201
|
O'Sullivan D. The metabolic spectrum of memory T cells. Immunol Cell Biol 2019; 97:636-646. [DOI: 10.1111/imcb.12274] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- David O'Sullivan
- Department of Immunometabolism Max Planck Institute of Immunobiology and Epigenetics Freiburg Germany
| |
Collapse
|
202
|
Zavras PD, Wang Y, Gandhi A, Lontos K, Delgoffe GM. Evaluating tisagenlecleucel and its potential in the treatment of relapsed or refractory diffuse large B cell lymphoma: evidence to date. Onco Targets Ther 2019; 12:4543-4554. [PMID: 31354288 PMCID: PMC6572744 DOI: 10.2147/ott.s177844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have changed the treatment landscape of relapsed or refractory diffuse large B cell lymphoma. This review focuses on the biology of tisagenlecleucel and the clinical data that support its use in this setting. In addition, we discuss how it compares to other CAR T products, the financial implications for payers, and ongoing trials.
Collapse
Affiliation(s)
- P D Zavras
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Wang
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - A Gandhi
- Blood and Marrow Transplant Program, Department of Medicine, Stanford University, Stanford, CA, USA
| | - K Lontos
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - G M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
203
|
Guo C, Chen S, Liu W, Ma Y, Li J, Fisher PB, Fang X, Wang XY. Immunometabolism: A new target for improving cancer immunotherapy. Adv Cancer Res 2019; 143:195-253. [PMID: 31202359 DOI: 10.1016/bs.acr.2019.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fundamental metabolic pathways are essential for mammalian cells to provide energy, precursors for biosynthesis of macromolecules, and reducing power for redox regulation. While dysregulated metabolism (e.g., aerobic glycolysis also known as the Warburg effect) has long been recognized as a hallmark of cancer, recent discoveries of metabolic reprogramming in immune cells during their activation and differentiation have led to an emerging concept of "immunometabolism." Considering the recent success of cancer immunotherapy in the treatment of several cancer types, increasing research efforts are being made to elucidate alterations in metabolic profiles of cancer and immune cells during their interplays in the setting of cancer progression and immunotherapy. In this review, we summarize recent advances in studies of metabolic reprogramming in cancer as well as differentiation and functionality of various immune cells. In particular, we will elaborate how distinct metabolic pathways in the tumor microenvironment cause functional impairment of immune cells and contribute to immune evasion by cancer. Lastly, we highlight the potential of metabolically reprogramming the tumor microenvironment to promote effective and long-lasting antitumor immunity for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Shixian Chen
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjie Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Juan Li
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
204
|
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv 2019; 2:1985-1997. [PMID: 30104397 DOI: 10.1182/bloodadvances.2018021113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
Although immune checkpoint molecules regulate the progression of certain cancers, their significance in malignant development of Waldenstrom macroglobulinemia (WM), an incurable low-grade B-cell lymphoma, remains unknown. Recently, cytokines in the bone marrow (BM) microenvironment are shown to contribute to the pathobiology of WM. Here, we investigated the impact of cytokines, including interleukin-6 (IL-6) and IL-21, on immune regulation and particularly on the programmed death-1 (PD-1) and its ligands PD-L1 and PD-L2. We showed that IL-21, interferon γ, and IL-6 significantly induced PD-L1 and PD-L2 gene expression in WM cell lines. Increased PD-L1 and PD-L2 messenger RNA was also detected in patients' BM cells. Patients' nonmalignant BM cells, including T cells and monocytes, showed increased PD-L1, but minimal or undetectable PD-L2 surface expression. There was also very modest PD-L1 and PD-L2 surface expression by malignant WM cells, suggesting that ligands are cleaved from the cell surface. Levels of soluble ligands were higher in patients' BM plasma and blood serum than controls. Furthermore, IL-21 and IL-6 increased secreted PD-L1 in the culture media of WM cell lines, implying that elevated levels of soluble PD-1 ligands are cytokine mediated. Soluble PD-1 ligands reduced T-cell proliferation, phosphorylated extracellular signal-regulated kinase and cyclin A levels, mitochondrial adenosine triphosphate production, and spare respiratory capacity. In conclusion, we identify that soluble PD-1 ligands are elevated in WM patients and, in addition to surface-bound ligands in WM BM, could regulate T-cell function. Given the capability of secreted forms to be bioactive at distant sites, soluble PD-1 ligands have the potential to promote disease progression in WM.
Collapse
|
205
|
Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 2019; 16:425-441. [DOI: 10.1038/s41571-019-0203-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
206
|
Alosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, Wallace J, Debatin KM, Schulz A, Jacobsen E, Möller P, Shamseldin HE, Abdulwahab F, Ibrahim N, Alardati H, Almuhizi F, Abosoudah IF, Basha TA, Chou J, Alkuraya FS, Geha RS. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol 2019; 144:574-583.e5. [PMID: 30872117 DOI: 10.1016/j.jaci.2019.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The tumor TNF receptor family member 4-1BB (CD137) is encoded by TNFRSF9 and expressed on activated T cells. 4-1BB provides a costimulatory signal that enhances CD8+ T-cell survival, cytotoxicity, and mitochondrial activity, thereby promoting immunity against viruses and tumors. The ligand for 4-1BB is expressed on antigen-presenting cells and EBV-transformed B cells. OBJECTIVE We investigated the genetic basis of recurrent sinopulmonary infections, persistent EBV viremia, and EBV-induced lymphoproliferation in 2 unrelated patients. METHODS Whole-exome sequencing, immunoblotting, immunophenotyping, and in vitro assays of lymphocyte and mitochondrial function were performed. RESULTS The 2 patients shared a homozygous G109S missense mutation in 4-1BB that abolished protein expression and ligand binding. The patients' CD8+ T cells had reduced proliferation, impaired expression of IFN-γ and perforin, and diminished cytotoxicity against allogeneic and HLA-matched EBV-B cells. Mitochondrial biogenesis, membrane potential, and function were significantly reduced in the patients' activated T cells. An inhibitory antibody against 4-1BB recapitulated the patients' defective CD8+ T-cell activation and cytotoxicity against EBV-infected B cells in vitro. CONCLUSION This novel immunodeficiency demonstrates the critical role of 4-1BB costimulation in host immunity against EBV infection.
Collapse
Affiliation(s)
- Mohammed F Alosaimi
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Faris Jaber
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jennifer Jones
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jacqueline Wallace
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Eva Jacobsen
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University of Ulm, Ulm, Germany
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ferdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hosam Alardati
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Faisal Almuhizi
- Department of Medicine, Security Force Hospital, Riyadh, Saudi Arabia
| | - Ibraheem F Abosoudah
- Department of Oncology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Talal A Basha
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
207
|
Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, Zhai S, Kirkwood JM, Delgoffe GM. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight 2019; 4:124989. [PMID: 30721155 PMCID: PMC6483505 DOI: 10.1172/jci.insight.124989] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment presents physical, immunologic, and metabolic barriers to durable immunotherapy responses. We have recently described roles for both T cell metabolic insufficiency as well as tumor hypoxia as inhibitory mechanisms that prevent T cell activity in murine tumors, but whether intratumoral T cell activity or response to immunotherapy varies between patients as a function of distinct metabolic profiles in tumor cells remains unclear. Here, we show that metabolic derangement can vary widely in both degree and type in patient-derived cell lines and in ex vivo analysis of patient samples, such that some cells demonstrate solely deregulated oxidative or glycolytic metabolism. Further, deregulated oxidative, but not glycolytic, metabolism was associated with increased generation of hypoxia upon implantation into immunodeficient animals. Generation of murine single-cell melanoma cell lines that lacked either oxidative or glycolytic metabolism showed that elevated tumor oxygen consumption was associated with increased T cell exhaustion and decreased immune activity. Moreover, melanoma lines lacking oxidative metabolism were solely responsive to anti-PD-1 therapy among those tested. Prospective analysis of patient sample immunotherapy revealed that oxidative, but not glycolytic, metabolism was associated with progression on PD-1 blockade. Our data highlight a role for oxygen as a crucial metabolite required for the tumor-infiltrating T cells to differentiate appropriately upon PD-1 blockade, and suggest that tumor oxidative metabolism may be a target to improve immunotherapeutic response.
Collapse
Affiliation(s)
| | - Ashley V. Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | - Greg M. Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
208
|
Malyshkina A, Littwitz-Salomon E, Sutter K, Ross JA, Paschen A, Windmann S, Schimmer S, Dittmer U. Chronic retroviral infection of mice promotes tumor development, but CD137 agonist therapy restores effective tumor immune surveillance. Cancer Immunol Immunother 2019; 68:479-488. [PMID: 30635687 PMCID: PMC11028158 DOI: 10.1007/s00262-019-02300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/06/2019] [Indexed: 12/29/2022]
Abstract
T cell responses are crucial for anti-tumor immunity. In chronic viral infections, anti-tumor T cell responses can be compromised due to various immunological mechanisms, including T cell exhaustion. To study mechanisms of anti-tumor immunity during a chronic viral infection, we made use of the well-established Friend virus (FV) mouse model. Chronically FV-infected mice are impaired in their ability to reject FBL-3 cells-a virus-induced tumor cell line of C57BL/6 origin. Here we aimed to explore therapeutic strategies to overcome the influence of T cell exhaustion during chronic viral infection, and reactivate effector CD8+ and CD4+ T cells to eliminate tumor cells. For T cell stimulation, agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily members CD137 and CD134 were used, because they were reported to augment the cytotoxic program of T cells. αCD137 agonistic therapy, but not αCD134 agonistic therapy, resulted in FBL-3 tumor elimination in chronically FV-infected mice. CD137 stimulation significantly enhanced the cytotoxic activity of both CD4+ and CD8+ T cells, which were both required for efficient tumor control. Our study suggests that agonistic antibodies to CD137 can efficiently enhance anti-tumor immunity even in the setting of chronic viral infection, which might have promising therapeutic applications.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany.
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| |
Collapse
|
209
|
Tang YS, Wang D, Zhou C, Zhang S. Preparation and anti-tumor efficiency evaluation of bacterial magnetosome-anti-4-1BB antibody complex: Bacterial magnetosome as antibody carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Appl Biochem 2019; 66:290-297. [PMID: 30600567 DOI: 10.1002/bab.1724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Bacterial magnetosomes (BMs) are used as carriers for antibodies, enzymes, and nucleic acids. This study aimed to demonstrate the clinical utility of BMs derived from Magnetospirillum gryphiswaldense for use in anti-tumor immunotherapy. Bis(sulfosuccinimidyl) suberate (BS3) was used to prepare BM-anti-4-1BB antibody complexes. We used syngeneic TC-1 mouse models of cancer to investigate whether BMs combined with an anti-4-1BB agonistic antibodies could enhance the therapeutic effects of anti-4-1BB antibodies in localized disease settings. Anti-4-1BB antibodies were combined with purified BMs at a concentration of 168 mg antibody per milligram BM (mg IgG/mg BM) using BS3. The anti-4-1BB antibody-coupled BMs (BM-Ab complexes) and control BMs displayed similar morphologies and measurements when examined by transmission electron microscope (TEM). In a mouse tumor model, intravenous injection of BM-Abs combined with magnetic treatment resulted in greater tumor protection than did other treatment methods (P < 0.05). These results demonstrate the in vivo anti-tumor properties of BM-Abs complexes. The coupling of anti-4-1BB antibodies to magnetosomes may have potential for clinical application to antitumor antibody therapy.
Collapse
Affiliation(s)
- Yi-Shu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dongmei Wang
- Department of Immunology, Cancer Institute and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chunxia Zhou
- Department of Immunology, Cancer Institute and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
210
|
Miyakoda M, Bayarsaikhan G, Kimura D, Akbari M, Udono H, Yui K. Metformin Promotes the Protection of Mice Infected With Plasmodium yoelii Independently of γδ T Cell Expansion. Front Immunol 2018; 9:2942. [PMID: 30619302 PMCID: PMC6300485 DOI: 10.3389/fimmu.2018.02942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adaptive immune responses are critical for protection against infection with Plasmodium parasites. The metabolic state dramatically changes in T cells during activation and the memory phase. Recent findings suggest that metformin, a medication for treating type-II diabetes, enhances T-cell immune responses by modulating lymphocyte metabolism. In this study, we investigated whether metformin could enhance anti-malaria immunity. Mice were infected with Plasmodium yoelii and administered metformin. Levels of parasitemia were reduced in treated mice compared with those in untreated mice, starting at ~2 weeks post-infection. The number of γδ T cells dramatically increased in the spleens of treated mice compared with that in untreated mice during the later phase of infection, while that of αβ T cells did not. The proportions of Vγ1+ and Vγ2+ γδ T cells increased, suggesting that activated cells were selectively expanded. However, these γδ T cells expressed inhibitory receptors and had severe defects in cytokine production, suggesting that they were in a state of exhaustion. Metformin was unable to rescue the cells from exhaustion at this stage. Depletion of γδ T cells with antibody treatment did not affect the reduction of parasitemia in metformin-treated mice, suggesting that the effect of metformin on the reduction of parasitemia was independent of γδ T cells.
Collapse
Affiliation(s)
- Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Research and Education Center for Drug Fostering and Evolution, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Japan
| | - Masoud Akbari
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Heiichiro Udono
- Department of Immunology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Graduate School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
211
|
Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, Porter DL, Maloney DG, Grupp SA, Mackall CL, June CH, Bishop MR. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 2018; 6:137. [PMID: 30514386 PMCID: PMC6278156 DOI: 10.1186/s40425-018-0460-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapies - adoptive T cell therapies that have been genetically engineered for a new antigen-specificity - have displayed significant success in treating patients with hematologic malignancies, leading to three recent US Food and Drug Administration approvals. Based on the promise generated from these successes, the field is rapidly evolving to include new disease indications and CAR designs, while simultaneously reviewing and optimizing toxicity and management protocols. As such, this review provides expert perspective on the significance and clinical considerations of CAR T cell therapies in order to provide timely information to clinicians about this revolutionary new therapeutic class.
Collapse
Affiliation(s)
| | | | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcela V Maus
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - David L Porter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephan A Grupp
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Crystal L Mackall
- Cancer Immunology and Immunotherapy Program, Stanford University, Stanford, CA, USA
| | - Carl H June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Bishop
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA. .,The University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
212
|
During acute graft versus host disease CD28 deletion in donor CD8+, but not CD4+, T cells maintain antileukemia responses in mice. Eur J Immunol 2018; 48:2055-2067. [DOI: 10.1002/eji.201847669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
|
213
|
Liu M, Guo F. Recent updates on cancer immunotherapy. PRECISION CLINICAL MEDICINE 2018; 1:65-74. [PMID: 30687562 PMCID: PMC6333045 DOI: 10.1093/pcmedi/pby011] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
Traditional cancer therapies include surgery, radiation, and chemotherapy, all of which are typically non-specific approaches. Cancer immunotherapy is a type of cancer treatment that helps the immune system fight cancer. Cancer immunotherapy represents a standing example of precision medicine: immune checkpoint inhibitors precisely target the checkpoints; tumor infiltrating lymphocytes, TCR T cells, and CAR T cells precisely kill cancer cells through tumor antigen recognition; and cancer vaccines are made from patient-derived dendritic cells, tumor cell DNA, or RNA, or oncolytic viruses, thus offering a type of personalized medicine. This review will highlight up-to-date advancement in most, if not all, of the immunotherapy strategies.
Collapse
Affiliation(s)
- Ming Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
214
|
Shevchenko I, Bazhin AV. Metabolic Checkpoints: Novel Avenues for Immunotherapy of Cancer. Front Immunol 2018; 9:1816. [PMID: 30131808 PMCID: PMC6090142 DOI: 10.3389/fimmu.2018.01816] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Novel therapies targeting immune checkpoint molecules have redefined the treatment of cancer at advanced stages and brought hope to millions of patients worldwide. Monoclonal antibodies targeting immune-inhibitory receptors often lead to complete and objective responses as well as to durable progression-free survival where all other therapeutic approaches fail. Yet, many tumors show significant resistance to checkpoint blockade through mechanisms that are only starting to come to light. An alluring alternative strategy to reinvigorate anticancer immune responses comes from the emerging field of immuno-metabolism. Over the past few years, numerous studies revealed that many well-known metabolic playmakers also serve as critical checkpoints in immune homeostasis and immunity against tumors. Here, we survey recent insights into the intimate and intertwining links between T cell metabolic programs and environmental cues in the tumor milieu. Transferring these new findings from the bench to the bedside may soon entirely re-shape the field of cancer immunotherapy and significantly improve the lives of patients.
Collapse
Affiliation(s)
- Ivan Shevchenko
- Institute for Immunology, Ludwig-Maximilians University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians University, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
215
|
Cunningham CA, Hoppins S, Fink PJ. Cutting Edge: Glycolytic Metabolism and Mitochondrial Metabolism Are Uncoupled in Antigen-Activated CD8 + Recent Thymic Emigrants. THE JOURNAL OF IMMUNOLOGY 2018; 201:1627-1632. [PMID: 30068595 DOI: 10.4049/jimmunol.1800705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 01/18/2023]
Abstract
Recent thymic emigrants (RTEs) are peripheral T cells that have most recently completed selection and thymic egress and constitute a population that is phenotypically and functionally distinct from its more mature counterpart. Ag-activated RTEs are less potent effectors than are activated mature T cells, due in part to reduced aerobic glycolysis (correctable by exogenous IL-2), which in turn impacts IFN-γ production. Mitochondria serve as nodal regulators of cell function, but their contribution to the unique biology of RTEs is unknown. In this study, we show that activated mouse RTEs have impaired oxidative phosphorylation, even in the presence of exogenous IL-2. This altered respiratory phenotype is the result of decreased CD28 signaling, reduced glutaminase induction, and diminished mitochondrial mass in RTEs relative to mature T cells. These results suggest an uncoupling whereby IL-2 tunes the rate of RTE glycolytic metabolism, whereas the unique profile of RTE mitochondrial metabolism is "hard wired."
Collapse
Affiliation(s)
- Cody A Cunningham
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Suzanne Hoppins
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| |
Collapse
|
216
|
MacPherson S, Kilgour M, Lum JJ. Understanding lymphocyte metabolism for use in cancer immunotherapy. FEBS J 2018; 285:2567-2578. [PMID: 29611301 DOI: 10.1111/febs.14454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Like all dividing cells, naïve T cells undergo a predictable sequence of events to enter the cell cycle starting from G0 and progressing to G1 , S and finally G2 /M. This methodical series of steps ensures fidelity in the generation of two identical T cells during a single round of division. To achieve this, T cells must activate or inactivate metabolic pathways at discrete times during each phase of the cell cycle. This permits the generation of substrates to support biosynthesis, bioenergetics and the epigenetic changes required for proper differentiation and function. The precursors that feed into these pathways are often shared, highlighting the complex relationship between metabolism and cellular processes that are essential to lymphocytes. It is therefore not surprising that different T cell subtypes exhibit unique metabolic dependencies that change as they mature and go through specialized differentiation programmes. The importance of the influence of metabolism on T cells is underscored by the emerging field of cancer immunotherapy, where autologous T cells can be manufactured ex vivo then infused as a form of curative treatment for human cancers. This review will highlight some of the recent knowledge on T lymphocyte metabolism and give a perspective on the practical implications for cellular-based immunotherapy.
Collapse
Affiliation(s)
- Sarah MacPherson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Marisa Kilgour
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Canada
| |
Collapse
|