201
|
Dearlove B, Tovanabutra S, Owen CL, Lewitus E, Li Y, Sanders-Buell E, Bose M, O’Sullivan AM, Kijak G, Miller S, Poltavee K, Lee J, Bonar L, Harbolick E, Ahani B, Pham P, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Kim JH, Eller LA, Vasan S, Gramzinski R, Michael NL, Robb ML, Rolland M, the RV217 Study Team. Factors influencing estimates of HIV-1 infection timing using BEAST. PLoS Comput Biol 2021; 17:e1008537. [PMID: 33524022 PMCID: PMC7877758 DOI: 10.1371/journal.pcbi.1008537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2021] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factors impact estimates of the infection dates in an acute HIV-1 infection cohort, RV217. In this cohort, HIV-1 diagnosis corresponded to the first RNA positive test and occurred a median of four days after the last negative test, allowing us to compare timing estimates using BEAST to a narrow window of infection. We analyzed HIV-1 sequences sampled one week, one month and six months after HIV-1 diagnosis in 39 individuals. We found that shared diversity and temporal signal was limited in acute infection, and insufficient to allow timing inferences in the shortest HIV-1 genes, thus dated phylogenies were primarily analyzed for env, gag, pol and near full-length genomes. There was no one best-fitting model across participants and genes, though relaxed molecular clocks (73% of best-fitting models) and the Bayesian skyline (49%) tended to be favored. For infections with single founders, the infection date was estimated to be around one week pre-diagnosis for env (IQR: 3–9 days) and gag (IQR: 5–9 days), whilst the genome placed it at a median of 10 days (IQR: 4–19). Multiply-founded infections proved problematic to date. Our ability to compare timing inferences to precise estimates of HIV-1 infection (within a week) highlights that molecular dating methods can be applied to within-host datasets from early infection. Nonetheless, our results also suggest caution when using uniform clock and population models or short genes with limited information content. Molecular dating using phylogenetics allows us to estimate the date of an infection from time-stamped within-host sequences alone. There are large datasets of HIV-1 sequences, but genome and gene analyses are not often performed in parallel and rarely with the possibility to compare results against a known narrow window of infection. We showed that all but the longest genes are near-clonal in acute infection, with little information for dating purposes. For infections with single founders, we estimated the eclipse phase—the time between HIV-1 exposure and the first positive diagnostic test—to last between one and two weeks using env, gag, pol and near full-length genomes. This approach could be used to narrow the date of suspected infection in ongoing clinical trials for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Bethany Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Christopher L. Owen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anne-Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Gustavo Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shana Miller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Kultida Poltavee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Jenica Lee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Lydia Bonar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Elizabeth Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Bahar Ahani
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Phuc Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Centre, Mbeya, Tanzania
| | | | - Fred K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | | | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Robert Gramzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail:
| | | |
Collapse
|
202
|
Michael TP, Ernst E, Hartwick N, Chu P, Bryant D, Gilbert S, Ortleb S, Baggs EL, Sree KS, Appenroth KJ, Fuchs J, Jupe F, Sandoval JP, Krasileva KV, Borisjuk L, Mockler TC, Ecker JR, Martienssen RA, Lam E. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Res 2021; 31:225-238. [PMID: 33361111 PMCID: PMC7849404 DOI: 10.1101/gr.266429.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Collapse
Affiliation(s)
- Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Douglas Bryant
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Erin L Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
| | | | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Florian Jupe
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Justin P Sandoval
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ljudmylla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
203
|
Majure LC, Barrios D, Díaz E, Zumwalde BA, Testo W, Negrón-Ortíz V. Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). AMERICAN JOURNAL OF BOTANY 2021; 108:200-215. [PMID: 33598914 DOI: 10.1002/ajb2.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
PREMISE The Caribbean islands are in the top five biodiversity hotspots on the planet; however, the biogeographic history of the seasonally dry tropical forest (SDTF) there is poorly studied. Consolea consists of nine species of dioecious, hummingbird-pollinated tree cacti endemic to the West Indies, which form a conspicuous element of the SDTF. Several species are threatened by anthropogenic disturbance, disease, sea-level rise, and invasive species and are of conservation concern. However, no comprehensive phylogeny yet exists for the clade. METHODS We reconstructed the phylogeny of Consolea, sampling all species using plastomic data to determine relationships, understand the evolution of key morphological characters, and test their biogeographic history. We estimated divergence times to determine the role climate change may have played in shaping the current diversity of the clade. RESULTS Consolea appears to have evolved very recently during the latter part of the Pleistocene on Cuba/Hispaniola likely from a South American ancestor and, from there, moved into the Bahamas, Jamaica, Puerto Rico, Florida, and the Lesser Antilles. The tree growth form is a synapomorphy of Consolea and likely aided in the establishment and diversification of the clade. CONCLUSIONS Pleistocene aridification associated with glaciation likely played a role in shaping the current diversity of Consolea, and insular gigantism may have been a key innovation leading to the success of these species to invade the often-dense SDTF. This in-situ Caribbean radiation provides a window into the generation of species diversity and the complexity of the SDTF community within the Antilles.
Collapse
Affiliation(s)
- Lucas C Majure
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Duniel Barrios
- Grupo de Ecología y Conservación, Jardín Botánico Nacional, Universidad de La Habana, Cuba
| | - Edgardo Díaz
- Planta! - Plantlife Conservation Society, Vancouver, BC, Canada
| | - Bethany A Zumwalde
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Weston Testo
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Vivian Negrón-Ortíz
- U.S. Fish and Wildlife Service, 1601 Balboa Ave., Panama City, FL, 32405, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
204
|
Neretina AN, Karabanov DP, Sacherova V, Kotov AA. Unexpected mitochondrial lineage diversity within the genus Alonella Sars, 1862 (Crustacea: Cladocera) across the Northern Hemisphere. PeerJ 2021; 9:e10804. [PMID: 33585083 PMCID: PMC7860113 DOI: 10.7717/peerj.10804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Representatives of the genus Alonella Sars (Crustacea: Cladocera: Chydorinae) belong to the smallest known water fleas. Although species of Alonella are widely distributed and often abundant in acidic and mountain water bodies, their diversity is poorly studied. Morphological and genetic approaches have been complicated by the minute size of these microcrustaceans. As a result, taxonomists have avoided revising these species. Here, we present genetic data on Alonella species diversity across the Northern Hemisphere with particular attention to the A. excisa species complex. We analyzed 82 16S rRNA sequences (all newly obtained), and 78 COI sequences (39 were newly obtained). The results revealed at least twelve divergent phylogenetic lineages, possible cryptic species, of Alonella, with different distribution patterns. As expected, the potential species diversity of this genus is significantly higher than traditionally accepted. The A. excisa complex is represented by nine divergent clades in the Northern Hemisphere, some of them have relatively broad distribution ranges and others are more locally distributed. Our results provide a genetic background for subsequent morphological analyses, formal descriptions of Alonella species and detailed phylogeographical studies.
Collapse
Affiliation(s)
- Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- I.D. Papanin Institute for Biology of Inland Waters, Borok, Yaroslavl State, Russia
| | | | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
205
|
Meng CR, Zhang Q, Yang ZF, Geng K, Zeng XY, Thilini Chethana KW, Wang Y. Lasiodiplodia syzygii sp. nov. (Botryosphaeriaceae) causing post-harvest water-soaked brown lesions on Syzygium samarangense in Chiang Rai, Thailand. Biodivers Data J 2021; 9:e60604. [PMID: 33510578 PMCID: PMC7809010 DOI: 10.3897/bdj.9.e60604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
Background Syzygium samarangense (Wax apple) is an important tropical fruit tree with high economic and nutrient value and is widely planted in the tropics or subtropics of Asia. Post-harvest water-soaked brown lesions were observed on mature fruits of ornamental wax apples in Chiang Rai Province, Thailand. A fungus with morphological characters, similar to Lasiodiplodia, was consistently isolated from symptomatic fruits. Phylogenetic analyses, based on ITS, LSU, TEF1-a and tub2, revealed that our isolates were closely related to, but phylogenetically distinct from, Lasiodiplodia rubropurpurea. New information Morphological comparisons indicated that pycnidia and conidiogenous cells of our strains were significantly larger than L. rubropurpurea. Comparisons of base-pair differences in the four loci confirmed that the species from wax apple was distinct from L. rubropurpurea and a new species, L. syzygii sp. nov., is introduced to accommodate it. Pathogenicity tests confirmed the newly-introduced species as the pathogen of this post-harvest water-soaked brown lesion disease on wax apples.
Collapse
Affiliation(s)
- Chao-Rong Meng
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China Department of Plant Pathology, Agricultural College, Guizhou University Guiyang China
| | - Qian Zhang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China Department of Plant Pathology, Agricultural College, Guizhou University Guiyang China
| | - Zai-Fu Yang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China Department of Plant Pathology, Agricultural College, Guizhou University Guiyang China
| | - Kun Geng
- Guiyang plant protection and inspection station, Guiyang, China Guiyang plant protection and inspection station Guiyang China
| | - Xiang-Yu Zeng
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China Department of Plant Pathology, Agricultural College, Guizhou University Guiyang China
| | - K W Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand School of Science, Mae Fah Luang University Chiang Rai Thailand
| | - Yong Wang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China Department of Plant Pathology, Agricultural College, Guizhou University Guiyang China
| |
Collapse
|
206
|
An YY, Zeng XY, Geng K, Hyde KD, Wang Y. One new species and one new record of Zasmidium in China. Biodivers Data J 2021; 9:e59001. [PMID: 33510577 PMCID: PMC7809012 DOI: 10.3897/bdj.9.e59001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Two hyphomycetous species were collected from leaves of Smilaxchina (Liliales, Smilacaceae) and Cremastraappendiculata (Asparagales, Orchidaceae). ITS barcoding indicated that they belong to the genus Zasmidium. New information Morphological data in combination with molecular phylogenetic analyses based on ITS, LSU and rpb2 confirmed that our Chinese strains represented a new species, Zasmidiumliboense and a new record of Z.citri-griseum.
Collapse
Affiliation(s)
- Yuan-Yan An
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China Department of Plant Pathology, Agriculture College, Guizhou University Guiyang China
| | - Xiang-Yu Zeng
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China Department of Plant Pathology, Agriculture College, Guizhou University Guiyang China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand School of Science, Mae Fah Luang University Chiang Rai Thailand
| | - Kun Geng
- Guiyang plant protection and inspection station, Guiyang, China Guiyang plant protection and inspection station Guiyang China
| | - Kevin David Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand School of Science, Mae Fah Luang University Chiang Rai Thailand
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China Department of Plant Pathology, Agriculture College, Guizhou University Guiyang China
| |
Collapse
|
207
|
Majure LC, Encarnación Y, Clase T, Peguero B, Ho K, Barrios D. Phylogenetics of Leptocereus (Cactaceae) on Hispaniola: clarifying species limits in the L. weingartianus complex and a new species from the Sierra de Bahoruco. PHYTOKEYS 2021; 172:17-37. [PMID: 33597828 PMCID: PMC7864899 DOI: 10.3897/phytokeys.172.59497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 05/08/2023]
Abstract
The Antillean genus Leptocereus represents an in-situ radiation among the Greater and Lesser Antilles of 19 currently recognized species. Extensive fieldwork carried out in the Dominican Republic over recent years has revealed that the species limits of Leptocereus of Hispaniola are more complex than previously thought. There are four currently recognized species that occur on the island, L. demissus, L. paniculatus, L. undulosus and L. weingartianus. We evaluate species limits in this group based on DNA sequence data and phylogenetic analysis, morphological characters and a survey of herbarium specimens from across Hispaniola. Based on our analyses, it is clear that at least five species occur on the island of Hispaniola, with the new species from Sierra de Bahoruco, L. velozianus, described here. We provide an identification key, distribution maps and photographic plates for all species on Hispaniola based on our own fieldwork and the study of herbarium specimens. The description of yet another species of Leptocereus on Hispaniola reiterates the importance of the poorly studied, but yet biodiverse, seasonally dry tropical forest in the Antilles.
Collapse
Affiliation(s)
- Lucas C. Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL 32611, USA
| | - Yuley Encarnación
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Teodoro Clase
- Departamento de Botánica, Jardín Botánico Nacional “Dr. Rafael M. Moscoso”, Santo Domingo, Dominican Republic
| | - Brígido Peguero
- Departamento de Botánica, Jardín Botánico Nacional “Dr. Rafael M. Moscoso”, Santo Domingo, Dominican Republic
| | - Kelly Ho
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Duniel Barrios
- Grupo de Ecología y Conservación, Jardín Botánico Nacional, Universidad de La Habana, Habana, Cuba
| |
Collapse
|
208
|
Abstract
Multiple sequence alignment (MSA) is a central step in many bioinformatics and computational biology analyses. Although there exist many methods to perform MSA, most of them fail when dealing with large datasets due to their high computational cost. MSAProbs-MPI is a publicly available tool ( http://msaprobs.sourceforge.net ) that provides highly accurate results in relatively short runtime thanks to exploiting the hardware resources of multicore clusters. In this chapter, I explain the statistical and biological concepts employed in MSAProbs-MPI to complete the alignments, as well as the high-performance computing techniques used to accelerate it. Moreover, I provide some hints about the configuration parameters that should be used to guarantee high-performance executions.
Collapse
|
209
|
Tagliamonte MS, Abid N, Borocci S, Sangiovanni E, Ostrov DA, Kosakovsky Pond SL, Salemi M, Chillemi G, Mavian C. Multiple Recombination Events and Strong Purifying Selection at the Origin of SARS-CoV-2 Spike Glycoprotein Increased Correlated Dynamic Movements. Int J Mol Sci 2020; 22:E80. [PMID: 33374797 PMCID: PMC7794730 DOI: 10.3390/ijms22010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
Our evolutionary and structural analyses revealed that the severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) spike gene is a complex mosaic resulting from several recombination events. Additionally, the fixation of variants has mainly been driven by purifying selection, suggesting the presence of conserved structural features. Our dynamic simulations identified two main long-range covariant dynamic movements of the novel glycoprotein, and showed that, as a result of the evolutionary duality, they are preserved. The first movement involves the receptor binding domain with the N-terminal domain and the C-terminal domain 2 and is maintained across human, bat and pangolin coronaviruses. The second is a complex network of long-range dynamics specific to SARS-CoV-2 involving the novel PRRA and the conserved KR*SF cleavage sites, as well as conserved segments in C-terminal domain 3. These movements, essential for host cell binding, are maintained by hinges conserved across human, bat, and pangolin coronaviruses glycoproteins. The hinges, located around Threonine 333 and Proline 527 within the N-terminal domain and C-terminal domain 2, represent candidate targets for the future development of novel pan-coronavirus inhibitors. In summary, we show that while recombination created a new configuration that increased the covariant dynamic movements of the SARS-CoV-2 glycoprotein, negative selection preserved its inter-domain structure throughout evolution in different hosts and inter-species transmissions.
Collapse
Affiliation(s)
- Massimiliano S. Tagliamonte
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32608, USA;
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia;
- Department of Biotechnology, High Institute of Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana-Tunis, Tunisia
| | - Stefano Borocci
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy; (S.B.); (E.S.)
- Institute for Biological Systems, National Research Council, Via Salaria, Km 29.500, 00015 Monterotondo, Rome, Italy
| | - Elisa Sangiovanni
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy; (S.B.); (E.S.)
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Marco Salemi
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32608, USA;
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy; (S.B.); (E.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| | - Carla Mavian
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32608, USA;
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
210
|
Zekri ARN, Easa Amer K, Hafez MM, Hassan ZK, Ahmed OS, Soliman HK, Bahnasy AA, Abdel Hamid W, Gad A, Ali M, Ali Hassan W, Samir Madboly M, Abdel Raouf A, Khattab AA, Salah El Din Hamdy M, Sherif Soliman M, Hamdi El Sissy M, Mohamed El Khateeb S, Hosny Ezzelarab M, Fathalla LA, Abouelhoda M. Genomic characterization of SARS-CoV-2 in Egypt. J Adv Res 2020; 30:123-132. [PMID: 33262895 PMCID: PMC7688418 DOI: 10.1016/j.jare.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe, causing a pandemic. In Egypt over 115,000 individuals were infected so far. Objective In the present study, the objective is to perform a complete genome sequence of SAR-CoV2 isolated from Egyptian coronavirus disease (COVID-19) patients. Methods Nasopharyngeal swabs were collected from 61 COVID-19 patients who attended at National Cancer Institute, Kasr Al-Aini Hospital and the army hospital. Viral RNA was extracted and whole genomic sequencing was conducted using Next Generation Sequencing. Results In all cases, the sequenced virus has at least 99% identity to the reference Wuhan 1. The sequence analysis showed 204 distinct genome variations including 114 missense mutations, 72 synonymous mutations, 1 disruptive in-frame deletion, 7 downstream gene mutations, 6 upstream gene mutations, 3 frame-shift deletions, and 1 in-frame deletion. The most dominant clades were G/GH/GR/O and the dominant type is B. Conclusion The whole genomic sequence of SARS-CoV2 showed 204 variations in the genomes of the Egyptian isolates, where the Asp614Gly (D614G) substitution is the most common among the samples (60/61). So far, there were no strikingly variations specific to the Egyptian population, at least for this set of samples.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Khaled Easa Amer
- Egypt Center for Research and Regenerative Medicine ECRRM, Egypt
| | - Mohammed M Hafez
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Zeinab K Hassan
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Ola S Ahmed
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Hany K Soliman
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Abeer A Bahnasy
- Surgical Pathology Department National Cancer Institute, Cairo University, 11796, Egypt
| | | | - Ahmad Gad
- Military Central Laboratories, Egypt
| | - Mahmoud Ali
- Egypt Center for Research and Regenerative Medicine ECRRM, Egypt
| | - Wael Ali Hassan
- Egypt Center for Research and Regenerative Medicine ECRRM, Egypt
| | | | | | - Ayman A Khattab
- Egypt Center for Research and Regenerative Medicine ECRRM, Egypt
| | | | - May Sherif Soliman
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Maha Hamdi El Sissy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | | | | | - Lamiaa A Fathalla
- Clinical Pathology Department, National Cancer Institute, Cairo University 11796, Egypt
| | - Mohamed Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
211
|
Muliyar RK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ, Niral V, Karun A, Mahato AK, Gaikwad K, Singh NK, Prasad TSK. Assembly and Annotation of the Nuclear and Organellar Genomes of a Dwarf Coconut (Chowghat Green Dwarf) Possessing Enhanced Disease Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:726-742. [PMID: 33170083 DOI: 10.1089/omi.2020.0147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.
Collapse
Affiliation(s)
| | - Pallem Chowdappa
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Bhagya Nekrakalaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | | | - Vittal Niral
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Anitha Karun
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Ajay Kumar Mahato
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | |
Collapse
|
212
|
Proposal for a subdivision of the family Psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
213
|
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 2020; 96:fiaa185. [PMID: 32918451 PMCID: PMC7840110 DOI: 10.1093/femsec/fiaa185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
- Oslo Metropolitan University, PO Box 4 St. Olavs plass, NO-0130 Oslo, Norway
| | - E Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - A K Krabberød
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
214
|
Hugouvieux-Cotte-Pattat N, Brochier-Armanet C, Flandrois JP, Reverchon S. Dickeya poaceiphila sp. nov., a plant-pathogenic bacterium isolated from sugar cane ( Saccharum officinarum). Int J Syst Evol Microbiol 2020; 70:4508-4514. [PMID: 32628105 DOI: 10.1099/ijsem.0.004306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Dickeya is an important group of plant pathogens that currently comprises 10 recognized species. Although most Dickeya isolates originated from infected cultivated plants, they are also isolated from water. The genomic sequence of the Australian strain NCPPB 569T clearly established its separation from the previously characterized Dickeya species. The average nucleotide identity and digital DNA-DNA hybridization values obtained by comparing strain NCPPB 569T with strains of characterized Dickeya species were lower than 87 and 32 %, respectively, supporting the delineation of a new species. The name Dickeya poaceiphila sp. nov. is proposed for this taxon with the type strain NCPPB 569T (=CFBP 8731T). Two other strains isolated in Australia, CFBP 1537 and CFBP 2040, also belong to this species. Phenotypic and genomic comparisons enabled the identification of traits distinguishing D. poaceiphila isolates from strains of other Dickeya species.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, CNRS UMR 5240, INSA de Lyon, Université Claude Bernard Lyon 1, Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, CNRS UMR 5240, INSA de Lyon, Université Claude Bernard Lyon 1, Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France
| |
Collapse
|
215
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
216
|
De Carli S, Wolf JM, Gräf T, Lehmann FKM, Fonseca ASK, Canal CW, Lunge VR, Ikuta N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol 2020; 49:611-620. [PMID: 32746617 DOI: 10.1080/03079457.2020.1804528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.
Collapse
Affiliation(s)
- Silvia De Carli
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Fernanda K M Lehmann
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | | | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
217
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
218
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
219
|
Elliott TF, Nelsen DJ, Karunarathna SC, Stephenson SL. Entoloma sequestratum, a new species from northern Thailand, and a worldwide key to sequestrate taxa of Entoloma ( Entolomataceae). Fungal Syst Evol 2020; 6:253-263. [PMID: 32904160 PMCID: PMC7451772 DOI: 10.3114/fuse.2020.06.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Based on our study of the morphology and genetics of sporocarps collected in the mountains of northern Thailand, we herein describe Entoloma sequestratum as a new sequestrate member of the Entolomotaceae. This serves as the first report of a sequestrate member of the genus from Thailand. In addition, we provide a worldwide key to all of the described sequestrate members of the genus.
Collapse
Affiliation(s)
- T F Elliott
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - D J Nelsen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - S C Karunarathna
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.,World Agroforestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, China
| | - S L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
220
|
Andrews RJ, O’Leary CA, Moss WN. A survey of RNA secondary structural propensity encoded within human herpesvirus genomes: global comparisons and local motifs. PeerJ 2020; 8:e9882. [PMID: 32974099 PMCID: PMC7487152 DOI: 10.7717/peerj.9882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
There are nine herpesviruses known to infect humans, of which Epstein-Barr virus (EBV) is the most widely distributed (>90% of adults infected). This ubiquitous virus is implicated in a variety of cancers and autoimmune diseases. Previous analyses of the EBV genome revealed numerous regions with evidence of generating unusually stable and conserved RNA secondary structures and led to the discovery of a novel class of EBV non-coding (nc)RNAs: the stable intronic sequence (sis)RNAs. To gain a better understanding of the roles of RNA structure in EBV biology and pathogenicity, we revisit EBV using recently developed tools for genome-wide motif discovery and RNA structural characterization. This corroborated previous results and revealed novel motifs with potential functionality; one of which has been experimentally validated. Additionally, since many herpesviruses increasingly rival the seroprevalence of EBV (VZV, HHV-6 and HHV-7 being the most notable), analyses were expanded to include all sequenced human Herpesvirus RefSeq genomes, allowing for genomic comparisons. In total 10 genomes were analyzed, for EBV (types 1 and 2), HCMV, HHV-6A, HHV-6B, HHV-7, HSV-1, HSV-2, KSHV, and VZV. All resulting data were archived in the RNAStructuromeDB (https://structurome.bb.iastate.edu/herpesvirus) to make them available to a wide array of researchers.
Collapse
Affiliation(s)
- Ryan J. Andrews
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Collin A. O’Leary
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
221
|
Smith SA, Walker-Hale N, Walker JF. Intragenic Conflict in Phylogenomic Data Sets. Mol Biol Evol 2020; 37:3380-3388. [DOI: 10.1093/molbev/msaa170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Most phylogenetic analyses assume that a single evolutionary history underlies one gene. However, both biological processes and errors can cause intragenic conflict. The extent to which this conflict is present in empirical data sets is not well documented, but if common, could have far-reaching implications for phylogenetic analyses. We examined several large phylogenomic data sets from diverse taxa using a fast and simple method to identify well-supported intragenic conflict. We found conflict to be highly variable between data sets, from 1% to >92% of genes investigated. We analyzed four exemplar genes in detail and analyzed simulated data under several scenarios. Our results suggest that alignment error may be one major source of conflict, but other conflicts remain unexplained and may represent biological signal or other errors. Whether as part of data analysis pipelines or to explore biologically processes, analyses of within-gene phylogenetic signal should become common.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | | | - Joseph F Walker
- The Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
222
|
Fu YT, Dong Y, Wang W, Nie Y, Liu GH, Shao R. Fragmented mitochondrial genomes evolved in opposite directions between closely related macaque louse Pedicinus obtusus and colobus louse Pedicinus badii. Genomics 2020; 112:4924-4933. [PMID: 32898640 DOI: 10.1016/j.ygeno.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
We report for the first time the fragmented mitochondrial (mt) genomes of two Pedicinus species: Pedicinus obtusus and Pedicinus badii, and compared them with the lice of humans and chimpanzees. Despite being congeneric, the two monkey lice are distinct from each other in mt karyotype. The variation in mt karyotype between the two Pedicinus lice is the most pronounced among the congeneric species of sucking lice observed to date and is attributable to the opposite directions between them in mt karyotype evolution. Two of the inferred ancestral mt minichromosomes of the higher primate lice merged as one in the macaque louse whereas one of the ancestral minichromosomes split into two in the colobus louse after these two species diverged from their most recent common ancestor. Our results showed that mt genome fragmentation was a two-way process in the higher primate lice, and minichromosome merger was more common than previously thought.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yalun Dong
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Wei Wang
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Renfu Shao
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia.
| |
Collapse
|
223
|
Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses. Braz J Microbiol 2020; 51:1941-1951. [PMID: 32780265 DOI: 10.1007/s42770-020-00350-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023] Open
Abstract
Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae, and Baculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. In conclusion, this viral metagenomic analysis reveals, for the first time, the profile of viruses in the oral cavity of wild, free ranging capuchin monkeys.
Collapse
|
224
|
Sharaf MR, Gotzek D, Guénard B, Fisher BL, Aldawood AS, Al Dhafer HM, Mohamed AA. Molecular phylogenetic analysis and morphological reassessments of thief ants identify a new potential case of biological invasions. Sci Rep 2020; 10:12040. [PMID: 32694527 PMCID: PMC7374620 DOI: 10.1038/s41598-020-69029-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Species delimitation offered by DNA-based approaches can provide important insights into the natural history and diversity of species, but the cogency of such processes is limited without multigene phylogenies. Recent attempts to barcode various Solenopsidini ant taxa (Hymenoptera: Formicidae: Myrmicinae), including the thief ant Solenopsis saudiensis Sharaf & Aldawood, 2011 described from the Kingdom of Saudi Arabia (KSA), were precipitated by the unexpected existence of a closely related species, the Nearctic S. abdita Thompson, 1989 within the S. molesta species complex native to Florida. This finding left the species status of the former uncertain. Here, we investigated the taxonomy and phylogeny of these two species to determine whether or not S. abdita represents a new global tramp species. We inferred a phylogeny of the two species using DNA sequence data from four nuclear genes (Abd-A, EF1α-F1, EF1α-F2, and Wingless) and one mitochondrial gene (COI) sampled from populations in Florida, Guatemala, Hawaii, and Saudi Arabia. Both species clustered into one distinct and robust clade. The taxonomy of S. saudiensis was re‐examined using morphometrics. A reassessment of the morphological characters used to diagnose the worker and queen castes were consistent with molecular evidence. Based on combined morphological and molecular evidences S. saudiensis is declared as a junior synonym of S. abdita (syn. nov.). In addition, our findings indicate that S. abdita is a novel global tramp species which has a far wider distribution than previously thought and has established itself in many new habitats and different geographic realms.
Collapse
Affiliation(s)
- Mostafa R Sharaf
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Dietrich Gotzek
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Brian L Fisher
- California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Abdulrahman S Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hathal M Al Dhafer
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt
| |
Collapse
|
225
|
Méheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C, Chen LX, Amano Y, Hug LA, Banfield JF. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME JOURNAL 2020; 14:2907-2922. [PMID: 32681159 DOI: 10.1038/s41396-020-0716-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Currently described members of Elusimicrobia, a relatively recently defined phylum, are animal-associated and rely on fermentation. However, free-living Elusimicrobia have been detected in sediments, soils and groundwater, raising questions regarding their metabolic capacities and evolutionary relationship to animal-associated species. Here, we analyzed 94 draft-quality, non-redundant genomes, including 30 newly reconstructed genomes, from diverse animal-associated and natural environments. Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater-associated Elusimicrobia are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on oxygen or nitrate/nitrite-dependent respiration, or a variety of organic compounds and Rhodobacter nitrogen fixation (Rnf) complex-dependent acetogenesis with hydrogen and carbon dioxide as the substrates. Genomes from two clades of groundwater-associated Elusimicrobia often encode a new group of nitrogenase paralogs that co-occur with an extensive suite of radical S-Adenosylmethionine (SAM) proteins. We identified similar genomic loci in genomes of bacteria from the Gracilibacteria phylum and the Myxococcales order and predict that the gene clusters reduce a tetrapyrrole, possibly to form a novel cofactor. The animal-associated Elusimicrobia clades nest phylogenetically within two free-living-associated clades. Thus, we propose an evolutionary trajectory in which some Elusimicrobia adapted to animal-associated lifestyles from free-living species via genome reduction.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Paula B Matheus Carnevali
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Ibrahim F Farag
- School of Marine Science and Policy, University of Delaware, Lewes, DE, 19968, USA
| | - Christine He
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
226
|
Arya GC, Srivastava DA, Pandaranayaka EPJ, Manasherova E, Prusky DB, Elad Y, Frenkel O, Dvir H, Harel A. Characterization of the Role of a Non-GPCR Membrane-Bound CFEM Protein in the Pathogenicity and Germination of Botrytis cinerea. Microorganisms 2020; 8:microorganisms8071043. [PMID: 32674341 PMCID: PMC7409268 DOI: 10.3390/microorganisms8071043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023] Open
Abstract
The necrotrophic fungus Botrytis cinerea, is considered a major cause of postharvest losses in a wide range of crops. The common fungal extracellular membrane protein (CFEM), containing a conserved eight-cysteine pattern, was found exclusively in fungi. Previous studies in phytopathogenic fungi have demonstrated the role of membrane-bound and secreted CFEM-containing proteins in different aspects of fungal virulence. However, non-G protein-coupled receptor (non-GPCR) membrane CFEM proteins have not been studied yet in phytopathogenic fungi. In the present study, we have identified a non-GPCR membrane-bound CFEM-containing protein, Bcin07g03260, in the B. cinerea genome, and generated deletion mutants, ΔCFEM-Bcin07g03260, to study its potential role in physiology and virulence. Three independent ΔCFEM-Bcin07g03260 mutants showed significantly reduced progression of a necrotic lesion on tomato (Solanum lycopersicum) leaves. Further analysis of the mutants revealed significant reduction (approximately 20–30%) in conidial germination and consequent germ tube elongation compared with the WT. Our data complements a previous study of secreted ΔCFEM1 mutants of B. cinerea that showed reduced progression of necrotic lesions on leaves, without effect on germination. Considering various functions identified for CFEM proteins in fungal virulence, our work illustrates a potential new role for a non-GPCR membrane CFEM in pathogenic fungi to control virulence in the fungus B. cinerea.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (G.C.A.); (D.A.S.); (E.P.J.P.); (E.M.)
| | - Dhruv Aditya Srivastava
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (G.C.A.); (D.A.S.); (E.P.J.P.); (E.M.)
| | - Eswari P. J. Pandaranayaka
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (G.C.A.); (D.A.S.); (E.P.J.P.); (E.M.)
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (G.C.A.); (D.A.S.); (E.P.J.P.); (E.M.)
| | - Dov Bernard Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion7505101, Israel;
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (Y.E.); (O.F.)
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (Y.E.); (O.F.)
| | - Hay Dvir
- Department of Ruminant Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Arye Harel
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; (G.C.A.); (D.A.S.); (E.P.J.P.); (E.M.)
- Correspondence: ; Tel.: +972-3-968-3644
| |
Collapse
|
227
|
Vidovszky MZ, Tan Z, Carr MJ, Boldogh S, Harrach B, Gonzalez G. Bat-borne polyomaviruses in Europe reveal an evolutionary history of intrahost divergence with horseshoe bats distributed across the African and Eurasian continents. J Gen Virol 2020; 101:1119-1130. [PMID: 32644038 DOI: 10.1099/jgv.0.001467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polyomaviruses (PyVs) are small, circular dsDNA viruses carried by diverse vertebrates, including bats. Although previous studies have reported several horseshoe bat PyVs collected in Zambia and China, it is still unclear how PyVs evolved in this group of widely dispersed mammals. Horseshoe bats (genus Rhinolophus) are distributed across the Old World and are natural reservoirs of numerous pathogenic viruses. Herein, non-invasive bat samples from European horseshoe bat species were collected in Hungary for PyV identification and novel PyVs with complete genomes were successfully recovered from two different European horseshoe bat species. Genomic and phylogenetic analysis of the Hungarian horseshoe bat PyVs supported their classification into the genera Alphapolyomavirus and Betapolyomavirus. Notably, despite the significant geographical distances between the corresponding sampling locations, Hungarian PyVs exhibited high genetic relatedness with previously described Zambian and Chinese horseshoe bat PyVs, and phylogenetically clustered with these viruses in each PyV genus. Correlation and virus-host relationship analysis suggested that these PyVs co-diverged with their European, African and Asian horseshoe bat hosts distributed on different continents during their evolutionary history. Additionally, assessment of selective pressures over the major capsid protein (VP1) of horseshoe bat PyVs showed sites under positive selection located in motifs exposed to the exterior of the capsid. In summary, our findings revealed a pattern of stable intrahost divergence of horseshoe bat PyVs with their mammalian hosts on the African and Eurasian continents over evolutionary time.
Collapse
Affiliation(s)
- Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Zhizhou Tan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
228
|
Gao Y, Lv M, Cui T, Wan X. The complete chloroplast genome of Caryota obtusa, an endangered and economically important species. Mitochondrial DNA B Resour 2020; 5:2176-2177. [PMID: 33366959 PMCID: PMC7510677 DOI: 10.1080/23802359.2020.1768944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
Caryota obtusa is an endangered and economically important species of the Arecaceae. The complete chloroplast genome sequence of this species is a circular molecule of 159,882 bp in size, including a pair of inverted repeats with length of 27,271 bp, separated by a large single-copy (87,645 bp) region and a small single-copy region (17,695 bp). In total, there are 131 genes, encoding 79 protein-coding genes, 40 tRNAs, and 10 rRNA genes, in which 123 genes, 69 CDSs, 37 tRNAs, and 10 rRNAs are unique, respectively. Phylogenetic inference confirmed the monophyly of the Caryota genus and its delimitation in subfamily Coryphoideae.
Collapse
Affiliation(s)
- Yongqian Gao
- Yunnan Forestry Technological College, Kunming, PR China
| | - Mei Lv
- Forest Pest Quarantine and Control Station, Forestry Administration of Weining County, Weining, PR China
| | - Tao Cui
- Forest Pest Quarantine and Control Station, Forestry Administration of Weining County, Weining, PR China
| | - Xiaoli Wan
- Lincang Academy of Forestry Sciences, Lincang, PR China
| |
Collapse
|
229
|
Li J, Xu B, Yang Q, Liu ZL. The complete chloroplast genome sequence of Picea schrenkiana (Pinaceae). Mitochondrial DNA B Resour 2020; 5:2191-2192. [PMID: 33366966 PMCID: PMC7510663 DOI: 10.1080/23802359.2020.1768960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/30/2022] Open
Abstract
Picea is a phylogenetically complicate genus with great economic and ecological values. Here, we determined the whole complete chloroplast genome of Picea schrenkiana to provide genomic information for phylogenetic analysis of the genus. The plastome of P. schrenkiana is 124,060 bp in size and contains 114 genes, including 74 protein-coding genes, 36 tRNA genes, and four rRNA genes. The overall GC content is 38.7%. Unlike the typical plastome with a conserved quadripartite structure, loss of inverted repeat regions is found in the chloroplast genome. The phylogenetic tree shows that monophyly of P. schrenkiana is well supported.
Collapse
Affiliation(s)
- Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
230
|
Genetic Characterization of Influenza A Viruses in Japanese Swine in 2015 to 2019. J Virol 2020; 94:JVI.02169-19. [PMID: 32350072 PMCID: PMC7343197 DOI: 10.1128/jvi.02169-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
Understanding the current status of influenza A viruses of swine (IAVs-S) and their evolution at the farm level is important for controlling these pathogens. Efforts to monitor IAVs-S during 2015 to 2019 yielded H1N1, H1N2, and H3N2 viruses. H1 genes in Japanese swine formed a unique clade in the classical swine H1 lineage of 1A.1, and H3 genes originating from 1999–2000 human seasonal influenza viruses appear to have become established among Japanese swine. A(H1N1)pdm09-derived H1 genes became introduced repeatedly and reassorted with endemic IAVs-S, resulting in various combinations of surface and internal genes among pig populations in Japan. At the farm level, multiple introductions of IAVs-S with phylogenetically distinct HA sequences occurred, or IAVs-S derived from a single introduction have persisted for at least 3 years with only a single mutation at the antigenic site of the HA protein. Continued monitoring of IAVs-S is necessary to update and maximize control strategies. To assess the current status of influenza A viruses of swine (IAVs-S) throughout Japan and to investigate how these viruses persisted and evolve on pig farms, we genetically characterized IAVs-S isolated during 2015 to 2019. Nasal swab samples collected through active surveillance and lung tissue samples collected for diagnosis yielded 424 IAVs-S, comprising 78 H1N1, 331 H1N2, and 15 H3N2 viruses, from farms in 21 sampled prefectures in Japan. Phylogenetic analyses of surface genes revealed that the 1A.1 classical swine H1 lineage has evolved uniquely since the late 1970s among pig populations in Japan. During 2015 to 2019, A(H1N1)pdm09 viruses repeatedly became introduced into farms and reassorted with endemic H1N2 and H3N2 IAVs-S. H3N2 IAVs-S isolated during 2015 to 2019 formed a clade that originated from 1999–2000 human seasonal influenza viruses; this situation differs from previous reports, in which H3N2 IAVs-S derived from human seasonal influenza viruses were transmitted sporadically from humans to swine but then disappeared without becoming established within the pig population. At farms where IAVs-S were frequently isolated for at least 3 years, multiple introductions of IAVs-S with phylogenetically distinct hemagglutinin (HA) genes occurred. In addition, at one farm, IAVs-S derived from a single introduction persisted for at least 3 years and carried no mutations at the deduced antigenic sites of the hemagglutinin protein, except for one at the antigenic site (Sa). Our results extend our understanding regarding the status of IAVs-S currently circulating in Japan and how they genetically evolve at the farm level. IMPORTANCE Understanding the current status of influenza A viruses of swine (IAVs-S) and their evolution at the farm level is important for controlling these pathogens. Efforts to monitor IAVs-S during 2015 to 2019 yielded H1N1, H1N2, and H3N2 viruses. H1 genes in Japanese swine formed a unique clade in the classical swine H1 lineage of 1A.1, and H3 genes originating from 1999–2000 human seasonal influenza viruses appear to have become established among Japanese swine. A(H1N1)pdm09-derived H1 genes became introduced repeatedly and reassorted with endemic IAVs-S, resulting in various combinations of surface and internal genes among pig populations in Japan. At the farm level, multiple introductions of IAVs-S with phylogenetically distinct HA sequences occurred, or IAVs-S derived from a single introduction have persisted for at least 3 years with only a single mutation at the antigenic site of the HA protein. Continued monitoring of IAVs-S is necessary to update and maximize control strategies.
Collapse
|
231
|
Abstract
Here we report the discovery of Yaravirus, a lineage of amoebal virus with a puzzling origin and evolution. Yaravirus presents 80-nm-sized particles and a 44,924-bp dsDNA genome encoding for 74 predicted proteins. Yaravirus genome annotation showed that none of its genes matched with sequences of known organisms at the nucleotide level; at the amino acid level, six predicted proteins had distant matches in the nr database. Complimentary prediction of three-dimensional structures indicated possible function of 17 proteins in total. Furthermore, we were not able to retrieve viral genomes closely related to Yaravirus in 8,535 publicly available metagenomes spanning diverse habitats around the globe. The Yaravirus genome also contained six types of tRNAs that did not match commonly used codons. Proteomics revealed that Yaravirus particles contain 26 viral proteins, one of which potentially representing a divergent major capsid protein (MCP) with a predicted double jelly-roll domain. Structure-guided phylogeny of MCP suggests that Yaravirus groups together with the MCPs of Pleurochrysis endemic viruses. Yaravirus expands our knowledge of the diversity of DNA viruses. The phylogenetic distance between Yaravirus and all other viruses highlights our still preliminary assessment of the genomic diversity of eukaryotic viruses, reinforcing the need for the isolation of new viruses of protists.
Collapse
|
232
|
He Z, Long P, Fang F, Li S, Zhang P, Chen Z. Diversity of MSDIN family members in amanitin-producing mushrooms and the phylogeny of the MSDIN and prolyl oligopeptidase genes. BMC Genomics 2020; 21:440. [PMID: 32590929 PMCID: PMC7318481 DOI: 10.1186/s12864-020-06857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022] Open
Abstract
Background Amanitin-producing mushrooms, mainly distributed in the genera Amanita, Galerina and Lepiota, possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP). Recently, transcriptome sequencing has proven to be an efficient way to mine MSDIN and POP genes in these lethal mushrooms. Thus far, only A. palloides and A. bisporigera from North America and A. exitialis and A. rimosa from Asia have been studied based on transcriptome analysis. However, the MSDIN and POP genes of many amanitin-producing mushrooms in China remain unstudied; hence, the transcriptomes of these speices deserve to be analysed. Results In this study, the MSDIN and POP genes from ten Amanita species, two Galerina species and Lepiota venenata were studied and the phylogenetic relationships of their MSDIN and POP genes were analysed. Through transcriptome sequencing and PCR cloning, 19 POP genes and 151 MSDIN genes predicted to encode 98 non-duplicated cyclopeptides, including α-amanitin, β-amanitin, phallacidin, phalloidin and 94 unknown peptides, were found in these species. Phylogenetic analysis showed that (1) MSDIN genes generally clustered depending on the taxonomy of the genus, while Amanita MSDIN genes clustered depending on the chemical substance; and (2) the POPA genes of Amanita, Galerina and Lepiota clustered and were separated into three different groups, but the POPB genes of the three distinct genera were clustered in a highly supported monophyletic group. Conclusions These results indicate that lethal Amanita species have the genetic capacity to produce numerous cyclopeptides, most of which are unknown, while lethal Galerina and Lepiota species seem to only have the genetic capacity to produce α-amanitin. Additionally, the POPB phylogeny of Amanita, Galerina and Lepiota conflicts with the taxonomic status of the three genera, suggesting that underlying horizontal gene transfer has occurred among these three genera.
Collapse
Affiliation(s)
- Zhengmi He
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Pan Long
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Fang Fang
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Sainan Li
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Zuohong Chen
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China.
| |
Collapse
|
233
|
Pyrih J, Rašková V, Škodová-Sveráková I, Pánek T, Lukeš J. ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype. PLoS One 2020; 15:e0234918. [PMID: 32579605 PMCID: PMC7314023 DOI: 10.1371/journal.pone.0234918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
ZapE/Afg1 is a component of the inner cell membrane of some eubacteria and the inner mitochondrial membrane of eukaryotes. This protein is involved in FtsZ-dependent division of eubacteria. In the yeast and human mitochondrion, ZapE/Afg1 likely interacts with Oxa1 and facilitates the degradation of mitochondrion-encoded subunits of respiratory complexes. Furthermore, the depletion of ZapE increases resistance to apoptosis, decreases oxidative stress tolerance, and impacts mitochondrial protein homeostasis. It remains unclear whether ZapE is a multifunctional protein, or whether some of the described effects are just secondary phenotypes. Here, we have analyzed the functions of ZapE in Trypanosoma brucei, a parasitic protist, and an important model organism. Using a newly developed proximity-dependent biotinylation approach (BioID2), we have identified the inner mitochondrial membrane insertase Oxa1 among three putative interacting partners of ZapE, which is present in two paralogs. RNAi-mediated depletion of both ZapE paralogs likely affected the function of respiratory complexes I and IV. Consistently, we show that the distribution of mitochondrial ZapE is restricted only to organisms with Oxa1, respiratory complexes, and a mitochondrial genome. We propose that the evolutionarily conserved interaction of ZapE with Oxa1, which is required for proper insertion of many inner mitochondrial membrane proteins, is behind the multifaceted phenotype caused by the ablation of ZapE.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- * E-mail: (JL); (JP)
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, Comenius University, Bratislava, Slovakia
| | - Tomáš Pánek
- Faculty of Sciences, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- * E-mail: (JL); (JP)
| |
Collapse
|
234
|
ADEBALİ O, BİRCAN A, ÇİRCİ D, İŞLEK B, KILINÇ Z, SELÇUK B, TURHAN B. Phylogenetic analysis of SARS-CoV-2 genomes in Turkey. Turk J Biol 2020; 44:146-156. [PMID: 32595351 PMCID: PMC7314511 DOI: 10.3906/biy-2005-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
COVID-19 has effectively spread worldwide. As of May 2020, Turkey is among the top ten countries with the most cases. A comprehensive genomic characterization of the virus isolates in Turkey is yet to be carried out. Here, we built a phylogenetic tree with globally obtained 15,277 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes. We identified the subtypes based on the phylogenetic clustering in comparison with the previously annotated classifications. We performed a phylogenetic analysis of the first 30 SARS-CoV-2 genomes isolated and sequenced in Turkey. We suggest that the first introduction of the virus to the country is earlier than the first reported case of infection. Virus genomes isolated from Turkey are dispersed among most types in the phylogenetic tree. We find 2 of the seventeen subclusters enriched with the isolates of Turkey, which likely have spread expansively in the country. Finally, we traced virus genomes based on their phylogenetic placements. This analysis suggested multiple independent international introductions of the virus and revealed a hub for the inland transmission. We released a web application to track the global and interprovincial virus spread of the isolates from Turkey in comparison to thousands of genomes worldwide.
Collapse
Affiliation(s)
- Ogün ADEBALİ
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Aylin BİRCAN
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Defne ÇİRCİ
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Burak İŞLEK
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Zeynep KILINÇ
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Berkay SELÇUK
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| | - Berk TURHAN
- Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and Engineering, Sabancı University, İstanbulTurkey
| |
Collapse
|
235
|
Kotov AA, Garibian PG, Bekker EI, Taylor DJ, Karabanov DP. A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palaearctic: taxonomy, phylogeny and phylogeography. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The eastern Palaearctic is a centre of diversity for freshwater cladocerans (Crustacea), but little is known about the evolution and taxonomy of this diversity. Daphnia curvirostris is a Holarctic species complex that has most of its diversity in the eastern Palaearctic. We examined the phylogeography, rates of evolution and taxonomic status for each clade of the D. curvirostris complex using morphological and genetic evidence from four genes. The cybertaxonomical and morphological evidence supported an eastern Palaearctic clade, with at least four species (described here as the Daphnia korovchinskyi sp. nov. group) having diagnostic morphological characters. We also detected convergent morphological characters in the D. curvirostris complex that provided information about species boundaries. Two of the new species (Daphnia koreana sp. nov. and Daphnia ishidai sp. nov.) are known from single ponds and are threatened by human activity. Divergence time estimates suggested an ancient origin (12–28 Mya) for the D. korovchinskyi group, but these estimates are complicated by the small number of calibration points.
Collapse
Affiliation(s)
- Alexey A Kotov
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Petr G Garibian
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Eugeniya I Bekker
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, NY, USA
| | - Dmitry P Karabanov
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
- I. D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Russia
| |
Collapse
|
236
|
Tufféry P, de Vries S. The search of sequence variants using a constrained protein evolution simulation approach. Comput Struct Biotechnol J 2020; 18:1790-1799. [PMID: 32695271 PMCID: PMC7355721 DOI: 10.1016/j.csbj.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 10/25/2022] Open
Abstract
Protein engineering or candidate therapeutic peptide optimization are processes in which the identification of relevant sequence variants is critical. Starting from one amino-acid sequence, the choice of the substitutions must meet the objective of not disrupting the structure of the protein, not impacting the main functional properties of the starting entity, while also meeting the condition to enhance some expected property such as thermal stability, resistance to degradation, … Here, we introduce a new approach of sequence evolution that focuses on the objective of not disrupting the structure of the initial protein by embedding a point to point control on the preservation of the local structure at each position in the sequence. For 6 mini-proteins, we find that, starting from a single sequence, our simple approach intrinsically contains information about site-specific rate heterogeneity of substitution, and that it is able to reproduce sequence diversity as can be observed in the sequences available in the Uniref repository. We show that our approach is able to provide information about positions not to substitute and about substitutions not to perform at a given position to maintain structure integrity. Overall, our results demonstrate that point to point preservation of the local structure along a sequence is an important determinant of sequence evolution.
Collapse
Affiliation(s)
- Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, F-75013 Paris, France
| | - Sjoerd de Vries
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, F-75013 Paris, France
| |
Collapse
|
237
|
Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. mBio 2020; 11:e00416-20. [PMID: 32546614 PMCID: PMC7298704 DOI: 10.1128/mbio.00416-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum "Candidatus Dormibacteraeota." Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy.IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| |
Collapse
|
238
|
Kieper SN, Almendros C, Brouns SJJ. Conserved motifs in the CRISPR leader sequence control spacer acquisition levels in Type I-D CRISPR-Cas systems. FEMS Microbiol Lett 2020; 366:5525085. [PMID: 31252430 PMCID: PMC6607411 DOI: 10.1093/femsle/fnz129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Integrating short DNA fragments at the correct leader-repeat junction is key to successful CRISPR-Cas memory formation. The Cas1-2 proteins are responsible to carry out this process. However, the CRISPR adaptation process additionally requires a DNA element adjacent to the CRISPR array, called leader, to facilitate efficient localization of the correct integration site. In this work, we introduced the core CRISPR adaptation genes cas1 and cas2 from the Type I-D CRISPR-Cas system of Synechocystis sp. 6803 into Escherichia coli and assessed spacer integration efficiency. Truncation of the leader resulted in a significant reduction of spacer acquisition levels and revealed the importance of different conserved regions for CRISPR adaptation rates. We found three conserved sequence motifs in the leader of I-D CRISPR arrays that each affected spacer acquisition rates, including an integrase anchoring site. Our findings support the model in which the leader sequence is an integral part of type I-D adaptation in Synechocystis sp. acting as a localization signal for the adaptation complex to drive CRISPR adaptation at the first repeat of the CRISPR array.
Collapse
Affiliation(s)
- Sebastian N Kieper
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cristóbal Almendros
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stan J J Brouns
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
239
|
Ren L, Zhang X, Li Y, Shang Y, Chen S, Wang S, Qu Y, Cai J, Guo Y. Comparative analysis of mitochondrial genomes among the subfamily Sarcophaginae (Diptera: Sarcophagidae) and phylogenetic implications. Int J Biol Macromol 2020; 161:214-222. [PMID: 32526299 DOI: 10.1016/j.ijbiomac.2020.06.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
The subfamily Sarcophaginae is extremely diverse in morphology, habit and geographical distribution, and usually considered to be of significant ecological, medical, and forensic significance. In the present study, 18 mitochondrial genomes (mitogenomes) of sarcophagid flies were first obtained. The rearrangement and orientation of genes were identical with that of ancestral insects. The degrees of compositional heterogeneity in the datasets were extremely low. Furthermore, 13 protein-coding genes were evolving under purifying selection. The phylogenic relationship of the genus-group taxa Boettcheria + (Sarcophaga + (Peckia + (Ravinia + Oxysarcodexia))) was strongly supported. Four subgenera were recovered as monophyletic (Liopygia, Liosarcophaga, Pierretia, Heteronychia) in addition to Parasarcophaga as polyphyletic. The sister-relationships between S. dux and S. aegyptiaca, S. pingi and S. kawayuensis were recovered, respectively. Moreover, the molecular phylogenetic relationships among the subgenera Helicophagella, Kozlovea, Kramerea, Pandelleisca, Phallocheira, Pseudothyrsocnema, Sinonipponia and Seniorwhitea were rarely put forward prior to this study. This study provides insight into the population genetics, molecular biology, and phylogeny for the subfamily Sarcophaginae, especially for the subgeneric classification of Sarcophaga. However, compared with the enormous species diversity of flesh flies, the available mitogenomes are still limited for recovering the phylogeny of Sarcophaginae.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shan Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yihong Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
240
|
Mavian C, Marini S, Prosperi M, Salemi M. A Snapshot of SARS-CoV-2 Genome Availability up to April 2020 and its Implications: Data Analysis. JMIR Public Health Surveill 2020; 6:e19170. [PMID: 32412415 PMCID: PMC7265655 DOI: 10.2196/19170] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been growing exponentially, affecting over 4 million people and causing enormous distress to economies and societies worldwide. A plethora of analyses based on viral sequences has already been published both in scientific journals and through non-peer-reviewed channels to investigate the genetic heterogeneity and spatiotemporal dissemination of SARS-CoV-2. However, a systematic investigation of phylogenetic information and sampling bias in the available data is lacking. Although the number of available genome sequences of SARS-CoV-2 is growing daily and the sequences show increasing phylogenetic information, country-specific data still present severe limitations and should be interpreted with caution. OBJECTIVE The objective of this study was to determine the quality of the currently available SARS-CoV-2 full genome data in terms of sampling bias as well as phylogenetic and temporal signals to inform and guide the scientific community. METHODS We used maximum likelihood-based methods to assess the presence of sufficient information for robust phylogenetic and phylogeographic studies in several SARS-CoV-2 sequence alignments assembled from GISAID (Global Initiative on Sharing All Influenza Data) data released between March and April 2020. RESULTS Although the number of high-quality full genomes is growing daily, and sequence data released in April 2020 contain sufficient phylogenetic information to allow reliable inference of phylogenetic relationships, country-specific SARS-CoV-2 data sets still present severe limitations. CONCLUSIONS At the present time, studies assessing within-country spread or transmission clusters should be considered preliminary or hypothesis-generating at best. Hence, current reports should be interpreted with caution, and concerted efforts should continue to increase the number and quality of sequences required for robust tracing of the epidemic.
Collapse
Affiliation(s)
- Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
241
|
Herisse M, Ishida K, Porter JL, Howden B, Hertweck C, Stinear TP, Pidot SJ. Identification and Mobilization of a Cryptic Antibiotic Biosynthesis Gene Locus from a Human-Pathogenic Nocardia Isolate. ACS Chem Biol 2020; 15:1161-1168. [PMID: 31697466 DOI: 10.1021/acschembio.9b00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genus Nocardia contains >50 human pathogenic species that cause a range of illnesses from skin and soft tissue infections to lung and brain infections. However, despite their membership in the most prominent family of secondary metabolite producers (the Actinomycetes), the ability of Nocardia species, especially those that cause human infections, to produce secondary metabolites has not been as well studied. Using genome mining, we have investigated cryptic secondary metabolite biosynthesis gene clusters from Nocardia species and identified a conserved locus within human pathogenic strains of Nocardia brasiliensis and Nocardia vulneris. Direct capture and heterologous expression in a Streptomyces host activated the biosynthetic locus, revealing it to be the source of the brasiliquinones, benz[a]anthraquinone antibiotics whose biosynthetic pathway has remained hidden for over two decades, until now. Our findings highlight these hitherto neglected human pathogenic Nocardia as a source of diverse and important natural products.
Collapse
Affiliation(s)
- Marion Herisse
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Ben Howden
- Microbiological Diagnostic Unit, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
242
|
Boyles SM, Mavian CN, Finol E, Ukhanova M, Stephenson CJ, Hamerlinck G, Kang S, Baumgartner C, Geesey M, Stinton I, Williams K, Mathias DK, Prosperi M, Mai V, Salemi M, Buckner EA, Lednicky JA, Rivers AR, Dinglasan RR. Under-the-Radar Dengue Virus Infections in Natural Populations of Aedes aegypti Mosquitoes. mSphere 2020; 5:e00316-20. [PMID: 32350095 PMCID: PMC7193045 DOI: 10.1128/msphere.00316-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/30/2022] Open
Abstract
The incidence of locally acquired dengue infections increased during the last decade in the United States, compelling a sustained research effort concerning the dengue mosquito vector, Aedes aegypti, and its microbiome, which has been shown to influence virus transmission success. We examined the "metavirome" of four populations of Aedes aegypti mosquitoes collected in 2016 to 2017 in Manatee County, FL. Unexpectedly, we discovered that dengue virus serotype 4 (DENV4) was circulating in these mosquito populations, representing the first documented case of such a phenomenon in the absence of a local DENV4 human case in this county over a 2-year period. We confirmed that all of the mosquito populations carried the same DENV4 strain, assembled its full genome, validated infection orthogonally by reverse transcriptase PCR, traced the virus origin, estimated the time period of its introduction to the Caribbean region, and explored the viral genetic signatures and mosquito-specific virome associations that potentially mediated DENV4 persistence in mosquitoes. We discuss the significance of prolonged maintenance of the DENV4 infections in A. aegypti that occurred in the absence of a DENV4 human index case in Manatee County with respect to the inability of current surveillance paradigms to detect mosquito vector infections prior to a potential local outbreak.IMPORTANCE Since 1999, dengue outbreaks in the continental United States involving local transmission have occurred only episodically and only in Florida and Texas. In Florida, these episodes appear to be coincident with increased introductions of dengue virus into the region through human travel and migration from countries where the disease is endemic. To date, the U.S. public health response to dengue outbreaks has been largely reactive, and implementation of comprehensive arbovirus surveillance in advance of predictable transmission seasons, which would enable proactive preventative efforts, remains unsupported. The significance of our finding is that it is the first documented report of DENV4 transmission to and maintenance within a local mosquito vector population in the continental United States in the absence of a human case during two consecutive years. Our data suggest that molecular surveillance of mosquito populations in high-risk, high-tourism areas of the United States may enable proactive, targeted vector control before potential arbovirus outbreaks.
Collapse
Affiliation(s)
- Sean M Boyles
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - Carla N Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Esteban Finol
- Institute for Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Caroline J Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - Gabriela Hamerlinck
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Geography, College of Liberal Arts & Sciences, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - Seokyoung Kang
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | | | - Mary Geesey
- Manatee County Mosquito Control District, Palmetto, Florida, USA
| | - Israel Stinton
- Manatee County Mosquito Control District, Palmetto, Florida, USA
| | - Katie Williams
- Manatee County Mosquito Control District, Palmetto, Florida, USA
| | - Derrick K Mathias
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Volker Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Eva A Buckner
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
- Manatee County Mosquito Control District, Palmetto, Florida, USA
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - Adam R Rivers
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida, USA
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| |
Collapse
|
243
|
Hofmann-Sieber H, Gonzalez G, Spohn M, Dobner T, Kajon AE. Genomic and phylogenetic analysis of two guinea pig adenovirus strains recovered from archival lung tissue. Virus Res 2020; 285:197965. [PMID: 32311385 DOI: 10.1016/j.virusres.2020.197965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022]
Abstract
Next generation sequencing was used to determine the whole genome sequence for two different strains of guinea pig adenovirus (GPAdV) detected in association with outbreaks of pneumonia in Australia in 1996, and in Germany in 1997 using total DNA extracted from infected archival frozen lung tissue as a template. The length of the determined genomic sequences was 37,031 bp and 37,070 bp, respectively. The nucleotide composition showed a relatively high content of guanine + cytosine (G + C) of 62 %. The 99.6 % nucleotide identity between the two sequenced viruses suggests that they may represent variants of the same genotype. The GPAdV genome exhibits the genomic features of a typical mastadenovirus with at least 32 open reading frames identified. Five novel open reading frames were found at the right end of the genomic sequence. One of them maps to the predicted E3 region and encodes a putative CR1 protein, two map to the E4 region, and two map to the l strand of L1 and L3, respectively. Our phylogenetic analysis of whole genome sequences showed that among the mammalian AdV species described to date, GPAdV is most closely related to MAdV-2 The characterization of this mastadenovirus species offers an opportunity to develop a new small animal model to study mammalian adenovirus pathogenesis.
Collapse
Affiliation(s)
- Helga Hofmann-Sieber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adriana E Kajon
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
244
|
Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. J Biol Chem 2020; 295:5245-5256. [PMID: 32144203 PMCID: PMC7170509 DOI: 10.1074/jbc.ra119.012063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfur is essential for biological processes such as amino acid biogenesis, iron-sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer-substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine-bound FliY, and maximally by l-cysteine- or l-cystine-bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.
Collapse
Affiliation(s)
- Siwar Sabrialabed
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Elon Yariv
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
245
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
246
|
Martínez-Aquino A, García-Teh JG, Ceccarelli FS, Aguilar-Aguilar R, Vidal-Martinez VM, Leopoldina Aguirre-Macedo M. New morphological and molecular data for Xystretrum solidum (Gorgoderidae, Gorgoderinae) from Sphoeroides testudineus (Tetraodontiformes, Tetraodontidae) in Mexican waters. Zookeys 2020; 925:141-161. [PMID: 32317854 PMCID: PMC7160187 DOI: 10.3897/zookeys.925.49503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/21/2020] [Indexed: 11/12/2022] Open
Abstract
Adults of trematodes in the genus Xystretrum Linton, 1910 (Gorgoderidae, Gorgoderinae) are parasites found exclusively in the urinary bladders of tetraodontiform fishes. However, limited and unclear morphological data were used to describe the type species, X. solidum Linton, 1910. Here, we present the first detailed morphological information for a member of Xystretrum. Morphological characters were described using light and scanning electron microscopy (SEM) of Xystretrum specimens from Sphoeroides testudineus (Linnaeus) (Tetraodontiformes, Tetraodontidae), collected at six localities off the northern Yucatan Peninsula coast of the Gulf of Mexico. We also compared sequence fragments of the 28S (region D1–D3) ribosomal DNA and mitochondrial Cytochrome c oxidase subunit 1 (COI) gene with those available for other gorgoderine taxa. We assigned these Xystretrum specimens to X. solidum, despite the incompleteness of published descriptions. The data provide a foundation for future work to validate the identities of X. solidum, X. papillosum Linton, 1910 and X. pulchrum (Travassos, 1920) with new collections from the type localities and hosts. Comparisons of 28S and COI regions described here also provide an opportunity to evaluate the monophyletic status of Xystretrum.
Collapse
|
247
|
Dong W, Hyde KD, Doilom M, Yu XD, Bhat DJ, Jeewon R, Boonmee S, Wang GN, Nalumpang S, Zhang H. Pseudobactrodesmium (Dactylosporaceae, Eurotiomycetes, Fungi) a Novel Lignicolous Genus. Front Microbiol 2020; 11:456. [PMID: 32300334 PMCID: PMC7144566 DOI: 10.3389/fmicb.2020.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 11/13/2022] Open
Abstract
During our ongoing surveys of fungi on submerged wood in the Greater Mekong Subregion, we collected two new species similar to Bactrodesmium longisporum. Pseudobactrodesmium gen. nov. is introduced to accommodate the new species, P. aquaticum, P. chiangmaiensis and B. longisporum is transferred to this genus. Fasciculate conidiophores, enteroblastic conidiogenous cells and subulate to fusiform, phragmoseptate conidia with a tapering apical cell and sheath characterize the genus. Pseudobactrodesmium aquaticum has longer conidia than P. chiangmaiensis. The placement of Pseudobactrodesmium in Dactylosporaceae (Eurotiomycetes) is a novel finding based on analyses of combined LSU, SSU, ITS and RPB2 sequence data. Our study reveals that Pseudobactrodesmium is likely to be a speciose genus with different species in streams around the world.
Collapse
Affiliation(s)
- Wei Dong
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mingkwan Doilom
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Xian-Dong Yu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | | | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gen-Nuo Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Sarunya Nalumpang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Huang Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
248
|
Nguyen DH, Lemieux C, Turmel M, Pham TB, Nguyen VD, Mouget JL, Tremblay R, Gastineau R. Complete mitogenome of the noble volute Cymbiola nobilis from the Vietnamese Island of Phú Quốc. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1747369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Duc Hung Nguyen
- Faculty of Natural Sciences Pedagogy, Saigon University, Hồ Chí Minh City, Vietnam
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - The Bao Pham
- Information Science Faculty, Saigon University, Hồ Chí Minh City, Vietnam
| | - Van Duy Nguyen
- Faculty of Natural Sciences Pedagogy, Saigon University, Hồ Chí Minh City, Vietnam
| | - Jean-Luc Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Le Mans, France
| | - Réjean Tremblay
- Institut des Sciences de la mer (ISMER), Université du Québec à Rimouski, Québec, Canada
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| |
Collapse
|
249
|
Damodaran L, de Bernardi Schneider A, Chen S, Janies D. Evolution of endemic and sylvatic lineages of dengue virus. Cladistics 2020; 36:115-128. [PMID: 34618965 DOI: 10.1111/cla.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Recent disease outbreaks have raised awareness of tropical pathogens, especially mosquito-borne viruses. Dengue virus (DENV) is a widely studied mammalian pathogen transmitted by various species of mosquito in the genus Aedes, especially Aedes aegypti and Aedes albopictus. The prevailing view of the research community is that endemic viral lineages that cause epidemics of DENV in humans have emerged over time from sylvatic viral lineages, which persist in wild, non-human primates. These notions have been examined by researchers through phylogenetic analyses of the envelope gene (E) from the four serotypes of DENV (serotypes DENV-1 to DENV-4). In these previous reports, researchers used visual inspection of a phylogeny in order to assert that sylvatic lineages lead to endemic clades. In making this assertion, these researchers also reasserted the model of periodic sylvatic to endemic disease outbreaks. Since that study, there has been a significant increase in data both in terms of metadata (e.g., place and host of isolation) and genetic sequences of DENV. Here, we re-examine the model of sylvatic to endemic shifts in viral lineages through a phylogenetic tree search and character evolution study of metadata on the tree. We built a dataset of nucleotide sequences for 188 isolates of DENV that have metadata on sylvatic or endemic sampling along with three orthologous sequences from West Nile virus as the outgroup for the phylogenetic analysis. In contrast to previous research, we find that there are several shifts from endemic to sylvatic lineages as well as sylvatic to endemic lineages, indicating a much more dynamic model of evolution. We propose that a model that allows oscillation between sylvatic and endemic hosts better captures the dynamics of DENV transmission.
Collapse
Affiliation(s)
- Lambodhar Damodaran
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA.,Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, 30602, GA, USA
| | - Adriano de Bernardi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, 220 Dickinson St, Suite A, San Diego, 92103-8208, CA, USA
| | - Shi Chen
- Department of Public Health Sciences, College of Health and Human Services, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA
| |
Collapse
|
250
|
Yang X, Feng T, Li S, Zhao H, Zhao S, Ma C, Jenks MA, Lü S. CER16 Inhibits Post-Transcriptional Gene Silencing of CER3 to Regulate Alkane Biosynthesis. PLANT PHYSIOLOGY 2020; 182:1211-1221. [PMID: 31941670 PMCID: PMC7054879 DOI: 10.1104/pp.19.01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
The aerial surfaces of land plants have a protective layer of cuticular wax. Alkanes are common components of these waxes, and their abundance is affected by a range of stresses. The CER16 protein has been implicated in alkane biosynthesis in the cuticular wax of Arabidopsis (Arabidopsis thaliana). Here, we identified two new mutant alleles of CER16 in Arabidopsis resulting in production of less wax with dramatically fewer alkanes than the wild type. Map-based cloning with genetic analysis revealed that the cer16 phenotype was caused by complete loss of AT5G44150, encoding a protein with no known domains or motifs. Comparative transcriptomic analysis revealed that transcripts of CER3, previously shown to play a principal role in alkane production, were markedly reduced in the cer16 mutants. To define the relationship between CER3 and CER16, we transformed the full CER3 gene into a cer16 mutant. Transgenic CER3 expression was silenced, and levels of small interfering RNAs targeting CER3 were significantly increased. Mutating two major components of the RNA-silencing machinery in a cer16 genetic background restored CER3 transcript levels to wild-type levels, with the stems restored to wild-type glaucousness. We suggest that CER16 deficiency induces post-transcriptional gene silencing of both endogenous and exogenous expression of CER3.
Collapse
Affiliation(s)
- Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shipeng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| | - Shuangshuang Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|