1 signaling pathway in GBM-educated macrophages. VEGFR1 is involved with PD-L1 overexpression, which can be impeded by autocrine regulation of sVEGFR1. sVEGFR1 secretion by GBM-educated macrophages can be promoted by PD-L1 blockade. Taken together, these findings provide evidences for the combined application of ICIs and anti-angiogenesis therapies in the treatment of GBM.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong, 250012, P.R. China
| | - Zhenke Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong, 250012, P.R. China
| | - Jinxing Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong, 250012, P.R. China
| | - Zhijie Zhang
- Department of Ultrasound, Shandong Maternal and Child Health Hospital, No.238 Jingshi East Road, Jinan, Shandong, 250014, P.R. China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
235
|
Vokes NI, Pan K, Le X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231161409. [PMID: 36950275 PMCID: PMC10026098 DOI: 10.1177/17588359231161409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/13/2023] [Indexed: 03/20/2023] Open
Abstract
For advanced metastatic non-small-lung cancer, the landscape of actionable driver alterations is rapidly growing, with nine targetable oncogenes and seven approvals within the last 5 years. This accelerated drug development has expanded the reach of targeted therapies, and it may soon be that a majority of patients with lung adenocarcinoma will be eligible for a targeted therapy during their treatment course. With these emerging therapeutic options, it is important to understand the existing data on immune checkpoint inhibitors (ICIs), along with their efficacy and safety for each oncogene-driven lung cancer, to best guide the selection and sequencing of various therapeutic options. This article reviews the clinical data on ICIs for each of the driver oncogene defined lung cancer subtypes, including efficacy, both for ICI as monotherapy or in combination with chemotherapy or radiation; toxicities from ICI/targeted therapy in combination or in sequence; and potential strategies to enhance ICI efficacy in oncogene-driven non-small-cell lung cancers.
Collapse
Affiliation(s)
- Natalie I. Vokes
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Kelsey Pan
- Department of Cancer Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030,
USA
| |
Collapse
|
236
|
Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023:S0168-8278(23)00178-2. [PMID: 36933770 DOI: 10.1016/j.jhep.2023.03.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023]
Abstract
Single-agent immune checkpoint inhibitors (ICIs) have been tested in patients with advanced hepatocellular carcinoma (HCC) showing an objective response rate of 15-20%, mostly without a significant overall survival (OS) benefit. Furthermore, approximately 30% of HCC shows intrinsic resistance to ICIs. In the absence of predictive biomarkers to identify patients likely to benefit most from immunotherapy, research has moved to exploring combinations with potential activity in broader patient populations. Basket trials, including cohorts of patients with HCC, and early phase studies tested the combination of ICIs with antiangiogenic agents as well as the combination of two different ICIs. The achieved promising results provided the rationale for the following phase 3 trials, which tested the combination of anti-PD-1/PD-L1 with bevacizumab, or tyrosine kinase inhibitors (TKIs), or anti-CTLA-4. Positive results from the IMbrave150 trial led to the practice-changing approval of atezolizumab-bevacizumab, the first regimen to demonstrate improved survival in the front-line setting, since the approval of sorafenib. More recently, the HIMALAYA trial demonstrated the superiority of durvalumab-tremelimumab (STRIDE regimen) over sorafenib, establishing a new first-line option. In contrast, inconsistent results have been achieved with combinations of ICIs and TKIs, with only one phase 3 trial showing an OS benefit. The rapidly evolving therapeutic landscape for patients with advanced HCC has left significant unmet needs to be addressed in future research. These include choice and sequencing of treatments, identification of biomarkers, combinations with locoregional therapies, and development of new immunotherapy agents. This review summarizes the scientific rationale and available clinical data for combination immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (Milan), Italy.
| | - Richard S Finn
- Department of Medicine, Division of Hematology/ Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| |
Collapse
|
237
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
238
|
Zhang L, Feng J, Kuang T, Chai D, Qiu Z, Deng W, Dong K, Zhao K, Wang W. Blood biomarkers predict outcomes in patients with hepatocellular carcinoma treated with immune checkpoint Inhibitors: A pooled analysis of 44 retrospective sudies. Int Immunopharmacol 2023; 118:110019. [PMID: 36933492 DOI: 10.1016/j.intimp.2023.110019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE We conducted the first meta-analysis to identify the predictive significance of baseline blood biomarkers (such as neutrophil to lymphocyte ratio (NLR), early alpha-fetoprotein (AFP) response, albumin-bilirubin (ALBI), AFP, platelet to lymphocyte ratio (PLR), C-reactive protein (CRP), protein induced by vitamin K absence II (PIVKA-II), and lymphocyte to monocyte ratio (LMR)) in hepatocellular carcinoma (HCC) patients treated with immune checkpoint inhibitors (ICIs). METHODS Eligible articles were retrieved using PubMed, the Cochrane Library, EMBASE, and Google Scholar by November 24, 2022. Clinical outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and hyperprogressive disease (HPD). RESULTS A total of 44 articles with 5322 patients were included in this meta-analysis. The pooled results demonstrated that patients with high NLR levels had significantly poorer OS (HR: 1.951, P < 0.001) and PFS (HR: 1.632, P < 0.001), lower ORR (OR: 0.484, P < 0.001) and DCR (OR: 0.494, P = 0.027), and higher HPD (OR: 8.190, P < 0.001). The patients with high AFP levels had shorter OS (HR: 1.689, P < 0.001) and PFS (HR: 1.380, P < 0.001), and lower DCR (OR: 0.440, P < 0.001) than those with low AFP levels, however, there was no difference in ORR (OR: 0.963, P = 0.933). We also found that early AFP response was correlated with better OS (HR: 0.422, P < 0.001) and PFS (HR: 0.385, P < 0.001), higher ORR (OR: 7.297, P < 0.001) and DCR (OR: 13.360, P < 0.001) compared to non-responders. Besides, a high ALBI grade was significantly related to shorter OS (HR: 2.440, P = 0.009) and PFS (HR: 1.373, P = 0.022), lower ORR (OR: 0.618, P = 0.032) and DCR (OR: 0.672, P = 0.049) than those with an ALBI grade 1. CONCLUSION The NLR, early AFP response, and ALBI were useful predictors of outcomes in HCC patients treated with ICIs.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Jiarui Feng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Wuhan, China.
| |
Collapse
|
239
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
240
|
Kawashima S, Togashi Y. Resistance to immune checkpoint inhibitors and the tumor microenvironment. Exp Dermatol 2023; 32:240-249. [PMID: 36437644 DOI: 10.1111/exd.14716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have contributed significantly to the treatment of various types of cancer, including skin cancer. However, not all patients respond; some patients do not respond at all (primary resistance), while others experience recurrence after the initial response (acquired resistance). Therefore, overcoming ICI resistance is an urgent priority. Numerous ICI resistance mechanisms have been reported. They are seemingly quite complex, varying from patient to patient. However, most involve T-cell activation processes, especially in the tumor microenvironment (TME). ICIs exert their effects in the TME by reactivating suppressed T cells through inhibition of immune checkpoint molecules, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Thus, this review focuses on the resistance mechanisms based on the T-cell activation process. Here, we classify the main mechanisms of ICI resistance into three categories based on (1) antigen recognition, (2) T-cell migration and infiltration, and (3) effector functions of T cells. By identifying and understanding these resistance mechanisms individually, including unknown mechanisms, we seek to contribute to the development of novel treatments to overcome ICI resistance.
Collapse
Affiliation(s)
- Shusuke Kawashima
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
241
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
242
|
McNamara B, Chang Y, Mutlu L, Harold J, Santin AD. Pembrolizumab with chemotherapy, with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer. Expert Opin Biol Ther 2023; 23:227-233. [PMID: 36800548 DOI: 10.1080/14712598.2023.2182679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
INTRODUCTION Despite progress on prevention and treatment of cervical cancer, global morbidity and mortality remain high. Immunotherapy, in conjunction with standard chemotherapy, presents an opportunity for further benefit. AREAS COVERED Here we report the pharmacologic properties, evidence for clinical efficacy, safety, and tolerability of pembrolizumab in addition to standard chemotherapy with and without bevacizumab for treatment of advanced or recurrent cervical cancer. EXPERT OPINION In patients with progressive, recurrent, or metastatic PD-L1 expressing cervical cancer, without contraindication to anti-VEGF therapy, the use of pembrolizumab with bevacizumab and standard chemotherapy with carboplatin and paclitaxel is warranted. There is no evidence to support the use of pembrolizumab for this population broadly, and no evidence to support its use in PD-L1 non-expressing tumors.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yifan Chang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
243
|
Atkins MB, Ascierto PA, Feltquate D, Gulley JL, Johnson DB, Khushalani NI, Sosman J, Yap TA, Kluger H, Sullivan RJ, Tawbi H. Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with targeted therapies. J Immunother Cancer 2023; 11:e005923. [PMID: 36918225 PMCID: PMC10016252 DOI: 10.1136/jitc-2022-005923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 03/15/2023] Open
Abstract
Immunotherapy offers deep and durable disease control to some patients, but many tumors do not respond to treatment with single-agent immune checkpoint inhibitors (ICIs). One strategy to enhance responses to immunotherapy is via combinations with signal transduction inhibitors, such as antiangiogenic therapies, which not only directly target cancer cells but also could potentially favorably modulate the tumor immune microenvironment. Combination strategies with ICIs have demonstrated enhanced antitumor activity compared with tumor-targeted or antiangiogenic therapy alone in randomized trials in a variety of solid tumor settings, leading to regulatory approval from the US Food and Drug Administration and agencies in other countries for the treatment of endometrial cancer, kidney cancer, melanoma, and hepatocellular carcinoma. Despite improved survival and response rates for some patients when antiangiogenic or targeted therapies are administered with ICIs, many patients continue to progress after combination treatment and urgently need new strategies to address this manifestation of resistance to immunotherapy. Previously, the Society for Immunotherapy of Cancer (SITC) published consensus definitions for resistance to single-agent anti-PD-(L)1. To provide guidance for clinical trial design and to support analyses of emerging molecular and immune profiling data surrounding mechanisms of resistance to ICI-based combinations, SITC convened a follow-up workshop in 2021 to develop consensus definitions for resistance to multiagent ICI combinations. This manuscript reports the consensus clinical definitions for combinations of anti-PD-(L)1 ICIs and targeted therapies. Definitions for resistance to ICIs in combination with chemotherapy and with other ICIs will be published in companion volumes to this paper.
Collapse
Affiliation(s)
| | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | | | | | | | - Timonthy A Yap
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Hussein Tawbi
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
244
|
Tumor Vasculature as an Emerging Pharmacological Target to Promote Anti-Tumor Immunity. Int J Mol Sci 2023; 24:ijms24054422. [PMID: 36901858 PMCID: PMC10002465 DOI: 10.3390/ijms24054422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor vasculature abnormality creates a microenvironment that is not suitable for anti-tumor immune response and thereby induces resistance to immunotherapy. Remodeling of dysfunctional tumor blood vessels by anti-angiogenic approaches, known as vascular normalization, reshapes the tumor microenvironment toward an immune-favorable one and improves the effectiveness of immunotherapy. The tumor vasculature serves as a potential pharmacological target with the capacity of promoting an anti-tumor immune response. In this review, the molecular mechanisms involved in tumor vascular microenvironment-modulated immune reactions are summarized. In addition, the evidence of pre-clinical and clinical studies for the combined targeting of pro-angiogenic signaling and immune checkpoint molecules with therapeutic potential are highlighted. The heterogeneity of endothelial cells in tumors that regulate tissue-specific immune responses is also discussed. The crosstalk between tumor endothelial cells and immune cells in individual tissues is postulated to have a unique molecular signature and may be considered as a potential target for the development of new immunotherapeutic approaches.
Collapse
|
245
|
Current Trends in Mucosal Melanomas: An Overview. Cancers (Basel) 2023; 15:cancers15051356. [PMID: 36900152 PMCID: PMC10000120 DOI: 10.3390/cancers15051356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Primary mucosal melanomas (MMs) are uncommon tumors originating from melanocytes located in the mucous membranes at various anatomic sites within the body. MM significantly differs from cutaneous melanoma (CM) regarding epidemiology, genetic profile, clinical presentation, and response to therapies. Despite these differences, that have important implications for both disease diagnosis and prognosis, MMs are usually treated in the same way as CM but exhibit a lower response rate to immunotherapy leading to a poorer survival rate. Furthermore, a high inter-patient variability can be observed in relation to therapeutic response. Recently, novel "omics" techniques have evidenced that MM lesions have different genomic, molecular, and metabolic landscapes as compared with CM lesions, thus explaining the heterogeneity of the response. Such specific molecular aspects might be useful to identify new biomarkers aimed at improving the diagnosis and selection of MM patients who could benefit from immunotherapy or targeted therapy. In this review, we have focused on relevant molecular and clinical advancements for the different MM subtypes in order to describe the updated knowledge relating to main diagnostic, clinical, and therapeutic implications as well as to provide hints on likely future directions.
Collapse
|
246
|
Wang W, Qiu T, Li F, Ren S. Current status and future perspectives of bispecific antibodies in the treatment of lung cancer. Chin Med J (Engl) 2023; 136:379-393. [PMID: 36848213 PMCID: PMC10106182 DOI: 10.1097/cm9.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Monoclonal antibodies have been successfully incorporated into the current therapeutical landscape of lung cancer in the last decades. Recently, with technological advances, bispecific antibodies (bsAbs) have also shown robust efficacy in the treatment of malignant cancers, including lung cancer. These antibodies target two independent epitopes or antigens and have been extensively explored in translational and clinical studies in lung cancer. Here, we outline the mechanisms of action of bsAbs, related clinical data, ongoing clinical trials, and potent novel compounds of various types of bsAbs in clinical studies, especially in lung cancer. We also propose future directions for the clinical development of bsAbs, which might bring a new era of treatment for patients with lung cancer.
Collapse
Affiliation(s)
- Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Tianyu Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
247
|
Sato M, Maishi N, Hida Y, Yanagawa-Matsuda A, Alam MT, Sakakibara-Konishi J, Nam JM, Onodera Y, Konno S, Hida K. Angiogenic inhibitor pre-administration improves the therapeutic effects of immunotherapy. Cancer Med 2023; 12:9760-9773. [PMID: 36808261 PMCID: PMC10166916 DOI: 10.1002/cam4.5696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
In lung cancer, immune checkpoint inhibitors (ICIs) are often inadequate for tumor growth inhibition. Angiogenic inhibitors (AIs) are required to normalize tumor vasculature for improved immune cell infiltration. However, in clinical practice, ICIs and cytotoxic antineoplastic agents are simultaneously administered with an AI when tumor vessels are abnormal. Therefore, we examined the effects of pre-administering an AI for lung cancer immunotherapy in a mouse lung cancer model. Using DC101, an anti-vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody, a murine subcutaneous Lewis lung cancer (LLC) model was used to determine the timing of vascular normalization. Microvessel density (MVD), pericyte coverage, tissue hypoxia, and CD8-positive cell infiltration were analyzed. The effects of an ICI and paclitaxel after DC101 pre-administration were investigated. On Day 3, increased pericyte coverage and alleviated tumor hypoxia represented the highest vascular normalization. CD8+ T-cell infiltration was also highest on Day 3. When combined with an ICI, DC101 pre-administration significantly reduced PD-L1 expression. When combined with an ICI and paclitaxel, only DC101 pre-administration significantly inhibited tumor growth, but simultaneous administration did not. AI pre-administration, and not simultaneous administration, may increase the therapeutic effects of ICIs due to improved immune cell infiltration.
Collapse
Affiliation(s)
- Mineyoshi Sato
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Advanced Robotic and Endoscopic Surgery, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Aya Yanagawa-Matsuda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Jun Sakakibara-Konishi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
248
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
249
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
250
|
The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24043226. [PMID: 36834641 PMCID: PMC9964596 DOI: 10.3390/ijms24043226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have a modest clinical activity when administered as monotherapy against breast cancer (BC), the most common malignancy in women. Novel combinatorial strategies are currently being investigated to overcome resistance to ICIs and promote antitumor immune responses in a greater proportion of BC patients. Recent studies have shown that the BC abnormal vasculature is associated with immune suppression in patients, and hampers both drug delivery and immune effector cell trafficking to tumor nests. Thus, strategies directed at normalizing (i.e., at remodeling and stabilizing) the immature, abnormal tumor vessels are receiving much attention. In particular, the combination of ICIs with tumor vessel normalizing agents is thought to hold great promise for the treatment of BC patients. Indeed, a compelling body of evidence indicates that the addition of low doses of antiangiogenic drugs to ICIs substantially improves antitumor immunity. In this review, we outline the impact that the reciprocal interactions occurring between tumor angiogenesis and immune cells have on the immune evasion and clinical progression of BC. In addition, we overview preclinical and clinical studies that are presently evaluating the therapeutic effectiveness of combining ICIs with antiangiogenic drugs in BC patients.
Collapse
|