201
|
Hollinger A, Gantner L, Jockers F, Schweingruber T, Ledergerber K, Scheuzger JD, Aschwanden M, Dickenmann M, Knotzer J, van Bommel J, Siegemund M. Impact of amount of fluid for circulatory resuscitation on renal function in patients in shock: evaluating the influence of intra-abdominal pressure, renal resistive index, sublingual microcirculation and total body water measured by bio-impedance analysis on haemodynamic parameters for guidance of volume resuscitation in shock therapy: a protocol for the VoluKid pilot study–an observational clinical trial. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0156-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
202
|
Development of a Physiologically Based Pharmacokinetic Modelling Approach to Predict the Pharmacokinetics of Vancomycin in Critically Ill Septic Patients. Clin Pharmacokinet 2018; 56:759-779. [PMID: 28039606 DOI: 10.1007/s40262-016-0475-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Sepsis is characterised by an excessive release of inflammatory mediators substantially affecting body composition and physiology, which can be further affected by intensive care management. Consequently, drug pharmacokinetics can be substantially altered. This study aimed to extend a whole-body physiologically based pharmacokinetic (PBPK) model for healthy adults based on disease-related physiological changes of critically ill septic patients and to evaluate the accuracy of this PBPK model using vancomycin as a clinically relevant drug. METHODS The literature was searched for relevant information on physiological changes in critically ill patients with sepsis, severe sepsis and septic shock. Consolidated information was incorporated into a validated PBPK vancomycin model for healthy adults. In addition, the model was further individualised based on patient data from a study including ten septic patients treated with intravenous vancomycin. Models were evaluated comparing predicted concentrations with observed patient concentration-time data. RESULTS The literature-based PBPK model correctly predicted pharmacokinetic changes and observed plasma concentrations especially for the distribution phase as a result of a consideration of interstitial water accumulation. Incorporation of disease-related changes improved the model prediction from 55 to 88% within a threshold of 30% variability of predicted vs. observed concentrations. In particular, the consideration of individualised creatinine clearance data, which were highly variable in this patient population, had an influence on model performance. CONCLUSION PBPK modelling incorporating literature data and individual patient data is able to correctly predict vancomycin pharmacokinetics in septic patients. This study therefore provides essential key parameters for further development of PBPK models and dose optimisation strategies in critically ill patients with sepsis.
Collapse
|
203
|
Thiamine as a Renal Protective Agent in Septic Shock. A Secondary Analysis of a Randomized, Double-Blind, Placebo-controlled Trial. Ann Am Thorac Soc 2018; 14:737-741. [PMID: 28207287 DOI: 10.1513/annalsats.201608-656bc] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Acute kidney injury (AKI) is common in patients with sepsis and has been associated with high mortality rates. The provision of thiamine to patients with sepsis may reduce the incidence and severity of sepsis-related AKI and thereby prevent renal failure requiring renal replacement therapy (RRT). OBJECTIVES To test the hypothesis that thiamine supplementation mitigates kidney injury in septic shock. METHODS This was a secondary analysis of a single-center, randomized, double-blind trial comparing thiamine to placebo in patients with septic shock. Renal function, need for RRT, timing of hemodialysis catheter placement, and timing of RRT initiation were abstracted. The baseline creatinine and worst creatinine values between 3 and 24 hours, 24 and 48 hours, and 48 and 72 hours were likewise abstracted. RESULTS There were 70 patients eligible for analysis after excluding 10 patients in whom hemodialysis was initiated before study drug administration. Baseline serum creatinine in the thiamine group was 1.2 mg/dl (interquartile range, 0.8-2.5) as compared with 1.8 mg/dl (interquartile range, 1.3-2.7) in the placebo group (P = 0.3). After initiation of the study drug, more patients in the placebo group than in the thiamine group were started on RRT (eight [21%] vs. one [3%]; P = 0.04). In the repeated measures analysis adjusting for the baseline creatinine level, the worst creatinine levels were higher in the placebo group than in the thiamine group (P = 0.05). CONCLUSIONS In this post hoc analysis of a randomized controlled trial, patients with septic shock randomized to receive thiamine had lower serum creatinine levels and a lower rate of progression to RRT than patients randomized to placebo. These findings should be considered hypothesis generating and can be used as a foundation for further, prospective investigation in this area.
Collapse
|
204
|
Cheng Z, Qi R, Li L, Liu Q, Zhang W, Zhou X, Xu D, Allen TD, Pan S, Liu J. Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression. Biomed Pharmacother 2018; 99:313-318. [PMID: 29353206 DOI: 10.1016/j.biopha.2018.01.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/31/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory responses after infection, remains a serious cause of morbidity and mortality in critically ill patients. The anti-malarial agent dihydroartemisinin (DHA) has been shown to be anti-inflammatory. In this study, we examined the effects of DHA on sepsis-induced acute kidney injury (AKI) and explored the mechanism underlying its mode of action in AKI. In a lipopolysaccharide (LPS)-induced mouse model, we observed that DHA treatment ameliorated glomerular injury, and relieved elevation of the urine albumin to creatinine ratio (UACR) and serum creatinine. At a concentration of 25 μM, DHA had no effect on overall cellular viability or apoptosis in assays with human renal glomerular endothelial cells (HRGECs), but significantly inhibited the tumor necrosis factor-α (TNF-α)-induced hyperpermeability of HRGEC monolayers. We found that TNF-α decreases the expression of the junctional protein occludin in HRGECs, which is reversed by DHA. Taken together, our results demonstrate that DHA decreases permeability of the glomerular endothelium by maintenance of occludin expression. This suggests DHA may have therapeutic utility in sepsis-induced AKI.
Collapse
Affiliation(s)
- Zuowang Cheng
- Taishan Medical College, Tai'an, Shandong, China; Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Ruixia Qi
- Taishan Medical College, Tai'an, Shandong, China; Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Liqun Li
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Wenqian Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xia Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | | | - Silin Pan
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China; Cardiovascular Center, Children's Hospital, Fudan University, Shanghai, China.
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
205
|
Skube SJ, Katz SA, Chipman JG, Tignanelli CJ. Acute Kidney Injury and Sepsis. Surg Infect (Larchmt) 2018; 19:216-224. [DOI: 10.1089/sur.2017.261] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Steven J. Skube
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Stephen A. Katz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
206
|
Alikhan MA, Huynh M, Kitching AR, Ooi JD. Regulatory T cells in renal disease. Clin Transl Immunology 2018; 7:e1004. [PMID: 29484182 PMCID: PMC5822411 DOI: 10.1002/cti2.1004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The kidney is vulnerable to injury, both acute and chronic from a variety of immune and metabolic insults, all of which at least to some degree involve inflammation. Regulatory T cells modulate systemic autoimmune and allogenic responses in glomerulonephritis and transplantation. Intrarenal regulatory T cells (Tregs), including those recruited to the kidney, have suppressive effects on both adaptive and innate immune cells, and probably also intrinsic kidney cells. Evidence from autoimmune glomerulonephritis implicates antigen-specific Tregs in HLA-mediated dominant protection, while in several human renal diseases Tregs are abnormal in number or phenotype. Experimentally, Tregs can protect the kidney from injury in a variety of renal diseases. Mechanisms of Treg recruitment to the kidney include via the chemokine receptors CCR6 and CXCR3 and potentially, at least in innate injury TLR9. The effects of Tregs may be context dependent, with evidence for roles for immunoregulatory roles both for endogenous Tbet-expressing Tregs and STAT-3-expressing Tregs in experimental glomerulonephritis. Most experimental work and some of the ongoing human trials in renal transplantation have focussed on unfractionated thymically derived Tregs (tTregs). However, induced Tregs (iTregs), type 1 regulatory T (Tr1) cells and in particular antigen-specific Tregs also have therapeutic potential not only in renal transplantation, but also in other kidney diseases.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - Megan Huynh
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia.,Department of Nephrology Monash Health Clayton VIC Australia.,Department of Paediatric Nephrology Monash Health Clayton VIC Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| |
Collapse
|
207
|
Protein carbonyl concentration as a biomarker for development and mortality in sepsis-induced acute kidney injury. Biosci Rep 2018; 38:BSR20171238. [PMID: 29263144 PMCID: PMC5784177 DOI: 10.1042/bsr20171238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
The objective of the present study was to evaluate protein carbonyl concentration as a predictor of AKI development in patients with septic shock and of renal replacement therapy (RRT) and mortality in patients with SAKI. This was a prospective observational study of 175 consecutive patients over the age of 18 years with septic shock upon Intensive Care Unit (ICU) admission. After exclusion of 46 patients (27 due to AKI at ICU admission), a total of 129 patients were enrolled in the study. Demographic information and blood samples were taken within the first 24 h of the patient’s admission to determine serum protein carbonyl concentrations. Among the patients who developed SAKI, the development of AKI was evaluated, along with mortality and need for RRT. The mean age of the patients was 63.3 ± 15.7 years, 47% were male and 51.2% developed SAKI during ICU stay. In addition, protein carbonyl concentration was shown to be associated with SAKI. Among 66 patients with SAKI, 77% died during the ICU stay. Protein carbonyl concentration was not associated with RRT in patients with SAKI. However, the ROC curve analysis revealed that higher levels of protein carbonyl were associated with mortality in these patients. In logistic regression models, protein carbonyl level was associated with SAKI development (OR: 1.416; 95% CI: 1.247–1.609; P<0.001) and mortality when adjusted by age, gender, and APACHE II score (OR: 1.357; 95% CI: 1.147–1.605; P<0.001). In conclusion, protein carbonyl concentration is predictive of AKI development and mortality in patients with SAKI, with excellent reliability.
Collapse
|
208
|
Ziesmann MT, Marshall JC. Multiple Organ Dysfunction: The Defining Syndrome of Sepsis. Surg Infect (Larchmt) 2018; 19:184-190. [PMID: 29360419 DOI: 10.1089/sur.2017.298] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sepsis as a process has been recognized since the time of the Ancient Greeks. The concept has evolved recently to reflect a disease process of a severe, systemic response to infection. Acute, life-threatening but potentially reversible organ dysfunction is its hallmark, and unresolving organ dysfunction is the dominant cause of death in critical illness. Its evolution, persistence, and resolution reflect a complex interplay of factors originating in the initial inciting insult, the innate immune and metabolic response of the host, and the beneficial and harmful consequences of intensive care unit (ICU) supportive care. DISCUSSION We describe the common clinical manifestations of the six prototypic organ system dysfunction syndromes of severe sepsis and review the associated epidemiology and suspected pathophysiology.
Collapse
Affiliation(s)
- Markus T Ziesmann
- Departments of Surgery and Critical Care Medicine, St. Michael's Hospital, University of Toronto , Toronto, Ontario, Canada
| | - John C Marshall
- Departments of Surgery and Critical Care Medicine, St. Michael's Hospital, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
209
|
Ding Q, Wang Y, Zhang AL, Xu T, Zhou DD, Li XF, Yang JF, Zhang L, Wang X. ZEB2 Attenuates LPS-Induced Inflammation by the NF-κB Pathway in HK-2 Cells. Inflammation 2018; 41:722-731. [DOI: 10.1007/s10753-017-0727-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
210
|
Ramos MFDP, Monteiro de Barros ADCM, Razvickas CV, Borges FT, Schor N. Xanthine oxidase inhibitors and sepsis. Int J Immunopathol Pharmacol 2018; 32:2058738418772210. [PMID: 29786457 PMCID: PMC5967155 DOI: 10.1177/2058738418772210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Xanthine oxidase activation occurs in sepsis and results in the generation of uric acid (UrAc) and reactive oxygen species (ROS). We aimed to evaluate the effect of xanthine oxidase inhibitors (XOis) in rats stimulated with lipopolysaccharide (LPS). LPS (10 mg/kg) was administered intraperitoneally (i.p.) immediately after allopurinol (Alo, 2 mg/kg) or febuxostat (Feb, 1 mg/kg) every 24 h for 3 days. To increase UrAc levels, oxonic acid (Oxo) was administered by gavage (750 mg/kg per day) for 5 days. Animals were divided into the following 10 groups (n = 6 each): (1) Control, (2) Alo, (3) Feb, (4) LPS, (5) LPSAlo, (6) LPSFeb, (7) Oxo, (8) OxoLPS, (9) OxoLPSAlo, and (10) OxoLPSFeb. Feb with or without Oxo did not aggravate sepsis. LPS administration (with or without Oxo) significantly decreased the creatinine clearance (ClCr) in LPSAlo (60%, P < 0.01) versus LPS (44%, P < 0.05) and LPSFeb (35%, P < 0.05). Furthermore, a significant increase in mortality was observed with LPSAlo (28/34, 82%) compared to LPS treatment alone (10/16, 63%) and LPSFeb (11/17, 65%, P < 0.05). In addition, increased levels of thiobarbituric acid reactive substances (TBARS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 were observed at 72 h compared to the groups that received LPS and LPSFeb with or without Oxo. In this study, coadministration of Alo in LPS-induced experimental sepsis aggravated septic shock, leading to mortality, renal function impairment, and high ROS and proinflammatory IL levels. In contrast, administration of Feb did not potentiate sepsis, probably because it did not interfere with other metabolic events.
Collapse
Affiliation(s)
- Maria Fátima de Paula Ramos
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| | | | - Clara Versolato Razvickas
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| | - Fernanda T Borges
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
- Universidade Cruzeiro do Sul, São Paulo,
Brazil
| | - Nestor Schor
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| |
Collapse
|
211
|
Chen S, Shan J, Niu W, Lin F, Liu S, Wu P, Sun L, Lu W, Jiang G. Micro RNA-155 inhibitor as a potential therapeutic strategy for the treatment of acute kidney injury (AKI): a nanomedicine perspective. RSC Adv 2018; 8:15890-15896. [PMID: 35542211 PMCID: PMC9080266 DOI: 10.1039/c7ra13440a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, we have prepared miR-155 inhibitor-loaded liposome vesicles for the effective treatment of acute kidney injury. The efficacy of liposomal miR-155 inhibitor in the expression of miR-155, mortality in animals, the expression of TNF-α-IL6, and the expression of SOCS1–STAT1 were evaluated. The loading of miR-155 inhibitor into liposomes conferred the much needed colloidal stability and efficient delivery to the renal tissues. The study clearly shows that miR-I-LV significantly decreases the expression of miR-155 in kidneys compared to LPS. Administration of miR-I-LV remarkably reduced the pathological concerns of the kidneys with a marked decrease in inflammatory cell infiltration. Scrambled miR-155 did not have any effect on the expression of these markers; however miR-I-LV showed a remarkable ability to decrease the expression of TNF-α and IL-6 in kidney tissues indicating an ability to treat acute kidney infections. Overall, administration of miR-155 inhibitor effectively alleviated LPS-induced kidney injury by significantly suppressing TNF-α and IL-6 in kidney tissue and by remarkably increasing the expression of mRNA of SOCS1 and STAT1. The present results suggest that miR-155 inhibitor could be used in an effective targeting strategy for the treatment of acute kidney injury (AKI). In this study, we have prepared miR-155 inhibitor-loaded liposome vesicles for the effective treatment of acute kidney injury.![]()
Collapse
Affiliation(s)
- Shunjie Chen
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Jianping Shan
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Wei Niu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Fujun Lin
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Shuang Liu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Ping Wu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Lijing Sun
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Wei Lu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Gengru Jiang
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|
212
|
Abstract
Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.
Collapse
Affiliation(s)
- Holly L Hutton
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.
- Department of Nephrology, Monash Health, Clayton, VIC, Australia.
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
213
|
Shum HP, Chan KC, Yan WW, Chan TM. Treatment of Acute Kidney Injury Complicating Septic Shock with EMiC2 High-cutoff Hemofilter: Case Series. Indian J Crit Care Med 2017; 21:751-757. [PMID: 29279636 PMCID: PMC5699003 DOI: 10.4103/ijccm.ijccm_338_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction: Extracorporeal blood purification therapies have been proposed to improve outcomes of patients with severe sepsis, with or without accompanying acute kidney injury (AKI), by removal of excessive inflammatory mediators. Materials and Methods: We report our experience with EMiC2 high-cutoff continuous venovenous hemofiltration/hemodialysis (HCO-CVVH/HD) in seven patients with AKI complicating septic shock. Results: The median treatment duration was 71 h, and the procedure was well tolerated. Trough serum albumin level of 20 g/L was observed after 2 h of treatment and none of the patients required albumin supplement. The hospital mortality rate was 29%, which appeared more favorable than the predicted mortality of 60%–78% based on disease severity scores. Circulating levels of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-alpha improved over time. Conclusion: This case series shows that HCO-CVVH/CVVHD using EMiC2 hemofilter may provide good cytokine modulation, when used along with good quality standard sepsis therapy. A further large-scale prospective randomized controlled trial is recommended.
Collapse
Affiliation(s)
- Hoi-Ping Shum
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - King-Chung Chan
- Department of Anesthesia and Intensive Care, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wing-Wa Yan
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
214
|
Dewitte A, Lepreux S, Villeneuve J, Rigothier C, Combe C, Ouattara A, Ripoche J. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients? Ann Intensive Care 2017; 7:115. [PMID: 29192366 PMCID: PMC5709271 DOI: 10.1186/s13613-017-0337-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond haemostasis, platelets have emerged as versatile effectors of the immune response. The contribution of platelets in inflammation, tissue integrity and defence against infections has considerably widened the spectrum of their role in health and disease. Here, we propose a narrative review that first describes these new platelet attributes. We then examine their relevance to microcirculatory alterations in multi-organ dysfunction, a major sepsis complication. Rapid progresses that are made on the knowledge of novel platelet functions should improve the understanding of thrombocytopenia, a common condition and a predictor of adverse outcome in sepsis, and may provide potential avenues for management and therapy.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France. .,Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.
| | - Sébastien Lepreux
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Claire Rigothier
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Christian Combe
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.,INSERM U1034, Biology of Cardiovascular Diseases, Univ. Bordeaux, 33600, Pessac, France
| | - Jean Ripoche
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
215
|
Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol 2017; 31:305-314. [PMID: 29248138 DOI: 10.1016/j.bpa.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is common in the perioperative and intensive care setting. Although AKI is usually multifactorial, haemodynamic instability, sepsis and drug toxicity are commonly implicated. Independent of the exact aetiology, several different pathophysiologic processes occur simultaneously and in sequence, including endothelial dysfunction, alteration of the microcirculation, tubular injury, venous congestion and intrarenal inflammation. A multitude of different immune cells from within the kidney and the systemic circulation play a role in the development, maintenance and recovery phase of AKI. In this review, we describe the common processes involved in AKI and their connections, with particular emphasis on the perioperative and critical care setting.
Collapse
Affiliation(s)
- Marlies Ostermann
- Department of Critical Care & Nephrology, King's College London, Guy's & St Thomas' Hospital, London, SE1 7EH, UK.
| | - Kathleen Liu
- Division of Nephrology and Critical Care, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
216
|
Ren Y, Cui Y, Xiong X, Wang C, Zhang Y. Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9362-9371. [PMID: 31966808 PMCID: PMC6965969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Accumulated evidences suggest that microRNAs (miRNAs) are related with inflammation-associated diseases.The aim of this study is to investigate whether miR-155 is involved in lipopolysaccharide (LPS)-induced kidney injury, and to explore the underlying mechanisms. Mice were intraperitoneally injected with LPS to construct endotoxemia mice model, and miR-155 inhibitor was injected via tail vein to suppress the expression of miR-155 in kidney. The results indicated that the expression of miR-155 was markedly increased in renal tissues of LPS-treated mice. And miR-155 inhibitor protected mice from LPS-induced kidney injury associated with the lower levels of TNF-α and IL-6 in renal tissues. Furthermore, inhibition of miR-155 increased the expression of suppressor of cytokine signaling 1 (SOCS1), a target gene of miR-155 and a negative regulator of Janus activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Consistently, inhibition of miR-155 suppressed the expression of JAK2, STAT3 and phosphorylated STAT3 (p-STAT3). All these results indicated that inhibition of miR-155 protects mice from LPS-induced kidney injury possibly through regulating SOCS1-JAK2/STAT signaling pathway, which suggested that miR-155 might be an important and potential target in developing therapy for preventing sepsis-associated kidney injury.
Collapse
Affiliation(s)
- Yuqian Ren
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| |
Collapse
|
217
|
Abstract
Acute kidney injury (AKI) is a clinical syndrome occurring in the context of multiple and diverse disease entities. Although the term AKI implies renal damage as well as functional impairment or a combination of both, diagnosis is solely based on the functional parameters serum creatinine and urine output. Independent of the underlying disease and even assuming full recovery of renal function, AKI is associated with increased morbidity and mortality not only during the acute situation, but also long term. Awareness of the individual risk profile of each patient and the variety of causes and clinical manifestations of AKI is pivotal for prophylaxis, diagnosis, and therapy. The complexity of the clinical syndrome in the context of sepsis, solid organ transplantation, malignancy, and autoimmune diseases requires differentiated diagnostic and therapeutic approaches and interdisciplinary care.
Collapse
Affiliation(s)
- A Bienholz
- Klinik für Nephrologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - A Kribben
- Klinik für Nephrologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| |
Collapse
|
218
|
Torres Aguilar O, Maya Quintá R, Rodríguez Prieto G, Leal M, Castilleja Leal J. Early initiation of renal replacement therapy in acute renal injury. MEDICINA UNIVERSITARIA 2017. [DOI: 10.1016/j.rmu.2017.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
219
|
Hong YA, Yang KJ, Jung SY, Chang YK, Park CW, Yang CW, Kim SY, Hwang HS. Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E 2 receptor EP4. Kidney Res Clin Pract 2017; 36:145-158. [PMID: 28680822 PMCID: PMC5491161 DOI: 10.23876/j.krcp.2017.36.2.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022] Open
Abstract
Background Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS)-induced renal proximal tubular cell injury through the prostaglandin E2 (PGE2) receptor EP4. Methods Human renal tubular epithelial (HK-2) cells were pretreated with paricalcitol (2 ng/mL) for 1 hour and exposed to LPS (1 μg/mL). The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA) were investigated. Results The expression of cyclooxygenase-2, PGE2, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB (NF-κB) were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 NF-κB nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and NF-κB signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keum Jin Yang
- Clinical Research Institute, Daejeon St. Mary's hospital, Daejeon, Korea
| | - So Young Jung
- Clinical Research Institute, Daejeon St. Mary's hospital, Daejeon, Korea
| | - Yoon Kyung Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suk Young Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Seok Hwang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Clinical Research Institute, Daejeon St. Mary's hospital, Daejeon, Korea
| |
Collapse
|
220
|
Mirzoyan K, Denis C, Casemayou A, Gilet M, Marsal D, Goudounéche D, Faguer S, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury. Inflammation 2017; 40:1707-1716. [DOI: 10.1007/s10753-017-0612-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
221
|
Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med 2017; 44:e897-903. [PMID: 27058465 DOI: 10.1097/ccm.0000000000001735] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The histopathologic changes associated with septic acute kidney injury are poorly understood, in part, because of the lack of biopsy data in humans. Animal models of septic acute kidney injury may help define such changes. Therefore, we performed a systematic review of the histopathologic changes found in modern experimental septic acute kidney injury models. DATA SOURCES MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and PubMed (from January 2007 to February 2015). STUDY SELECTION We reviewed experimental studies reporting findings on the histopathology of contemporary experimental septic acute kidney injury. DATA EXTRACTION We focused on the presence or the absence of acute tubular necrosis, tubular cell apoptosis, and other nonspecific findings. DATA SYNTHESIS We identified 102 studies in 1,059 animals. Among the 1,059 animals, 53 (5.0%) did not have any renal histopathologic changes, but acute tubular necrosis was found in 184 (17.4%). The prevalence of acute tubular necrosis was not related to animal size or model of sepsis and was only found in models with low cardiac output and decreased renal blood flow (p < 0.0001). Only 21 studies (170 animals) assessed the prevalence of tubular cell apoptosis, which was reported in 158 animals (92.9%). The prevalence of tubular cell apoptosis was significantly higher in studies using small animals (p < 0.0001) and in peritonitis models (p < 0.0001). Simultaneous acute tubular necrosis and tubular cell apoptosis was rare (55 animals [32.4%]) and only seen with decreased cardiac output and renal blood flow. Nonspecific changes (vacuolization of tubular cells, loss of brush border, and tubular cell swelling) were each observed in 423 (39.9%), 250 (23.6%) and 243 (22.9%) animals, respectively. CONCLUSIONS In models of experimental septic acute kidney injury in contemporary articles, acute tubular necrosis was relatively uncommon and, when present, reflected the presence of an associated low cardiac output or low renal blood flow syndrome. Tubular cell apoptosis seemed frequent in the few studies in which it was investigated. Nonspecific morphologic changes, however, were the most common histopathologic findings.
Collapse
|
222
|
Abstract
OBJECTIVES Pneumonia is a common cause of hospitalization and can be complicated by the development of acute kidney injury. Acute kidney injury is associated with major adverse kidney events (death, dialysis, and durable loss of renal function [chronic kidney disease]). Because pneumonia and acute kidney injury are in part mediated by inflammation, we hypothesized that when acute kidney injury complicates pneumonia, major adverse kidney events outcomes would be exacerbated. We sought to assess the frequency of major adverse kidney events after a hospitalization for either pneumonia, acute kidney injury, or the combination of both. DESIGN AND SETTING We conducted a retrospective database analysis of the national Veterans Affairs database for patients with a admission diagnosis of International Classification of Diseases-9 code 584.xx (acute kidney injury) or 486.xx (pneumonia) between October 1, 1999, and December 31, 2005. Three groups of patients were created, based on the diagnosis of the index admission and serum creatinine values: 1) acute kidney injury, 2) pneumonia, and 3) pneumonia with acute kidney injury. Patients with mean baseline estimated glomerular filtration rate less than 45 mL/min/1.73 m were excluded. MEASUREMENTS AND MAIN RESULTS The primary endpoint was major adverse kidney events defined as the composite of death, chronic dialysis, or a permanent loss of renal function after the primary discharge. The observations of 54,894 subjects were analyzed. Mean age was 68.7 ± 12.3 years. The percentage of female was 2.4, 73.3% were Caucasian, and 19.7% were African-American. Differences across the three diagnostic groups were significant for death, 25% decrease in estimated glomerular filtration rate from baseline, major adverse kidney events following admission, and major adverse kidney events during admission (all p < 0.0001). Death alone and major adverse kidney events after discharge were most common in the pneumonia + acute kidney injury group (51% died and 62% reached major adverse kidney events). In both unadjusted and adjusted time to event analyses, patients with pneumonia + acute kidney injury were most likely to die or reach major adverse kidney events. CONCLUSIONS When acute kidney injury accompanies pneumonia, postdischarge outcomes are worse than either diagnosis alone. Patients who survive a pneumonia hospitalization and develop acute kidney injury are at high risk for major adverse kidney events including death and should receive careful follow-up.
Collapse
|
223
|
Growth Differentiation Factor-15 Deficiency Augments Inflammatory Response and Exacerbates Septic Heart and Renal Injury Induced by Lipopolysaccharide. Sci Rep 2017; 7:1037. [PMID: 28432312 PMCID: PMC5430818 DOI: 10.1038/s41598-017-00902-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
Septic acute kidney injury (AKI) and myocardial dysfunction are leading causes of mortality with no accepted method of therapy. In this study we demonstrate the role of growth differentiating factor 15 (GDF15) in septic AKI and myocardial dysfunction using a murine lipopolysaccharide (LPS)-induced sepsis model and an in vitro cell culture system. Data show that GDF15 deficiency augments inflammatory response and exacerbates renal and cardiac injury induced by LPS, while over-expression of GDF15 protects the kidney and heart from LPS-induced organ dysfunction. Therefore, this study highlights the therapeutic potential of GDF15 in the treatment of endotoxin-induced sepsis.
Collapse
|
224
|
Huang W, Lan X, Li X, Wang D, Sun Y, Wang Q, Gao H, Yu K. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFα and JNK/NF-κB pathways in HK-2 cells. Int Immunopharmacol 2017; 47:134-140. [PMID: 28391160 DOI: 10.1016/j.intimp.2017.03.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the effect and underlying mechanism of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in lipopolysaccharide (LPS)-induced inflammation injury in HK-2 cells. We established LPS-induced septic acute kidney injury (AKI) model in HK-2 cells. LPS-induced HK-2 cells were transfected with pc-PVT1, pc-NC, si-PVT1 or si-NC. Cell viability and apoptosis rate were detected by MTT assay and Annexin V-FITC/PI Apoptosis Detection kit, respectively. The relationships of PVT1 and inflammatory factors were evaluated by RNA Immunoprecipitation (RIP) assay. The levels of inflammatory factors, apoptosis-related proteins and the expressions of proteins related to c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signaling pathway were detected by ELISA or Western blotting. Compared with cells with pc-NC, cell viability was remarkably decreased and cell apoptosis rate was increased in LPS-induced cells with pc-PVT1 (p<0.05). The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β were significantly increased in LPS-induced cells with pc-PVT1 compared with cells with pc-NC (p<0.05). All these changes were reversed in LPS-induced cells with si-PVT1 and si-NC (p<0.05). RTP assay revealed that PVT1 could bind to TNF-α. Furthermore, down-regulated PVT1 remarkably reduced the expressions of p-JNK and p-c-Jun, p-IκBα and p-p65 (p<0.05); while increased expressions of these proteins and inflammatory factors induced by up-regulated PVT1 were reversed by JNK or NF-κB inhibitors. PVT1 may promote inflammatory response by binding to TNF-α and inhibiting JNK/NF-κB signaling pathway in LPS-induced septic AKI cells.
Collapse
Affiliation(s)
- Wei Huang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiuwen Lan
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xueting Li
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dawei Wang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yinghao Sun
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Qian Wang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hong Gao
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Kaijiang Yu
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
225
|
Watts BA, George T, Sherwood ER, Good DW. Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through a TLR4-TRIF-PI3K signaling pathway. Am J Physiol Renal Physiol 2017; 313:F103-F115. [PMID: 28356284 DOI: 10.1152/ajprenal.00064.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022] Open
Abstract
Monophosphoryl lipid A (MPLA) is a detoxified derivative of LPS that induces tolerance to LPS and augments host resistance to bacterial infections. Previously, we demonstrated that LPS inhibits [Formula: see text] absorption in the medullary thick ascending limb (MTAL) through a basolateral Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-ERK pathway. Here we examined whether pretreatment with MPLA would attenuate LPS inhibition. MTALs from rats were perfused in vitro with MPLA (1 µg/ml) in bath and lumen or bath alone for 2 h, and then LPS was added to (and MPLA removed from) the bath solution. Pretreatment with MPLA eliminated LPS-induced inhibition of [Formula: see text] absorption. In MTALs pretreated with MPLA plus a phosphatidylinositol 3-kinase (PI3K) or Akt inhibitor, LPS decreased [Formula: see text] absorption. MPLA increased Akt phosphorylation in dissected MTALs. The Akt activation was eliminated by a PI3K inhibitor and in MTALs from TLR4-/- or Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-/- mice. The effect of MPLA to prevent LPS inhibition of [Formula: see text] absorption also was TRIF dependent. Pretreatment with MPLA prevented LPS-induced ERK activation; this effect was dependent on PI3K. MPLA alone had no effect on [Formula: see text] absorption, and MPLA pretreatment did not prevent ERK-mediated inhibition of [Formula: see text] absorption by aldosterone, consistent with MPLA's low toxicity profile. These results demonstrate that pretreatment with MPLA prevents the effect of LPS to inhibit [Formula: see text] absorption in the MTAL. This protective effect is mediated directly through MPLA stimulation of a TLR4-TRIF-PI3K-Akt pathway that prevents LPS-induced ERK activation. These studies identify detoxified TLR4-based immunomodulators as novel potential therapeutic agents to prevent or treat renal tubule dysfunction in response to bacterial infections.
Collapse
Affiliation(s)
- Bruns A Watts
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Thampi George
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David W Good
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; .,Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas; and
| |
Collapse
|
226
|
Aamer HG, El-Ashker MR, Nour EM, Wafa EW, Youssef MA. Sepsis-Induced Acute Kidney Injury in Equine: Current Knowledge and Future Perspectives. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
227
|
Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, Prowle J, Darmon M, Bonventre JV, Forni L, Bagshaw SM, Schetz M. The intensive care medicine agenda on acute kidney injury. Intensive Care Med 2017; 43:1198-1209. [PMID: 28138736 DOI: 10.1007/s00134-017-4687-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a common complication in the critically ill. Current standard of care mainly relies on identification of patients at risk, haemodynamic optimization, avoidance of nephrotoxicity and the use of renal replacement therapy (RRT) in established AKI. The detection of early biomarkers of renal tissue damage is a recent development that allows amending the late and insensitive diagnosis with current AKI criteria. Increasing evidence suggests that the consequences of an episode of AKI extend long beyond the acute hospitalization. Citrate has been established as the anticoagulant of choice for continuous RRT. Conflicting results have been published on the optimal timing of RRT and on the renoprotective effect of remote ischaemic preconditioning. Recent research has contradicted that acute tubular necrosis is the common pathology in AKI, that septic AKI is due to global kidney hypoperfusion, that aggressive fluid therapy benefits the kidney, that vasopressor therapy harms the kidney and that high doses of RRT improve outcome. Remaining uncertainties include the impact of aetiology and clinical context on pathophysiology, therapy and prognosis, the clinical benefit of biomarker-driven interventions, the optimal mode of RRT to improve short- and long-term patient and kidney outcomes, the contribution of AKI to failure of other organs and the optimal approach for assessing and promoting renal recovery. Based on the established gaps in current knowledge the trials that must have priority in the coming 10 years are proposed together with the definition of appropriate clinical endpoints.
Collapse
Affiliation(s)
- Peter Pickkers
- Department of Intensive Care Medicine (710), Radboud University Medical Centre, Geert Grooteplein Zuid 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marlies Ostermann
- Department of Critical Care, Guy's and St Thomas' Hospital, King's College London, London, SE1 9RT, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alexander Zarbock
- Department of Anesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer Campus 1, Building A1, 48149, Münster, Germany
| | - Eric Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.,Research Foundation-Flanders, Brussels, Belgium
| | - Rinaldo Bellomo
- School of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Intensive Care, Austin Hospital Heidelberg, Melbourne, VIC, 3084, Australia
| | - John Prowle
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Michael Darmon
- Medical-Surgical ICU, Saint-Etienne University Hospital and Jacques Lisfranc Medical School, Saint-Etienne, 42000, France
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lui Forni
- Surrey Perioperative Anaesthesia and Critical Care Collaborative Research Group, Royal Surrey County Hospital, NHS Foundation Trust and School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, 2-124 Clinical Sciences Building, 8440-112 ST NW, Edmonton, AB, T6G2B7, Canada
| | - Miet Schetz
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven University, Herestraat 49, B3000, Louvain, Belgium.
| |
Collapse
|
228
|
Devarajan P, Basu RK. Sepsis-associated acute kidney injury - is it possible to move the needle against this syndrome? J Pediatr (Rio J) 2017; 93:1-3. [PMID: 27746155 PMCID: PMC5656060 DOI: 10.1016/j.jped.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Prasad Devarajan
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Center for Acute Care Nephrology, Cincinnati, United States
| | - Rajit K Basu
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Center for Acute Care Nephrology, Cincinnati, United States.
| |
Collapse
|
229
|
Sepsis‐associated acute kidney injury – is it possible to move the needle against this syndrome. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
230
|
Fujishima S. Organ dysfunction as a new standard for defining sepsis. Inflamm Regen 2016; 36:24. [PMID: 29259697 PMCID: PMC5725936 DOI: 10.1186/s41232-016-0029-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023] Open
Abstract
Despite advances in intensive care and the widespread use of standardized care included in the Surviving Sepsis Campaign Guidelines, sepsis remains a leading cause of death, and the prevalence of sepsis increases concurrent with the aging process. The diagnosis of sepsis was originally based on the evidence of persistent bacteremia (septicemia) but was modified in 1992 to incorporate systemic inflammatory response syndrome (SIRS). Since then, SIRS has become the gold standard for the diagnosis of sepsis. In 2016, the Society of Critical Care Medicine and the European Society of Intensive Care Medicine published a new clinical definition of sepsis that is called Sepsis-3. In contrast to previous definitions, Sepsis-3 is based on organ dysfunctions and uses a sequential organ failure (SOFA) score as an index. Thus, patients diagnosed with respect to Sepsis-3 will inevitably represent a different population than those previously diagnosed. We assume that this drastic change in clinical definition will affect not only clinical practice but also the viewpoint and focus of basic research. This review intends to summarize the pathophysiology of sepsis and organ dysfunction and discusses potential directions for future research.
Collapse
Affiliation(s)
- Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
231
|
Machado FR, Levy MM, Rhodes A. Fixed minimum volume resuscitation: Pro. Intensive Care Med 2016; 43:1678-1680. [PMID: 27798737 DOI: 10.1007/s00134-016-4590-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Flavia R Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of Sao Paulo, Sao Paulo, Brazil. .,Latin America Sepsis Institute, Sao Paulo, Brazil.
| | - Mitchell M Levy
- Department of Pulmonary and Critical Care, Alpert Medical School at Brown University, Providence, RI, USA
| | - Andrew Rhodes
- Department of Critical Care, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
232
|
Dai X, Li T, Zeng Z, Fu C, Wang S, Cai Y, Chen Z. The effect of continuous venovenous hemofiltration on neutrophil gelatinase-associated lipocalin plasma levels in patients with septic acute kidney injury. BMC Nephrol 2016; 17:154. [PMID: 27760529 PMCID: PMC5072349 DOI: 10.1186/s12882-016-0363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It is known that continuous venonenous hemofiltration (CVVH) does not affect the plasma level of neutrophil gelatinase-associated lipocalin (pNGAL) in acute kidney injury (AKI) patients. However, because of the unique pathophysiology underlying AKI caused by sepsis, the effect of CVVH on pNGAL in this clinical setting is less certain. The purpose of this study was to determine the effect of CVVH on pNGAL in sepsis-induced AKI patients. METHODS Between August 1, 2014, and December 31, 2014, 42 patients with sepsis-induced AKI underwent CVVH in the general intensive care unit of our institution and were consecutively enrolled in this study. Prefilter, postfilter, and ultrafiltrate pNGAL measurements were taken at the initiation of continuous renal replacement therapy (CRRT) and repeated after 2, 4, 8, and 12 h (T0, T2h, T4h, T8h, and T12h, respectively). The mass transfer, plasma clearance, and sieving coefficient were calculated based on the mass conservation principle. RESULTS Following CVVH initiation, we found that pNGAL in the ultrafiltrate decreased significantly (P = 0.013); however, levels at the inlet and outlet showed no significant change (P > 0.05 for both). Furthermore, there was no change in the total mass removal rate, total mass adsorption rate, and plasma clearance over time (P > 0.05 for all), and a significant decrease in the sieving coefficient (P = 0.007) was seen. CONCLUSIONS The results of this study show a limited effect of CVVH on pNGAL in sepsis-induced AKI patients. This suggests that pNGAL may be used as an indicator of renal progression in these patients. However, a larger study to confirm these findings is needed. TRIAL REGISTRATION ClinicalTrials.gov, NCT02536027 . Retrospectively registered on 20th August 2015.
Collapse
Affiliation(s)
- Xingui Dai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China.,Department of Critical Care Medicine, the First Peoples' Hospital of Chenzhou, Institute of Translation Medicine, 102 Luo Jia Jin Street, Chenzhou, Hunan, 423000, China
| | - Tao Li
- Department of Critical Care Medicine, the First Peoples' Hospital of Chenzhou, Institute of Translation Medicine, 102 Luo Jia Jin Street, Chenzhou, Hunan, 423000, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
| | - Chunlai Fu
- Department of Critical Care Medicine, the First Peoples' Hospital of Chenzhou, Institute of Translation Medicine, 102 Luo Jia Jin Street, Chenzhou, Hunan, 423000, China
| | - Shengbiao Wang
- Department of Critical Care Medicine, the First Peoples' Hospital of Chenzhou, Institute of Translation Medicine, 102 Luo Jia Jin Street, Chenzhou, Hunan, 423000, China
| | - Yeping Cai
- Department of Critical Care Medicine, the First Peoples' Hospital of Chenzhou, Institute of Translation Medicine, 102 Luo Jia Jin Street, Chenzhou, Hunan, 423000, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
233
|
Fraga CM, Tomasi CD, Damasio DDC, Vuolo F, Ritter C, Dal-Pizzol F. N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:331. [PMID: 27745551 PMCID: PMC5066295 DOI: 10.1186/s13054-016-1504-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
Abstract
Background The aim was to test the primary hypothesis that in patients suffering from shock, treatment with N-acetylcysteine (NAC) plus deferoxamine (DFX) decreases the incidence of acute kidney injury (AKI). Methods A double-blind, randomized, placebo-controlled trial was conducted in a general intensive care unit in an academic hospital. Patients were included if they had new-onset hypotension, defined as mean arterial blood pressure <60 mmHg or requirement for vasopressor medication. A loading dose of NAC or placebo of 50 mg/kg in 4 h was administered intravenously. After the loading dose, patients received 100 mg/kg/day for the next 48 h. DFX or placebo was administered once at 1000 mg at a rate of 15/mg/kg/h. The primary outcome was the incidence of AKI. Results A total of 80 patients were enrolled in the study. The incidence of AKI was 67 % in the placebo arm and 65 % in the treatment group (relative risk (RR) 0.89 (0.35–2.2)). Furthermore, NAC plus DFX was effective in decreasing the severity and duration of AKI, and patients in the treatment group had lower serum creatinine levels at discharge. No severe adverse event associated with treatment was reported. The effects of NAC plus DFX could be secondary to the attenuation of early inflammatory response and oxidative damage. Conclusion The administration of NAC plus DFX to critically ill patients who had a new episode of hypotension did not decrease the incidence of AKI. Trial registration Clinicaltrials.gov NCT00870883 (Registered 25 March 2009.)
Collapse
Affiliation(s)
- Cassiana Mazon Fraga
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil
| | | | - Danusa de Castro Damasio
- Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil.,São José Hospital Research Centre, Criciúma, SC, Brazil
| | - Francieli Vuolo
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cristiane Ritter
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil. .,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil. .,Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, 88006-000, Criciúma, SC, Brazil.
| |
Collapse
|
234
|
Complement Factor B Production in Renal Tubular Cells and Its Role in Sodium Transporter Expression During Polymicrobial Sepsis. Crit Care Med 2016; 44:e289-99. [PMID: 26757165 DOI: 10.1097/ccm.0000000000001566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Toll-like receptors and complement are two components of the innate immunity. Complement factor B is essential for the alternative pathway of complement activation. We have recently reported that complement factor B is significantly up-regulated in the kidney and may contribute to acute tubular injury in an animal model of sepsis. This study investigates the mechanisms responsible for the complement factor B up-regulation and its role in sodium transporter expression in tubular cells during sepsis. DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS C57BL/6 J wild-type, complement factor B(-/-), and Nfkb1(tm1Bal) p50(-/-) mice. INTERVENTIONS Human proximal tubular cells and mouse tubular epithelial cells were stimulated with Toll-like receptor agonists. Bay 11-7082 was used to block nuclear factor-κB pathway. Alternative pathway activation was detected by C3 zymosan deposition. Polymicrobial sepsis was created by cecal ligation and puncture. Sodium transporter gene expression was determined by quantitative reverse transcriptase-polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS The agonists for Toll-like receptor 4 (lipopolysaccharide) or Toll-like receptor 3 (polyinosinic-polycytidylic acid) induced a marked increase in complement factor B expression in human proximal tubular cells and mouse tubular epithelial cells both at gene and protein levels. The Toll-like receptor 1/2 agonist, Pam3cys, induced complement factor B production only in human proximal tubular cells, not in mouse tubular epithelial cells. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotides failed to induce complement factor B production either in human proximal tubular cells or in mouse tubular epithelial cells. Lipopolysaccharide/polyinosinic-polycytidylic acid-induced complement factor B up-regulation was blocked by Bay 11-7082, a potent inhibitor of nuclear factor-κB signaling, and in mouse tubular epithelial cells deficient in p50 subunit of nuclear factor-κB. Media from the lipopolysaccharide-treated mouse tubular epithelial cell cultures contained de novo synthesized complement factor B and led to functional alternative pathway activation. In a cecal ligation and puncture model, wild-type septic mice had down-regulated expression of sodium transporters in the kidney compared with the sham. In comparison, complement factor B mice or mice treated with anti-complement factor B displayed preserved levels of Na⁺/K⁺ ATPase-α1 following sepsis. CONCLUSIONS 1) Toll-like receptor 3/4 activation is sufficient to induce complement factor B production via nuclear factor-κB pathway and to enhance alternative pathway activation in the kidney tubular epithelial cells. 2) Complement factor B may contribute to the down-regulation of certain sodium transporter expression during sepsis.
Collapse
|
235
|
Cóndor JM, Rodrigues CE, Sousa Moreira RD, Canale D, Volpini RA, Shimizu MHM, Camara NOS, Noronha IDL, Andrade L. Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction. Stem Cells Transl Med 2016; 5:1048-57. [PMID: 27280799 PMCID: PMC4954445 DOI: 10.5966/sctm.2015-0138] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED : The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks. Downregulation of endothelial nitric oxide synthase contributes to sepsis-induced endothelial dysfunction. Human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are known to reduce expression of proinflammatory cytokines and markers of apoptosis. We hypothesized that treatment with WJ-MSCs would protect renal, hepatic, and endothelial function in a cecal ligation and puncture (CLP) model of sepsis in rats. Rats were randomly divided into three groups: sham-operated rats; rats submitted to CLP and left untreated; and rats submitted to CLP and intraperitoneally injected, 6 hours later, with 1 × 10(6) WJ-MSCs. The glomerular filtration rate (GFR) was measured at 6 and 24 hours after CLP or sham surgery. All other studies were conducted at 24 hours after CLP or sham surgery. By 6 hours, GFR had decreased in the CLP rats. At 24 hours, Klotho renal expression significantly decreased. Treatment with WJ-MSCs improved the GFR; improved tubular function; decreased the CD68-positive cell count; decreased the fractional interstitial area; decreased expression of nuclear factor κB and of cytokines; increased expression of eNOS, vascular endothelial growth factor, and Klotho; attenuated renal apoptosis; ameliorated hepatic function; increased glycogen deposition in the liver; and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. Klotho protein expression was higher in WJ-MSCs than in human adipose-derived MSCs. Because WJ-MSCs preserve renal and hepatic function, they might play a protective role in sepsis. SIGNIFICANCE Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) would protect renal, hepatic, and endothelial function in a model of sepsis in rats. Treatment with WJ-MSCs improved the glomerular filtration rate, improved tubular function, decreased expression of nuclear factor κB and of cytokines, increased expression of eNOS and of Klotho, attenuated renal apoptosis, and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate.
Collapse
Affiliation(s)
- José M Cóndor
- Division of Nephrology, University of São Paulo, São Paulo, Brazil School of Medical Technology, National University of San Marcos, Lima, Peru
| | | | | | - Daniele Canale
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| | - Rildo A Volpini
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| | | | - Niels O S Camara
- Immunology Department, University of São Paulo, São Paulo, Brazil
| | | | - Lúcia Andrade
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
236
|
Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, Ronco C, Fiaccadori E, Pertosa GB, Gesualdo L, Castellano G. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant 2016; 32:24-31. [DOI: 10.1093/ndt/gfw250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 02/01/2023] Open
|
237
|
Watts BA, George T, Badalamenti A, Good DW. High-mobility group box 1 inhibits HCO3- absorption in the medullary thick ascending limb through RAGE-Rho-ROCK-mediated inhibition of basolateral Na+/H+ exchange. Am J Physiol Renal Physiol 2016; 311:F600-13. [PMID: 27358052 DOI: 10.1152/ajprenal.00185.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein released extracellularly in response to infection or injury, where it activates immune responses and contributes to the pathogenesis of kidney dysfunction in sepsis and sterile inflammatory disorders. Recently, we demonstrated that HMGB1 inhibits HCO3 (-) absorption in perfused rat medullary thick ascending limbs (MTAL) through a basolateral receptor for advanced glycation end products (RAGE)-dependent pathway that is additive to Toll-like receptor 4 (TLR4)-ERK-mediated inhibition by LPS (Good DW, George T, Watts BA III. Am J Physiol Renal Physiol 309: F720-F730, 2015). Here, we examined signaling and transport mechanisms that mediate inhibition by HMGB1. Inhibition of HCO3 (-) absorption by HMGB1 was eliminated by the Rho-associated kinase (ROCK) inhibitor Y27632 and by a specific inhibitor of Rho, the major upstream activator of ROCK. HMGB1 increased RhoA and ROCK1 activity. HMGB1-induced ROCK1 activation was eliminated by the RAGE antagonist FPS-ZM1 and by inhibition of Rho. The Rho and ROCK inhibitors had no effect on inhibition of HCO3 (-) absorption by bath LPS. Inhibition of HCO3 (-) absorption by HMGB1 was eliminated by bath amiloride, 0 Na(+) bath, and the F-actin stabilizer jasplakinolide, three conditions that selectively prevent inhibition of MTAL HCO3 (-) absorption mediated through NHE1. HMGB1 decreased basolateral Na(+)/H(+) exchange activity through activation of ROCK. We conclude that HMGB1 inhibits HCO3 (-) absorption in the MTAL through a RAGE-RhoA-ROCK1 signaling pathway coupled to inhibition of NHE1. The HMGB1-RAGE-RhoA-ROCK1 pathway thus represents a potential target to attenuate MTAL dysfunction during sepsis and other inflammatory disorders. HMGB1 and LPS inhibit HCO3 (-) absorption through different receptor signaling and transport mechanisms, which enables these pathogenic mediators to act directly and independently to impair MTAL function.
Collapse
Affiliation(s)
- Bruns A Watts
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Thampi George
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Andrew Badalamenti
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - David W Good
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
238
|
Wiesen P, Massion PB, Joris J, Detry O, Damas P. Incidence and risk factors for early renal dysfunction after liver transplantation. World J Transplant 2016; 6:220-232. [PMID: 27011921 PMCID: PMC4801799 DOI: 10.5500/wjt.v6.i1.220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine renal dysfunction post liver transplantation, its incidence and risk factors in patients from a Belgian University Hospital.
METHODS: Orthotopic liver transplantations performed from January 2006 until September 2012 were retrospectively reviewed (n = 187). Patients with no renal replacement therapy (RRT) before transplantation were classified into four groups according to their highest creatinine plasma level during the first postoperative week. The first group had a peak creatinine level below 12 mg/L, the second group between 12 and 20 mg/L, the third group between 20 and 35 mg/L, and the fourth above 35 mg/L. In addition, patients who needed RRT during the first week after transplantation were also classified into the fourth group. Perioperative parameters were recorded as risk factors, namely age, sex, body mass index (BMI), length of preoperative hospital stay, prior bacterial infection within one month, preoperative ascites, preoperative treatment with β-blocker, angiotensin-converting enzyme inhibitor or non steroidal anti-inflammatory drugs, preoperative creatinine and bilirubin levels, donor status (cardiac death or brain death), postoperative lactate level, need for intraoperative vasopressive drugs, surgical revision, mechanical ventilation for more than 24 h, postoperative bilirubin and transaminase peak levels, postoperative hemoglobin level, amount of perioperative blood transfusions and type of immunosuppression. Univariate and multivariate analysis were performed using logistic ordinal regression method. Post hoc analysis of the hemostatic agent used was also done.
RESULTS: There were 78 patients in group 1 (41.7%), 46 in group 2 (24.6%), 38 in group 3 (20.3%) and 25 in group 4 (13.4%). Twenty patients required RRT: 13 (7%) during the first week after transplantation. Using univariate analysis, the severity of renal dysfunction was correlated with presence of ascites and prior bacterial infection, preoperative bilirubin, urea and creatinine level, need for surgical revision, use of vasopressor, postoperative mechanical ventilation, postoperative bilirubin and urea, aspartate aminotransferase (ASAT), and hemoglobin levels and the need for transfusion. The multivariate analysis showed that BMI (OR = 1.1, P = 0.004), preoperative creatinine level (OR = 11.1, P < 0.0001), use of vasopressor (OR = 3.31, P = 0.0002), maximal postoperative bilirubin level (OR = 1.44, P = 0.044) and minimal postoperative hemoglobin level (OR = 0.059, P = 0.0005) were independent predictors of early post-liver transplantation renal dysfunction. Neither donor status nor ASAT levels had significant impact on early postoperative renal dysfunction in multivariate analysis. Absence of renal dysfunction (group 1) was also predicted by the intraoperative hemostatic agent used, independently of the extent of bleeding and of the preoperative creatinine level.
CONCLUSION: More than half of receivers experienced some degree of early renal dysfunction after liver transplantation. Main predictors were preoperative renal dysfunction, postoperative anemia and vasopressor requirement.
Collapse
|
239
|
Abstract
Kidney injury, including acute kidney injury (AKI) and chronic kidney disease (CKD), has become very common in critically ill patients treated in ICUs. Many epidemiological studies have revealed significant associations of AKI and CKD with poor outcomes of high mortality and medical costs. Although many basic studies have clarified the possible mechanisms of sepsis and septic AKI, translation of the obtained findings to clinical settings has not been successful to date. No specific drug against human sepsis or AKI is currently available. Remarkable progress of dialysis techniques such as continuous renal replacement therapy (CRRT) has enabled control of “uremia” in hemodynamically unstable patients; however, dialysis-requiring septic AKI patients are still showing unacceptably high mortality of 60–80 %. Therefore, further investigations must be conducted to improve the outcome of sepsis and septic AKI. A possible target will be remote organ injury caused by AKI. Recent basic studies have identified interleukin-6 and high mobility group box 1 (HMGB1) as important mediators for acute lung injury induced by AKI. Another target is the disease pathway that is amplified by pre-existing CKD. Vascular endothelial growth factor and HMGB1 elevations in sepsis were demonstrated to be amplified by CKD in CKD-sepsis animal models. Understanding the role of kidney injury as an amplifier in sepsis and multiple organ failure might support the identification of new drug targets for sepsis and septic AKI.
Collapse
Affiliation(s)
- Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655 Japan
| |
Collapse
|
240
|
Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability. Sci Rep 2016; 6:22747. [PMID: 26956613 PMCID: PMC4783700 DOI: 10.1038/srep22747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.
Collapse
|
241
|
Wang X, Yi F. The Nucleotide Oligomerization Domain-Like Receptors in Kidney Injury. KIDNEY DISEASES 2016; 2:28-36. [PMID: 27536689 DOI: 10.1159/000444736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammation is a hallmark of almost all forms of renal injury and the activation of the innate immune system is of importance in the development of many kidney diseases. Pattern recognition receptors (PRRs) act as sensors of the innate immune system to detect pathogen- or damage-associated molecular patterns, which initiate immune responses to resolve infections and repair damaged tissues. Abnormalities in PRR activation will lead to excessive inflammation. SUMMARY Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are recently identified intracellular PRRs that are essential to innate immune responses and tissue homeostasis. A better understanding of the function of NLRs will provide unexpected opportunities to develop new therapies for kidney diseases by modulation of the innate immune system. KEY MESSAGES NLRs are constitutively expressed in the kidney and emerging evidence has shown that activation of NLRs plays an important role in the pathogenesis of renal injury. Among NLRs, NOD2 and NLRP3 inflammasome are the best characterized members in the kidney. In this review, we summarize current knowledge about the pathological mechanisms that are related to NOD2 and NLRP3 inflammasome in various kidney diseases by their canonical and non-canonical effects and discuss the opportunities of pharmacological targeting of NLR-mediated signaling pathways at multiple levels for the treatment of renal disease.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| |
Collapse
|
242
|
Chen JP, Fang XM, Jin XJ, Kang RT, Liu KX, Li JB, Luo Y, Lu ZJ, Miao CH, Ma HX, Mei W, Ou YW, Qi SH, Qin ZS, Tian GG, Wu AS, Wang DX, Yu T, Yu YH, Zhao J, Zuo MZ, Zhang SH. Expert consensus on the perioperative management of patients with sepsis. World J Emerg Med 2015; 6:245-60. [PMID: 26702328 DOI: 10.5847/wjem.j.1920-8642.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jun-Ping Chen
- Department of Anesthesiology, Ningbo Number 2 Hospital, Ningbo, China
| | - Xiang-Ming Fang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Ju Jin
- Department of Anesthesiology and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Rong-Tian Kang
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-Bao Li
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhi-Jie Lu
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Han-Xiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Wen Ou
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Si-Hua Qi
- Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zai-Sheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guo-Gang Tian
- Department of Anesthesiology, People's Hospital of Sanya, Sanya, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dong-Xin Wang
- Department of Anesthesiology and Surgical Intensive Care, Peking University First Hospital, Beijing, China
| | - Tian Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yong-Hao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, and Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Jing Zhao
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Zhang Zuo
- Department of Anesthesiology, Beijing Hospital, Beijing, China
| | - Shi-Hai Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
243
|
Mitaka C, Masuda T, Kido K, Uchida T, Abe S, Miyasho T, Tomita M, Inada E. Polymyxin B hemoperfusion prevents acute kidney injury in sepsis model. J Surg Res 2015; 201:59-68. [PMID: 26850185 DOI: 10.1016/j.jss.2015.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Direct hemoperfusion with a polymyxin B-immobilized column (PMX-DHP) adsorbs endotoxin and has been used for the treatment of septic shock. Yet, the mechanisms by which PMX-DHP acts on acute kidney injury are only partially understood. MATERIALS AND METHODS Rats were anesthetized, tracheostomized, and placed on mechanical ventilation. The animals were randomized to three groups: a cecal ligation and puncture (CLP) + dummy-DHP group (n = 10), a CLP + PMX-DHP group (n = 10), and a sham group (n = 4). Four hours after CLP, a dummy-DHP or PMX-DHP was performed for 1 h. The heart rate, mean arterial pressure, arterial blood gases, and plasma concentrations of creatinine, lactate, potassium, interleukin (IL)-6, and IL-10 were measured at 0 h and 8 h. Eight hours after CLP, the kidney was harvested, and histopathologic examination was performed. The expressions of cleaved poly (ADP-ribose) polymerase (PARP) and nuclear factor (NF)-κB p65 were examined by immunohistochemistry. A terminal deoxynucleotide transferase dUTP nick-end labeling assay was performed to detect apoptotic nuclei in kidney sections. RESULTS PMX-DHP maintained hemodynamics and the acid-base balance and significantly (P < 0.05) decreased the plasma concentrations of lactate, creatinine, potassium, IL-6, and IL-10 compared with dummy-DHP. PMX-DHP significantly (P < 0.001) attenuated the expressions of cleaved PARP and NF-κB p65 in renal tubular cells and renal tubular cell apoptosis compared with dummy-DHP. CONCLUSIONS These findings suggest that PMX-DHP may protect against acute kidney injury not only by inhibiting the NF-κB signaling pathway but also by preventing renal tubular cell apoptosis.
Collapse
Affiliation(s)
- Chieko Mitaka
- Department of Anesthesiology, Juntendo University Hospital, Tokyo, Japan; Department of Anesthesiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.
| | - Takahiro Masuda
- Intensive Care Unit, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Koji Kido
- Department of Anesthesiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Shinya Abe
- Department of Comprehensive Pathology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Science School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Makoto Tomita
- Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Eiichi Inada
- Department of Anesthesiology, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
244
|
Gatticchi L, Bellezza I, Del Sordo R, Peirce MJ, Sidoni A, Roberti R, Minelli A. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS One 2015; 10:e0141885. [PMID: 26540160 PMCID: PMC4635018 DOI: 10.1371/journal.pone.0141885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is essential for diverse cellular functions and cellular and whole-body cholesterol homeostasis is highly controlled. Cholesterol can also influence cellular susceptibility to injury. The connection between cholesterol metabolism and inflammation is exemplified by the Tm7sf2 gene, the absence of which reveals an essential role in cholesterol biosynthesis under stress conditions but also results in an inflammatory phenotype, i.e. NF-κB activation and TNFα up-regulation. Here, by using Tm7sf2+/+and Tm7sf2−/− mice, we investigated whether the Tm7sf2 gene, through its role in cholesterol biosynthesis under stress conditions, is involved in the renal failure induced by the administration of LPS. We found that the loss of Tm7sf2 gene results in significantly reduced blood urea nitrogen levels accompanied by decreased renal inflammatory response and neutral lipid accumulation. The increased expression of fatty acids catabolic enzymes reduces the need of the renal autophagy, a known crucial nutrient-sensing pathway in lipid metabolism. Moreover, we observed that the Tm7sf2 insufficiency is responsible for the inhibition of the NF-κB signalling thus dampening the inflammatory response and leading to a reduced renal damage. These results suggest a pivotal role for Tm7sf2 in renal inflammatory and lipotoxic response under endotoxemic conditions.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Matthew J. Peirce
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06124 Perugia, Italy
- * E-mail:
| |
Collapse
|
245
|
Recent knowledge on the pathophysiology of septic acute kidney injury: A narrative review. J Crit Care 2015; 31:82-9. [PMID: 26475099 DOI: 10.1016/j.jcrc.2015.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 09/13/2015] [Indexed: 01/03/2023]
Abstract
Sepsis is the commonest cause of acute kidney injury in critically ill patients. Its pathophysiology is complex and not well understood. Until recently, it was believed that kidney hypoperfusion is the major contributor of septic acute kidney injury. However, recent publications have improved our understanding on this topic. We now know that its mechanisms included the following: (1) renal macrocirculatory and microcirculatory disturbance, (2) surge of inflammatory markers and oxidative stress, (3) coagulation cascade activation, and (4) bioenergetics adaptive response with controlled cell-cycle arrest aiming to prevent cell death. Uncovering these complicated mechanisms may facilitate the development of more appropriate therapeutic measures in the future.
Collapse
|
246
|
Cao Y, Fei D, Chen M, Sun M, Xu J, Kang K, Jiang L, Zhao M. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury. FEBS J 2015. [PMID: 26198480 DOI: 10.1111/febs.13379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanhui Cao
- Department of ICU; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Dongsheng Fei
- Department of ICU; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Mingwei Chen
- Department of Anatomy; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Miao Sun
- Department of Medical Records; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Jun Xu
- Department of Orthopaedics; The Second Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Kai Kang
- Department of ICU; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Lei Jiang
- Department of ICU; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| | - Mingyan Zhao
- Department of ICU; The First Affiliated Hospital of Harbin Medical University; Heilongjiang Province China
| |
Collapse
|
247
|
Sverrisson K, Axelsson J, Rippe A, Asgeirsson D, Rippe B. Acute reactive oxygen species (ROS)-dependent effects of IL-1β, TNF-α, and IL-6 on the glomerular filtration barrier (GFB) in vivo. Am J Physiol Renal Physiol 2015; 309:F800-6. [PMID: 26290366 DOI: 10.1152/ajprenal.00111.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
This study was performed to investigate the immediate actions of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 on the permeability of the glomerular filtration barrier (GFB) in rats and to test whether these actions are dependent upon the release of reactive oxygen species (ROS). In anesthetized rats, blood access was achieved and the left ureter was cannulated for urine collection. Rats were continuously infused intravenously with either IL-1β (0.4 and 2 μg·kg(-1)·h(-1)), TNF-α (0.4 and 2 μg·kg(-1)·h(-1)), or IL-6 (4 and 8 μg·kg(-1)·h(-1)), together with polydisperse FITC-Ficoll-70/400 and inulin for 1 h. Plasma and urine samples were analyzed by high performance size exclusion chromatography (HPSEC) for determination of glomerular sieving coefficients (θ). The glomerular filtration rate (GFR) was also assessed (51Cr-EDTA). In separate experiments, the superoxide scavenger tempol (30 mg·kg(-1)·h(-1)) was given before and during cytokine infusions. IL-1β and TNF-α caused rapid, partly reversible increases in glomerular permeability to large molecules (Ficoll50-80Å), peaking at 5-30 min, while IL-6 caused a more gradual increase in permeability, leveling off at 60 min. Tempol almost completely abrogated the glomerular permeability effects of the cytokines infused. In conclusion IL-1β, TNF-α, and IL-6, when infused systemically, caused immediate and partly reversible increases in glomerular permeability, which could be inhibited by the superoxide scavenger tempol, suggesting an important role of ROS in acute cytokine-induced permeability changes in the GFB.
Collapse
Affiliation(s)
| | | | - Anna Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| | | | - Bengt Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| |
Collapse
|
248
|
Chousterman BG, Boissonnas A, Poupel L, Baudesson de Chanville C, Adam J, Tabibzadeh N, Licata F, Lukaszewicz AC, Lombès A, Deterre P, Payen D, Combadière C. Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism. J Am Soc Nephrol 2015; 27:792-803. [PMID: 26160897 DOI: 10.1681/asn.2015010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| | - Lucie Poupel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julien Adam
- Institut Gustave-Roussy, Université Paris-Sud Villejuif, France
| | - Nahid Tabibzadeh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Service des Explorations Fonctionnelles and Institut National de la Santé et de la Recherche Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France; and
| | - Fabrice Licata
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Anne-Claire Lukaszewicz
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Amélie Lombès
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Deterre
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Didier Payen
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| |
Collapse
|
249
|
Bienholz A, Wilde B, Kribben A. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury. Clin Kidney J 2015; 8:405-14. [PMID: 26251707 PMCID: PMC4515898 DOI: 10.1093/ckj/sfv043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with multiple entities. Although AKI implies renal damage, functional impairment or both, diagnosis is solely based on the functional parameters of serum creatinine and urine output. The latest definition was provided by the Kidney Disease Improving Global Outcomes (KDIGO) working group in 2012. Independent of the underlying disease, and even in the case of full recovery, AKI is associated with an increased morbidity and mortality. Awareness of the patient's individual risk profile and the diversity of causes and clinical features of AKI is pivotal for optimization of prophylaxes, diagnosis and therapy of each form of AKI. A differentiated and individualized approach is required to improve patient mortality, morbidity, long-term kidney function and eventually the quality of life. In this review, we provide an overview of the different clinical settings in which specific forms of AKI may occur and point out possible diagnostic as well as therapeutic approaches. Secifically AKI is discussed in the context of non-kidney organ failure, organ transplantation, sepsis, malignancy and autoimmune disease.
Collapse
Affiliation(s)
- Anja Bienholz
- Clinic of Nephrology , University Hospital Essen, University Duisburg-Essen , Essen , Germany
| | - Benjamin Wilde
- Clinic of Nephrology , University Hospital Essen, University Duisburg-Essen , Essen , Germany
| | - Andreas Kribben
- Clinic of Nephrology , University Hospital Essen, University Duisburg-Essen , Essen , Germany
| |
Collapse
|
250
|
Nasioudis D, Witkin SS. Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections. Med Microbiol Immunol 2015; 204:471-9. [PMID: 25716557 DOI: 10.1007/s00430-015-0394-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), an essential component of the antimicrobial innate immune system, is present in neutrophils and multiple other tissues. It prevents iron acquisition by microorganisms by sequestering iron-loaded bacterial siderophores. NGAL also modulates neutrophil functions. Its production is inducible following Toll-like receptor 4 activation and release of pro-inflammatory cytokines. NGAL is employed clinically in the diagnosis of acute kidney injury and may be useful in general in the differential diagnosis of a bacterial-mediated infectious process. Elevated levels of NGAL have been detected in the blood of patients with bacterial urinary tract infection, community-acquired pneumonia, sepsis, as well as in the cerebrospinal fluid and peritoneal fluid of patients with bacterial meningitis and peritonitis. Some bacteria have developed resistance to NGAL-mediated iron sequestration by production of modified siderophores that are not recognized by NGAL.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 525 East 68th Street, New York, NY, 10065, USA
| | | |
Collapse
|