201
|
Anselmi M, Pisabarro MT. Exploring Multiple Binding Modes Using Confined Replica Exchange Molecular Dynamics. J Chem Theory Comput 2016; 11:3906-18. [PMID: 26574471 DOI: 10.1021/acs.jctc.5b00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking is extensively applied to determine the position of a ligand on its receptor despite the rather poor correspondence between docking scores and experimental binding affinities found in several studies, especially for systems structurally unrelated with those used in the scoring functions' training sets. Here, we present a method for the prediction of binding modes and binding free energies, which uses replica exchange molecular dynamics in combination with a receptor-shaped piecewise potential, confining the ligand in the proximity of the receptor surface and limiting the accessible conformational space of interest. We assess our methodology with a set of protein receptor-ligand test cases. In every case studied, the method is able to locate the ligand on the experimentally known receptor binding site, and it gives as output the binding free energy. The added value of our approach with respect to other available methods is that it quickly performs a conformational space search, providing a set of bound (or unbound) configurations, which can be used to determine phenomenological structural and energetic properties of an experimental binding state as a result of contributions provided by diversified multiple binding poses.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Structural Bioinformatics, BIOTEC TU Dresden , Tatzberg 47-51, 01307 Dresden, Germany.,Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
202
|
Lambert MW. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 2016; 241:1621-38. [PMID: 27480253 PMCID: PMC4999628 DOI: 10.1177/1535370216662714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
203
|
|
204
|
Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity. Biochem J 2016; 473:3837-3854. [PMID: 27551107 DOI: 10.1042/bcj20160658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Although electrostatic interactions between negatively charged ferredoxin (Fd) and positively charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We investigated interprotein forces for the formation of an electron transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum ∼40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay. Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on the addition of SiR to 15N-labeled Fd at the various NaCl concentrations also demonstrated that a combination of electrostatic and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions.
Collapse
|
205
|
Moreira C, Ramos MJ, Fernandes PA. Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets. Molecules 2016; 21:E1028. [PMID: 27509490 PMCID: PMC6274088 DOI: 10.3390/molecules21081028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glutamine synthetase (GS) is a crucial enzyme to the nitrogen cycle with great commercial and pharmaceutical value. Current inhibitors target the active site, affecting GS activity indiscriminately in all organisms. As the active site is located at the interface between two monomers, the protein-protein interface (PPI) of GSs gains a new role, by providing new targets for enzyme inhibition. Exploring GSs PPI could allow for the development of inhibitors selective for specific organisms. Here we map the PPI of three GSs-human (hsGS), maize (zmGS) and Mycobacterium tuberculosis (mtGS)-and unravel new drugable pockets. METHODS The PPI binding free energy coming from key residues on three GSs from different organisms were mapped by computational alanine scan mutagenesis, applying a multiple dielectric constant MM-PBSA methodology. The most relevant residues for binding are referred as hot-spots. Drugable pockets on GS were detected with the Fpocket software. RESULTS AND CONCLUSIONS A total of 23, 19 and 30 hot-spots were identified on hsGS, zmGS and mtGS PPI. Even possessing differences in the hot-spots, hsGS and zmGS PPI are overall very similar. On the other hand, mtGS PPI differs greatly from hsGS and zmGS PPI. A novel drugable pocket was detected on the mtGS PPI. It seems particularly promising for the development of selective anti-tuberculosis drugs given its location on a PPI region that is highly populated with hot-spots and is completely different from the hsGS and zmGS PPIs. Drugs targeting this pockets should be inactive on eukaryotic GS II enzymes.
Collapse
Affiliation(s)
- Cátia Moreira
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
206
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
207
|
Identification of an S100A8 Receptor Neuroplastin-β and its Heterodimer Formation with EMMPRIN. J Invest Dermatol 2016; 136:2240-2250. [PMID: 27388991 DOI: 10.1016/j.jid.2016.06.617] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023]
Abstract
We previously reported a positive feedback loop between S100A8/A9 and proinflammatory cytokines mediated by extracellular matrix metalloproteinase inducer, an S100A9 receptor. Here, we identify neuroplastin-β as an unreported S100A8 receptor. Neuroplastin-β and extracellular matrix metalloproteinase inducer form homodimers and a heterodimer, and they are co-localized on the surface of cultured normal human keratinocytes. Knockdown of both receptors suppressed cell proliferation and proinflammatory cytokine induction. Upon stimulation with S100A8, neuroplastin-β recruited GRB2 and activated extracellular signal-regulated kinase, resulting in keratinocyte proliferation. Keratinocyte proliferation in response to inflammatory stimuli was accelerated in involucrin promoter-driven S100A8 transgenic mice. Further, S100A8 and S100A9 were strongly up-regulated and co-localized in lesional skin of atopic dermatitis patients. Our results indicate that neuroplastin-β and extracellular matrix metalloproteinase inducer form a functional heterodimeric receptor for S100A8/A9 heterodimer, followed by recruitment of specific adaptor molecules GRB2 and TRAF2, and this signaling pathway is involved in activation of both keratinocyte proliferation and skin inflammation in atopic skin. Suppression of this pathway might have potential for treatment of skin diseases associated with chronic inflammation such as atopic dermatitis.
Collapse
|
208
|
Domeradzka NE, Werten MWT, de Vries R, de Wolf FA. Production in Pichia pastoris of complementary protein-based polymers with heterodimer-forming WW and PPxY domains. Microb Cell Fact 2016; 15:105. [PMID: 27286861 PMCID: PMC4902918 DOI: 10.1186/s12934-016-0498-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023] Open
Abstract
Background Specific coupling of de novo designed recombinant protein polymers for the construction of precisely structured nanomaterials is of interest for applications in biomedicine, pharmaceutics and diagnostics. An attractive coupling strategy is to incorporate specifically interacting peptides into the genetic design of the protein polymers. An example of such interaction is the binding of particular proline-rich ligands by so-called WW-domains. In this study, we investigated whether these domains can be produced in the yeast Pichia pastoris as part of otherwise non-interacting protein polymers, and whether they bring about polymer coupling upon mixing. Results We constructed two variants of a highly hydrophilic protein-based polymer that differ only in their C-terminal extensions. One carries a C-terminal WW domain, and the other a C-terminal proline-rich ligand (PPxY). Both polymers were produced in P.pastoris with a purified protein yield of more than 2 g L−1 of cell-free broth. The proline-rich module was found to be O-glycosylated, and uncommonly a large portion of the attached oligosaccharides was phosphorylated. Glycosylation was overcome by introducing a Ser → Ala mutation in the PPxY peptide. Tryptophan fluorescence monitored during titration of the polymer containing the WW domain with either the glycosylated or nonglycosylated PPxY-containing polymer revealed binding. The complementary polymers associated with a Kd of ~3 µM, regardless of glycosylation state of the PPxY domain. Binding was confirmed by isothermal titration calorimetry, with a Kd of ~9 µM. Conclusions This article presents a blueprint for the production in P. pastoris of protein polymers that can be coupled using the noncovalent interaction between WW domains and proline-rich ligands. The availability of this highly specific coupling tool will hereafter allow us to construct various supramolecular structures and biomaterials. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia E Domeradzka
- Wageningen UR Food and Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marc W T Werten
- Wageningen UR Food and Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen UR Food and Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
209
|
DiMattia MA, Watts NR, Cheng N, Huang R, Heymann JB, Grimes JM, Wingfield PT, Stuart DI, Steven AC. The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly. Structure 2016; 24:1068-80. [PMID: 27265851 DOI: 10.1016/j.str.2016.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
HIV-1 Rev protein mediates the nuclear export of viral RNA genomes. To do so, Rev oligomerizes cooperatively onto an RNA motif, the Rev response element (RRE), forming a complex that engages with the host nuclear export machinery. To better understand Rev oligomerization, we determined four crystal structures of Rev N-terminal domain dimers, which show that they can pivot about their dyad axis, giving crossing angles of 90° to 140°. In parallel, we performed cryoelectron microscopy of helical Rev filaments. Filaments vary from 11 to 15 nm in width, reflecting variations in dimer crossing angle. These structures contain additional density, indicating that C-terminal domains become partially ordered in the context of filaments. This conformational variability may be exploited in the assembly of RRE/Rev complexes. Our data also revealed a third interface between Revs, which offers an explanation for how the arrangement of Rev subunits adapts to the "A"-shaped architecture of the RRE in export-active complexes.
Collapse
Affiliation(s)
- Michael A DiMattia
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington OX3 7BN, UK
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rick Huang
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan M Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington OX3 7BN, UK; Diamond House, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David I Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington OX3 7BN, UK; Diamond House, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
210
|
Jia LY, Xiao JH, Xiong TL, Niu LM, Huang DW. The transformer genes in the fig wasp Ceratosolen solmsi provide new evidence for duplications independent of complementary sex determination. INSECT MOLECULAR BIOLOGY 2016; 25:191-201. [PMID: 26748889 DOI: 10.1111/imb.12210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transformer (tra) is the key gene that turns on the sex-determination cascade in Drosophila melanogaster and in some other insects. The honeybee Apis mellifera has two duplicates of tra, one of which (complementary sex determiner, csd) is the primary signal for complementary sex-determination (CSD), regulating the other duplicate (feminizer). Two tra duplicates have been found in some other hymenopteran species, resulting in the assumption that a single ancestral duplication of tra took place in the Hymenoptera. Here, we searched for tra homologues and pseudogenes in the Hymenoptera, focusing on five newly published hymenopteran genomes. We found three tra copies in the fig wasp Ceratosolen solmsi. Further evolutionary and expression analyses also showed that the two duplicates (Csoltra-B and Csoltra-C) are under positive selection, and have female-specific expression, suggesting possible sex-related functions. Moreover, Aculeata species exhibit many pseudogenes generated by lineage-specific duplications. We conclude that phylogenetic reconstruction and pseudogene screening provide novel evidence supporting the hypothesis of independent duplications rather an ancestral origin of multiple tra paralogues in the Hymenoptera. The case of C. solmsi is the first example of a non-CSD species with duplicated tra, contrary to the previous assumption that derived tra paralogues function as the CSD locus.
Collapse
Affiliation(s)
- L-Y Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J-H Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - T-L Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L-M Niu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - D-W Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Plant Protection College, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
211
|
Xie L, Xie Z, Huang L, Fan Q, Luo S, Huang J, Deng X, Xie Z, Zeng T, Zhang Y, Wang S. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway. Arch Virol 2016; 161:2243-8. [PMID: 27233800 DOI: 10.1007/s00705-016-2908-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Li Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Qing Fan
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Jiaoling Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Xianwen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Yanfang Zhang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| |
Collapse
|
212
|
Bille A, Mohanty S, Irbäck A. Peptide folding in the presence of interacting protein crowders. J Chem Phys 2016; 144:175105. [PMID: 27155657 DOI: 10.1063/1.4948462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.
Collapse
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
213
|
Kundu P, Biswas R, Mukherjee S, Reinhard L, Dutta A, Mueller-Dieckmann J, Weiss MS, Pal NK, Das AK. Structure-based Epitope Mapping of Mycobacterium tuberculosis Secretary Antigen MTC28. J Biol Chem 2016; 291:13943-13954. [PMID: 27189947 DOI: 10.1074/jbc.m116.726422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Secretary proteins of Mycobacterium tuberculosis are key players of the mycobacterial infection pathway. MTC28 is a 28-kDa proline-rich secretary antigen of Mycobacterium tuberculosis and is only conserved in pathogenic strains of mycobacteria. Here we report the crystal structure of MTC28 at 2.8- and 2.15-Å resolutions for the structure-based epitope design. MTC28 shares a "mog1p"-fold consisting of seven antiparallel β strands stacked between α helices. Five probable epitopes have been located on a solvent-accessible flexible region by computational analysis of the structure of MTC28. Simultaneously, the protein is digested with trypsin and the resulting fragments are purified by HPLC. Such 10 purified peptide fragments are screened against sera from patients infected with pulmonary tuberculosis (PTB). Two of these 10 fragments, namely (127)ALDITLPMPPR(137) and (138)WTQVPDPNVPDAFVVIADR(156),are found to be major immunogenic epitopes that are localized on the outer surface of the protein molecule and are part of a single continuous epitope that have been predicted in silico Mutagenesis and antibody inhibition studies are in accordance with the results obtained from epitope mapping.
Collapse
Affiliation(s)
- Prasun Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden,; Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, c/o DESY, D-22607 Hamburg, Germany,; European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| | - Anirudha Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Jochen Mueller-Dieckmann
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße18, 22609 Hamburg, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Nishit Kumar Pal
- Nil Ratan Sirkar Medical College and Hospital,138 AJC Bose Road, Sealdah, Raja Bazar, Kolkata, West Bengal 700014, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India,.
| |
Collapse
|
214
|
Lv H, Zhang Y, Sun G, Bao K, Gao Y, Qi X, Cui H, Wang Y, Li K, Gao L, Pan Q, Wang X, Liu C. Genetic evolution of Gallid herpesvirus 2 isolated in China. INFECTION GENETICS AND EVOLUTION 2016; 51:263-274. [PMID: 27112385 DOI: 10.1016/j.meegid.2016.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/12/2023]
Abstract
Gallid herpesvirus 2 (GaHV-2), which causes Marek's disease in chickens and has caused extensive economic losses, has recently evolved increased virulence in China. To better understand the genetic basis of the pathogenic characteristics changed and increased virulence, we sequenced the genomes of six new GaHV-2 strains (LCC, LTS, WC/1203, JL/1404, CC/1409, and HS/1412) isolated from chickens with failed immunisation as well as one previously isolated Chinese GaHV-2 strain, J-1. Based on a multiple sequence alignment, several characteristic point mutations were detected in the open reading frames of the Chinese isolates. In addition, two deletions and an insertion were identified at the unique short region and terminal repeat short region junctions in Chinese isolates, and the insertion was a characteristic of the new Chinese isolates. According to a phylogenetic analysis, the GaHV-2 genome diverged substantially over the last two decades in China. Based on the internal repeat long region, the new isolates were closely related to very virulent or very virulent plus strains. Additionally, the new Chinese isolates diverged from the previously isolated strains J-1 and 814. In conclusion, our results provide evidence that Chinese GaHV-2 strains contain characteristic sequences, especially the new isolates. The observed genetic divergence in the new Chinese GaHV-2 strains over the last two decades may be related to observed changes in pathogenic characteristics and virulence.
Collapse
Affiliation(s)
- Hongchao Lv
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Guorong Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Keyan Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| |
Collapse
|
215
|
Herrera MG, Zamarreño F, Costabel M, Ritacco H, Hütten A, Sewald N, Dodero VI. Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization. Biopolymers 2016; 101:96-106. [PMID: 23703327 DOI: 10.1002/bip.22288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.
Collapse
Affiliation(s)
- María G Herrera
- Department of Chemistry, INQUISUR, National University of South, CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | | | | | | | | | | | | |
Collapse
|
216
|
Wang Y, Wang J, Liu H, Zhang R, Zhang T, Gan X, Huang H, Chen D, Li L. Discovery, Characterization, and Functional Study of a Novel MEF2D CAG Repeat in Duck (Anas platyrhynchos). DNA Cell Biol 2016; 35:398-409. [PMID: 27064738 DOI: 10.1089/dna.2016.3222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myocyte enhancer transcription factor 2D (MEF2D) is an important transcription factor for promoting the growth and development of muscle. CAG repeats have been found in the coding sequence (CDS) of avian MEF2D; however, their functions remain unknown and require further investigation. Here, we examined the characteristics and functional role of MEF2D CAG repeat in duck. The full-length CDS of duck MEF2D was cloned for the first time, and a novel CAG repeat was identified and located in exon 9. Sequence analysis indicated that the protein domains of duck MEF2D are highly conserved relative to other vertebrates, whereas MEF2D CAG repeats with variable repeat numbers are specific to avian species. Furthermore, sequencing has revealed polymorphisms in MEF2D CAG repeat at both DNA and mRNA levels. Four MEF2D CAG repeat genotypes and 10 MEF2D cDNA variants with different CAG repeat numbers were detected in two duck populations. A t-test showed that the expanded CAG repeat generated significantly longer transcription products (p < 0.05). Association analysis demonstrated positive correlations between the expansion of the CAG repeat and five muscle-related traits. By using protein structure prediction, we suggested that the polymorphisms of the CAG repeat affect protein structures within protein domains. Taken together, these findings reveal that duck MEF2D CAG repeat is a potential functional element with polymorphisms and may cause differences in MEF2D function between duck and other vertebrate species.
Collapse
Affiliation(s)
- Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Huilan Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Da Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| |
Collapse
|
217
|
Yang M, Lewinska M, Fan X, Zhu J, Yuan ZM. PRR14 is a novel activator of the PI3K pathway promoting lung carcinogenesis. Oncogene 2016; 35:5527-5538. [PMID: 27041574 DOI: 10.1038/onc.2016.93] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Chromosomal focal amplifications often cause an increase in gene copy number, contributing to the pathogenesis of cancer. PRR14 overexpression is associated with recurrent locus amplification in lung cancer, and it correlates with a poor prognosis. We show that increased PRR14 expression promoted and reduced PRR14 expression impeded lung cancer cell proliferation. Interestingly, PRR14 cells were markedly enlarged in size and exhibited an elevated activity of the PI3-kinase/Akt/mTOR pathway, which was associated with a heightened sensitivity to the inhibitors of PI3K and mammalian target of rapamycin (mTOR). Biochemical analysis revealed that PRR14, as a proline-rich protein, binds to the Src homology 3 (SH3) domains of GRB2 resulting in PI3K activation. Significantly, two cancer patient-derived PRR14 mutants displayed considerably augmented GRB2-binding and an enhanced ability of promoting cell proliferation. Together with the in vivo data demonstrating a strong tumor-promoting activity of PRR14 and the mutants, our work uncovered this proline-rich protein as a novel activator of the PI3K pathway that promoted tumorigenesis in lung cancer.
Collapse
Affiliation(s)
- M Yang
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M Lewinska
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Fan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - J Zhu
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Z-M Yuan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
218
|
Neira JL, Rizzuti B, Iovanna JL. Determinants of the pKa values of ionizable residues in an intrinsically disordered protein. Arch Biochem Biophys 2016; 598:18-27. [PMID: 27046343 DOI: 10.1016/j.abb.2016.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes; in humans, they are often associated with diseases. The protein NUPR1 is a multifunctional IDP involved in the development and progression of pancreatic cancer; therefore, it constitutes a target for drug design. In an effort to contribute to the understanding of the conformational features of NUPR1 and to provide clues on amino acid interactions in disordered states of proteins, we measured the pKa values of all its acidic groups (aspartic and glutamic residues, and backbone C terminus) by using NMR spectroscopy at low (100 mM) and high (500 mM) NaCl concentration. At low ionic strength, the pKa values were similar to those reported for random-coil models, except for Glu18 and Asp19, suggesting electrostatic interactions around these residues. Molecular modelling and simulation indicate an additional, significant role of nearby proline residues in determining the polypeptide conformational features and water accessibility in the region around Glu18, modulating the titration properties of these amino acids. In the other acidic residues of NUPR1, the small deviations of pKa values (compared to those expected for a random-coil) are likely due to electrostatic interactions with charged adjacent residues, which should be reduced at high NaCl concentrations. In fact, at high ionic strength, the pKa values of the aspartic residues were similar to those in a random coil, but there were still small differences for those of glutamic acids, probably due to hydrogen-bond formation. The overall findings suggest that local interactions and hydrophobic effects play a major role in determining the electrostatic features of NUPR1, whereas long-range charge contributions appear to be of lesser importance.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Biocomputation and Complex Systems Physics Institute, 50009 Zaragoza, Spain.
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
219
|
A phosphotyrosine switch regulates organic cation transporters. Nat Commun 2016; 7:10880. [PMID: 26979622 PMCID: PMC4799362 DOI: 10.1038/ncomms10880] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Membrane transporters are key determinants of therapeutic outcomes. They regulate systemic and cellular drug levels influencing efficacy as well as toxicities. Here we report a unique phosphorylation-dependent interaction between drug transporters and tyrosine kinase inhibitors (TKIs), which has uncovered widespread phosphotyrosine-mediated regulation of drug transporters. We initially found that organic cation transporters (OCTs), uptake carriers of metformin and oxaliplatin, were inhibited by several clinically used TKIs. Mechanistic studies showed that these TKIs inhibit the Src family kinase Yes1, which was found to be essential for OCT2 tyrosine phosphorylation and function. Yes1 inhibition in vivo diminished OCT2 activity, significantly mitigating oxaliplatin-induced acute sensory neuropathy. Along with OCT2, other SLC-family drug transporters are potentially part of an extensive 'transporter-phosphoproteome' with unique susceptibility to TKIs. On the basis of these findings we propose that TKIs, an important and rapidly expanding class of therapeutics, can functionally modulate pharmacologically important proteins by inhibiting protein kinases essential for their post-translational regulation.
Collapse
|
220
|
Morey TM, Albers S, Shilton BH, Rylett RJ. Enhanced ubiquitination and proteasomal degradation of catalytically deficient human choline acetyltransferase mutants. J Neurochem 2016; 137:630-46. [PMID: 26871972 DOI: 10.1111/jnc.13574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 11/30/2022]
Abstract
Choline acetyltransferase (ChAT) is essential for cholinergic neuron function as it mediates synthesis of the neurotransmitter acetylcholine. ChAT mutations have been linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related ChAT mutation, V18M, reduces enzyme activity and cellular protein levels, and is positioned within a highly conserved proline-rich motif with the sequence 14 PKLPVPP20 . We demonstrate that N-terminal truncation that includes this proline-rich motif, as well as mutation of prolines-17/19 together to alanine (P17A/P19A), dramatically reduces ChAT steady-state protein levels and cellular activity when expressed in cholinergic SN56 neural cells. The in vitro activity of bacterially expressed recombinant P17A/P19A-ChAT is also reduced, although this is not caused by changes in protein secondary structure or thermal stability. Treatment of SN56 cells with the proteasome inhibitor MG132 increases cellular P17A/P19A-ChAT steady-state protein levels, and by immunoprecipitation we found that ChAT is ubiquitinated and that polyubiquitination of P17A/P19A-ChAT is increased compared to wild-type (WT) ChAT. Using a novel fluorescent-biorthogonal pulse-chase protocol in SN56 cells, we determined that the protein half-life of P17A/P19A-ChAT (2.2 h) is substantially reduced compared to WT-ChAT (19.7 h). Lastly, we show that two CMS-related ChAT mutants (V18M and A513T) have enhanced ubiquitination, and that treatment with MG132 can partially restore both the steady-state protein levels as well as cellular activity of some CMS-mutant ChAT. These results identify a novel mechanism for regulation of ChAT through the ubiquitin-proteasome system that is influenced by the conserved N-terminal proline-rich motif of ChAT and may be implicated in CMS pathology. Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons. In this study we find that steady-state protein levels of human 69-kDa ChAT are regulated by the ubiquitin-proteasome system. Mutation of a highly conserved N-terminal proline-rich motif in human 69-kDa ChAT reduces both cellular ChAT protein levels, through enhanced ubiquitination and proteasomal degradation, and enzyme activity. Ubiquitination of catalytically deficient congenital myasthenic syndrome (CMS)-mutant ChAT is increased in cells, and importantly proteasome inhibition partially restores steady-state protein levels as well as cellular activity of some CMS-mutant ChAT proteins.
Collapse
Affiliation(s)
- Trevor M Morey
- Molecular Medicine Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Shawn Albers
- Molecular Medicine Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian H Shilton
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - R Jane Rylett
- Molecular Medicine Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
221
|
Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear. Sci Rep 2016; 6:22663. [PMID: 26946957 PMCID: PMC4780071 DOI: 10.1038/srep22663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 1010th 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME.
Collapse
|
222
|
Pervaiz N, Abbasi AA. Molecular evolution of WDR62, a gene that regulates neocorticogenesis. Meta Gene 2016; 9:1-9. [PMID: 27114917 PMCID: PMC4833054 DOI: 10.1016/j.mgene.2016.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. We trace the evolutionary history of WDR62 and its putative paralogs. We identify accelerated sequence evolution in human WDR62. We pinpoint eight human specific amino acid sites that reside on the C-terminal. Out of eight, six sites are shared with archaic humans.
Collapse
Affiliation(s)
- Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
223
|
Forbes CR, Pandey AK, Ganguly HK, Yap GPA, Zondlo NJ. 4R- and 4S-iodophenyl hydroxyproline, 4R-pentynoyl hydroxyproline, and S-propargyl-4-thiolphenylalanine: conformationally biased and tunable amino acids for bioorthogonal reactions. Org Biomol Chem 2016; 14:2327-46. [PMID: 26806113 PMCID: PMC5824642 DOI: 10.1039/c5ob02473k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioorthogonal reactions allow the introduction of new functionalities into peptides, proteins, and other biological molecules. The most readily accessible amino acids for bioorthogonal reactions have modest conformational preferences or bases for molecular interactions. Herein we describe the synthesis of 4 novel amino acids containing functional groups for bioorthogonal reactions. (2S,4R)- and (2S,4S)-iodophenyl ethers of hydroxyproline are capable of modification via rapid, specific Suzuki and Sonogashira reactions in water. The synthesis of these amino acids, as Boc-, Fmoc- and free amino acids, was achieved through succinct sequences. These amino acids exhibit well-defined conformational preferences, with the 4S-iodophenyl hydroxyproline crystallographically exhibiting β-turn (ϕ, ψ∼-80°, 0°) or relatively extended (ϕ, ψ∼-80°, +170°) conformations, while the 4R-diastereomer prefers a more compact conformation (ϕ∼-60°). The aryloxyproline diastereomers present the aryl groups in a highly divergent manner, suggesting their stereospecific use in molecular design, medicinal chemistry, and catalysis. Thus, the 4R- and 4S-iodophenyl hydroxyprolines can be differentially applied in distinct structural contexts. The pentynoate ester of 4R-hydroxyproline introduces an alkyne functional group within an amino acid that prefers compact conformations. The propargyl thioether of 4-thiolphenylalanine was synthesized via copper-mediated cross-coupling reaction of thioacetic acid with protected 4-iodophenylalanine, followed by thiolysis and alkylation. This amino acid combines an alkyne functional group with an aromatic amino acid and the ability to tune aromatic and side chain properties via sulfur oxidation. These amino acids provide novel loci for peptide functionalization, with greater control of conformation possible than with other amino acids containing these functional groups.
Collapse
Affiliation(s)
- Christina R. Forbes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Anil K. Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Himal K. Ganguly
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
224
|
Manconi B, Castagnola M, Cabras T, Olianas A, Vitali A, Desiderio C, Sanna MT, Messana I. The intriguing heterogeneity of human salivary proline-rich proteins. J Proteomics 2016; 134:47-56. [DOI: 10.1016/j.jprot.2015.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 01/10/2023]
|
225
|
Palmerini CA, Mazzoni M, Radicioni G, Marzano V, Granieri L, Iavarone F, Longhi R, Messana I, Cabras T, Sanna MT, Castagnola M, Vitali A. Antagonistic Effect of a Salivary Proline-Rich Peptide on the Cytosolic Ca2+ Mobilization Induced by Progesterone in Oral Squamous Cancer Cells. PLoS One 2016; 11:e0147925. [PMID: 26814504 PMCID: PMC4729474 DOI: 10.1371/journal.pone.0147925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/11/2016] [Indexed: 11/21/2022] Open
Abstract
A salivary proline-rich peptide of 1932 Da showed a dose-dependent antagonistic effect on the cytosolic Ca2+ mobilization induced by progesterone in a tongue squamous carcinoma cell line. Structure-activity studies showed that the activity of the peptide resides in the C-terminal region characterized by a proline stretch flanked by basic residues. Furthermore, lack of activity of the retro-inverso peptide analogue suggested the involvement of stereospecific recognition. Mass spectrometry-based shotgun analysis, combined with Western blotting tests and biochemical data obtained with the Progesterone Receptor Membrane Component 1 (PGRMC1) inhibitor AG205, showed strong evidence that p1932 performs its modulatory action through an interaction with the progesterone receptor PGRMC1, which is predominantly expressed in this cell line and, clearly, plays a role in progesterone induced Ca2+ response. Thus, our results point to p1932 as a modulator of the transduction signal pathway mediated by this protein and, given a well-established involvement of PGRMC1 in tumorigenesis, highlight a possible therapeutic potential of p1932 for the treatment of oral cancer.
Collapse
Affiliation(s)
- Carlo Alberto Palmerini
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Michela Mazzoni
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Giorgia Radicioni
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Valeria Marzano
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Letizia Granieri
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Renato Longhi
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Milan, Italy
| | - Irene Messana
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Rome, UoS Rome, Italy
| | - Alberto Vitali
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Rome, UoS Rome, Italy
- * E-mail:
| |
Collapse
|
226
|
Panwalkar V, Neudecker P, Schmitz M, Lecher J, Schulte M, Medini K, Stoldt M, Brimble MA, Willbold D, Dingley AJ. The Nedd4–1 WW Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria. Biochemistry 2016; 55:659-74. [DOI: 10.1021/acs.biochem.5b01028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vineet Panwalkar
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Neudecker
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | - Justin Lecher
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Marianne Schulte
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | - Matthias Stoldt
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | - Dieter Willbold
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Andrew J. Dingley
- ICS-6
(Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
227
|
Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 2016; 30:153-64. [PMID: 26754844 DOI: 10.1007/s10822-015-9892-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Fotis A Baltoumas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
| |
Collapse
|
228
|
Kubyshkin V, Durkin P, Budisa N. Energetic contribution to both acidity and conformational stability in peptide models. NEW J CHEM 2016. [DOI: 10.1039/c5nj03611a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acidity difference of the amide rotamers has been revised for a large set ofN-acetyl amino acids.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| | - Patrick Durkin
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| | - Nediljko Budisa
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| |
Collapse
|
229
|
Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proc Natl Acad Sci U S A 2015; 113:763-8. [PMID: 26719418 DOI: 10.1073/pnas.1514123113] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK's kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling.
Collapse
|
230
|
Kirk LM, Ti SW, Bishop HI, Orozco-Llamas M, Pham M, Trimmer JS, Díaz E. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain. J Comp Neurol 2015; 524:2266-80. [PMID: 26660156 DOI: 10.1002/cne.23945] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lyndsey M Kirk
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Shu W Ti
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Hannah I Bishop
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Mayra Orozco-Llamas
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Michelle Pham
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616.,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California, 95616
| | - Elva Díaz
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| |
Collapse
|
231
|
Siebler C, Maryasin B, Kuemin M, Erdmann RS, Rigling C, Grünenfelder C, Ochsenfeld C, Wennemers H. Importance of dipole moments and ambient polarity for the conformation of Xaa-Pro moieties - a combined experimental and theoretical study. Chem Sci 2015; 6:6725-6730. [PMID: 30154996 PMCID: PMC6090429 DOI: 10.1039/c5sc02211h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
NMR spectroscopic studies with a series of proline derivatives revealed that the polarity of the environment has a significant effect on the trans : cis isomer ratio of Xaa-Pro bonds. Computational studies showed that this effect is due to differences in the overall dipole moments of trans and cis conformers. Comparisons between the conformational properties of amide and ester derivatives revealed an intricate balance between polarity effects and n → π* interactions of adjacent carbonyl groups. The findings have important implications for protein folding and signaling as well as the performance of proline-based stereoselective catalysts.
Collapse
Affiliation(s)
- Christiane Siebler
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Boris Maryasin
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Michael Kuemin
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Roman S Erdmann
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Carla Rigling
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Claudio Grünenfelder
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| |
Collapse
|
232
|
Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F. Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:16-24. [PMID: 26117063 PMCID: PMC4662879 DOI: 10.1016/j.cbpc.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Congenital hearing loss is an important clinical problem because, without early intervention, affected children do not properly acquire language and consequently have difficulties developing social skills. Although most newborns in the US are screened for hearing deficits, even earlier diagnosis can be made with prenatal genetic screening. Genetic screening that identifies the relevant mutated gene can also warn about potential congenital defects in organs not related to hearing. We will discuss efforts to identify new candidate genes that underlie the Branchiootorenal spectrum disorders in which affected children have hearing deficits and are also at risk for kidney defects. Mutations in two genes, SIX1 and EYA1, have been identified in about half of the patients tested. To uncover new candidate genes, we have used the aquatic animal model, Xenopus laevis, to identify genes that are part of the developmental genetic pathway of Six1 during otic and kidney development. We have already identified a large number of potential Six1 transcriptional targets and candidate co-factor proteins that are expressed at the right time and in the correct tissues to interact with Six1 during development. We discuss the advantages of using this system for gene discovery in a human congenital hearing loss syndrome.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
233
|
Bille A, Linse B, Mohanty S, Irbäck A. Equilibrium simulation of trp-cage in the presence of protein crowders. J Chem Phys 2015; 143:175102. [DOI: 10.1063/1.4934997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Björn Linse
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
234
|
Wemhöner K, Kanyshkova T, Silbernagel N, Fernandez-Orth J, Bittner S, Kiper AK, Rinné S, Netter MF, Meuth SG, Budde T, Decher N. An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities. Front Mol Neurosci 2015; 8:63. [PMID: 26578877 PMCID: PMC4630678 DOI: 10.3389/fnmol.2015.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022] Open
Abstract
Rats of the Wistar Albino Glaxo/Rij (WAG/Rij) strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in Ih activation curve, and an altered responsiveness of Ih to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF) is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG-HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG-HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats.
Collapse
Affiliation(s)
- Konstantin Wemhöner
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| | - Tatyana Kanyshkova
- Institute for Physiology I, Westfälische Wilhelms-Universität Münster, Germany
| | - Nicole Silbernagel
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| | | | - Stefan Bittner
- Department of Neurology, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| | - Michael F Netter
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Germany
| | - Thomas Budde
- Institute for Physiology I, Westfälische Wilhelms-Universität Münster, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg Marburg, Germany
| |
Collapse
|
235
|
Houston S, Taylor JS, Denchev Y, Hof R, Zuerner RL, Cameron CE. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum. Infect Immun 2015; 83:4204-16. [PMID: 26283341 PMCID: PMC4598410 DOI: 10.1128/iai.00643-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yavor Denchev
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard L Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Research, Uppsala, Sweden
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
236
|
Brito DV, Silva CGN, Hasselmann M, Viana LS, Astolfi-Filho S, Carvalho-Zilse GA. Molecular characterization of the gene feminizer in the stingless bee Melipona interrupta (Hymenoptera: Apidae) reveals association to sex and caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:24-30. [PMID: 26393998 DOI: 10.1016/j.ibmb.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
In highly eusocial insects, development of reproductive traits are regulated not only by sex determination pathway, but it also depends on caste fate. The molecular basis of both mechanisms in stingless bees and possible interaction with each other is still obscure. Here, we investigate sex determination in Melipona interrupta, focusing on characterization and expression analysis of the feminizer gene (Mi-fem), and its association to a major component of caste determination, the juvenile hormone (JH). We present evidence that Mi-fem mRNA is sex-specifically spliced in which only the female splice variant encodes the full length protein, following the same principle known for other bee species. We quantified Mi-fem expression among developmental stages, sexes and castes. Mi-fem expression varies considerably throughout development, with higher expression levels in embryos. Also, fem levels in pupae and newly emerged adults were significantly higher in queens than workers and males. Finally, we ectopically applied JH in cocoon spinning larvae, which correspond to the time window where queen/worker phenotypes diverge. We observed a significantly increase in Mi-fem expression compared to control groups. Since up to 100% of females turn into queens when treated with JH (while control groups are composed mainly of workers), we propose that fem might act to regulate queens' development. Our findings provide support for the conserved regulatory function of fem in Melipona bees and demonstrate a significant correlation between key elements of sex and caste determination pathways, opening the avenue to further investigate the molecular basis of these complex traits.
Collapse
Affiliation(s)
- Diana V Brito
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil; Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, BW, Germany.
| | - Carlos Gustavo N Silva
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus 69077-000, AM, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, BW, Germany
| | - Luciana S Viana
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
| | - Spartaco Astolfi-Filho
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus 69077-000, AM, Brazil
| | - Gislene A Carvalho-Zilse
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
| |
Collapse
|
237
|
Sawosz E, Jaworski S, Kutwin M, Vadalasetty KP, Grodzik M, Wierzbicki M, Kurantowicz N, Strojny B, Hotowy A, Lipińska L, Jagiełło J, Chwalibog A. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. Int J Mol Sci 2015; 16:25214-33. [PMID: 26512645 PMCID: PMC4632799 DOI: 10.3390/ijms161025214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/02/2015] [Accepted: 10/10/2015] [Indexed: 01/03/2023] Open
Abstract
Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM) cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO) and rGO functionalized with arginine (rGO + Arg) or proline (rGO + Pro). The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy.
Collapse
Affiliation(s)
- Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Krishna Prasad Vadalasetty
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Anna Hotowy
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Ludwika Lipińska
- Institute of Electronic Materials Technology, Warsaw 02-787, Poland.
| | - Joanna Jagiełło
- Institute of Electronic Materials Technology, Warsaw 02-787, Poland.
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
238
|
Moodley S, Hui Bai X, Kapus A, Yang B, Liu M. XB130/Tks5 scaffold protein interaction regulates Src-mediated cell proliferation and survival. Mol Biol Cell 2015; 26:4492-502. [PMID: 26446840 PMCID: PMC4666142 DOI: 10.1091/mbc.e15-07-0483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Tks5, like XB130, plays a role in cell proliferation and cell survival, and the interaction between XB130 and Tks5 is critical for regulation of Src-mediated cell proliferation and survival. The scaffold protein XB130 regulates cell growth, survival, and migration. Yeast two-hybrid screening suggests that XB130 interacts with another scaffold protein, Tks5. We hypothesized that XB130 and Tks5 form a macromolecular complex to mediate signal transduction cascades for the regulation of cell growth and survival. Coimmunoprecipitation demonstrated that XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Structure–function studies showed that the fifth SH3 domain of Tks5 binds to the N-terminus of XB130, which contains polyproline-rich motifs. Cell growth and survival studies revealed that down-regulation of XB130 and/or Tks5 reduced cell proliferation, resulting in cell cycle inhibition at the G1 phase and increased caspase 3 activity and apoptosis. Moreover, cell proliferation and survival were increased by overexpression of XB130 or Tks5 but decreased when XB130/Tks5 binding was disrupted by overexpression of XB130 N-terminal deleted mutant and/or Tks5 fifth SH3 domain W1108A mutant. Furthermore, down-regulation of XB130 and/or Tks5 inhibited serum- and growth factor–induced Src activation and downstream phosphorylation of PI3K and Akt. Our results suggest that Tks5, similar to XB130, plays a role in cell proliferation and cell survival and that the interaction between XB130 and Tks5 appears to be critical for regulation of Src-mediated cellular homeostasis.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andras Kapus
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Burton Yang
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
239
|
The discovery of modular binding domains: building blocks of cell signalling. Nat Rev Mol Cell Biol 2015; 16:691-8. [PMID: 26420231 DOI: 10.1038/nrm4068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell signalling - the ability of a cell to process information from the environment and change its behaviour in response - is a central property of life. Signalling depends on proteins that are assembled from a toolkit of modular domains, each of which confers a specific activity or function. The discovery of modular protein- and lipid-binding domains was a crucial turning point in understanding the logic and evolution of signalling mechanisms.
Collapse
|
240
|
Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3. PLoS One 2015; 10:e0137439. [PMID: 26352699 PMCID: PMC4564277 DOI: 10.1371/journal.pone.0137439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3) and EIN3-Like1 (EIL1). However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs) within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82–352 and 174–306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs) and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.
Collapse
|
241
|
Hashimoto C, Eichler J. Turning Peptide Ligands into Small-Molecule Inhibitors of Protein-Protein Interactions. Chembiochem 2015; 16:1855-1856. [PMID: 26147884 DOI: 10.1002/cbic.201500298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/07/2022]
Abstract
Proline makeover: Truncation and extensive chemical modification of a peptide ligand yielded a biologically active, cell-permeable, peptidomimetic, small-molecule inhibitor of a protein-protein interaction. A key step in this transformation was the replacement of a tetraproline motif by two conformationally constrained diproline units that retain the molecule's PPII helix.
Collapse
Affiliation(s)
- Chie Hashimoto
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Schuhstrasse 19, 91052 Erlangen (Germany)
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Schuhstrasse 19, 91052 Erlangen (Germany)
| |
Collapse
|
242
|
The fluoroalkene motif as a surrogate of the amide bond: syntheses of AA-Ψ[(Z) and (E)-CFCH]-Pro pseudodipeptides and an Enalapril analogue. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
243
|
Das SK, Bhatt N, Mujahid M, Arvidsson PI, Kruger HG, Naicker T, Govender T. Towards a stereoselective synthesis of α,α-disubstituted proline analogues. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
244
|
Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog 2015; 11:e1005115. [PMID: 26291822 PMCID: PMC4546372 DOI: 10.1371/journal.ppat.1005115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. Phylogenomics analysis indicates divergent mechanisms for host cell invasion across diverse species of obligate intracellular Rickettsia. For instance, only some Rickettsia species carry RalF, the rare bacterial Arf-GEF effector utilized by Legionella pneumophila to facilitate fusion of ER-derived membranes with its host-derived vacuole. For R. prowazekii (Typhus Group, TG), prior in vitro studies suggested the Arf-GEF activity of RalF, which is absent from Spotted Fever Group species, might be spatially regulated at the host plasma membrane. Herein, we demonstrate RalF of R. typhi (TG) and R. felis (Transitional Group) localizes to the host plasma membrane, yet R. bellii (Ancestral Group) RalF shows perinuclear localization reminiscent of RalF-mediated recruitment of Arf1 by L. pneumophila to its vacuole. For R. typhi, RalF expression occurs early during infection, with RalF inactivation significantly reducing host cell invasion. Furthermore, RalF co-localization with Arf6 and the phosphoinositide PI(4,5)P2 at the host plasma membrane was determined to be critical for R. typhi invasion. Thus, our work illustrates that different intracellular lifestyles across species of Rickettsia and Legionella have driven divergent roles for RalF during host cell infection. Collectively, we identify lineage-specific Arf-GEF utilization across diverse rickettsial species, previously unappreciated mechanisms for host cell invasion and infection.
Collapse
Affiliation(s)
- Kristen E. Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark L. Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J. Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie S. Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
245
|
Forlani G, Makarova KS, Ruszkowski M, Bertazzini M, Nocek B. Evolution of plant δ(1)-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:567. [PMID: 26284089 PMCID: PMC4522605 DOI: 10.3389/fpls.2015.00567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 05/23/2023]
Abstract
Proline plays a crucial role in cell growth and stress responses, and its accumulation is essential for the tolerance of adverse environmental conditions in plants. Two routes are used to biosynthesize proline in plants. The main route uses glutamate as a precursor, while in the other route proline is derived from ornithine. The terminal step of both pathways, the conversion of δ(1)-pyrroline-5-carboxylate (P5C) to L-proline, is catalyzed by P5C reductase (P5CR) using NADH or NADPH as a cofactor. Since P5CRs are important housekeeping enzymes, they are conserved across all domains of life and appear to be relatively unaffected throughout evolution. However, global analysis of these enzymes unveiled significant functional diversity in the preference for cofactors (NADPH vs. NADH), variation in metal dependence and the differences in the oligomeric state. In our study we investigated evolutionary patterns through phylogenetic and structural analysis of P5CR representatives from all kingdoms of life, with emphasis on the plant species. We also attempted to correlate local sequence/structure variation among the functionally and structurally characterized members of the family.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, BethesdaMD, USA
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, ArgonneIL, USA
| | - Michele Bertazzini
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Boguslaw Nocek
- The Bioscience Division, Argonne National Laboratory, ArgonneIL, USA
| |
Collapse
|
246
|
Zhang Y, Malamakal RM, Chenoweth DM. A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
247
|
Zhang Y, Malamakal RM, Chenoweth DM. A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System. Angew Chem Int Ed Engl 2015. [PMID: 26212926 DOI: 10.1002/anie.201504459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is a property of asymmetry important to both physical and abstract systems. Understanding how molecular systems respond to perturbations in their chiral building blocks can provide insight into diverse areas such as biomolecular self-assembly, protein folding, drug design, materials, and catalysis. Despite the fundamental importance of stereochemical preorganization in nature and designed materials, the ramifications of replacing chiral centers with stereodynamic atomic mimics in the context of biomolecular systems is unknown. Herein, we demonstrate that replacement of a single amino acid stereocenter with a stereodynamic nitrogen atom has profound consequences on the self-assembly of a biomolecular system. Our results provide insight into how the fundamental biopolymers of life would behave if their chiral centers were not configurationally stable, highlighting the vital importance of stereochemistry as a pre-organizing element in biomolecular folding and assembly events.
Collapse
Affiliation(s)
- Yitao Zhang
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA)
| | - Roy M Malamakal
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA)
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA).
| |
Collapse
|
248
|
|
249
|
Vigonsky E, Fish I, Livnat-Levanon N, Ovcharenko E, Ben-Tal N, Lewinson O. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics 2015; 7:1407-19. [PMID: 26106847 DOI: 10.1039/c5mt00100e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.
Collapse
Affiliation(s)
- Elena Vigonsky
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
250
|
The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding. PLoS Genet 2015; 11:e1005251. [PMID: 26107960 PMCID: PMC4480970 DOI: 10.1371/journal.pgen.1005251] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022] Open
Abstract
The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression. The suppressive activity of regulatory T cells provides the immune system with a mechanism to prevent detrimental immune responses, such as autoimmunity, attack of the beneficial commensal microbiota and rejection of the fetus. Intriguingly, expression of a single lineage factor Foxp3 is sufficient to completely reprogram T cells from a pro-inflammatory to a suppressive phenotype. Here, we show that Foxp3 alters the expression of thousands of genes through several independent mechanisms. In many cases, its own ability to bind to DNA appears to be dispensable, but rather it binds indirectly to the DNA by interaction with other transcription factors. Foxp3 then in turn recruits other proteins that affect gene expression through chromatin modification. For example, Foxp3 indirectly binds to the IL-2 promoter via interaction with the transcriptional activators c-Rel, AML-1 and NFAT. This leads to the Foxp3 mediated recruitment of class I histone deacetylases HDAC1, 2 and 3, which in turn counteracts the activation-induced hyper-acetylation of the promoter, thereby switching the gene off. In a way, Foxp3 hijacks pre-existing regulatory mechanism to reverse the transcriptional expression status of the target gene. By dissecting Foxp3 on a molecular level, we also show that this is only one of several independent mechanism utilised by Foxp3.
Collapse
|