201
|
Kamenisch Y, Fousteri M, Knoch J, von Thaler AK, Fehrenbacher B, Kato H, Becker T, Dollé MET, Kuiper R, Majora M, Schaller M, van der Horst GTJ, van Steeg H, Röcken M, Rapaport D, Krutmann J, Mullenders LH, Berneburg M. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. ACTA ACUST UNITED AC 2010; 207:379-90. [PMID: 20100872 PMCID: PMC2822596 DOI: 10.1084/jem.20091834] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Defects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the NER-associated CS proteins and base excision repair (BER)-associated proteins in mitochondrial aging remains enigmatic. We show functional increase of CSA and CSB inside mt and complex formation with mtDNA, mt human 8-oxoguanine glycosylase (mtOGG)-1, and mt single-stranded DNA binding protein (mtSSBP)-1 upon oxidative stress. MtDNA mutations are highly increased in cells from CS patients and in subcutaneous fat of aged Csb(m/m) and Csa(-/-) mice. Thus, the NER-proteins CSA and CSB localize to mt and directly interact with BER-associated human mitochondrial 8-oxoguanine glycosylase-1 to protect from aging- and stress-induced mtDNA mutations and apoptosis-mediated loss of subcutaneous fat, a hallmark of aging found in animal models, human progeroid syndromes like CS and in normal human aging.
Collapse
Affiliation(s)
- York Kamenisch
- Department of Dermatology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem 2010; 50:251-277. [PMID: 20012586 DOI: 10.1007/978-90-481-3471-7_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | |
Collapse
|
203
|
Sugasawa K, Akagi JI, Nishi R, Iwai S, Hanaoka F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol Cell 2009; 36:642-53. [PMID: 19941824 DOI: 10.1016/j.molcel.2009.09.035] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5'-to-3' directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Rokkodai, Nada-ku, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
204
|
Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum Mol Genet 2009; 18:R224-30. [PMID: 19808800 DOI: 10.1093/hmg/ddp390] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair and also associated with various systemic symptoms. Approximately half of TTD patients exhibit photosensitivity, resulting from the defect in the nucleotide excision repair. Photosensitive TTD is due to mutations in three genes encoding XPB, XPD and p8/TTDA subunits of the DNA repair/transcription factor TFIIH. Mutations in these subunits disturb either the catalytic and/or the regulatory activity of the two XPB, XPD helicase/ATPases and consequently are defective in both, DNA repair and transcription. Moreover, mutations in any of these three TFIIH subunits also disturb the overall architecture of the TFIIH complex and its ability to transactivate certain nuclear receptor-responsive genes, explaining in part, some of the TTD phenotypes.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | | |
Collapse
|
205
|
Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Schärer OD. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 2009; 285:3705-3712. [PMID: 19940136 DOI: 10.1074/jbc.m109.067538] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Barbara Orelli
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - T Brooke McClendon
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Oleg V Tsodikov
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-2676, and
| | - Tom Ellenberger
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura J Niedernhofer
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Orlando D Schärer
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400.
| |
Collapse
|
206
|
Brown KL, Roginskaya M, Zou Y, Altamirano A, Basu AK, Stone MP. Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5'-GTgG-3' sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Res 2009; 38:428-40. [PMID: 19892827 PMCID: PMC2811006 DOI: 10.1093/nar/gkp844] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The 5R thymine glycol (5R-Tg) DNA lesion exists as a mixture of cis-(5R,6S) and trans-(5R,6R) epimers; these modulate base excision repair. We examine the 7:3 cis-(5R,6S):trans-(5R,6R) mixture of epimers paired opposite adenine in the 5′-GTgG-3′ sequence with regard to nucleotide excision repair. Human XPA recognizes the lesion comparably to the C8-dG acetylaminoflourene (AAF) adduct, whereas XPC/HR23B recognition of Tg is superior. 5R-Tg is processed by the Escherichia coli UvrA and UvrABC proteins less efficiently than the C8-dG AAF adduct. For the cis-(5R, 6S) epimer Tg and A are inserted into the helix, remaining in the Watson–Crick alignment. The Tg N3H imine and A N6 amine protons undergo increased solvent exchange. Stacking between Tg and the 3′-neighbor G•C base pair is disrupted. The solvent accessible surface and T2 relaxation of Tg increases. Molecular dynamics calculations predict that the axial conformation of the Tg CH3 group is favored; propeller twisting of the Tg•A pair and hydrogen bonding between Tg OH6 and the N7 atom of the 3′-neighbor guanine alleviate steric clash with the 5′-neighbor base pair. Tg also destabilizes the 5′-neighbor G•C base pair. This may facilitate flipping both base pairs from the helix, enabling XPC/HR23B recognition prior to recruitment of XPA.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
207
|
Zhao Q, Wang QE, Ray A, Wani G, Han C, Milum K, Wani AA. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem 2009; 284:30424-32. [PMID: 19740755 DOI: 10.1074/jbc.m109.044982] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly JM, Coin F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J 2009; 28:2971-80. [PMID: 19713942 DOI: 10.1038/emboj.2009.230] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/17/2009] [Indexed: 11/09/2022] Open
Abstract
XPB and XPD subunits of TFIIH are central genome caretakers involved in nucleotide excision repair (NER), although their respective role within this DNA repair pathway remains difficult to delineate. To obtain insight into the function of XPB and XPD, we studied cell lines expressing XPB or XPD ATPase-deficient complexes. We show the involvement of XPB, but not XPD, in the accumulation of TFIIH to sites of DNA damage. Recruitment of TFIIH occurs independently of the helicase activity of XPB, but requires two recently identified motifs, a R-E-D residue loop and a Thumb-like domain. Furthermore, we show that these motifs are specifically involved in the DNA-induced stimulation of the ATPase activity of XPB. Together, our data demonstrate that the recruitment of TFIIH to sites of damage is an active process, under the control of the ATPase motifs of XPB and suggest that this subunit functions as an ATP-driven hook to stabilize the binding of the TFIIH to damaged DNA.
Collapse
Affiliation(s)
- Valentyn Oksenych
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Graffenstaden, France
| | | | | | | | | |
Collapse
|
209
|
Shell SM, Li Z, Shkriabai N, Kvaratskhelia M, Brosey C, Serrano MA, Chazin WJ, Musich PR, Zou Y. Checkpoint kinase ATR promotes nucleotide excision repair of UV-induced DNA damage via physical interaction with xeroderma pigmentosum group A. J Biol Chem 2009; 284:24213-22. [PMID: 19586908 DOI: 10.1074/jbc.m109.000745] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In response to DNA damage, eukaryotic cells activate a series of DNA damage-dependent pathways that serve to arrest cell cycle progression and remove DNA damage. Coordination of cell cycle arrest and damage repair is critical for maintenance of genomic stability. However, this process is still poorly understood. Nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint are the major pathways responsible for repair of UV-induced DNA damage. Here we show that ATR physically interacts with the NER factor Xeroderma pigmentosum group A (XPA). Using a mass spectrometry-based protein footprinting method, we found that ATR interacts with a helix-turn-helix motif in the minimal DNA-binding domain of XPA where an ATR phosphorylation site (serine 196) is located. XPA-deficient cells complemented with XPA containing a point mutation of S196A displayed a reduced repair efficiency of cyclobutane pyrimidine dimers as compared with cells complemented with wild-type XPA, although no effect was observed for repair of (6-4) photoproducts. This suggests that the ATR-dependent phosphorylation of XPA may promote NER repair of persistent DNA damage. In addition, a K188A point mutation of XPA that disrupts the ATR-XPA interaction inhibits the nuclear import of XPA after UV irradiation and, thus, significantly reduced DNA repair efficiency. By contrast, the S196A mutation has no effect on XPA nuclear translocation. Taken together, our results suggest that the ATR-XPA interaction mediated by the helix-turn-helix motif of XPA plays an important role in DNA-damage responses to promote cell survival and genomic stability after UV irradiation.
Collapse
Affiliation(s)
- Steven M Shell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Zhang L, Jones K, Gong F. The molecular basis of chromatin dynamics during nucleotide excision repair. Biochem Cell Biol 2009; 87:265-72. [PMID: 19234540 DOI: 10.1139/o08-101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The assembly of DNA into chromatin in eukaryotic cells affects all DNA-related cellular activities, such as replication, transcription, recombination, and repair. Rearrangement of chromatin structure during nucleotide excision repair (NER) was discovered more than 2 decades ago. However, the molecular basis of chromatin dynamics during NER remains undefined. Pioneering studies in the field of gene transcription have shown that ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes play a critical role in chromatin dynamics during transcription. Similarly, recent studies have demonstrated that the SWI/SNF chromatin-remodeling complex facilitates NER both in vitro and in vivo. Additionally, histone acetylation has also been linked to the NER of ultraviolet light damage. In this article, we will discuss the role of these identified chromatin-modifying activities in NER.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33156, USA
| | | | | |
Collapse
|
211
|
Nishi R, Alekseev S, Dinant C, Hoogstraten D, Houtsmuller AB, Hoeijmakers JHJ, Vermeulen W, Hanaoka F, Sugasawa K. UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair (Amst) 2009; 8:767-76. [PMID: 19332393 DOI: 10.1016/j.dnarep.2009.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/30/2008] [Accepted: 02/17/2009] [Indexed: 11/24/2022]
Abstract
Although the basic principle of nucleotide excision repair (NER), which can eliminate various DNA lesions, have been dissected at the genetic, biochemical and cellular levels, the important in vivo regulation of the critical damage recognition step is poorly understood. Here we analyze the in vivo dynamics of the essential NER damage recognition factor XPC fused to the green fluorescence protein (GFP). Fluorescence recovery after photobleaching analysis revealed that the UV-induced transient immobilization of XPC, reflecting its actual engagement in NER, is regulated in a biphasic manner depending on the number of (6-4) photoproducts and titrated by the number of functional UV-DDB molecules. A similar biphasic UV-induced immobilization of TFIIH was observed using XPB-GFP. Surprisingly, subsequent integration of XPA into the NER complex appears to follow only the low UV dose immobilization of XPC. Our results indicate that when only a small number of (6-4) photoproducts are generated, the UV-DDB-dependent damage recognition pathway predominates over direct recognition by XPC, and they also suggest the presence of rate-limiting regulatory steps in NER prior to the assembly of XPA.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Sugasawa K. UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair (Amst) 2009; 8:969-72. [PMID: 19493704 DOI: 10.1016/j.dnarep.2009.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 11/17/2022]
Abstract
UV-damaged DNA-binding protein (UV-DDB) is characterized by its very high affinity and specificity for UV-damaged DNA. Although precise roles for UV-DDB have been quite enigmatic since its discovery, accumulating evidence indicates that it promotes recognition of and protein assembly on UV photolesions in the global genome nucleotide excision repair pathway. The recently solved crystal structure of UV-DDB bound to DNA containing a (6-4) photoproduct has revealed that the DDB2/XPE subunit is responsible for the interaction, which induces flipping out of the two affected bases into a binding pocket, indicating that UV-DDB has evolved especially to recognize dinucleotide lesions, like UV photolesions. Taken together with the previously solved structure of the DDB1-CUL4A E3 ligase, this study has also novel insights into how this factor coordinates ubiquitination of various protein substrates around the site of DNA damage.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
213
|
Kropachev K, Kolbanovskii M, Cai Y, Rodríguez F, Kolbanovskii A, Liu Y, Zhang L, Amin S, Patel D, Broyde S, Geacintov NE. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J Mol Biol 2009; 386:1193-203. [PMID: 19162041 PMCID: PMC2717896 DOI: 10.1016/j.jmb.2008.12.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Nucleotide excision repair (NER) is a vital cellular defense system against carcinogen-DNA adducts, which, if not repaired, can initiate cancer development. The structural features of bulky DNA lesions that account for differences in NER efficiencies in mammalian cells are not well understood. In vivo, the predominant DNA adduct derived from metabolically activated benzo[a]pyrene (BP), a prominent environmental carcinogen, is the 10S (+)-trans-anti-[BP]-N(2)-dG adduct (G*), which resides in the B-DNA minor groove 5'-oriented along the modified strand. We have compared the structural distortions in double-stranded DNA, imposed by this adduct, in the different sequence contexts 5'-...CGG*C..., 5'-...CG*GC..., 5'-...CIG*C... (I is 2'-deoxyinosine), and 5'-...CG*C.... On the basis of electrophoretic mobilities, all duplexes manifest moderate bends, except the 5'-...CGG*C...duplex, which exhibits an anomalous, slow mobility attributed to a pronounced flexible kink at the site of the lesion. This kink, resulting from steric hindrance between the 5'-flanking guanine amino group and the BP aromatic rings, both positioned in the minor groove, is abolished in the 5'-...CIG*C...duplex (the 2'-deoxyinosine group, I, lacks this amino group). In contrast, the sequence-isomeric 5'-...CG*GC...duplex exhibits only a moderate bend, but displays a remarkably increased opening rate at the 5'-flanking base pair of G*, indicating a significant destabilization of Watson-Crick hydrogen bonding. The NER dual incision product yields were compared for these different sequences embedded in otherwise identical 135-mer duplexes in cell-free human HeLa extracts. The yields of excision products varied by a factor of as much as approximately 4 in the order 5'-...CG*GC...>5'...CGG*C...>or=5'...CIG*C...>or=5'-...CG*C.... Overall, destabilized Watson-Crick hydrogen bonding, manifested in the 5'-...CG*GC...duplex, elicits the most significant NER response, while the flexible kink displayed in the sequence-isomeric 5'-...CGG*C...duplex represents a less significant signal in this series of substrates. These results demonstrate that the identical lesion can be repaired with markedly variable efficiency in different local sequence contexts that differentially alter the structural features of the DNA duplex around the lesion site.
Collapse
Affiliation(s)
| | | | - Yuqin Cai
- Department of Biology, New York University, New York, N.Y., 10003
| | - Fabian Rodríguez
- Department of Chemistry, New York University, New York, N.Y., 10003
| | | | - Yang Liu
- Department of Chemistry, New York University, New York, N.Y., 10003
| | - Lu Zhang
- Department of Chemistry, New York University, New York, N.Y., 10003
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, P.A., 17033
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., 10021
| | - Suse Broyde
- Department of Biology, New York University, New York, N.Y., 10003
| | | |
Collapse
|
214
|
Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 2009; 28:1111-20. [PMID: 19279666 DOI: 10.1038/emboj.2009.49] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 01/30/2009] [Indexed: 11/08/2022] Open
Abstract
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5' to the lesion by ERCC1-XPF and 3' to the lesion by XPG leads to the removal of a lesion-containing oligonucleotide of about 30 nucleotides. The resulting single-stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1-XPF and XPG, we show that the 5' incision by ERCC1-XPF precedes the 3' incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a 'cut-patch-cut-patch' mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.
Collapse
|
215
|
Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:134-149. [DOI: 10.1016/j.mrrev.2008.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 01/03/2023]
|
216
|
XPF/ERCC4 and ERCC1: their products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181112 DOI: 10.1007/978-0-387-09599-8_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ERCC4 is the gene mutated in XPF cells and also in rodent cells representing the mutant complementation groups ERCC4 and ERCC 11. The protein functions principally as a complex with ERCC1 in a diversity of biological pathways that include NER, ICL repair, telomere maintenance and immunoglobulin switching. Sorting out these roles is an exciting and challenging problem and many important questions remain to be answered. The ERCC1/ERCC4 complex is conserved across most species presenting an opportunity to examine some functions in model organisms where mutants can be more readily generated and phenotypes more quickly assessed.
Collapse
|
217
|
Camenisch U, Nägeli H. XPA gene, its product and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:28-38. [PMID: 19181108 DOI: 10.1007/978-0-387-09599-8_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 31 kDa XPA protein is part of the core incision complex of the mammalian nucleotide excision repair (NER) system and interacts with DNA as well as with many other NER subunits. In the absence of XPA, no incision complex can form and no excision of damaged DNA damage occurs. A comparative analysis of the DNA-binding properties in the presence of different substrate conformations indicated that XPA protein interacts preferentially with kinked DNA backbones. The DNA-binding domain of XPA protein displays a positively charged deft that is involved in an indirect readout mechanism, presumably by detecting the increased negative potential encountered at sharp DNA bends. We propose that this indirect recognition function contributes to damage verification by probing the susceptibility of the DNA substrate to be kinked during the assembly of NER complexes.
Collapse
Affiliation(s)
- Ulrike Camenisch
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland.
| | | |
Collapse
|
218
|
Abstract
The XPC protein is a component of a heterotrimeric complex that is essential for damage recognition in a nucleotide excision repair subpathway that operates throughout the genome. Biochemical analyses have revealed that the broad substrate specificity of this repair system is based on the structure-specific DNA binding properties of the XPC complex. Other subunits of this complex, including human Rad23p orthologs and centrin 2, play individual roles in enhancing the damage recognition activity of XPC. Physical interaction with UV-damaged DNA-binding protein is also important for the efficient recruitment of XPC to sites containing DNA damage, particularly UV-induced photolesions. Furthermore, recent studies have suggested that XPC may also be involved in base excision repair and possibly in other cellular functions that may be mediated by posttranslational modifications.
Collapse
|
219
|
Beck BD, Hah DS, Lee SH. XPB and XPD between transcription and DNA repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:39-46. [PMID: 19181109 DOI: 10.1007/978-0-387-09599-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Brian D Beck
- Department of Biochemistry and Molecular Biology, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
220
|
Salas TR, Petruseva I, Lavrik O, Saintomé C. Evidence for direct contact between the RPA3 subunit of the human replication protein A and single-stranded DNA. Nucleic Acids Res 2008; 37:38-46. [PMID: 19010961 PMCID: PMC2615627 DOI: 10.1093/nar/gkn895] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Replication Protein A is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes and plays essential roles in many aspects of nucleic acid metabolism, including replication, recombination, DNA repair and telomere maintenance. It is a heterotrimeric complex consisting of three subunits: RPA1, RPA2 and RPA3. It possesses four DNA-binding domains (DBD), DBD-A, DBD-B and DBD-C in RPA1 and DBD-D in RPA2, and it binds ssDNA via a multistep pathway. Unlike the RPA1 and RPA2 subunits, no ssDNA-RPA3 interaction has as yet been observed although RPA3 contains a structural motif found in the other DBDs. We show here using 4-thiothymine residues as photoaffinity probe that RPA3 interacts directly with ssDNA on the 3'-side on a 31 nt ssDNA.
Collapse
Affiliation(s)
- Tonatiuh Romero Salas
- Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, CNRS-ParisVI-Paris XIII-UMR 7033, Paris, France
| | | | | | | |
Collapse
|
221
|
Aguilar-Fuentes J, Fregoso M, Herrera M, Reynaud E, Braun C, Egly JM, Zurita M. p8/TTDA overexpression enhances UV-irradiation resistance and suppresses TFIIH mutations in a Drosophila trichothiodystrophy model. PLoS Genet 2008; 4:e1000253. [PMID: 19008953 PMCID: PMC2576456 DOI: 10.1371/journal.pgen.1000253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 10/03/2008] [Indexed: 11/25/2022] Open
Abstract
Mutations in certain subunits of the DNA repair/transcription factor complex TFIIH are linked to the human syndromes xeroderma pigmentosum (XP), Cockayne's syndrome (CS), and trichothiodystrophy (TTD). One of these subunits, p8/TTDA, interacts with p52 and XPD and is important in maintaining TFIIH stability. Drosophila mutants in the p52 (Dmp52) subunit exhibit phenotypic defects similar to those observed in TTD patients with defects in p8/TTDA and XPD, including reduced levels of TFIIH. Here, we demonstrate that several Dmp52 phenotypes, including lethality, developmental defects, and sterility, can be suppressed by p8/TTDA overexpression. TFIIH levels were also recovered in rescued flies. In addition, p8/TTDA overexpression suppressed a lethal allele of the Drosophila XPB homolog. Furthermore, transgenic flies overexpressing p8/TTDA were more resistant to UV irradiation than were wild-type flies, apparently because of enhanced efficiency of cyclobutane-pyrimidine-dimers and 6–4 pyrimidine-pyrimidone photoproducts repair. This study is the first using an intact higher-animal model to show that one subunit mutant can trans-complement another subunit in a multi-subunit complex linked to human diseases. TFIIH participates in RNA polymerase II transcription, nucleotide excision repair, and control of the cell cycle. In humans, certain mutations in the XPB and XPD subunits of TFIIH generate the syndromes trichothiodystrophy (TTD), xeroderma pigmentosum (XP), and Cockayne's syndrome (CS). In contrast, mutations in the p8/TTDA subunit have been linked only to TTD. Cells derived from TTD patients with defects in p8/TTDA have reduced levels of TFIIH. Therefore, it has been proposed that the main function of p8/TTDA is to stabilize and maintain steady-state levels of TFIIH. In Drosophila, mutations in Dmp52 and haywire genes generate phenotypes that share similarities with those associated with mutations in their human counterparts, including reduced TFIIH levels. We report that p8/TTDA overexpression suppressed accumulated developmental defects associated with mutations in the Dmp52 and haywire genes. We also provide evidence suggesting that the rescue of these defects is, in part, because of the recovery of normal TFIIH levels in mutant flies. These results indicate that overexpression of p8/TTDA trans-complemented mutations in other TFIIH subunits and suppressed defects accumulated during fly development. The overexpression of p8/TTDA in wild-type flies increased their UV irradiation resistance, apparently because of more efficient nucleotide excision repair.
Collapse
Affiliation(s)
- Javier Aguilar-Fuentes
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Mariana Fregoso
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Mariana Herrera
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Enrique Reynaud
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U. de Strasbourg, France
| | - Jean Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U. de Strasbourg, France
| | - Mario Zurita
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- * E-mail:
| |
Collapse
|
222
|
Petruseva IO, Tikhanovich IS, Chelobanov BP, Lavrik OI. RPA repair recognition of DNA containing pyrimidines bearing bulky adducts. J Mol Recognit 2008; 21:154-62. [PMID: 18438969 DOI: 10.1002/jmr.877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.
Collapse
Affiliation(s)
- Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
223
|
Boyle J, Ueda T, Oh KS, Imoto K, Tamura D, Jagdeo J, Khan SG, Nadem C, DiGiovanna JJ, Kraemer KH. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy. Hum Mutat 2008; 29:1194-208. [PMID: 18470933 PMCID: PMC3477783 DOI: 10.1002/humu.20768] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Patients with xeroderma pigmentosum (XP) have a 1,000-fold increase in ultraviolet (UV)-induced skin cancers while trichothiodystrophy (TTD) patients, despite mutations in the same genes, ERCC2 (XPD) or ERCC3 (XPB), are cancer-free. Unlike XP cells, TTD cells have a nearly normal rate of removal of UV-induced 6-4 photoproducts (6-4PP) in their DNA and low levels of the basal transcription factor, TFIIH. We examined seven XP, TTD, and XP/TTD complex patients and identified mutations in the XPD gene. We discovered large differences in nucleotide excision repair (NER) protein recruitment to sites of localized UV damage in TTD cells compared to XP or normal cells. XPC protein was rapidly localized in all cells. XPC was redistributed in TTD, and normal cells by 3 hr postirradiation, but remained localized in XP cells at 24-hr postirradiation. In XP cells recruitment of other NER proteins (XPB, XPD, XPG, XPA, and XPF) was also delayed and persisted at 24 hr (p<0.001). In TTD cells with defects in the XPD, XPB, or GTF2H5 (TTDA) genes, in contrast, recruitment of these NER proteins was reduced compared to normals at early time points (p<0.001) and remained low at 24 hr postirradiation. These data indicate that in XP persistence of NER proteins at sites of unrepaired DNA damage is associated with greatly increased skin cancer risk possibly by blockage of translesion DNA synthesis. In contrast, in TTD, low levels of unstable TFIIH proteins do not accumulate at sites of unrepaired photoproducts and may permit normal translesion DNA synthesis without increased skin cancer.
Collapse
Affiliation(s)
- Jennifer Boyle
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Takahiro Ueda
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kyu-Seon Oh
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kyoko Imoto
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah Tamura
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jared Jagdeo
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sikandar G. Khan
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Carine Nadem
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John J. DiGiovanna
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Division of Dermatopharmacology, Department of Dermatology, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island
| | - Kenneth H. Kraemer
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
224
|
Andressoo JO, Hoeijmakers JHJ, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:45-83. [PMID: 18727498 DOI: 10.1007/1-4020-3764-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jaan-Olle Andressoo
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
225
|
Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol Cell Biol 2008; 28:7225-35. [PMID: 18809580 DOI: 10.1128/mcb.00781-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XPC is responsible for DNA damage sensing in nucleotide excision repair (NER). Mutations in XPC lead to a defect in NER and to xeroderma pigmentosum (XP-C). Here, we analyzed the biochemical properties behind mutations found within three patients: one amino acid substitution (P334H, XP1MI, and GM02096), one amino acid incorporation in a conserved domain (697insVal, XP8BE, and GM02249), and a stop mutation (R579St, XP67TMA, and GM14867). Using these mutants, we demonstrated that HR23B stabilizes XPC on DNA and protects it from degradation. XPC recruits the transcription/repair factor TFIIH and stimulates its XPB ATPase activity to initiate damaged DNA opening. In an effort to understand the severity of XP-C phenotypes, we also demonstrated that single mutations in XPC perturb other repair processes, such as base excision repair (e.g., the P334H mutation prevents the stimulation of Ogg1 glycosylase because it thwarts the interaction between XPC and Ogg1), thereby leading to a deeper understanding of the molecular repair defect of the XP-C patients.
Collapse
|
226
|
Zhao Q, Barakat BM, Qin S, Ray A, El-Mahdy MA, Wani G, Arafa ES, Mir SN, Wang QE, Wani AA. The p38 mitogen-activated protein kinase augments nucleotide excision repair by mediating DDB2 degradation and chromatin relaxation. J Biol Chem 2008; 283:32553-61. [PMID: 18806262 DOI: 10.1074/jbc.m803963200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p38 MAPK is a family of serine/threonine protein kinases that play important roles in cellular responses to external stress signals, e.g. UV irradiation. To assess the role of p38 MAPK pathway in nucleotide excision repair (NER), the most versatile DNA repair pathway, we determined the efficiency of NER in cells treated with p38 MAPK inhibitor SB203580 and found that p38 MAPK is required for the prompt repair of UV-induced DNA damage CPD. We further investigated the possible mechanism through which p38 MAPK regulates NER and found that p38 MAPK mediates UV-induced histone H3 acetylation and chromatin relaxation. Moreover, p38 MAPK also regulates UV-induced DDB2 ubiquitylation and degradation via phosphorylation of the target protein. Finally, our results showed that p38 MAPK is required for the recruitment of NER factors XPC and TFIIH to UV-induced DNA damage sites. We conclude that p38 MAPK regulates chromatin remodeling as well as DDB2 degradation for facilitating NER factor assembly.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Chiganças V, Lima-Bessa KM, Stary A, Menck CFM, Sarasin A. Defective transcription/repair factor IIH recruitment to specific UV lesions in trichothiodystrophy syndrome. Cancer Res 2008; 68:6074-83. [PMID: 18676829 DOI: 10.1158/0008-5472.can-07-6695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFIIH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 6-4PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some TTD/XPD mutations affect the recruitment of TFIIH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFIIH complexes carrying an NH(2)-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFIIH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFIIH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.
Collapse
Affiliation(s)
- Vanessa Chiganças
- Laboratory of Genetic Stability and Oncogenesis, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France.
| | | | | | | | | |
Collapse
|
228
|
Feuerhahn S, Egly JM. Tools to study DNA repair: what's in the box? Trends Genet 2008; 24:467-74. [DOI: 10.1016/j.tig.2008.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 01/06/2023]
|
229
|
Fan W, Luo J. RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J Biol Chem 2008; 283:29037-44. [PMID: 18693251 DOI: 10.1074/jbc.m801928200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome, which is characterized by genome instability, cancer susceptibility, and premature aging. To better define the cellular function of the RecQ4 protein, we investigated the subcellular localization of RecQ4 upon treatment of cells with different DNA-damaging agents including UV irradiation, 4-nitroquinoline 1-oxide, camptothecin, etoposide, hydroxyurea, and H(2)O(2). We found that RecQ4 formed discrete nuclear foci specifically in response to UV irradiation and 4-nitroquinoline 1-oxide. We demonstrated that functional RecQ4 was required for the efficient removal of UV lesions and could rescue UV sensitivity of RecQ4-deficient Rothmund-Thomson syndrome cells. Furthermore, UV treatment also resulted in the colocalization of the nuclear foci formed with RecQ4 and xeroderma pigmentosum group A in human cells. Consistently, RecQ4 could directly interact with xeroderma pigmentosum group A, and this interaction was stimulated by UV irradiation. By fractionating whole cell extracts into cytoplasmic, soluble nuclear, and chromatin-bound fractions, we observed that RecQ4 protein bound more tightly to chromatin upon UV irradiation. Taken together, our findings suggest a role of RecQ4 in the repair of UV-induced DNA damages in human cells.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cancer Biology and the Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
230
|
Hoogstraten D, Bergink S, Ng JMY, Verbiest VHM, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JHJ, Vermeulen W, Houtsmuller AB. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 2008; 121:2850-9. [PMID: 18682493 DOI: 10.1242/jcs.031708] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate how the nucleotide excision repair initiator XPC locates DNA damage in mammalian cell nuclei we analyzed the dynamics of GFP-tagged XPC. Photobleaching experiments showed that XPC constantly associates with and dissociates from chromatin in the absence of DNA damage. DNA-damaging agents retard the mobility of XPC, and UV damage has the most pronounced effect on the mobility of XPC-GFP. XPC exhibited a surprising distinct dynamic behavior and subnuclear distribution compared with other NER factors. Moreover, we uncovered a novel regulatory mechanism for XPC. Under unchallenged conditions, XPC is continuously exported from and imported into the nucleus, which is impeded when NER lesions are present. XPC is omnipresent in the nucleus, allowing a quick response to genotoxic stress. To avoid excessive DNA probing by the low specificity of the protein, the steady-state level in the nucleus is controlled by nucleus-cytoplasm shuttling, allowing temporally higher concentrations of XPC in the nucleus under genotoxic stress conditions.
Collapse
Affiliation(s)
- Deborah Hoogstraten
- Department of Cell Biology and Genetics, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 2008; 31:9-20. [PMID: 18614043 DOI: 10.1016/j.molcel.2008.04.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 04/28/2008] [Indexed: 10/21/2022]
Abstract
The transcription/DNA repair factor TFIIH is organized into a core that associates with the CDK-activating kinase (CAK) complex. Using chromatin immunoprecipitation, we have followed the composition of TFIIH over time after UV irradiation of repair-proficient or -deficient human cells. We show that TFIIH changes subunit composition in response to DNA damage. The CAK is released from the core during nucleotide excision repair (NER). Using reconstituted in vitro NER assay, we show that XPA catalyzes the detachment of the CAK from the core, together with the arrival of the other NER-specific factors. The release of the CAK from the core TFIIH promotes the incision/excision of the damaged oligonucleotide and thereby the repair of the DNA. Following repair, the CAK reappears with the core TFIIH on the chromatin, together with the resumption of transcription. Our findings demonstrate that the composition of TFIIH is dynamic to adapt its engagement in distinct cellular processes.
Collapse
Affiliation(s)
- Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
232
|
Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Houten BV, Kisker C. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 2008; 6:e149. [PMID: 18578568 PMCID: PMC2435149 DOI: 10.1371/journal.pbio.0060149] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 11/17/2022] Open
Abstract
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an alpha-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster-containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
Collapse
Affiliation(s)
- Stefanie C Wolski
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - James J Truglio
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
233
|
Fung MKL, Han HY, Leung SCL, Cheung HW, Cheung ALM, Wong YC, Ling MT, Wang X. MAD2 interacts with DNA repair proteins and negatively regulates DNA damage repair. J Mol Biol 2008; 381:24-34. [PMID: 18597777 DOI: 10.1016/j.jmb.2008.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 01/05/2023]
Abstract
MAD2 (mitotic arrest deficient 2) is a key regulator of mitosis. Recently, it had been suggested that MAD2-induced mitotic arrest mediates DNA damage response and that upregulation of MAD2 confers sensitivity to DNA-damaging anticancer drug-induced apoptosis. In this study, we report a potential novel role of MAD2 in mediating DNA nucleotide excision repair through physical interactions with two DNA repair proteins, XPD (xeroderma pigmentosum complementation group D) and ERCC1. First, overexpression of MAD2 resulted in decreased nuclear accumulation of XPD, a crucial step in the initiation of DNA repair. Second, immunoprecipitation experiments showed that MAD2 was able to bind to XPD, which led to competitive suppression of binding activity between XPD and XPA, resulting in the prevention of physical interactions between DNA repair proteins. Third, unlike its role in mitosis, the N-terminus domain seemed to be more important in the binding activity between MAD2 and XPD. Fourth, phosphorylation of H2AX, a process that is important for recruitment of DNA repair factors to DNA double-strand breaks, was suppressed in MAD2-overexpressing cells in response to DNA damage. These results suggest a negative role of MAD2 in DNA damage response, which may be accounted for its previously reported role in promoting sensitivity to DNA-damaging agents in cancer cells. However, the interaction between MAD2 and ERCC1 did not show any effect on the binding activity between ERCC1 and XPA in the presence or absence of DNA damage. Our results suggest a novel function of MAD2 by interfering with DNA repair proteins.
Collapse
Affiliation(s)
- Maggie K L Fung
- Department of Anatomy, Cancer Biology Group, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Viau M, Gastaldo J, Bencokova Z, Joubert A, Foray N. Cadmium inhibits non-homologous end-joining and over-activates the MRE11-dependent repair pathway. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:13-21. [DOI: 10.1016/j.mrgentox.2008.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/17/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
|
235
|
Croteau DL, Peng Y, Van Houten B. DNA repair gets physical: mapping an XPA-binding site on ERCC1. DNA Repair (Amst) 2008; 7:819-26. [PMID: 18343204 PMCID: PMC2494945 DOI: 10.1016/j.dnarep.2008.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/27/2022]
Abstract
Two recent reports provide new physical information on how the XPA protein recruits the ERCC1-XPF heterodimer to the site of damage during the process of mammalian nucleotide excision repair (NER). Using chemical shift perturbation NMR experiments, the contact sites between a central fragment of ERCC1 and an XPA fragment have been mapped. While both studies agree with regard to the XPA-binding site, they differ on whether the ERCC1-XPA complex can simultaneously bind DNA. These studies have important implications for both the molecular process and the design of potential inhibitors of NER.
Collapse
Affiliation(s)
- Deborah L. Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Ye Peng
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health
| |
Collapse
|
236
|
Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:891-937. [PMID: 18205545 DOI: 10.1089/ars.2007.1830] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA is subjected to several modifications, resulting from endogenous and exogenous sources. The cell has developed a network of complementary DNA-repair mechanisms, and in the human genome, >130 genes have been found to be involved. Knowledge about the basic mechanisms for DNA repair has revealed an unexpected complexity, with overlapping specificity within the same pathway, as well as extensive functional interactions between proteins involved in repair pathways. Unrepaired or improperly repaired DNA lesions have serious potential consequences for the cell, leading to genomic instability and deregulation of cellular functions. A number of disorders or syndromes, including several cancer predispositions and accelerated aging, are linked to an inherited defect in one of the DNA-repair pathways. Genomic instability, a characteristic of most human malignancies, can also arise from acquired defects in DNA repair, and the specific pathway affected is predictive of types of mutations, tumor drug sensitivity, and treatment outcome. Although DNA repair has received little attention as a determinant of drug sensitivity, emerging knowledge of mutations and polymorphisms in key human DNA-repair genes may provide a rational basis for improved strategies for therapeutic interventions on a number of tumors and degenerative disorders.
Collapse
Affiliation(s)
- Fabio Altieri
- Department of Biochemical Sciences, A. Rossi Fanelli, University La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
237
|
Mocquet V, Marc Egly J, Geacintov N. Une cigarette, un aromatique… et un cancer. Med Sci (Paris) 2008; 24:233-4. [DOI: 10.1051/medsci/2008243233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
238
|
Schärer OD. A molecular basis for damage recognition in eukaryotic nucleotide excision repair. Chembiochem 2008; 9:21-3. [PMID: 18033706 DOI: 10.1002/cbic.200700619] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
239
|
Guthrie OW, Li-Korotky HS, Durrant JD, Balaban C. Cisplatin induces cytoplasmic to nuclear translocation of nucleotide excision repair factors among spiral ganglion neurons. Hear Res 2008; 239:79-91. [PMID: 18329831 DOI: 10.1016/j.heares.2008.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/07/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Genomic DNA is a high-affinity target for the antineoplastic molecule cisplatin. Cell survival from cisplatin DNA damage is dependent on removal of cisplatin-DNA adducts by nucleotide excision repair (NER) pathways. The rate-limiting steps in the NER pathways are DNA damage identification and verification. These steps are accomplished by xeroderma pigmentosum complementation group C and A (XPC and XPA) and RNA polymerase II. Unlike RNA polymerase II, XPC and XPA have no known cellular function beyond DNA repair. Cisplatin is known to damage spiral ganglion neurons at the basal coil of the cochlea therefore it was posited that cisplatin may target their DNA and mobilize XPC and XPA. Female Fisher344 rats were given two, four day cycles of cisplatin (2mg/kg) or saline, separated by a 10day rest period. A 2 x 3 x 2 factorial design, consisting of two treatment conditions (cisplatin and saline treatment), three survival times (5, 19 and 22 days) and two analysis methods (quantitative RT-PCR and immunohistochemistry) was employed to evaluate the expression and distribution of XPC and XPA. Quantitative RT-PCR revealed statistically significant differences in cochlear XPC and XPA mRNA levels after cisplatin treatment at all times except day 22 for XPA. Immunohistochemistry revealed that a proportion ( approximately 50%) of spiral ganglion neurons in control rats showed cytoplasmic expression of XPC and XPA. After cisplatin treatment, a similar proportion ( approximately 50%) of spiral ganglion neurons showed increased nuclear expression of XPC and XPA, which appears to represent translocation from the cytoplasm. Basal coil spiral ganglion neurons translocated XPC and XPA at later treatment cycles and with less magnitude than apical coil neurons after cisplatin treatment. Therefore, it is suggested that cisplatin treatment induces nuclear translocation of NER proteins among spiral ganglion neurons and that this nuclear translocation is less efficient at the base relative to the apex.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Science and Disorders, University of Pittsburgh, Forbes Tower 4033, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
240
|
Schärer OD. Hot topics in DNA repair: the molecular basis for different disease states caused by mutations in TFIIH and XPG. DNA Repair (Amst) 2008; 7:339-44. [PMID: 18077223 PMCID: PMC2246058 DOI: 10.1016/j.dnarep.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Alterations in genes involved in nucleotide excision repair (NER) are associated with three genetic disorders, xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The transcription and repair factor TFIIH is a central component of NER and mutations of its subunits are associated with all three diseases. A recent report provides a molecular basis for how mutations in the NER endonuclease XPG that affect the interaction of TFIIH might give rise to CS features. In cells of XP-G patients with a combined XP and CS phenotype, XPG fails to associate with TFIIH and as a consequence the CAK subunit dissociates from core TFIIH. A simplified, but general model of how various assembly and disassembly states of TFIIH can be invoked to explain different disease states is discussed. Accordingly, defects in specific enzymatic functions typically result in XP, dissociation of the CAK subunit from TFIIH is associated with XP/CS and a more generalized destabilization of TFIIH gives rise to TTD. While this classification provides a useful framework to understand how alterations in TFIIH correlate with disease states, it does not universally apply and relevant exception and alternative explanations are discussed.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
241
|
Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J, Shell SM, Zou Y. Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J 2008; 22:603-11. [PMID: 17848622 PMCID: PMC3116236 DOI: 10.1096/fj.07-8598com] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular accumulation of DNA damage has been widely implicated in cellular senescence, aging, and premature aging. In Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD), premature aging is linked to accumulation of DNA double-strand breaks (DSBs), which results in genome instability. However, how DSBs accumulate in cells despite the presence of intact DNA repair proteins remains unknown. Here we report that the recruitment of DSB repair factors Rad50 and Rad51 to the DSB sites, as marked by gamma-H2AX, was impaired in human HGPS and Zmpste24-deficient cells. Consistently, the progeria-associated DSBs appeared to be unrepairable although DSBs induced by camptothecin were efficiently removed in the progeroid cells. We also found that these progeroid cells exhibited nuclear foci of xeroderma pigmentosum group A (XPA), a unique nucleotide excision repair protein. Strikingly, these XPA foci colocalized with the DSB sites in the progeroid cells. This XPA-DSB association was further confirmed and found to be mediated by DNA, using a modified chromatin immunoprecipitation assay and coimmunoprecipitation. RNA interference (RNAi) knockdown of XPA in HGPS cells partially restored DSB repair as evidenced by Western blot analysis, immunofluorescence and comet assays. We propose that the uncharacteristic localization of XPA to or near DSBs inhibits DSB repair, thereby contributing to the premature aging phenotypes observed in progeria arising from genetic defects in prelamin A maturation.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Youjie Wang
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Antonio E. Rusinol
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Michael S. Sinensky
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
- Department of Biochemistry and Molecular Biology, Sichuan University, Chengdu, China
| | - Steven M. Shell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
- Department of Biochemistry and Molecular Biology, Sichuan University, Chengdu, China
| |
Collapse
|
242
|
Brown PJ, Bedard LL, Massey TE. Repair of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA pyridyloxobutylation by nucleotide excision repair. Cancer Lett 2008; 260:48-55. [DOI: 10.1016/j.canlet.2007.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/04/2007] [Accepted: 10/15/2007] [Indexed: 11/29/2022]
|
243
|
Maillard O, Camenisch U, Blagoev KB, Naegeli H. Versatile protection from mutagenic DNA lesions conferred by bipartite recognition in nucleotide excision repair. Mutat Res 2008; 658:271-86. [PMID: 18321768 DOI: 10.1016/j.mrrev.2008.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair is a cut-and-patch pathway that eliminates potentially mutagenic DNA lesions caused by ultraviolet light, electrophilic chemicals, oxygen radicals and many other genetic insults. Unlike antigen recognition by the immune system, which employs billions of immunoglobulins and T-cell receptors, the nucleotide excision repair complex relies on just a few generic factors to detect an extremely wide range of DNA adducts. This molecular versatility is achieved by a bipartite strategy initiated by the detection of abnormal strand fluctuations, followed by the localization of injured residues through an enzymatic scanning process coupled to DNA unwinding. The early recognition subunits are able to probe the thermodynamic properties of nucleic acid substrates but avoid direct contacts with chemically altered bases. Only downstream subunits of the bipartite recognition process interact more closely with damaged bases to delineate the sites of DNA incision. Thus, consecutive factors expand the spectrum of deleterious genetic lesions conveyed to DNA repair by detecting distinct molecular features of target substrates.
Collapse
Affiliation(s)
- Olivier Maillard
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
244
|
Lavelle C, Salles B, Wiesmüller L. DNA repair, damage signaling and carcinogenesis. DNA Repair (Amst) 2008; 7:670-80. [PMID: 18221920 DOI: 10.1016/j.dnarep.2007.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2007] [Indexed: 12/14/2022]
Abstract
The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisting of Gilbert de Murcia, Jean-Marc Egly, Frank Grosse, Karl-Peter Hopfner, Georges Iliakis, Bernd Kaina, Markus Löbrich, Bernard Lopez, Daniel Marzin and Alain Sarasin. This report summarizes information presented by the speakers (invited lectures and oral communications) during the seven plenary sessions, which include (1) excision repair, (2) DNA repair and carcinogenesis, (3) double-strand break repair, (4) replication in repair and lesion bypass, (5) cellular responses to genotoxic stress, (6) DNA repair machinery within the chromatin context and (7) genotoxicology and testing. A total of 23 plenary lectures, 32 oral communications and 66 posters were presented in this rather intense 4 days meeting, which stimulated extensive discussions and highly interdisciplinary scientific exchanges among the approximately 250 participants.
Collapse
|
245
|
Abstract
Xeroderma pigmetosum patients of the complementation group G are rare. One group of XP-G patients displays a rather mild and typical XP phenotype. Mutations in these patients interfere with the function of XPG in the nucleotide excision repair, where it has a structural role in the assembly of the preincision complex and a catalytic role in making the incision 3' to the damaged site in DNA. Another set of XP-G patient is much more severely affected, displaying combined symptoms of xeroderma pigmentosum and Cockayne syndrome, referred to as XP/CS complex. Although the molecular basis leading to the XP/CS complex has not yet been fully established, current evidence suggests that these patients suffer from a mild defect in transcription in addition to a repair defect. Here, the history of how the XPG gene was discovered, the biochemical properties of the XPG protein and the molecular defects found in XP-G patients and mouse models are reviewed.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
246
|
Shell SM, Zou Y. Other proteins interacting with XP proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:103-12. [PMID: 19181115 PMCID: PMC3117267 DOI: 10.1007/978-0-387-09599-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven M. Shell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
247
|
Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 2008; 18:64-72. [PMID: 18166981 PMCID: PMC2432112 DOI: 10.1038/cr.2008.2] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER, while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.
Collapse
Affiliation(s)
- Sarah C. Shuck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN, 46202
| | - Emily A. Short
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis IN, 46202
| | - John J. Turchi
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis IN, 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN, 46202
| |
Collapse
|
248
|
Mocquet V, Lainé JP, Riedl T, Yajin Z, Lee MY, Egly JM. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J 2007; 27:155-67. [PMID: 18079701 DOI: 10.1038/sj.emboj.7601948] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/14/2007] [Indexed: 12/16/2022] Open
Abstract
To address the biochemical mechanisms underlying the coordination between the various proteins required for nucleotide excision repair (NER), we employed the immobilized template system. Using either wild-type or mutated recombinant proteins, we identified the factors involved in the NER process and showed the sequential comings and goings of these factors to the immobilized damaged DNA. Firstly, we found that PCNA and RF-C arrival requires XPF 5' incision. Moreover, the positioning of RF-C is facilitated by RPA and induces XPF release. Concomitantly, XPG leads to PCNA recruitment and stabilization. Our data strongly suggest that this interaction with XPG protects PCNA and Pol delta from the effect of inhibitors such as p21. XPG and RPA are released as soon as Pol delta is recruited by the RF-C/PCNA complex. Finally, a ligation system composed of FEN1 and Ligase I can be recruited to fully restore the DNA. In addition, using XP or trichothiodystrophy patient-derived cell extracts, we were able to diagnose the biochemical defect that may prove to be important for therapeutic purposes.
Collapse
Affiliation(s)
- Vincent Mocquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
249
|
Dinant C, de Jager M, Essers J, van Cappellen WA, Kanaar R, Houtsmuller AB, Vermeulen W. Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 2007; 120:2731-40. [PMID: 17646676 DOI: 10.1242/jcs.004523] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Live cell studies of DNA repair mechanisms are greatly enhanced by new developments in real-time visualization of repair factors in living cells. Combined with recent advances in local sub-nuclear DNA damage induction procedures these methods have yielded detailed information on the dynamics of damage recognition and repair. Here we analyze and discuss the various types of DNA damage induced in cells by three different local damage induction methods: pulsed 800 nm laser irradiation, Hoechst 33342 treatment combined with 405 nm laser irradiation and UV-C (266 nm) laser irradiation. A wide variety of damage was detected with the first two methods, including pyrimidine dimers and single- and double-strand breaks. However, many aspects of the cellular response to presensitization by Hoechst 33342 and subsequent 405 nm irradiation were aberrant from those to every other DNA damaging method described here or in the literature. Whereas, application of low-dose 266 nm laser irradiation induced only UV-specific DNA photo-lesions allowing the study of the UV-C-induced DNA damage response in a user-defined area in cultured cells.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Pathology, Josephine Nefkens Institute, ErasmusMC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
250
|
Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT. Structural, Thermodynamic, and Cellular Characterization of Human Centrin 2 Interaction with Xeroderma Pigmentosum Group C Protein. J Mol Biol 2007; 373:1032-46. [PMID: 17897675 DOI: 10.1016/j.jmb.2007.08.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/25/2022]
Abstract
Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.
Collapse
Affiliation(s)
- Jean-Baptiste Charbonnier
- Laboratoire de Biologie Structurale et Radiobiologie, iBiTec-S, CEA, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|