201
|
Hernández-Barrueta T, Martínez-Bustos F, Castaño-Tostado E, Lee Y, Miller MJ, Amaya-Llano SL. Encapsulation of probiotics in whey protein isolate and modified huauzontle's starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
202
|
Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: study in Caco-2 and H357 cells. Arch Microbiol 2020; 202:1349-1357. [PMID: 32152646 DOI: 10.1007/s00203-020-01846-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to assess adhesion and anti-adhesion, aggregation, and surface properties of four selected oral Lactobacillus strains, L. fermentum SD7, L. paracasei SD1, L. rhamnosus SD4, and L. rhamnosus SD11, together with Lactobacillus rhamnosus GG. Human cells, enterocytes Caco-2 and oral keratinocyte H357 were used, and various enteric and oral pathogens were included. Results showed that all Lactobacillus tested gave high adhesion and internalization in both Caco-2 and H357 cells similar to L. rhamnosus GG, and it suggests that such properties are strain dependent and specific to host cells. Anti-adhesion was different; it depended on the internalization ability of individual Lactobacillus and pathogenic strains to Caco-2 and H357. Coaggregation ability depended on autoaggregation of both the Lactobacillus and pathogenic strains. A positive correlation between surface charges and aggregation, and internalization and anti-adhesion of all Lactobacillus was found. In conclusion, results suggests that the selected Lactobacillus might be potential probiotics for usage in both the oral cavity and intestinal tract due to their abilities of aggregation, adherence and anti-internalization to both Caco-2 and H357 cells.
Collapse
|
203
|
Mekonnen SA, Merenstein D, Fraser CM, Marco ML. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 2020; 61:226-234. [PMID: 32087535 DOI: 10.1016/j.copbio.2020.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Antibiotic-associated diarrhea (AAD) is a common and unintended adverse effect of antibiotic treatment. It is characterized by the disruption of the gut microbiota, decreased intestinal short chain fatty acid (SCFA) concentrations, accumulation of luminal carbohydrates and colonic bile acids, altered water absorption, and ultimately diarrhea. Probiotics were shown to prevent AAD in numerous clinical trials. This review examines what is currently known about how probiotics reduce the risk for AAD via modulating the gut microbiota, altering nutrient and bile acid metabolism, inducing epithelial solute transporter activity, supporting intestinal barrier function, and influencing the immune system. Although probiotics are frequently prescribed with antibiotic use, mechanistic evidence verifying how they confer protection against AAD is extremely limited. This information is urgently needed for improving recommendations for sustaining probiotic development and for implementing probiotics in clinical settings.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Claire M Fraser
- Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
204
|
Abstract
PURPOSE OF REVIEW Probiotics are promising remedial treatments for symptoms of small intestine (SI) diseases and promoters of overall good health. Probiotics play an important role in supporting a healthy SI microbiome (eubiosis), and in preventing establishment of unhealthy microbiota. SI eubiosis promotes optimal nutrient uptake, and optimal nutritional status maintains a healthy SI, reducing the likelihood of SI diseases. It is important to understand the advantages and limitations of probiotic therapies. RECENT FINDINGS Microbial dysbiosis decreases the capacity of the small bowel to utilize and absorb dietary compounds. In some studies, probiotic supplements containing lactic acid bacteria and Bifidobacterium have been demonstrated effective in supporting beneficial microbes in the SI while improving barrier integrity and reducing nutrient malabsorption and SI disease-related pathology. Strain-specific probiotic therapy may be a natural and effective approach to restoring SI barrier integrity and eubiosis, resulting in improved nutrient absorption and better health, including reducing the incidence of and severity of SI diseases.
Collapse
Affiliation(s)
- Taylor C Judkins
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | - Douglas L Archer
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | | | - Rebecca J Solch
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA.
| |
Collapse
|
205
|
Rocha-Ramírez LM, Hernández-Ochoa B, Gómez-Manzo S, Marcial-Quino J, Cárdenas-Rodríguez N, Centeno-Leija S, García-Garibay M. Evaluation of Immunomodulatory Activities of the Heat-Killed Probiotic Strain Lactobacillus casei IMAU60214 on Macrophages In Vitro. Microorganisms 2020; 8:microorganisms8010079. [PMID: 31936101 PMCID: PMC7022880 DOI: 10.3390/microorganisms8010079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
Most Lactobacillus species have beneficial immunological (“immunoprobiotic”) effects in the host. However, it is unclear how probiotic bacteria regulate immune responses. The present study investigated the effects of heat-killed Lactobacillus casei IMAU60214 on the activity of human monocyte-derived macrophages (MDMs). Human MDMs were treated with heat-killed L. casei at a ratio (bacteria/MDM) of 50:1, 100:1, 250:1, and 500:1, and then evaluated for the following: NO production, by Griess reaction; phagocytosis of FITC-labeled Staphylococcus aureus particles; cytokine secretion profile (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12p70, IL-10, and transforming growth factor (TGF)-β) by ELISA; and costimulatory molecule (CD80 and CD86) surface expression, by flow cytometry. Heat-killed L. casei IMAU60214 enhanced phagocytosis, NO production, cytokine release, and surface expression of CD80 and CD86 in a dose-dependent manner. All products were previously suppressed by pretreatment with a Toll-like receptor 2 (TLR2)-neutralizing antibody. Overall, our findings suggest that this probiotic strain promotes an M1-like pro-inflammatory phenotype through the TLR2 signaling pathway. These effects on macrophage phenotype help explain the probiotic efficacy of Lactobacillus and provide important information for the selection of therapeutic targets and treatments compatible with the immunological characteristics of this probiotic strain.
Collapse
Affiliation(s)
- Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico
- Correspondence: ; Tel.: +52-55-5228-9917 (ext. 2084)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México 04530, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Sara Centeno-Leija
- Consejo Nacional Ciencia y Tecnologia (CONACYT) Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Mexico;
| | - Mariano García-Garibay
- Departamento de Ciencias de la Alimentación, Unidad Lerma, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col Vicentina, Ciudad de México 09340, Mexico;
| |
Collapse
|
206
|
Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T, Zhang L, Zhou G, Pan C, He L, Cai J, Zhang X, Barve S, McClain CJ, Chen Y, Feng W. Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. J Nutr Biochem 2019; 75:108256. [PMID: 31760308 DOI: 10.1016/j.jnutbio.2019.108256] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/01/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
High-fat/high-fructose diet plus intermittent hypoxia exposure (HFDIH) causes metabolic disorders such as insulin resistance, obesity, nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. The purpose of this study is to examine the effects and understand the mechanism of action of Lactobacillus rhamnosus GG culture supernatant (LGGs) on HFDIH-induced metabolic dysfunction. Mice were fed high-fat:high-fructose diet for 15 weeks. After 3 weeks of feeding, the mice were exposed to chronic intermittent hypoxia for the next 12 weeks (HFDIH), and LGGs was supplemented over the entire experiment. HFDIH exposure significantly led to metabolic disorders. LGGs treatment showed significant improvements in indices of metabolic disorders including fat mass, energy expenditure, glucose intolerance, insulin resistance, increased hepatic steatosis and liver injury. HFDIH mice markedly increased adipose inflammation and adipocyte size, and reduced circulating adiponectin, which was restored by LGGs treatment. LGGs treatment increased hepatic FGF21 mRNA expression and circulating FGF21 protein levels, which were associated with increased hepatic PPARα expression and fecal butyrate concentration. In addition, HFDIH-induced hepatic fat accumulation and apoptosis were significantly reduced by LGGs supplementation. In summary, LGGs treatment increased energy expenditure and insulin sensitivity and prevented metabolic abnormalities in HFDIH mice, and this is associated with the FGF21-adiponectin signaling pathway. LGGs may be a potential prevention/treatment strategy in subjects with the metabolic syndrome.
Collapse
Affiliation(s)
- Qi Liu
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Fengyuan Li
- Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Min Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Guangyao Zhou
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Chengwei Pan
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA; Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Robley Rex VA medical Center, Louisville, KY, USA
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
207
|
Fijan S, Frauwallner A, Varga L, Langerholc T, Rogelj I, Lorber M, Lewis P, Povalej Bržan P. Health Professionals' Knowledge of Probiotics: An International Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173128. [PMID: 31466273 PMCID: PMC6747149 DOI: 10.3390/ijerph16173128] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
The objective of this study was to survey health professionals to investigate their knowledge of probiotics. An online survey was conducted to gather data on the knowledge of health professionals. The online survey was distributed via email and social media platforms using snowball sampling. A total of 1066 health professionals (859; 80.6% female) from 30 countries responded to the survey. Most of the respondents evaluated their knowledge of probiotics as medium (36.4%) or good (36.2%). Only 8.9% of the respondents rated it as excellent. No statistical difference in knowledge was found between male and female health professionals. Over 80% of pharmacists, allied health professionals, medical doctors and dentists, and other health professionals knew the correct definition of probiotics as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”, whereas three quarters of registered nurses and midwives and less than two thirds of psychologists identified the correct definition. Statistically, more female than male health professionals knew the correct definition of probiotics. The most frequently recognized species of bacteria containing probiotic strains were Lactobacillus acidophilus (92%), Bifidobacterium bifidum (82%), and Lactobacillus rhamnosus (62%). The opinions on when it is best to take probiotics were different (χ2 = 28.375; p < 0.001), with 90.2% of respondents identifying that probiotics have beneficial effects if taken during antibiotic therapy, 83.5% for diarrhea, 70.6% for constipation, 63.3% before traveling abroad, and 60.4% for treating allergies. Almost 79% of health professionals involved in this study have advised their patients to use probiotics and 57.5% of the respondents wanted to learn more about probiotics. All things considered, health professionals have a medium level of knowledge of probiotics, which could be improved by the implementation of targeted learning programs. As probiotics have many beneficial effects in a wide range of health areas, health professionals need to adopt the use of probiotics in clinical practice.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| | - Anita Frauwallner
- Institut Allergosan, Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Gmeinstrasse 13, 8055 Graz, Austria
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, Lucsony u. 15-17., 9200 Mosonmagyaróvár, Hungary
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Irena Rogelj
- Institute of Dairy Science and Probiotics, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Mateja Lorber
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Peter Lewis
- School of Nursing and Midwifery, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Petra Povalej Bržan
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
208
|
Rossi F, Amadoro C, Colavita G. Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms 2019; 7:E126. [PMID: 31083452 PMCID: PMC6560513 DOI: 10.3390/microorganisms7050126] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Microorganisms belonging to the Lactobacillus genus complex (LGC) are naturally associated or deliberately added to fermented food products and are widely used as probiotic food supplements. Moreover, these bacteria normally colonize the mouth, gastrointestinal (GI) tract, and female genitourinary tract of humans. They exert multiple beneficial effects and are regarded as safe microorganisms. However, infections caused by lactobacilli, mainly endocarditis, bacteremia, and pleuropneumonia, occasionally occur. The relevance of Lactobacillus spp. and other members of the LGC as opportunistic pathogens in humans and related risk factors and predisposing conditions are illustrated in this review article with more emphasis on the species L. rhamnosus that has been more often involved in infection cases. The methods used to identify this species in clinical samples, to distinguish strains and to evaluate traits that can be associated to pathogenicity, as well as future perspectives for improving the identification of potentially pathogenic strains, are outlined.
Collapse
Affiliation(s)
- Franca Rossi
- Diagnostica Specialistica, Sezione di Isernia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", C.da Breccelle Snc, 86170 Isernia, Italy.
| | - Carmela Amadoro
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| | - Giampaolo Colavita
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| |
Collapse
|
209
|
Okai C, Itani Y, Furuta A, Mizunoe Y, Iwase T. Rapid Identification and Quantification of Lactobacillus rhamnosus by Real-Time PCR Using a TaqMan Probe. Jpn J Infect Dis 2019; 72:323-325. [PMID: 31061362 DOI: 10.7883/yoken.jjid.2019.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactobacillus rhamnosus is a gram-positive, rod-shaped bacterium and is commonly used as a probiotic to maintain intestinal health. Recently, surveillance of Lactobacillus bacteremia was conducted using a biochemical test and conventional PCR assay; however, these assays are unable to quantify the target and might yield a false positive result. In this study, we developed an L. rhamnosus-specific quantitative PCR assay, which yields accurate and reproducible results on the basis of the specificity of a TaqMan probe targeting the unique 16S rDNA sequence of L. rhamnosus. The assay specifically detected the target bacterium, L. rhamnosus, and no nonspecific signals were generated under the assay conditions. With genomic DNA from the cells of L. rhamnosus (101 to 106 cells), the threshold cycle values showed a linear dependence (R2 = 0.9993). This L. rhamnosus-specific quantitative PCR assay can advance the research into the effects of this microorganism on microflora, microbial infections, and on the host.
Collapse
Affiliation(s)
- Chiaki Okai
- Department of Bacteriology, The Jikei University School of Medicine.,Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine
| | - Yoshiro Itani
- Department of Bacteriology, The Jikei University School of Medicine.,Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine
| | - Akira Furuta
- Department of Urology, The Jikei University School of Medicine
| | | | - Tadayuki Iwase
- Department of Bacteriology, The Jikei University School of Medicine.,Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine
| |
Collapse
|