201
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
202
|
Kashyap S, Brazdzionis J, Savla P, Berry JA, Farr S, Patchana T, Majeed G, Ghanchi H, Bowen I, Wacker MR, Miulli DE. Osteopathic Manipulative Treatment to Optimize the Glymphatic Environment in Severe Traumatic Brain Injury Measured With Optic Nerve Sheath Diameter, Intracranial Pressure Monitoring, and Neurological Pupil Index. Cureus 2021; 13:e13823. [PMID: 33859888 PMCID: PMC8038899 DOI: 10.7759/cureus.13823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) has a complex pathophysiology that has historically been poorly understood. New evidence on the pathophysiology, molecular biology, and diagnostic studies involved in TBI have shed new light on optimizing rehabilitation and recovery. The goal of this study was to assess the effect of osteopathic manipulative treatment (OMT) on peripheral and central glial lymphatics in patients with severe TBI, brain edema, and elevated intracranial pressure (ICP) by measuring changes in several parameters regularly used in management. Methodology This was a retrospective study at a level II trauma center that occurred in 2018. The study enrolled patients with TBI, increased ICP, or brain edema who had an external ventricular drain placed. Patients previously underwent a 51-minute treatment with OMT with an established protocol. Patients received 51 minutes of OMT to the head, neck, and peripheral lymphatics. The ICP, cerebrospinal fluid (CSF) drainage, optic nerve sheath diameter (ONSD) measured by ultrasonography, and Neurological Pupil Index (NPi) measured by pupillometer were recorded before, during, and after receiving OMT. Results A total of 11 patients were included in the study, and 21 points of data were collected from the patients meeting inclusion criteria who received OMT. There was a mean decrease in the ONSD of 0.62 mm from 6.24 mm to 5.62 mm (P = 0.0001). The mean increase in NPi was 0.18 (P = 0.01). The mean decrease in ICP was 3.33 mmHg (P= 0.0001). There was a significant decrease in CSF output after treatment (P = 0.0001). Each measurement of ICP, ONSD, and NPi demonstrated a decrease in overall CSF volume and pressure after OMT compared to CSF output and ICP prior to OMT. Conclusions This study demonstrates that OMT may help optimize glial lymphatic clearance of CSF and improve brain edema, interstitial waste product removal, NPi, ICP, CSF volume, and ONSD. A holistic approach including OMT may be considered to enhance management in TBI patients. As TBI is a spectrum of disease, utilizing similar techniques may be considered for all forms of TBI including concussions and other diseases with brain edema. The results of this study can better inform future trials to specifically study the effectiveness of OMT in post-concussive treatment and in those with mild-to-moderate TBI.
Collapse
Affiliation(s)
- Samir Kashyap
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James Brazdzionis
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Paras Savla
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James A Berry
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Saman Farr
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Gohar Majeed
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Hammad Ghanchi
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Ira Bowen
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | | | - Dan E Miulli
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| |
Collapse
|
203
|
Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease. Nat Med 2021; 27:411-418. [PMID: 33462448 DOI: 10.1038/s41591-020-01198-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). However, there is no direct evidence in humans to support this role1-5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.
Collapse
Affiliation(s)
- Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dan-Hao Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Hai-Yan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yong-Kang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiu-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Zhi Xiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Zhong-Xian Zhang
- National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qin-Chen Cao
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA.,Texas A & M University Colleges of Medicine and Pharmacy, College Station, TX, USA.,Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, USA
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| | - Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
204
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
205
|
Yankova G, Bogomyakova O, Tulupov A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci 2021; 32:693-705. [PMID: 33618444 DOI: 10.1515/revneuro-2020-0106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/31/2021] [Indexed: 12/25/2022]
Abstract
The glymphatic system and meningeal lymphatics have recently been characterized. Glymphatic system is a glia-dependent system of perivascular channels, and it plays an important role in the removal of interstitial metabolic waste products. The meningeal lymphatics may be a key drainage route for cerebrospinal fluid into the peripheral blood, may contribute to inflammatory reaction and central nervous system (CNS) immune surveillance. Breakdowns and dysfunction of the glymphatic system and meningeal lymphatics play a crucial role in age-related brain changes, the pathogenesis of neurovascular and neurodegenerative diseases, as well as in brain injuries and tumors. This review discusses the relationship recently characterized meningeal lymphatic vessels with the glymphatic system, which provides perfusion of the CNS with cerebrospinal and interstitial fluids. The review also presents the results of human studies concerning both the presence of meningeal lymphatics and the glymphatic system. A new understanding of how aging, medications, sleep and wake cycles, genetic predisposition, and even body posture affect the brain drainage system has not only changed the idea of brain fluid circulation but has also contributed to an understanding of the pathology and mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Yankova
- Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk630090, Russia.,Novosibirsk State University, Novosibirsk630090,Russia
| | - Olga Bogomyakova
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Novosibirsk630090, Russia
| | - Andrey Tulupov
- Novosibirsk State University, Novosibirsk630090,Russia.,International Tomography Center, Siberian Branch, Russian Academy of Sciences, Novosibirsk630090, Russia.,Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk 630055, Russia
| |
Collapse
|
206
|
Gupta A, Rarick KR, Ramchandran R. Established, New and Emerging Concepts in Brain Vascular Development. Front Physiol 2021; 12:636736. [PMID: 33643074 PMCID: PMC7907611 DOI: 10.3389/fphys.2021.636736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we discuss the state of our knowledge as it relates to embryonic brain vascular patterning in model systems zebrafish and mouse. We focus on the origins of endothelial cell and the distinguishing features of brain endothelial cells compared to non-brain endothelial cells, which is revealed by single cell RNA-sequencing methodologies. We also discuss the cross talk between brain endothelial cells and neural stem cells, and their effect on each other. In terms of mechanisms, we focus exclusively on Wnt signaling and the recent developments associated with this signaling network in brain vascular patterning, and the benefits and challenges associated with strategies for targeting the brain vasculature. We end the review with a discussion on the emerging areas of meningeal lymphatics, endothelial cilia biology and novel cerebrovascular structures identified in vertebrates.
Collapse
Affiliation(s)
- Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kevin R. Rarick
- Department of Pediatrics, Division of Critical Care, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
207
|
Belykh E, Zhao X, Ngo B, Farhadi DS, Kindelin A, Ahmad S, Martirosyan NL, Lawton MT, Preul MC. Visualization of brain microvasculature and blood flow in vivo: Feasibility study using confocal laser endomicroscopy. Microcirculation 2021; 28:e12678. [PMID: 33426724 DOI: 10.1111/micc.12678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Qualitative and quantitative analyses of blood flow in normal and pathologic brain and spinal cord microvasculature were performed using confocal laser endomicroscopy (CLE). METHODS Blood flow in cortical, dural, and spinal cord microvasculature was assessed in vivo in swine. We assessed microvasculature under normal conditions and after vessel occlusion, brain injury due to cold or surgical trauma, and cardiac arrest. Tumor-associated microvasculature was assessed in vivo and ex vivo in 20 patients with gliomas. RESULTS We observed erythrocyte flow in vessels 5-500 µm in diameter. Thrombosis, flow arrest and redistribution, flow velocity changes, agglutination, and cells rolling were assessed in normal and injured brain tissue. Microvasculature in in vivo CLE images of gliomas was classified as normal in 68% and abnormal in 32% of vessels on the basis of morphological appearance. Dural lymphatic channels were discriminated from blood vessels. Microvasculature CLE imaging was possible for up to 30 minutes after a 1 mg/kg intravenous dose of fluorescein. CONCLUSIONS CLE imaging allows assessment of cerebral and tumor microvasculature and blood flow alterations with subcellular resolution intraoperative imaging demonstrating precise details of real-time cell movements. Research and clinical scenarios may benefit from this novel intraoperative in vivo microscopic fluorescence imaging modality.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Brandon Ngo
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Dara S Farhadi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Adam Kindelin
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Saif Ahmad
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nikolay L Martirosyan
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael T Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
208
|
González-Loyola A, Petrova TV. Development and aging of the lymphatic vascular system. Adv Drug Deliv Rev 2021; 169:63-78. [PMID: 33316347 DOI: 10.1016/j.addr.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature has a pivotal role in regulating body fluid homeostasis, immune surveillance and dietary fat absorption. The increasing number of in vitro and in vivo studies in the last decades has shed light on the processes of lymphatic vascular development and function. Here, we will discuss the current progress in lymphatic vascular biology such as the mechanisms of lymphangiogenesis, lymphatic vascular maturation and maintenance and the emerging mechanisms of lymphatic vascular aging.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| |
Collapse
|
209
|
Wojciechowski S, Virenque A, Vihma M, Galbardi B, Rooney EJ, Keuters MH, Antila S, Koistinaho J, Noe FM. Developmental Dysfunction of the Central Nervous System Lymphatics Modulates the Adaptive Neuro-Immune Response in the Perilesional Cortex in a Mouse Model of Traumatic Brain Injury. Front Immunol 2021; 11:559810. [PMID: 33584640 PMCID: PMC7873607 DOI: 10.3389/fimmu.2020.559810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/26/2020] [Indexed: 01/23/2023] Open
Abstract
Rationale The recently discovered meningeal lymphatic vessels (mLVs) have been proposed to be the missing link between the immune and the central nervous system. The role of mLVs in modulating the neuro-immune response following a traumatic brain injury (TBI), however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune response. The phenotype of these cells has remained mostly uncharacterized. In this study, we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the magnitude and the type of T cell response in the brain after TBI. Methods TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI, T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from the spleen, then characterized by flow cytometry. Lesion size in each animal was evaluated by MRI. Results In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a proper neuro-immune response. Extension of the lesion (measured as lesion volume from MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in peripheral circulating T cells, as assessed one month after injury. Conclusions Our results are consistent with the hypothesis that mLVs are involved in the neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as one of the main population activated within the brain after a traumatic injury.
Collapse
Affiliation(s)
- Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anaïs Virenque
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maria Vihma
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Barbara Galbardi
- Breast Cancer Unit, Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Erin Jane Rooney
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Francesco M. Noe
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
210
|
Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della Syau, Cui J, Shipley FB, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Warf BC, Lin PY, Lehtinen MK. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 2021; 12:447. [PMID: 33469018 PMCID: PMC7815709 DOI: 10.1038/s41467-020-20666-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) provides vital support for the brain. Abnormal CSF accumulation, such as hydrocephalus, can negatively affect perinatal neurodevelopment. The mechanisms regulating CSF clearance during the postnatal critical period are unclear. Here, we show that CSF K+, accompanied by water, is cleared through the choroid plexus (ChP) during mouse early postnatal development. We report that, at this developmental stage, the ChP showed increased ATP production and increased expression of ATP-dependent K+ transporters, particularly the Na+, K+, Cl-, and water cotransporter NKCC1. Overexpression of NKCC1 in the ChP resulted in increased CSF K+ clearance, increased cerebral compliance, and reduced circulating CSF in the brain without changes in intracranial pressure in mice. Moreover, ChP-specific NKCC1 overexpression in an obstructive hydrocephalus mouse model resulted in reduced ventriculomegaly. Collectively, our results implicate NKCC1 in regulating CSF K+ clearance through the ChP in the critical period during postnatal neurodevelopment in mice.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Cameron Sadegh
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher Naranjo
- Summer Honors Undergraduate Research Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Della Syau
- Summer Honors Undergraduate Research Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Amanda Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fan Gao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Bioinformatics Resource Center in the Beckman Institute at Caltech, Pasadena, CA, 91125, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
211
|
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 2021; 78:2429-2457. [PMID: 33427948 PMCID: PMC8004496 DOI: 10.1007/s00018-020-03706-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Cerebrospinal fluid (CSF) is produced by the choroid plexuses within the ventricles of the brain and circulates through the subarachnoid space of the skull and spinal column to provide buoyancy to and maintain fluid homeostasis of the brain and spinal cord. The question of how CSF drains from the subarachnoid space has long puzzled scientists and clinicians. For many decades, it was believed that arachnoid villi or granulations, outcroppings of arachnoid tissue that project into the dural venous sinuses, served as the major outflow route. However, this concept has been increasingly challenged in recent years, as physiological and imaging evidence from several species has accumulated showing that tracers injected into the CSF can instead be found within lymphatic vessels draining from the cranium and spine. With the recent high-profile rediscovery of meningeal lymphatic vessels located in the dura mater, another debate has emerged regarding the exact anatomical pathway(s) for CSF to reach the lymphatic system, with one side favoring direct efflux to the dural lymphatic vessels within the skull and spinal column and another side advocating for pathways along exiting cranial and spinal nerves. In this review, a summary of the historical and contemporary evidence for the different outflow pathways will be presented, allowing the reader to gain further perspective on the recent advances in the field. An improved understanding of this fundamental physiological process may lead to novel therapeutic approaches for a wide range of neurological conditions, including hydrocephalus, neurodegeneration and multiple sclerosis.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
212
|
Castranova D, Samasa B, Venero Galanternik M, Jung HM, Pham VN, Weinstein BM. Live Imaging of Intracranial Lymphatics in the Zebrafish. Circ Res 2021; 128:42-58. [PMID: 33135960 PMCID: PMC7790877 DOI: 10.1161/circresaha.120.317372] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
RATIONALE The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species. OBJECTIVE Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present. METHODS AND RESULTS Using high-resolution optical imaging of the meninges in living animals, we show that zebrafish possess a meningeal lymphatic network comparable to that found in mammals. We confirm that this network is separate from the blood vascular network and that it drains interstitial fluid from the brain. We document the developmental origins and growth of these vessels into a distinct network separated from the external lymphatics. Finally, we show that these vessels contain immune cells and perform live imaging of immune cell trafficking and transmigration in meningeal lymphatics. CONCLUSIONS This discovery establishes the zebrafish as a important new model for experimental analysis of meningeal lymphatic development and opens up new avenues for probing meningeal lymphatic function in health and disease.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Bakary Samasa
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Van N Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
213
|
Affiliation(s)
- Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Victoria, Australia (B.M.H., N.I.B.).,Department of Anatomy and Neuroscience (B.M.H.), University of Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology (B.M.H.), University of Melbourne, Victoria, Australia
| | - Neil I Bower
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Victoria, Australia (B.M.H., N.I.B.).,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Australia (N.I.B.)
| |
Collapse
|
214
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
215
|
Yağmurlu K, Sokolowski JD, Çırak M, Urgun K, Soldozy S, Mut M, Shaffrey ME, Tvrdik P, Kalani MYS. Anatomical Features of the Deep Cervical Lymphatic System and Intrajugular Lymphatic Vessels in Humans. Brain Sci 2020; 10:E953. [PMID: 33316930 PMCID: PMC7763972 DOI: 10.3390/brainsci10120953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies in rodents have re-kindled interest in the study of lymphatics in the central nervous system. Animal studies have demonstrated that there is a connection between the subarachnoid space and deep cervical lymph nodes (DCLNs) through dural lymphatic vessels located in the skull base and the parasagittal area. OBJECTIVE To describe the connection of the DCLNs and lymphatic tributaries with the intracranial space through the jugular foramen, and to address the anatomical features and variations of the DCLNs and associated lymphatic channels in the neck. METHODS Twelve formalin-fixed human head and neck specimens were studied. Samples from the dura of the wall of the jugular foramen were obtained from two fresh human cadavers during rapid autopsy. The samples were immunostained with podoplanin and CD45 to highlight lymphatic channels and immune cells, respectively. RESULTS The mean number of nodes for DCLNs was 6.91 ± 0.58 on both sides. The mean node length was 10.1 ± 5.13 mm, the mean width was 7.03 ± 1.9 mm, and the mean thickness was 4 ± 1.04 mm. Immunohistochemical staining from rapid autopsy samples demonstrated that lymphatic vessels pass from the intracranial compartment into the neck through the meninges at the jugular foramen, through tributaries that can be called intrajugular lymphatic vessels. CONCLUSIONS The anatomical features of the DCLNs and their connections with intracranial lymphatic structures through the jugular foramen represent an important possible route for the spread of cancers to and from the central nervous system; therefore, it is essential to have an in-depth understanding of the anatomy of these lymphatic structures and their variations.
Collapse
Affiliation(s)
- Kaan Yağmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Musa Çırak
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
| | - Kamran Urgun
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Melike Mut
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neurosurgery, Hacettepe University, P.O. Box 06230 Ankara, Turkey
| | - Mark E. Shaffrey
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - M. Yashar S. Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22903, USA; (K.Y.); (J.D.S.); (M.Ç.); (K.U.); (S.S.); (M.M.); (M.E.S.); (P.T.)
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA 22903, USA
- Department of Neurosurgery, St. John’s Neuroscience Institute, School of Medicine, University of Oklahoma, Tulsa, OK 74104, USA
| |
Collapse
|
216
|
Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Rep 2020; 33:108524. [PMID: 33357428 PMCID: PMC8186543 DOI: 10.1016/j.celrep.2020.108524] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
The emerging interest in brain fluid transport has prompted a need for techniques that provide an understanding of what factors regulate cerebrospinal fluid (CSF) production. Here, we describe a methodology for direct quantification of CSF production in awake mice. We measure CSF production by placing a catheter in a lateral ventricle, while physically blocking outflow from the 4th ventricle. Using this methodology, we show that CSF production increases during isoflurane anesthesia, and to a lesser extent with ketamine/xylazine anesthesia, relative to the awake state. Aged mice have reduced CSF production, which is even lower in aged mice overexpressing amyloid-β. Unexpectedly, CSF production in young female mice is 30% higher than in age-matched males. Altogether, the present observations imply that a reduction in CSF production might contribute to the age-related risk of proteinopathies but that the rate of CSF production and glymphatic fluid transport are not directly linked. Liu et al. develop a method for direct quantification of cerebrospinal fluid (CSF) production in awake mice. Using this method, the authors evaluate the effect of brain states, ages, sex, anesthetic types, and amyloid-β burden on CSF production.
Collapse
|
217
|
Brady M, Rahman A, Combs A, Venkatraman C, Kasper RT, McQuaid C, Kwok WCE, Wood RW, Deane R. Cerebrospinal fluid drainage kinetics across the cribriform plate are reduced with aging. Fluids Barriers CNS 2020; 17:71. [PMID: 33256800 PMCID: PMC7706057 DOI: 10.1186/s12987-020-00233-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Continuous circulation and drainage of cerebrospinal fluid (CSF) are essential for the elimination of CSF-borne metabolic products and neuronal function. While multiple CSF drainage pathways have been identified, the significance of each to normal drainage and whether there are differential changes at CSF outflow regions in the aging brain are unclear. METHODS Dynamic in vivo imaging of near infrared fluorescently-labeled albumin was used to simultaneously visualize the flow of CSF at outflow regions on the dorsal side (transcranial and -spinal) of the central nervous system. This was followed by kinetic analysis, which included the elimination rate constants for these regions. In addition, tracer distribution in ex vivo tissues were assessed, including the nasal/cribriform region, dorsal and ventral surfaces of the brain, spinal cord, cranial dura, skull base, optic and trigeminal nerves and cervical lymph nodes. RESULTS Based on the in vivo data, there was evidence of CSF elimination, as determined by the rate of clearance, from the nasal route across the cribriform plate and spinal subarachnoid space, but not from the dorsal dural regions. Using ex vivo tissue samples, the presence of tracer was confirmed in the cribriform area and olfactory regions, around pial blood vessels, spinal subarachnoid space, spinal cord and cervical lymph nodes but not for the dorsal dura, skull base or the other cranial nerves. Also, ex vivo tissues showed retention of tracer along brain fissures and regions associated with cisterns on the brain surfaces, but not in the brain parenchyma. Aging reduced CSF elimination across the cribriform plate but not that from the spinal SAS nor retention on the brain surfaces. CONCLUSIONS Collectively, these data show that the main CSF outflow sites were the nasal region across the cribriform plate and from the spinal regions in mice. In young adult mice, the contribution of the nasal and cribriform route to outflow was much higher than from the spinal regions. In older mice, the contribution of the nasal route to CSF outflow was reduced significantly but not for the spinal routes. This kinetic approach may have significance in determining early changes in CSF drainage in neurological disorder, age-related cognitive decline and brain diseases.
Collapse
Affiliation(s)
- Molly Brady
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Akib Rahman
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Abigail Combs
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Chethana Venkatraman
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - R Tristan Kasper
- Departments of Neurosurgery, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Conor McQuaid
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Wing-Chi Edmund Kwok
- Departments of Imaging Sciences, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ronald W Wood
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Departments of Obstetrics and Gynecology, Urology, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Rashid Deane
- Departments of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Departments of Neurosurgery, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
218
|
Benveniste H, Lee H, Ozturk B, Chen X, Koundal S, Vaska P, Tannenbaum A, Volkow ND. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience 2020; 474:63-79. [PMID: 33248153 DOI: 10.1016/j.neuroscience.2020.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, United States.
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
| | - Burhan Ozturk
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
| | - Xinan Chen
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
| | - Paul Vaska
- Department of Radiology and Biomedical Engineering, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Nora D Volkow
- Laboratory for Neuroimaging, NIAAA, Bethesda, MD, United States
| |
Collapse
|
219
|
Ulndreaj A, Tzekou A, Siddiqui AM, Fehlings MG. Effects of experimental cervical spinal cord injury on peripheral adaptive immunity. PLoS One 2020; 15:e0241285. [PMID: 33125407 PMCID: PMC7598511 DOI: 10.1371/journal.pone.0241285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Adaptive immunity is critical for controlling infections, which are a leading cause of morbidity and mortality in patients with spinal cord injury (SCI). In rats and mice, compromised peripheral adaptive immune responses, as shown by splenic atrophy and lowered frequencies of peripheral lymphocytes, were shown to result from high-level thoracic SCI. However, whether cervical SCI, which is the most common level of SCI in humans, impairs adaptive immunity remains largely unknown. In the present study, we induced cervical SCI in rats at the C7/T1 level by clip compression and looked at changes in peripheral adaptive immunity at 2-, 10- and 20-weeks post-injury. Specifically, we quantified changes in the frequencies of T- and B- lymphocytes in the blood and the mandibular and deep cervical lymph nodes, which drain the cervical spinal cord. We also assessed changes in serum IgG and IgM immunoglobulin levels, as well as spleen size. We found a significant decline in circulating T- and B- cell frequencies at 10 weeks post-SCI, which returned to normal at 20 weeks after injury. We found no effect of cervical SCI on T- and B- cell frequencies in the draining lymph nodes. Moreover, cervical SCI had no effect on net spleen size, although injured rats had a higher spleen/body weight ratio than sham controls at all time points of the study. Lastly, IgG and IgM immunoglobulin declined at 2 weeks, followed by a significant increase in IgM levels at 10 weeks of injury. These data indicate that cervical SCI causes a significant imbalance in circulating lymphocytes and immunoglobulin levels at 2 and 10 weeks. As we discuss in this article, these findings are largely in line with clinical observations, and we anticipate that this study will fuel more research on the effect of adaptive immunity on SCI recovery.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Apostolia Tzekou
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ahad M. Siddiqui
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
- University of Toronto Spine Program, University of Toronto, Ontario, Canada
| |
Collapse
|
220
|
Vardakis JC, Chou D, Guo L, Ventikos Y. Exploring neurodegenerative disorders using a novel integrated model of cerebral transport: Initial results. Proc Inst Mech Eng H 2020; 234:1223-1234. [PMID: 33078663 PMCID: PMC7675777 DOI: 10.1177/0954411920964630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neurovascular unit (NVU) underlines the complex and symbiotic relationship between brain cells and the cerebral vasculature, and dictates the need to consider both neurodegenerative and cerebrovascular diseases under the same mechanistic umbrella. Importantly, unlike peripheral organs, the brain was thought not to contain a dedicated lymphatics system. The glymphatic system concept (a portmanteau of glia and lymphatic) has further emphasized the importance of cerebrospinal fluid transport and emphasized its role as a mechanism for waste removal from the central nervous system. In this work, we outline a novel multiporoelastic solver which is embedded within a high precision, subject specific workflow that allows for the co-existence of a multitude of interconnected compartments with varying properties (multiple-network poroelastic theory, or MPET), that allow for the physiologically accurate representation of perfused brain tissue. This novel numerical template is based on a six-compartment MPET system (6-MPET) and is implemented through an in-house finite element code. The latter utilises the specificity of a high throughput imaging pipeline (which has been extended to incorporate the regional variation of mechanical properties) and blood flow variability model developed as part of the VPH-DARE@IT research platform. To exemplify the capability of this large-scale consolidated pipeline, a cognitively healthy subject is used to acquire novel, biomechanistically inspired biomarkers relating to primary and derivative variables of the 6-MPET system. These biomarkers are shown to capture the sophisticated nature of the NVU and the glymphatic system, paving the way for a potential route in deconvoluting the complexity associated with the likely interdependence of neurodegenerative and cerebrovascular diseases. The present study is the first, to the best of our knowledge, that casts and implements the 6-MPET equations in a 3D anatomically accurate brain geometry.
Collapse
Affiliation(s)
- John C Vardakis
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, UK
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
221
|
Yin Q, Ma J, Han X, Zhang H, Wang F, Zhuang P, Zhang Y. Spatiotemporal variations of vascular endothelial growth factor in the brain of diabetic cognitive impairment. Pharmacol Res 2020; 163:105234. [PMID: 33053446 DOI: 10.1016/j.phrs.2020.105234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Although it is feared that diabetes-induced cognitive impairment (DCI) will become a major clinical problem worldwide in the future, its detailed pathological mechanism is not well known. Because patients with diabetes have various complications of vascular disease, vascular disorders in the brain are considered to be one of the main mechanisms of DCI. Mounting evidence suggests that the vascular endothelial growth factor (VEGF) family plays a crucial role in the development of DCI. In this review, we summarized the changes and functions of VEGF during the development of DCI, and speculated that it was characterized by spatiotemporal variations in DCI progression. Considering the complexity of DCI pathogenesis and the diversity of VEGF function, we focused on the interrelationship of DCI and VEGF spatiotemporal variations during DCI development. During the progression of DCI, hyperglycemia, abnormal brain insulin signals, advanced glycation end products (AGEs) and consequently hypoxia, oxidative stress, and inflammation are the main pathophysiological changes; hypoxia-inducible factor (HIF), reactive oxygen species (ROS), and nuclear factor kappa beta (NF-κB) play major roles in DCI-related VEGF spatiotemporal regulation. Furthermore, spatiotemporal variations in VEGF-mediated pathological cerebral neovascularization, repair and regeneration of dural lymphatic vessels, increased blood-brain barrier (BBB) permeability and slight neuroprotection are increasing emphasized as potential targets in the treatment of DCI.
Collapse
Affiliation(s)
- Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jing Ma
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xu Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hanyu Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Fang Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
222
|
Benveniste H, Elkin R, Heerdt PM, Koundal S, Xue Y, Lee H, Wardlaw J, Tannenbaum A. The glymphatic system and its role in cerebral homeostasis. J Appl Physiol (1985) 2020; 129:1330-1340. [PMID: 33002383 DOI: 10.1152/japplphysiol.00852.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain's high bioenergetic state is paralleled by high metabolic waste production. Authentic lymphatic vasculature is lacking in brain parenchyma. Cerebrospinal fluid (CSF) flow has long been thought to facilitate central nervous system detoxification in place of lymphatics, but the exact processes involved in toxic waste clearance from the brain remain incompletely understood. Over the past 8 yr, novel data in animals and humans have begun to shed new light on these processes in the form of the "glymphatic system," a brain-wide perivascular transit passageway dedicated to CSF transport and interstitial fluid exchange that facilitates metabolic waste drainage from the brain. Here we will discuss glymphatic system anatomy and methods to visualize and quantify glymphatic system (GS) transport in the brain and also discuss physiological drivers of its function in normal brain and in neurodegeneration.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Rena Elkin
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | - Paul M Heerdt
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
223
|
Kang SH, Lee DG. Periclavicular Lymph Node Activation Maintains the Lymphatic Circulation of Upper Extremity Following Breast Cancer Surgery with Axillary Lymph Node Dissection. Lymphat Res Biol 2020; 19:256-260. [PMID: 32986507 DOI: 10.1089/lrb.2020.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Backgrounds: Axillary lymph node dissection (ALND) can cause breast cancer-related lymphedema (BCRL). However, ALND does not always produce lymphedema to the breast cancer survivors. Therefore, we aimed to investigate the correlation between the finding of lymphoscintigraphy and lymphedema in patients undergoing breast cancer surgery with ALND. Methods and Results: Patients with BCRL (n = 73, mean age: 53.92 ± 11.13 years) after full ALND (levels I, II, and III) were retrospectively included in this study. All patients underwent lymphoscintigraphy and according to the findings of the imaging, patients were divided into three groups: negative group, periclavicular lymph nodes (P-LN) activation, and axillary lymph nodes (A-LN) activation. According to the extent of radiation therapy, groups were classified as the following: no radiation group (None), breast radiation group (BI), and breast irradiation in addition to P-LN (BI+PC). The percentage difference in the upper extremities was used as the marker of severity of lymphedema. The subjects in the negative group, P-LN, and A-LN were 34 (46.6%), 33 (45.2%), and 6 (8.2%) patients, respectively. The findings of lymphangiography showed statistically significant relationship with the severity of lymphedema. The extent of radiation therapy did not have statistically significant relationship. Despite ALND, 53.4% patients had active L/N capable of removing the upper limb lymphatic fluids and 45.2% patients showed activation of collateral formation of lymphatic circulation after ALND. Conclusion: The collateral lymphatic formation was provoked after breast cancer operation with ALND, which decreased the severity of lymphedema in breast cancer survivors.
Collapse
Affiliation(s)
- Su Hwan Kang
- Department of Surgery and College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
224
|
Continuous theta burst stimulation dilates meningeal lymphatic vessels by up-regulating VEGF-C in meninges. Neurosci Lett 2020; 735:135197. [PMID: 32590044 DOI: 10.1016/j.neulet.2020.135197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lymphatic vessels (LVs) of meninges and lymphatic drainage in the brain have been investigated previously. Here, we examined the role of continuous theta burst stimulation (CTBS) in the modulation of meningeal LVs. METHODS To explore the effects of CTBS on meningeal LVs, the diameters of LVs were measured between a real CTBS group and sham CTBS group of wild-type male mice. Vascular endothelial growth factor-C (VEGF-C) expression was subsequently calculated in both groups to account for lymphatic changes after CTBS. Sunitinib was administered by 3-day oral gavage to inhibit the VEGF receptor (VEGFR), and the effects of CTBS were further examined in the following groups: vehicle with real CTBS, vehicle with sham CTBS, sunitinib treatment with real CTBS, and sunitinib treatment with sham CTBS. RESULTS The lymphatic vessels were augmented, and the level of VEGF-C in meninges increased after CTBS. CTBS dilated meningeal lymphatic vessels were impaired after the VEGF-C/VEGFR3 pathway was blocked. CONCLUSIONS CTBS can dilate meningeal lymphatic vessels by up-regulating VEGF-C in meninges.
Collapse
|
225
|
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL, Lammert CR, Kipnis J, Lukens JR. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 2020; 11:4524. [PMID: 32913280 PMCID: PMC7483525 DOI: 10.1038/s41467-020-18113-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.
Collapse
Affiliation(s)
- Ashley C Bolte
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mariah E Hurt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Michael A Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Celia A McKee
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hannah E Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bao H Nguyen
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
226
|
Estrada H, Rebling J, Hofmann U, Razansky D. Discerning calvarian microvascular networks by combined optoacoustic ultrasound microscopy. PHOTOACOUSTICS 2020; 19:100178. [PMID: 32215252 PMCID: PMC7090363 DOI: 10.1016/j.pacs.2020.100178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/21/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Bone microvasculature plays a paramount role in bone marrow maintenance, development, and hematopoiesis. Studies of calvarian vascular patterns within living mammalian skull with the available intravital microscopy techniques are limited to small scale observations. We developed an optical-resolution optoacoustic microscopy method combined with ultrasound biomicroscopy in order to reveal and discern the intricate networks of calvarian and cerebral vasculature over large fields of view covering majority of the murine calvaria. The vasculature segmentation method is based on an angle-corrected homogeneous model of the rodent skull, generated using simultaneously acquired three-dimensional pulse-echo ultrasound images. The hybrid microscopy design along with the appropriate skull segmentation method enable high throughput studies of a living bone while facilitating correct anatomical interpretation of the vasculature images acquired with optical resolution optoacoustic microscopy.
Collapse
Affiliation(s)
- Héctor Estrada
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Johannes Rebling
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Urs Hofmann
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich and Technical University of Munich, Germany
| |
Collapse
|
227
|
Brain Glymphatic/Lymphatic Imaging by MRI and PET. Nucl Med Mol Imaging 2020; 54:207-223. [PMID: 33088350 DOI: 10.1007/s13139-020-00665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023] Open
Abstract
Since glymphatic was proposed and meningeal lymphatic was discovered, MRI and even PET were introduced to investigate brain parenchymal interstitial fluid (ISF), cerebrospinal fluid (CSF), and lymphatic outflow in rodents and humans. Previous findings by ex vivo fluorescent microscopic, and in vivo two-photon imaging in rodents were reproduced using intrathecal contrast (gadobutrol and the similar)-enhanced MRI in rodents and further in humans. On dynamic MRI of meningeal lymphatics, in contrast to rodents, humans use mainly dorsal meningeal lymphatic pathways of ISF-CSF-lymphatic efflux. In mice, ISF-CSF exchange was examined thoroughly using an intra-cistern injection of fluorescent tracers during sleep, aging, and neurodegeneration yielding many details. CSF to lymphatic efflux is across arachnoid barrier cells over the dorsal dura in rodents and in humans. Meningeal lymphatic efflux to cervical lymph nodes and systemic circulation is also well-delineated especially in humans onintrathecal contrast MRI. Sleep- or anesthesia-related changes of glymphatic-lymphatic flow and the coupling of ISF-CSF-lymphatic drainage are major confounders ininterpreting brain glymphatic/lymphatic outflow in rodents. PET imaging in humans should be interpreted based on human anatomy and physiology, different in some aspects, using MRI recently. Based on the summary in this review, we propose non-invasive and longer-term intrathecal SPECT/PET or MRI studies to unravel the roles of brain glymphatic/lymphatic in diseases.
Collapse
|
228
|
Distinct fibroblast subsets regulate lacteal integrity through YAP/TAZ-induced VEGF-C in intestinal villi. Nat Commun 2020; 11:4102. [PMID: 32796823 PMCID: PMC7428020 DOI: 10.1038/s41467-020-17886-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
Emerging evidence suggests that intestinal stromal cells (IntSCs) play essential roles in maintaining intestinal homeostasis. However, the extent of heterogeneity within the villi stromal compartment and how IntSCs regulate the structure and function of specialized intestinal lymphatic capillary called lacteal remain elusive. Here we show that selective hyperactivation or depletion of YAP/TAZ in PDGFRβ+ IntSCs leads to lacteal sprouting or regression with junctional disintegration and impaired dietary fat uptake. Indeed, mechanical or osmotic stress regulates IntSC secretion of VEGF-C mediated by YAP/TAZ. Single-cell RNA sequencing delineated novel subtypes of villi fibroblasts that upregulate Vegfc upon YAP/TAZ activation. These populations of fibroblasts were distributed in proximity to lacteal, suggesting that they constitute a peri-lacteal microenvironment. Our findings demonstrate the heterogeneity of IntSCs and reveal that distinct subsets of villi fibroblasts regulate lacteal integrity through YAP/TAZ-induced VEGF-C secretion, providing new insights into the dynamic regulatory mechanisms behind lymphangiogenesis and lymphatic remodeling. Intestinal stromal cells (IntSCs) play essential roles in maintaining intestinal homeostasis. Here the authors show that VEGF-C expression in specialized IntSCs is regulated by YAP/TAZ, and VEGF-C is responsible for maintaining lacteal integrity, thus influencing dietary fat drainage into lacteals.
Collapse
|
229
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
230
|
Schwartz M, Peralta Ramos JM, Ben-Yehuda H. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:243-250. [PMID: 31907265 DOI: 10.4049/jimmunol.1900844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The understanding of the dialogue between the brain and the immune system has undergone dramatic changes over the last two decades, with immense impact on the perception of neurodegenerative diseases, mental dysfunction, and many other brain pathologic conditions. Accumulated results have suggested that optimal function of the brain is dependent on support from the immune system, provided that this immune response is tightly controlled. Moreover, in contrast to the previous prevailing dogma, it is now widely accepted that circulating immune cells are needed for coping with brain pathologies and that their optimal effect is dependent on their type, location, and activity. In this perspective, we describe our own scientific journey, reviewing the milestones in attaining this understanding of the brain-immune axis integrated with numerous related studies by others. We then explain their significance in demonstrating the possibility of harnessing the immune system in a well-controlled manner for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Schwartz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and .,Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
231
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
232
|
Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A. Neurovascular Interactions in the Nervous System. Annu Rev Cell Dev Biol 2020; 35:615-635. [PMID: 31590587 DOI: 10.1146/annurev-cellbio-100818-125142] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Jasmin Hefendehl
- Neurovascular Disorders, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
233
|
Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science 2020; 369:369/6500/eaax4063. [PMID: 32646971 DOI: 10.1126/science.aax4063] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
The general functions of lymphatic vessels in fluid transport and immunosurveillance are well recognized. However, accumulating evidence indicates that lymphatic vessels play active and versatile roles in a tissue- and organ-specific manner during homeostasis and in multiple disease processes. This Review discusses recent advances to understand previously unidentified functions of adult mammalian lymphatic vessels, including immunosurveillance and immunomodulation upon pathogen invasion, transport of dietary fat, drainage of cerebrospinal fluid and aqueous humor, possible contributions toward neurodegenerative and neuroinflammatory diseases, and response to anticancer therapies.
Collapse
Affiliation(s)
- Tatiana V Petrova
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Chemin des Boveresses 155 CH-1066 Epalinges, Switzerland.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, 34141, Republic of Korea. .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
234
|
Cao D, Kang N, Pillai JJ, Miao X, Paez A, Xu X, Xu J, Li X, Qin Q, Van Zijl PCM, Barker P, Hua J. Fast whole brain MR imaging of dynamic susceptibility contrast changes in the cerebrospinal fluid (cDSC MRI). Magn Reson Med 2020; 84:3256-3270. [PMID: 32621291 DOI: 10.1002/mrm.28389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE The circulation of cerebrospinal fluid (CSF) is closely associated with many aspects of brain physiology. When gadolinium(Gd)-based contrast is administered intravenously, pre- and post-contrast MR signal changes can often be observed in the CSF at certain locations within the intra-cranial space, mainly due to the lack of a blood-brain barrier in the dural blood vessels. This study aims to develop and systemically optimize MRI sequences that can detect dynamic signal changes in the CSF after Gd administration with a sub-millimeter spatial resolution, a temporal resolution of <10 s, and whole brain coverage. METHODS Bloch simulations were performed to determine optimal imaging parameters for maximum CSF contrast before and after Gd injection. Simulations were validated with phantom scans. An optimized turbo-spin-echo (TSE) sequence was performed on healthy volunteers on 3T and 7T. RESULTS Simulation results agreed well with phantom scans. In human scans, dynamic signal changes after Gd injection in the CSF were detected at several locations where cerebral lymphatic vessels were identified in previous studies. The concentration of Gd in CSF in these regions was estimated to be approximately 0.2 mmol/L. CONCLUSION Dynamic signal changes induced by the distribution of Gd in the CSF can be detected in healthy human subjects with an optimized TSE sequence. The proposed methodology does not rely on any particular theory on CSF circulation. We expect it to be useful for studies on CSF circulation and cerebral lymphatic vessels in the brain.
Collapse
Affiliation(s)
- Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ningdong Kang
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M Van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Barker
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
235
|
Jakic B, Kerjaschki D, Wick G. Lymphatic Capillaries in Aging. Gerontology 2020; 66:419-426. [PMID: 32580201 DOI: 10.1159/000508459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
The lymphatic system is responsible for fluid drainage from almost every organ in the body. It sustains tissue homeostasis and is also a central part of the immune system. With the discovery of cell-specific markers and transgenic mouse models, it has become possible to gain some insight into the developmental and functional roles of lymphatic endothelial cells (LECs). Only recently, a more direct regulatory role has been assigned to LECs in their functions in immunity responses and chronic diseases. Here, we discuss the changes occurring in aged lymphatic system and the role of lymphatic capillaries in some age-related diseases and experimental animal models.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria, .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden,
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
236
|
Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht L, Saur D, Graupera M, Alitalo K, Boon L, Vikkula M, Mäkinen T. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11:2869. [PMID: 32513927 PMCID: PMC7280302 DOI: 10.1038/s41467-020-16496-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
Collapse
Affiliation(s)
- Ines Martinez-Corral
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Yan Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Milena Petkova
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sandra D Castillo
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Louis Libbrecht
- Center for Vascular Anomalies, Division of Pathology, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Dieter Saur
- Department of Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
237
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
238
|
Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annu Rev Immunol 2020; 38:597-620. [DOI: 10.1146/annurev-immunol-102319-103410] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes—the pia mater, arachnoid mater, and dura mater—surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and—according to recent evidence—also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.
Collapse
Affiliation(s)
- Kalil Alves de Lima
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| |
Collapse
|
239
|
Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, Ingelfinger F, Rayan NA, Lelios I, Buttgereit A, Asano K, Prabhakar S, Garel S, Becher B, Ginhoux F, Greter M. Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell 2020; 181:557-573.e18. [PMID: 32259484 DOI: 10.1016/j.cell.2020.03.021] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
|
240
|
Parallels of Resistance between Angiogenesis and Lymphangiogenesis Inhibition in Cancer Therapy. Cells 2020; 9:cells9030762. [PMID: 32244922 PMCID: PMC7140636 DOI: 10.3390/cells9030762] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the primary cause of cancer-related mortality. Cancer cells primarily metastasize via blood and lymphatic vessels to colonize lymph nodes and distant organs, leading to worse prognosis. Thus, strategies to limit blood and lymphatic spread of cancer have been a focal point of cancer research for several decades. Resistance to FDA-approved anti-angiogenic therapies designed to limit blood vessel growth has emerged as a significant clinical challenge. However, there are no FDA-approved drugs that target tumor lymphangiogenesis, despite the consequences of metastasis through the lymphatic system. This review highlights several of the key resistance mechanisms to anti-angiogenic therapy and potential challenges facing anti-lymphangiogenic therapy. Blood and lymphatic vessels are more than just conduits for nutrient, fluid, and cancer cell transport. Recent studies have elucidated how these vasculatures often regulate immune responses. Vessels that are abnormal or compromised by tumor cells can lead to immunosuppression. Therapies designed to improve lymphatic vessel function while limiting metastasis may represent a viable approach to enhance immunotherapy and limit cancer progression.
Collapse
|
241
|
Loureiro LVM, Neder L, Callegaro-Filho D, de Oliveira Koch L, Stavale JN, Malheiros SMF. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. SURGICAL AND EXPERIMENTAL PATHOLOGY 2020. [DOI: 10.1186/s42047-020-00060-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Background
Angiogenesis is one of the hallmarks of cancer. This complex mechanism of tumor progression provides tumors cells with essential nutrients. There have been a limited number of investigations of markers of angiogenesis in Glioblastomas (GBMs), and most previous studies have focused on VEGF-A. Recent evidence suggests that there is a complex lymphatic system in central nervous system (CNS), which suggests VEGF-C and VEGF–D as interesting biomarker candidates. This study was designed to evaluate the expressions of VEGF-A, −C, −D and their co-receptors, VEGFR-1, VEGFR-2, and VEGFR-3 by immunohistochemistry (IHC) using a series of GBMs. In addition, we evaluate any putative correlations between IHC expression levels of VEGF and clinical data of patients.
Methods
Tumor samples of 70 GBM patients (64 isocitrate dehydrogenase-1 wildtype (wtIDH-1) and 6 mutant (mutIDH-1)) were assessed by IHC using tissue microarray platforms for VEGF subunits and their co-receptors. The medical records were reviewed for clinical and therapeutic data.
Results
All VEGF subunits and receptors were highly expressed in GBMs: 57 out of 62 (91.9%), 53 out of 56 (94.6%) and 55 out of 63 cases (87.3%) showed VEGF-A, VEGF-C and -D imunoexpression, respectively. Interestingly, we had found both nuclear and cytoplasmic localization of VEGF-C staining in GBM tumor cells. The frequency of immunoexpression of VEGF receptors was the following: VEGFR-1, 65 out of 66 cases (98.5%); VEGFR-2, 63 out of 64 cases (98.4%); VEGFR-3, 49 out of 50 cases (90.0%). There were no significant differences in the patient overall survival (OS) related to the VEGF staining. A weak and monotonous correlation was observed between VEGF and its cognate receptors. The pattern of VEGF IHC was found to be similar when GBM mutIDH-1 subtypes were compared to wtIDH-1.
Conclusion
Both VEGF-C and –D, together with their receptors, were found to be overexpressed in the majority GBMs, and the IHC expression levels did not correlate with OS or IDH status. To understand the significance of the interactions and increased expression of VEGF-C, VEGF-D, VEGFR-2, and VEGFR-3 axis in GBM requires more extensive studies. Also, functional assays using a larger series of GBM is also necessary to better address the biological meaning of nuclear VEGF-C expression in tumor cells.
Collapse
|
242
|
Nielsen NR, Rangarajan KV, Mao L, Rockman HA, Caron KM. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am J Physiol Heart Circ Physiol 2020; 318:H895-H907. [PMID: 32142379 DOI: 10.1152/ajpheart.00436.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and hypertension. The aim of this study was to establish a murine model of myocardial edema and elucidate the response of cardiac lymphatics and the myocardium. Myocardial edema without infarction was induced in mice by cauterizing the coronary sinus, increasing pressure in the coronary venous system, and inducing myocardial edema. In male mice, there was rapid development of edema 3 h following coronary sinus cauterization (CSC), with associated dilation of cardiac lymphatics. By 24 h, males displayed significant cardiovascular contractile dysfunction. In contrast, female mice exhibited a temporal delay in the formation of myocardial edema, with onset of cardiovascular dysfunction by 24 h. Furthermore, myocardial edema induced a ring of fibrosis around the epicardial surface of the left ventricle in both sexes that included fibroblasts, immune cells, and increased lymphatics. Interestingly, the pattern of fibrosis and the cells that make up the fibrotic epicardial ring differ between sexes. We conclude that a novel surgical model of myocardial edema without infarct was established in mice. Cardiac lymphatics compensated by exhibiting both an acute dilatory and chronic growth response. Transient myocardial edema was sufficient to induce a robust epicardial fibrotic and inflammatory response, with distinct sex differences, which underscores the sex-dependent differences that exist in cardiac vascular physiology.NEW & NOTEWORTHY Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and high blood pressure. Cardiac lymphatics regulate interstitial fluid balance and, in a myocardial infarction model, have been shown to be therapeutically targetable by increasing heart function. Cardiac lymphatics have only rarely been studied in a noninfarct setting in the heart, and so we characterized the first murine model of increased coronary sinus pressure to induce myocardial edema, demonstrating distinct sex differences in the response to myocardial edema. The temporal pattern of myocardial edema induction and resolution is different between males and females, underscoring sex-dependent differences in the response to myocardial edema. This model provides an important platform for future research in cardiovascular and lymphatic fields with the potential to develop therapeutic interventions for many common cardiovascular diseases.
Collapse
Affiliation(s)
- Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
243
|
Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. J Neurosci 2020; 40:2371-2380. [PMID: 32047056 DOI: 10.1523/jneurosci.2223-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.
Collapse
|
244
|
Pal S, Rao S, Louveau A. Meningeal lymphatic network: The middleman of neuroinflammation. ACTA ACUST UNITED AC 2020. [DOI: 10.1111/cen3.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarit Pal
- Department of Neurosciences Lerner Research Institute Cleveland Clinic Cleveland Ohio USA
| | - Shilpa Rao
- Department of Neurosciences Lerner Research Institute Cleveland Clinic Cleveland Ohio USA
- Department of Molecular Medicine Cleveland Clinic College of Medicine Case Western Reserve University Cleveland Ohio USA
| | - Antoine Louveau
- Department of Neurosciences Lerner Research Institute Cleveland Clinic Cleveland Ohio USA
- Department of Molecular Medicine Cleveland Clinic College of Medicine Case Western Reserve University Cleveland Ohio USA
| |
Collapse
|
245
|
Semyachkina-Glushkovskaya O, Abdurashitov A, Dubrovsky A, Klimova M, Agranovich I, Terskov A, Shirokov A, Vinnik V, Kuzmina A, Lezhnev N, Blokhina I, Shnitenkova A, Tuchin V, Rafailov E, Kurths J. Photobiomodulation of lymphatic drainage and clearance: perspective strategy for augmentation of meningeal lymphatic functions. BIOMEDICAL OPTICS EXPRESS 2020; 11:725-734. [PMID: 32206394 PMCID: PMC7041454 DOI: 10.1364/boe.383390] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/25/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.
Collapse
Affiliation(s)
| | - Arkady Abdurashitov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Tomsk State University, 36 Lenin’s Ave., Tomsk 634050, Russian Federation, Russia
| | | | - Maria Klimova
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Ilana Agranovich
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Andrey Terskov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Alexander Shirokov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Entusiastov Str. 13, Saratov 410049, Russia
| | - Valeria Vinnik
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Anna Kuzmina
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Nikita Lezhnev
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | | | - Valery Tuchin
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Tomsk State University, 36 Lenin’s Ave., Tomsk 634050, Russian Federation, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24 Rabochaya Str., Saratov 410028, Russian Federation, Russia
| | - Edik Rafailov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Optoelectronics and Biomedical Photonics Group, Aston University, Birmingham, B4 7ET, UK
| | - Jurgen Kurths
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany Potsdam, Germany
- Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
246
|
Dupont G, Iwanaga J, Yilmaz E, Tubbs RS. Connections Between Amyloid Beta and the Meningeal Lymphatics As a Possible Route for Clearance and Therapeutics. Lymphat Res Biol 2020; 18:2-6. [DOI: 10.1089/lrb.2018.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Joe Iwanaga
- Seattle Science Foundation, Seattle, Washington
| | - Emre Yilmaz
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - R. Shane Tubbs
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada, West Indies
| |
Collapse
|
247
|
Shibata-Germanos S, Goodman JR, Grieg A, Trivedi CA, Benson BC, Foti SC, Faro A, Castellan RFP, Correra RM, Barber M, Ruhrberg C, Weller RO, Lashley T, Iliff JJ, Hawkins TA, Rihel J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol 2020; 139:383-401. [PMID: 31696318 PMCID: PMC6989586 DOI: 10.1007/s00401-019-02091-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-β, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges.
Collapse
Affiliation(s)
| | - James R Goodman
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Alan Grieg
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chintan A Trivedi
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Bridget C Benson
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | - Roy O Weller
- Clinical Neurosciences (Neuropathology), Faculty of Medicine, Southampton University Hospitals, Southampton, SO16 6YD, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jeffrey J Iliff
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
248
|
Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, Plautz EJ, Dellinger MT, Stowe AM. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab 2020; 40:263-275. [PMID: 30621519 PMCID: PMC7370617 DOI: 10.1177/0271678x18822921] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of meningeal lymphatic vessels (LVs) has sparked interest in identifying their role in diseases of the central nervous system. Similar to peripheral LVs, meningeal LVs depend on vascular endothelial growth factor receptor-3 (VEGFR3) signaling for development. Here we characterize the effect of stroke on meningeal LVs, and the impact of meningeal lymphatic hypoplasia on post-stroke outcomes. We show that photothrombosis (PT), but not transient middle cerebral artery occlusion (tMCAo), induces meningeal lymphangiogenesis in young male C57Bl/J6 mice. We also show that Vegfr3wt/mut mice develop significantly fewer meningeal LVs than Vegfr3wt/wt mice. Again, meningeal lymphangiogenesis occurs in the alymphatic zone lateral to the sagittal sinus only after PT-induced stroke in Vegfr3wt/wt mice. Interestingly, Vegfr3wt/mut mice develop larger stroke volumes than Vegfr3wt/wt mice after tMCAo, but not after PT. Our results reveal differences between PT and tMCAo models of stroke and underscore the need to consider method of stroke induction when investigating the role of meningeal lymphatics. Taken together, our data indicate that ischemic injury can induce the growth of meningeal LVs and that the absence of these LVs can impact post-stroke outcomes.
Collapse
Affiliation(s)
- Pavel Yanev
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Hominick
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noor Khurana
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kielen R Zuurbier
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcus Berndt
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Dellinger
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
249
|
VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020; 577:689-694. [PMID: 31942068 PMCID: PMC7100608 DOI: 10.1038/s41586-019-1912-x] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
Immune surveillance against pathogens and tumors in the central nervous system (CNS) is thought to be limited due to the lack of lymphatic drainage. However, recent characterization of the meningeal lymphatic network sheds new light on previously unappreciated ways of eliciting immune response to antigens expressed in the brain1–3. Despite the remarkable progress made in our understanding of the development and structure of meningeal lymphatics, its contribution in evoking a protective antigen-specific immune response in the brain still remains unclear. Here we examine whether meningeal lymphatic vasculature can be manipulated to mount better immune responses against brain tumors. Using a mouse model of glioblastoma multiforme (GBM), we show that very limited CD8 T cell immunity to GBM antigen is elicited when the tumor is confined to the CNS, resulting in uncontrolled tumor growth. However, ectopic VEGF-C expression promotes enhanced CD8 T cell priming in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumor and rapid clearance of the GBM, resulting in long-lasting antitumor memory response. Further, VEGF-C mRNA works synergistically with checkpoint blockade therapy to eradicate existing GBM. These results reveal the capacity of VEGF-C to promote tumor immune surveillance, and offer a new therapeutic approach to treat brain tumors.
Collapse
|
250
|
Papadopoulos Z, Herz J, Kipnis J. Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:286-293. [PMID: 31907271 PMCID: PMC7061974 DOI: 10.4049/jimmunol.1900838] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
At steady state, the CNS parenchyma has few to no lymphocytes and less potent Ag-presentation capability compared with other organs. However, the meninges surrounding the CNS host diverse populations of immune cells that influence how CNS-related immune responses develop. Interstitial and cerebrospinal fluid produced in the CNS is continuously drained, and recent advances have emphasized that this process is largely taking place through the lymphatic system. To what extent this fluid process mobilizes CNS-derived Ags toward meningeal immune cells and subsequently the peripheral immune system through the lymphatic vessel network is a question of significant clinical importance for autoimmunity, tumor immunology, and infectious disease. Recent advances in understanding the role of meningeal lymphatics as a communicator between the brain and peripheral immunity are discussed in this review.
Collapse
Affiliation(s)
- Zachary Papadopoulos
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jasmin Herz
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|