201
|
Mullen TD, Jenkins RW, Clarke CJ, Bielawski J, Hannun YA, Obeid LM. Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J Biol Chem 2011; 286:15929-42. [PMID: 21388949 DOI: 10.1074/jbc.m111.230870] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death.
Collapse
Affiliation(s)
- Thomas D Mullen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
202
|
Shirai K, Kaneshiro T, Wada M, Furuya H, Bielawski J, Hannun YA, Obeid LM, Ogretmen B, Kawamori T. A role of sphingosine kinase 1 in head and neck carcinogenesis. Cancer Prev Res (Phila) 2011; 4:454-62. [PMID: 21209394 PMCID: PMC3342666 DOI: 10.1158/1940-6207.capr-10-0299] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is important to identify novel and effective targets for cancer prevention and therapy against head and neck squamous cell carcinoma (HNSCC), one of the most lethal cancers. Accumulating evidence suggests that the bioactive sphingolipids, such as sphingosine-1-phosphate (S1P) and its generating enzyme, sphingosine kinase 1 (SphK1) play pivotal roles in several important biological functions including promoting tumor growth and carcinogenesis. However, roles of SphK1/S1P in HNSCC development and/or progression have not been defined previously. Therefore, in this study, we first analyzed the expression of SphK1 in human HNSCC tumor samples and normal head & neck tissues (n = 78 and 17, respectively) using immunohistochemistry. The data showed that SphK1 is overexpressed in all of the HNSCC tumors tested (stages I-IV). We next investigated whether SphK1 is necessary for HNSCC development. To define the role of SphK1/S1P in HNSCC development, we utilized 4-nitroquinoline-1-oxide (4-NQO)-induced HNSCC model in wild-type mice compared with SphK1(-/-) knockout (KO) mice. Remarkably, we found that the genetic loss of SphK1, which reduced S1P generation, significantly prevented 4-NQO-induced HNSCC carcinogenesis, with decreased tumor incidence, multiplicity, and volume when compared with controls. Moreover, our data indicated that prevention of 4-NQO-induced HNSCC development in SphK1(-/-) KO mice might be associated with decreased cell proliferation, increased levels of cleaved (active) caspase 3, and downregulation of phospho (active) AKT expression. Thus, these novel data suggest that SphK1/S1P signaling may play important roles in HNSCC carcinogenesis, and that targeting SphK1/S1P might provide a novel strategy for chemoprevention and treatment against HNSCC.
Collapse
Affiliation(s)
- Keisuke Shirai
- Department of Hematology/Oncology, Medicine, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Tatsuya Kaneshiro
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Masayuki Wada
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hideki Furuya
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Yusuf A. Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Lina M. Obeid
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- VA Staff Physician, Research Service, Ralph H. Johnson VAMC, Charleston, South Carolina
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Toshihiko Kawamori
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- University of Hawaii Cancer Center, Honolulu, Hawaii
| |
Collapse
|
203
|
Apoptotic sphingolipid ceramide in cancer therapy. J Lipids 2011; 2011:565316. [PMID: 21490804 PMCID: PMC3066853 DOI: 10.1155/2011/565316] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022] Open
Abstract
Apoptosis, also called programmed cell death, is physiologically and pathologically involved in cellular homeostasis. Escape of apoptotic signaling is a critical strategy commonly used for cancer tumorigenesis. Ceramide, a derivative of sphingolipid breakdown products, acts as second messenger for multiple extracellular stimuli including growth factors, chemical agents, and environmental stresses, such as hypoxia, and heat stress as well as irradiation. Also, ceramide acts as tumor-suppressor lipid because a variety of stress stimuli cause apoptosis by increasing intracellular ceramide to initiate apoptotic signaling. Defects on ceramide generation and sphingolipid metabolism are developed for cancer cell survival and cancer therapy resistance. Alternatively, targeting ceramide metabolism to correct these defects might provide opportunities to overcome cancer therapy resistance.
Collapse
|
204
|
Glycosphingolipids and Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:121-38. [PMID: 21910086 DOI: 10.1007/978-1-4614-0650-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
205
|
Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 2011; 50:104-14. [PMID: 20970453 PMCID: PMC3012148 DOI: 10.1016/j.plipres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and in treatment outcome. More than 10 sphingolipids and glycosphingolipids selectively mediate expressions of approximately 50 genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments.
Collapse
Affiliation(s)
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| |
Collapse
|
206
|
Sphingolipid metabolism and analysis in metabolic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:1-17. [PMID: 21910079 DOI: 10.1007/978-1-4614-0650-1_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sphingolipids are an important class of structural and signaling molecules within the cell. As sphingolipids have been implicated in the development and pathogenesis of insulin resistance and the metabolic syndrome, it is important to understand their regulation and metabolism. Although these lipids are initially produced through a common pathway, there is no "generic" sphingolipid. Indeed, the biophysical and signaling properties of lipids may be manipulated by the subunit composition or isoform of their synthetic enzymes, via regulation of substrate integration. Functionally distinct pools of chemically-equivalent lipids may also be generated by de novo synthesis and recycling of existing complex sphingolipids. The highly integrated metabolism of the many bioactive sphingolipids means that manipulation of one enzyme or metabolite can result in a ripple effect, causing unforeseen changes in metabolite levels, enzyme activities, and cellular programmes. Fortunately, a suite of techniques, ranging from thin-layer chromatography to liquid chromatography-mass spectrometry approaches, allows investigators to undertake a functional characterization of all or part of the sphingolipidome in their systems of interest.
Collapse
|
207
|
Separovic D, Bielawski J, Pierce JS, Merchant S, Tarca AL, Bhatti G, Ogretmen B, Korbelik M. Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. Int J Oncol 2010; 38:521-7. [PMID: 21152858 DOI: 10.3892/ijo.2010.863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/02/2010] [Indexed: 01/12/2023] Open
Abstract
To improve anticancer therapeutic success of photodynamic therapy (PDT), combination treatments represent a viable strategy. Sphingolipid analogs combined with anticancer drugs can enhance tumor response. We have shown that LCL29, a C6-pyridinium ceramide, promotes therapeutic efficacy of Photofrin-PDT in mouse SCCVII squamous cell carcinoma tumors. The long-term effect of the combination PDT + LCL29 is unknown. In this study we used the same model to test the long-term curative potential of Foscan-PDT + LCL29. We show that treatment of SCCVII tumors with the combination led to enhanced long-term tumor cure compared to PDT alone. LCL29 itself did not prevent tumor growth. All treatments triggered early increases in tumor-associated C16-ceramide, C18-ceramide, dihydrosphingosine, and global levels of dihydroceramides. PDT-evoked increases in tumor-associated sphingosine-1-phosphate and dihydrosphingosine-1-phosphate remained elevated or were attenuated after the combination, respectively; in contrast, LCL29 had no effect on these two sphingolipids. Our data demonstrate that adjuvant LCL29 improves PDT long-term therapeutic efficacy, implying translational potential of the combination. Furthermore, our findings indicate that changes in the sphingolipid profile might serve as predictive biomarkers of tumor response to treatments.
Collapse
Affiliation(s)
- D Separovic
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Voelzmann A, Bauer R. Ceramide synthases in mammalians, worms, and insects: emerging schemes. Biomol Concepts 2010; 1:411-22. [DOI: 10.1515/bmc.2010.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractThe ceramide synthase (CerS) gene family comprises a group of highly conserved transmembrane proteins, which are found in all studied eukaryotes. The key feature of the CerS proteins is their role in ceramide synthase activity. Therefore, their original name ‘longevity assurance gene (Lass) homologs’, after the founding member, the yeast longevity assurance gene lag1, was altered to ‘CerS’. All CerS have high sequence similarity in a domain called LAG1 motif and a subset of CerS proteins is predicted to contain a Homeobox (Hox) domain. These domains could be the key to the multiple roles CerS have. CerS proteins play a role in diverse biological processes such as proliferation, differentiation, apoptosis, stress response, cancer, and neurodegeneration. In this review, we focus on CerS structure and biological function with emphasis of biological functions in the widely used model systems Caenorhabditis elegans and Drosophila melanogaster. Also, we focus on the accumulating data suggesting a role for CerS in lipid homeostasis.
Collapse
Affiliation(s)
- André Voelzmann
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| | - Reinhard Bauer
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| |
Collapse
|
209
|
Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA, Obeid LM. Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 2010; 52:68-77. [PMID: 20940143 DOI: 10.1194/jlr.m009142] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian ceramide synthases 1 to 6 (CerS1-6) generate Cer in an acyl-CoA-dependent manner, and expression of individual CerS has been shown to enhance the synthesis of ceramides with particular acyl chain lengths. However, the contribution of each CerS to steady-state levels of specific Cer species has not been evaluated. We investigated the knockdown of individual CerS in the MCF-7 human breast adenocarcinoma cell line by using small-interfering RNA (siRNA). We found that siRNA-induced downregulation of each CerS resulted in counter-regulation of nontargeted CerS. Additionally, each CerS knockdown produced unique effects on the levels of multiple sphingolipid species. For example, downregulation of CerS2 decreased very long-chain Cer but increased levels of CerS4, CerS5, and CerS6 expression and upregulated long-chain and medium-long-chain sphingolipids. Conversely, CerS6 knockdown decreased C16:0-Cer but increased CerS5 expression and caused non-C16:0 sphingolipids to be upregulated. Knockdown of individual CerS failed to decrease total sphingolipids or upregulate sphingoid bases. Treatment with siRNAs targeting combined CerS, CerS2, CerS5, and CerS6, did not change overall Cer or sphingomyelin mass but caused upregulation of dihydroceramide and hexosyl-ceramide and promoted endoplasmic reticulum stress. These data suggest that sphingolipid metabolism is robustly regulated by both redundancy in CerS-mediated Cer synthesis and counter-regulation of CerS expression.
Collapse
Affiliation(s)
- Thomas D Mullen
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 2010; 6:1603-24. [PMID: 21062159 PMCID: PMC3071292 DOI: 10.2217/fon.10.116] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids have emerged as bioeffector molecules, controlling various aspects of cell growth and proliferation in cancer, which is becoming the deadliest disease in the world. These lipid molecules have also been implicated in the mechanism of action of cancer chemotherapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative responses, such as cell growth inhibition, apoptosis induction, senescence modulation, endoplasmic reticulum stress responses and/or autophagy. Interestingly, recent studies suggest de novo-generated ceramides may have distinct and opposing roles in the promotion/suppression of tumors, and that these activities are based on their fatty acid chain lengths, subcellular localization and/or direct downstream targets. For example, in head and neck cancer cells, ceramide synthase 6/C(16)-ceramide addiction was revealed, and this was associated with increased tumor growth, whereas downregulation of its synthesis resulted in ER stress-induced apoptosis. By contrast, ceramide synthase 1-generated C(18)-ceramide has been shown to suppress tumor growth in various cancer models, both in situ and in vivo. In addition, ceramide metabolism to generate sphingosine-1-phosphate (S1P) by sphingosine kinases 1 and 2 mediates, with or without the involvement of G-protein-coupled S1P receptor signaling, prosurvival, angiogenesis, metastasis and/or resistance to drug-induced apoptosis. Importantly, recent findings regarding the mechanisms by which sphingolipid metabolism and signaling regulate tumor growth and progression, such as identifying direct intracellular protein targets of sphingolipids, have been key for the development of new chemotherapeutic strategies. Thus, in this article, we will present conclusions of recent studies that describe opposing roles of de novo-generated ceramides by ceramide synthases and/or S1P in the regulation of cancer pathogenesis, as well as the development of sphingolipid-based cancer therapeutics and drug resistance.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Marisa Meyers-Needham
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Can E Senkal
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Sahar A Saddoughi
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - David Sentelle
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Arelis Salas
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
211
|
Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, Leipelt M, Reichart D, Glass CK, Sullards MC, Merrill AH. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 2010; 285:38568-79. [PMID: 20876532 PMCID: PMC2992289 DOI: 10.1074/jbc.m110.170621] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo2-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 109 molecules per cell in 24 h, based on the sum of subspecies analyzed by “lipidomic” mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-13C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Kacee Sims
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 2010; 22:1300-7. [PMID: 20406683 PMCID: PMC4348005 DOI: 10.1016/j.cellsig.2010.04.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
The role of ceramide neo-genesis in cellular stress response signaling is gaining increasing attention with recent progress in elucidating the novel roles and biochemical properties of the ceramide synthase (CerS) enzymes. Selective tissue and subcellular distribution of the six mammalian CerS isoforms, combined with distinct fatty acyl chain length substrate preferences, implicate differential functions of specific ceramide species in cellular signaling. We report here that ionizing radiation (IR) induces de novo synthesis of ceramide to influence HeLa cell apoptosis by specifically activating CerS isoforms 2, 5, and 6 that generate opposing anti- and pro-apoptotic ceramides in mitochondrial membranes. Overexpression of CerS2 resulted in partial protection from IR-induced apoptosis whereas overexpression of CerS5 increased apoptosis in HeLa cells. Knockdown studies determined that CerS2 is responsible for all observable IR-induced C(24:0) CerS activity, and while CerS5 and CerS6 each confer approximately 50% of the C(16:0) CerS baseline synthetic activity, both are required for IR-induced activity. Additionally, co-immunoprecipitation studies suggest that CerS2, 5, and 6 might exist as heterocomplexes in HeLa cells, providing further insight into the regulation of CerS proteins. These data add to the growing body of evidence demonstrating interplay among the CerS proteins in a stress stimulus-, cell type- and subcellular compartment-specific manner.
Collapse
Affiliation(s)
- Judith Mesicek
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hyunmi Lee
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Taya Feldman
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anastasia Skobeleva
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois
| | - Evgeny V. Berdyshev
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois
| | | | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
213
|
Tani M, Kuge O. Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2010; 148:565-71. [DOI: 10.1093/jb/mvq090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
214
|
Monette JS, Gómez LA, Moreau RF, Bemer BA, Taylor AW, Hagen TM. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations. Biochem Biophys Res Commun 2010; 398:272-7. [PMID: 20599536 PMCID: PMC2939858 DOI: 10.1016/j.bbrc.2010.06.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 02/07/2023]
Abstract
Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other.
Collapse
Affiliation(s)
- Jeffrey S. Monette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Luis A. Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Régis F. Moreau
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brett A. Bemer
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Alan W. Taylor
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Tory M. Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
215
|
A hypothesis concerning a potential involvement of ceramide in apoptosis and acantholysis induced by pemphigus autoantibodies. Dermatol Res Pract 2010; 2010:702409. [PMID: 20585604 PMCID: PMC2879861 DOI: 10.1155/2010/702409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/23/2010] [Indexed: 11/17/2022] Open
Abstract
Autoimmune diseases affect more than 50 million Americans, resulting in significant healthcare costs. Most autoimmune diseases occur sporadically; however, endemic pemphigus foliaceus (EPF) is an autoimmune skin disease localized to specific geographic loci. EPF, and the related diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF), are characterized by skin lesions and autoantibodies to molecules found on epidermal keratinocytes. A variant of EPF in patients from El Bagre, Colombia, South America, has recently been reported to be distinct from previously described loci in Brazil and Tunisia epidemiologically and immunologically. As in PF and EPF, El Bagre EPF patients exhibit autoantibodies towards desmoglein-1, a cell adhesion molecule critical for maintaining epidermal integrity. An association of El Bagre EPF with sun exposure has been detected, and ultraviolet irradiation also exacerbates symptoms in PV, PF and EPF. Our hypothesis is that: (1) the autoantibodies generate pathology through an alteration in ceramide metabolism in targeted keratinocytes, resulting in apoptosis and/or cell death and acantholysis, but only when the cell's ability to metabolize ceramide is exceeded, and (2) apoptosis in response to this altered ceramide metabolism is initiated and/or exacerbated by other agents that increase ceramide levels, such as cytokines, ultraviolet irradiation, and senescence.
Collapse
|
216
|
Ben-David O, Futerman AH. The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular Med 2010; 12:341-50. [PMID: 20502986 DOI: 10.1007/s12017-010-8114-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/29/2010] [Indexed: 12/18/2022]
Abstract
Ceramide forms the backbone of all complex sphingolipids and has been the focus of considerable attention in the past few years due to the discovery that ceramide plays vital roles as an intracellular messenger. Ceramide, which consists of a sphingoid long chain base to which a fatty acid is N-acylated, is synthesized in mammals by a family of ceramide synthases (CerS), each of which uses a restricted subset of fatty acyl CoAs for N-acylation. Sphingolipids are found at high levels in nervous tissue, where they perform a variety of important functions in both the adult and the maturing brain. We now review what is known about the role of the acyl chain composition of ceramides and sphingolipids in normal brain development and in neurological diseases. Specifically, we attempt to integrate the information that is available about CerS expression and activity in the brain with the changes in the acyl chain composition of ceramide and complex sphingolipids in a number of neurodegenerative diseases and conditions, such as metachromatic leukodystrophy, neuronal ceroid lipofuscinoses, HIV infection, aging, Alzheimer's disease, ischemia, and epilepsy. We conclude that understanding the direct relationship between the CerS proteins and neurological conditions will be of great importance for delineating the precise roles of sphingolipids in the brain and is likely to be the subject of intense research activity in the years ahead.
Collapse
Affiliation(s)
- Oshrit Ben-David
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
217
|
Ekiz HA, Baran Y. Therapeutic applications of bioactive sphingolipids in hematological malignancies. Int J Cancer 2010; 127:1497-506. [DOI: 10.1002/ijc.25478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
218
|
Yang Q, Gong ZJ, Zhou Y, Yuan JQ, Cheng J, Tian L, Li S, Lin XD, Xu R, Zhu ZR, Mao C. Role of Drosophila alkaline ceramidase (Dacer) in Drosophila development and longevity. Cell Mol Life Sci 2010; 67:1477-90. [PMID: 20112046 PMCID: PMC11115685 DOI: 10.1007/s00018-010-0260-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
Ceramidases catalyze the hydrolysis of ceramides to generate sphingosine (SPH) and fatty acids, and ceramide metabolism is implicated in various biological responses in Drosophila melanogaster. Here we report the cloning, biochemical characterization, and functional analysis of a Drosophila alkaline ceramidase (Dacer). Dacer, a membrane-bound protein of 284 amino acids, shares homology with yeast and mammalian alkaline ceramidases. Overexpression of Dacer in High Five insect cells increases ceramidase activity in the alkaline pH range, indicating that Dacer is a bona fide alkaline ceramidase. Dacer mRNA is highly expressed in the midgut and at the pupal stage. An inactivation of Dacer by insertional mutagenesis increases the levels of ceramides in both Drosophila pupae and adult flies. Dacer inactivation increases Drosophila pre-adult development time, lifespan, and anti-oxidative stress capacity. Collectively, these results suggest that Dacer plays an important role in the Drosophila development and longevity by controlling the metabolism of ceramides.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Ministry of Agriculture of China, Hangzhou, Zhejiang, 310029 China
- The Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 China
- Present Address: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014 China
| | - Zhong-Jun Gong
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Ministry of Agriculture of China, Hangzhou, Zhejiang, 310029 China
- The Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 China
| | - Ying Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Ministry of Agriculture of China, Hangzhou, Zhejiang, 310029 China
- The Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 China
| | - Jing-Qun Yuan
- Center for Chemical Analysis and Detection, Zhejiang University, Hangzhou, Zhejiang, 310029 China
| | - Jiaan Cheng
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Ministry of Agriculture of China, Hangzhou, Zhejiang, 310029 China
- The Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 China
| | - Lin Tian
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Sheng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xin-Da Lin
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018 China
| | - Ruijuan Xu
- Department of Medicine and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Ministry of Agriculture of China, Hangzhou, Zhejiang, 310029 China
- The Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 China
| | - Cungui Mao
- Department of Medicine and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
219
|
Abstract
In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Levy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|