201
|
Izumi M, Dedola S, Ito Y, Kajihara Y. Chemical Synthesis of Homogeneous Glycoproteins for the Study of Glycoprotein Quality Control System. Isr J Chem 2015. [DOI: 10.1002/ijch.201400154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
202
|
Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
203
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
204
|
Gupta P, Deep S. Salt mediated unusual switching in the aggregation kinetic profile of human carbonic anhydrase. RSC Adv 2015. [DOI: 10.1039/c5ra17794d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aggregation pathway of human carbonic anhydrase II in the presence of salt.
Collapse
Affiliation(s)
- Preeti Gupta
- Department of Chemistry
- Indian Institute of Technology, Delhi
- New Delhi
- India
| | - Shashank Deep
- Department of Chemistry
- Indian Institute of Technology, Delhi
- New Delhi
- India
| |
Collapse
|
205
|
Yaseen Z, Rehman SU, Tabish M, Shalla AH, Kabir-ud-Din KUD. Modulation of bovine serum albumin fibrillation by ester bonded and conventional gemini surfactants. RSC Adv 2015. [DOI: 10.1039/c5ra08923a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of bovine serum albumin fibrillation by gemini surfactants.
Collapse
Affiliation(s)
- Zahid Yaseen
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Aabid H. Shalla
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | | |
Collapse
|
206
|
Kumar D, R. Kundapur R. Importance of Natural Proteins in Infectious Diseases. BIOMEDICAL APPLICATIONS OF NATURAL PROTEINS 2015. [PMCID: PMC7123379 DOI: 10.1007/978-81-322-2491-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proteins are important biomolecules, extensively involved in almost all biological processes. A number of proteins are also implicated in infectious diseases. Bacterial proteins used in adhesion to host epithelium, bacterial toxins, and viral membrane glycoproteins are some of the proteins involved in infectious diseases. Even components of the host innate immune system like Toll-like receptors and Nod-like receptors and adaptive immune components like immunoglobulins aiding in defense against pathogens are important biological proteins. Chaperones like acid and heat shock proteins provide protection from high temperatures, metabolic poisons, and other stressful conditions. Several natural and artificial proteins are components of vaccines, a key strategy to control fatal diseases, lacking empirical treatment. It is necessary to investigate these proteins, to develop new biomedical tools and technologies, aiding in eradication of various diseases. Thus, further research should be carried out in this field, for saving and improving quality of human lives.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Zoology, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
| | - Rajesh R. Kundapur
- Department of Molecular Biology, National AIDS Research Institute, Pune, Maharashtra India
| |
Collapse
|
207
|
|
208
|
Joshi P, Vendruscolo M. Druggability of Intrinsically Disordered Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:383-400. [DOI: 10.1007/978-3-319-20164-1_13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
209
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
210
|
Jordens S, Riley EE, Usov I, Isa L, Olmsted PD, Mezzenga R. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation. ACS NANO 2014; 8:11071-9. [PMID: 25338060 DOI: 10.1021/nn504249x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein fibril accumulation at interfaces is an important step in many physiological processes and neurodegenerative diseases as well as in designing materials. Here we show, using β-lactoglobulin fibrils as a model, that semiflexible fibrils exposed to a surface do not possess the Gaussian distribution of curvatures characteristic for wormlike chains, but instead exhibit a spontaneous curvature, which can even lead to ring-like conformations. The long-lived presence of such rings is confirmed by atomic force microscopy, cryogenic scanning electron microscopy, and passive probe particle tracking at air- and oil-water interfaces. We reason that this spontaneous curvature is governed by structural characteristics on the molecular level and is to be expected when a chiral and polar fibril is placed in an inhomogeneous environment such as an interface. By testing β-lactoglobulin fibrils with varying average thicknesses, we conclude that fibril thickness plays a determining role in the propensity to form rings.
Collapse
Affiliation(s)
- Sophia Jordens
- Department of Health Sciences & Technology, Laboratory of Food & Soft Materials, ETH Zurich , 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
211
|
Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM. A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. Biochemistry 2014; 53:7170-83. [PMID: 25389903 PMCID: PMC4245978 DOI: 10.1021/bi5009326] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/25/2014] [Indexed: 12/02/2022]
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation is implicated in Parkinson's disease. A second member of the synuclein family, β-synuclein, shares significant sequence similarity with α-synuclein but is much more resistant to aggregation. β-Synuclein is missing an 11-residue stretch in the central non-β-amyloid component region that forms the core of α-synuclein amyloid fibrils, yet insertion of these residues into β-synuclein to produce the βSHC construct does not markedly increase the aggregation propensity. To investigate the structural basis of these different behaviors, quantitative nuclear magnetic resonance data, in the form of paramagnetic relaxation enhancement-derived interatomic distances, are combined with molecular dynamics simulations to generate ensembles of structures representative of the solution states of α-synuclein, β-synuclein, and βSHC. Comparison of these ensembles reveals that the differing aggregation propensities of α-synuclein and β-synuclein are associated with differences in the degree of residual structure in the C-terminus coupled to the shorter separation between the N- and C-termini in β-synuclein and βSHC, making protective intramolecular contacts more likely.
Collapse
Affiliation(s)
| | | | | | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
212
|
Liu Y, Carver JA, Ho LH, Elias AK, Musgrave IF, Pukala TL. Hemin as a generic and potent protein misfolding inhibitor. Biochem Biophys Res Commun 2014; 454:295-300. [DOI: 10.1016/j.bbrc.2014.10.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/15/2022]
|
213
|
Kokona B, Rosenthal ZP, Fairman R. Role of the coiled-coil structural motif in polyglutamine aggregation. Biochemistry 2014; 53:6738-46. [PMID: 25310851 DOI: 10.1021/bi500449a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyglutamine repeat motifs are known to induce protein aggregation in various neurodegenerative diseases, and flanking sequences can modulate this behavior. It has been proposed that the 17 N-terminal residues (Htt(NT)) of the polyglutamine-containing huntingtin protein accelerate the kinetics of aggregation due to the formation of helix-rich oligomers through helix-pairing interactions. Several hypotheses that explain the role of helical interactions in modulating aggregation have been proposed. These include (1) an increase in the effective concentration of polyglutamine chains (proximity model), (2) the induction of helical structure within the polyglutamine domain itself (transformation model), and/or (3) interdomain interactions between the flanking sequence and the polyglutamine domain (domain cross-talk model). These hypotheses are tested by studying the kinetics of polyglutamine aggregation using a Q25 sequence fused to a well-defined heterotetrameric coiled-coil model system. Using a combined spectroscopic and dye binding approach, it is shown that stable coiled-coil formation strongly inhibits polyglutamine aggregation, suggesting that the proximity and transformation models are insufficient to explain the enhanced aggregation seen in Htt(NT)-polyglutamine constructs. Consistent with other published work, our data support a model in which domain cross-talk prevents formation of a nonspecific aggregated collapsed polyglutamine state, which can act to inhibit conversion to a fibrillar state. Because our model system has a charged to nonpolar residue ratio much higher than that of the Htt(NT) sequence, domain cross-talk is severely weakened, thus favoring the nonspecific aggregation pathway and significantly inhibiting aggregation through a fibrillar pathway.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College , 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | | | | |
Collapse
|
214
|
Kokona B, Johnson KA, Fairman R. Effect of helical flanking sequences on the morphology of polyglutamine-containing fibrils. Biochemistry 2014; 53:6747-53. [PMID: 25207433 DOI: 10.1021/bi501066q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A peptide model system has been developed to study the effects of helical flanking sequences on polyglutamine aggregation. In a companion manuscript, the kinetics of aggregation are described, comparing the influence of a well-defined heterotetrameric coiled coil to that of the helix-rich structure found in Htt(NT), a 17-residue flanking sequence found in the huntingtin protein, on polyglutamine aggregation. Here, the morphological characterization of the resultant fibrils that form for a set of peptides is reported, only one of which, KKQ25KK, has been previously studied. A careful analysis of TEM and AFM images of KKQ25KK confirms that it forms bundled fibrils of varying length and reveals, unexpectedly, that they are composed of fully extended cross-β-strands. Second, it is shown that helical flanking sequences do not disrupt the assembly of a core cross-β-sheet structure, but such flanking sequences can influence higher order processes, such as inhibiting the bundling of the fibrils.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College , 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | | | | |
Collapse
|
215
|
Gopinath RK, You ST, Chien KY, Swamy KBS, Yu JS, Schuyler SC, Leu JY. The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity. Genome Biol Evol 2014; 6:2851-65. [PMID: 25316598 PMCID: PMC4224352 DOI: 10.1093/gbe/evu226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 is one of the most abundant and conserved proteins in the cell. Reduced levels or activity of Hsp90 causes defects in many cellular processes and also reveals genetic and nongenetic variation within a population. Despite information about Hsp90 protein–protein interactions, a global view of the Hsp90-regulated proteome in yeast is unavailable. To investigate the degree of dependency of individual yeast proteins on Hsp90, we used the “stable isotope labeling by amino acids in cell culture” method coupled with mass spectrometry to quantify around 4,000 proteins in low-Hsp90 cells. We observed that 904 proteins changed in their abundance by more than 1.5-fold. When compared with the transcriptome of the same population of cells, two-thirds of the misregulated proteins were observed to be affected posttranscriptionally, of which the majority were downregulated. Further analyses indicated that the downregulated proteins are highly conserved and assume central roles in cellular networks with a high number of protein interacting partners, suggesting that Hsp90 buffers genetic and nongenetic variation through regulating protein network hubs. The downregulated proteins were enriched for essential proteins previously not known to be Hsp90-dependent. Finally, we observed that downregulation of transcription factors and mating pathway components by attenuating Hsp90 function led to decreased target gene expression and pheromone response, respectively, providing a direct link between observed proteome regulation and cellular phenotypes.
Collapse
Affiliation(s)
- Rajaneesh Karimpurath Gopinath
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting You
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
216
|
Boulet-Audet M, Byrne B, Kazarian SG. High-throughput thermal stability analysis of a monoclonal antibody by attenuated total reflection FT-IR spectroscopic imaging. Anal Chem 2014; 86:9786-93. [PMID: 25221926 PMCID: PMC4218712 DOI: 10.1021/ac502529q] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/15/2014] [Indexed: 01/03/2023]
Abstract
The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery, protein aggregation can have major effects on drug potency and cause highly undesirable immunological effects. It is thus essential to identify processing conditions which maximize recovery while avoiding aggregation. Heat resistance is a proxy for long-term aggregation propensity. Thermal stability assays are routinely performed using various spectroscopic and scattering detection methods. Here, we evaluated the potential of macro attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging as a novel method for the high-throughput thermal stability assay of a monoclonal antibody. This chemically specific visualization method has the distinct advantage of being able to discriminate between monomeric and aggregated protein. Attenuated total reflection is particularly suitable for selectively probing the bottom of vessels, where precipitated aggregates accumulate. With focal plane array detection, we tested 12 different buffer conditions simultaneously to assess the effect of pH and ionic strength on protein thermal stability. Applying the Finke model to our imaging kinetics allowed us to determine the rate constants of nucleation and autocatalytic growth. This analysis demonstrated the greater stability of our immunoglobulin at higher pH and moderate ionic strength, revealing the key role of electrostatic interactions. The high-throughput approach presented here has significant potential for analyzing the stability of biotherapeutics as well as any other biological molecules prone to aggregation.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
| |
Collapse
|
217
|
Grasso G. Monitoring the biomolecular interactions and the activity of Zn-containing enzymes involved in conformational diseases: experimental methods for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:115-42. [PMID: 25458357 DOI: 10.1016/bs.apcsb.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates/inhibitors and how environmental factors can affect enzyme activities. In this scenario, nuclear magnetic resonance, X-ray diffraction, mass spectrometric (MS), and optical methods occupy a very important role in elucidating different aspects of the ZnMPs-substrates/inhibitors interaction, ranging from identification of cleavage sites to quantitation of kinetic parameters and inhibition constants. Here, an overview of all the main achievements in the application of different experimental approaches with special attention to MS methods to the investigation of ZnMPs-substrates/inhibitors interaction is given. A general MS experimental protocol which has been proved to be useful to study such interactions is also described.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
218
|
Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53. Biochemistry 2014; 53:5995-6010. [PMID: 25181279 DOI: 10.1021/bi500825d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein aggregation and amyloid formation are known to play a role both in diseases and in biological functions. Transcription factor p53 plays a major role in tumor suppression by maintaining genomic stability. Recent studies have suggested that amyloid formation of p53 could lead to its loss of physiological function as a tumor suppressor. Here, we investigated the intrinsic amyloidogenic nature of wild-type p53 using sequence analysis. We used bioinformatics and aggregation prediction algorithms to establish the evolutionarily conserved nature of aggregation-prone sequences in wild-type p53. Further, we analyzed the amyloid forming capacity of conserved and aggregation-prone p53-derived peptides PILTIITL and YFTLQI in vitro using various biophysical techniques, including all atom molecular dynamics simulation. Finally, we probed the seeding ability of the PILTIITL peptide on p53 aggregation in vitro and in cells. Our data demonstrate the intrinsic amyloid forming ability of a sequence stretch of the p53 DNA binding domain (DBD) and its aggregation templating behavior on full-length and p53 core domain. Therefore, p53 aggregation, instigated through an amyloidogenic segment in its DBD, could be a putative driving force for p53 aggregation in vivo.
Collapse
|
219
|
Iannuzzi C, Irace G, Sirangelo I. Differential effects of glycation on protein aggregation and amyloid formation. Front Mol Biosci 2014; 1:9. [PMID: 25988150 PMCID: PMC4428487 DOI: 10.3389/fmolb.2014.00009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Amyloids are a class of insoluble proteinaceous substances generally composed of linear un-branched fibrils that are formed from misfolded proteins. Conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis are associated with the presence of amyloid aggregates in the affected tissues. The majority of the cases are sporadic, suggesting that several factors must contribute to the onset and progression of these disorders. Among them, in the past 10 years, non-enzymatic glycation of proteins has been reported to stimulate protein aggregation and amyloid deposition. In this review, we analyze the most recent advances in this field suggesting that the effects induced by glycation may not be generalized as strongly depending on the protein structure. Indeed, being a post-translational modification, glycation could differentially affects the aggregation process in promoting, accelerating and/or stabilizing on-pathway and off-pathway species.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| |
Collapse
|
220
|
Khan MV, Rabbani G, Ahmad E, Khan RH. Fluoroalcohols-induced modulation and amyloid formation in conalbumin. Int J Biol Macromol 2014; 70:606-14. [DOI: 10.1016/j.ijbiomac.2014.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
221
|
Vajda T, Perczel A. Role of water in protein folding, oligomerization, amyloidosis and miniprotein. J Pept Sci 2014; 20:747-59. [PMID: 25098401 DOI: 10.1002/psc.2671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023]
Abstract
The essential involvement of water in most fundamental extra-cellular and intracellular processes of proteins is critically reviewed and evaluated in this article. The role of water in protein behavior displays structural ambivalence; it can protect the disordered peptide-chain by hydration or helps the globular chain-folding, but promotes also the protein aggregation, as well (see: diseases). A variety of amyloid diseases begins as benign protein monomers but develops then into toxic amyloid aggregates of fibrils. Our incomplete knowledge of this process emphasizes the essential need to reveal the principles of governing this oligomerization. To understand the biophysical basis of the simpler in vitro amyloid formation may help to decipher also the in vivo way. Nevertheless, to ignore the central role of the water's effect among these events means to receive an uncompleted picture of the true phenomenon. Therefore this review represents a stopgap role, because the most published studies--with a few exceptions--have been neglected the crucial importance of water in the protein research. The following questions are discussed from the water's viewpoint: (i) interactions between water and proteins, (ii) protein hydration/dehydration, (iii) folding of proteins and miniproteins, (iv) peptide/protein oligomerization, and (v) amyloidosis.
Collapse
Affiliation(s)
- Tamás Vajda
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University and Laboratory of Structural Chemistry & Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | | |
Collapse
|
222
|
Kobayashi Y, Tsutsumi H, Abe T, Ikeda K, Tashiro Y, Unzai S, Kamikubo H, Kataoka M, Hiroaki H, Hamada D. Decreased amyloidogenicity caused by mutational modulation of surface properties of the immunoglobulin light chain BRE variable domain. Biochemistry 2014; 53:5162-73. [PMID: 25062800 DOI: 10.1021/bi5007892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid formation by immunoglobulin light chain (LC) proteins is associated with amyloid light chain (AL) amyloidosis. Destabilization of the native state of the variable domain of the LC (VL) is known to be one of the critical factors in promoting the formation of amyloid fibrils. However, determining the key residues involved in this destabilization remains challenging, because of the existence of a number of intrinsic sequence variations within VL. In this study, we identified the key residues for destabilization of the native state of amyloidogenic VL in the LC of BRE by analyzing the stability of chimeric mutants of BRE and REI VL; the latter immunoglobulin is not associated with AL amyloidosis. The results suggest that the surface-exposed residues N45 and D50 are the key residues in the destabilization of the native state of BRE VL. Point mutations at the corresponding residues in REI VL (K45N, E50D, and K45N/E50D) destabilized the native state and increased amyloidogenicity. However, the reverse mutations in BRE VL (N45K, D50E, and N45K/D50E) re-established the native state and decreased amyloidogenicity. Thus, analyses using chimeras and point mutants successfully elucidated the key residues involved in BRE VL destabilization and increased amyloidogenic propensity. These results also suggest that the modulation of surface properties of wild-type VL may improve their stability and prevent the formation of amyloid fibrils.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Division of Structural Biology, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University , 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Navarra G, Tinti A, Di Foggia M, Leone M, Militello V, Torreggiani A. Metal ions modulate thermal aggregation of beta-lactoglobulin: A joint chemical and physical characterization. J Inorg Biochem 2014; 137:64-73. [DOI: 10.1016/j.jinorgbio.2014.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
224
|
Brooks DR, Hoberg EP, Boeger WA, Gardner SL, Galbreath KE, Herczeg D, Mejía-Madrid HH, Rácz SE, Dursahinhan AT. Finding Them Before They Find Us: Informatics, Parasites, and Environments in Accelerating Climate Change. COMP PARASITOL 2014. [DOI: 10.1654/4724b.1] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
225
|
Jones DR, Moussaud S, McLean P. Targeting heat shock proteins to modulate α-synuclein toxicity. Ther Adv Neurol Disord 2014; 7:33-51. [PMID: 24409201 DOI: 10.1177/1756285613493469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is a slowly progressive neurodegenerative disorder typically characterized by the loss of dopaminergic neurons within the substantia nigra pars compacta, and the intraneuronal deposition of insoluble protein aggregates chiefly comprised of α-synuclein. Patients experience debilitating symptoms including bradykinesia, rigidity and postural instability. No curative treatment currently exists and therapeutic strategies are restricted to symptomatic treatment only. Over the past decade a class of molecular chaperones called the heat shock proteins has emerged as a potentially promising therapeutic target. Heat shock proteins aid in the folding and refolding of proteins, and target denatured proteins to degradation systems. By targeting heat shock proteins through various means including overexpression and pharmacological enhancement, researchers have shown that α-synuclein aggregation and its associated cytotoxicity can be therapeutically modulated in an array of cell and animal models. This review highlights the relevant progress in this field and discusses the relevance of heat shock proteins as therapeutic modulators of α-synuclein toxicity to the rapidly evolving understanding of Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Pamela McLean
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
226
|
Murugan NA. Solvatochromism in a Pyridinium Cyclopentadienylide: Insights from a Sequential Car–Parrinello QM/MM and TD-DFT/Semicontinuum Approach. J Phys Chem B 2014; 118:7358-66. [DOI: 10.1021/jp410854b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N. Arul Murugan
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691, Stockholm, Sweden
| |
Collapse
|
227
|
Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II. Biochem Biophys Res Commun 2014; 449:126-31. [DOI: 10.1016/j.bbrc.2014.04.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
|
228
|
Ghahghaei A, Valizadeh J, Nazari S, Ravandeh M. Chaperone potential of Pulicaria undulata extract in preventing aggregation of stressed proteins. AAPS PharmSciTech 2014; 15:658-64. [PMID: 24599512 DOI: 10.1208/s12249-014-0090-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022] Open
Abstract
This study examined the effect of an aqueous extract of Pulicaria undulata on the 1,4-dithiothreitol (DTT)-induced aggregation of proteins. The effects of the chaperone properties of P. undulata extract on protein aggregation were determined by measuring light scattering absorption, fluorescence, and circular dichroism (CD) spectroscopy. The aqueous extract of P. undulata possesses good chaperone properties but the protection effect was varied in different protein. The extract showed a higher level of protection in high molecular weight proteins than in those of low molecular weight. Using a fluorescence study, the present study provides information on the hydrophobic area of proteins interacting with the P. undulata extract. In fact, by increasing the concentration of the P. undulata extract, the hydrophic area of the protein decreased. CD spectroscopy also revealed that DTT caused changes in both the tertiary and the secondary structure of the proteins, while in the presence of P. undulata extract, there was little change. Our finding suggests the possibility of using P. undulata extract for the inhibition of aggregation and the deposition of protein in disease.
Collapse
|
229
|
Ghosh S, Pandey NK, Banerjee P, Chaudhury K, Nagy NV, Dasgupta S. Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions. J Biomol Struct Dyn 2014; 33:991-1007. [PMID: 24806136 DOI: 10.1080/07391102.2014.921864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hen egg white lysozyme (HEWL) adopts a molten globule-like state at high pH (~12.75) and is found to form amyloid fibrils at alkaline pH. Here, we report that Cu(II) inhibits self-association of HEWL at pH 12.75 both at 37 and 65 °C. A significant reduction in Thioflavin T fluorescence intensity, attenuation in β-sheet content and reduction in hydrophobic exposure were observed with increasing Cu(II) stoichiometry. Electron paramagnetic resonance spectroscopy suggests a 4N type of coordination pattern around Cu(II) during fibrillation. Cu(II) is also capable of altering the cytotoxicity of the proteinaceous aggregates. Fibrillar species of diverse morphology were found in the absence of Cu(II) with the generation of amorphous aggregates in the presence of Cu(II), which are more toxic compared to the fibrils alone.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- a Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| | | | | | | | | | | |
Collapse
|
230
|
Heidari A, Ghahghaei A, Valizadeh J. Evaluation of chaperone ability of S. rosmarinus against protein aggregation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
231
|
Anoop A, Ranganathan S, Das Dhaked B, Jha NN, Pratihar S, Ghosh S, Sahay S, Kumar S, Das S, Kombrabail M, Agarwal K, Jacob RS, Singru P, Bhaumik P, Padinhateeri R, Kumar A, Maji SK. Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion. J Biol Chem 2014; 289:16884-903. [PMID: 24782311 DOI: 10.1074/jbc.m114.548354] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys(3)-Cys(14)) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.
Collapse
Affiliation(s)
- Arunagiri Anoop
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Srivastav Ranganathan
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Bhagwan Das Dhaked
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Narendra Nath Jha
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Supriya Pratihar
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005
| | - Saikat Ghosh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Shruti Sahay
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Santosh Kumar
- the School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, and
| | - Subhadeep Das
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, the IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Mamata Kombrabail
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005
| | - Kumud Agarwal
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Reeba S Jacob
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Praful Singru
- the School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, and
| | - Prasenjit Bhaumik
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Ranjith Padinhateeri
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Ashutosh Kumar
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076,
| | - Samir K Maji
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076,
| |
Collapse
|
232
|
Ghosh D, Dutta P, Chakraborty C, Singh PK, Anoop A, Jha NN, Jacob RS, Mondal M, Mankar S, Das S, Malik S, Maji SK. Complexation of amyloid fibrils with charged conjugated polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3775-3786. [PMID: 24678792 DOI: 10.1021/la404739f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, Maharashtra, Mumbai 400076, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Ridgley DM, Claunch EC, Lee PW, Barone JR. The Role of Protein Hydrophobicity in Conformation Change and Self-Assembly into Large Amyloid Fibers. Biomacromolecules 2014; 15:1240-7. [DOI: 10.1021/bm401815u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Devin M. Ridgley
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Elizabeth C. Claunch
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Parker W. Lee
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Justin R. Barone
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| |
Collapse
|
234
|
Zhang G, Li J, Gao L, Wang T, Quan D. Morphology of nanostructures and their long-acting properties in vivo for a novel synthetic peptide of gonadotropin-releasing hormone antagonist. J Pharm Pharmacol 2014; 66:1077-81. [PMID: 24579973 DOI: 10.1111/jphp.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/18/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To demonstrate the correlation between the nanostructure formation and the long duration of action in vivo of peptides, the morphology of nanostructures of LXT-101, a novel synthetic amphiphilic peptide of gonadotropin-releasing hormone antagonist were observed when dissolved in different solvents, and their long-acting properties in vivo were investigated in this study. METHODS The morphology of nanostructures of LXT-101 was observed by transmission electron microscopy when dissolved in different solvents, and the plasma concentrations of LXT-101 and testosterone levels were also assayed for different solutions after intramuscular injection administration in beagle dogs. KEY FINDINGS TEM data suggest that LXT-101 in pure water can form fibres, while in mannitol, dextrose or sodium chloride solution, they tend to form vesicles. The pharmacokinetic and pharmacodynamic results showed that the plasma concentrations of LXT-101 within 48 h were much higher but descended dramatically with mannitol, dextrose and NaCl solutions structurally composed of vesicles compared with that of pure water structurally composed of fibres. An effectively suppression of testosterone can be achieved only 2 or 3 days with the frontal three solutions, while LXT-101 in pure water maintained over a period of 7 days. CONCLUSIONS It may indicate that LXT-101 peptide in pure water forms fibre depot that release monomeric active peptide slowly. The correlation between the nanostructure and duration of action in vivo suggests that the addition of excipients influence self-assembly process of LXT-101 that leads to the formation of different nanostructures and exhibit various behaviours in vivo.
Collapse
Affiliation(s)
- Guiying Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
235
|
Kubota H, Watanabe K. Loss of genetic diversity at an MHC locus in the endangered Tokyo bitterling Tanakia tanago (Teleostei: Cyprinidae). Zoolog Sci 2014; 30:1092-101. [PMID: 24320188 DOI: 10.2108/zsj.30.1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic diversity at a major histocompatibility complex (MHC) class II B gene was examined for two wild and three captive populations of the endangered Tokyo bitterling Tanakia tanago. A specific primer set was first developed to amplify the MHC II B exon 2 locus. Using single strand conformation polymorphism (SSCP) and sequencing analysis, 16 DAB3 alleles were detected with 56 nucleotide substitutions in the 276-bp region. In the putative antigen-binding sites of exon 2, the rate of nonsynonymous substitutions was significantly higher than that of synonymous substitutions (dN/dS = 2.79), indicating positive selection on the retention of polymorphism. The population from the Handa Natural Habitat Conservation Area and that from the Tone River system exhibited low variation (one and three alleles, respectively), whereas the captive population that originated from a mix of three distinct populations had the highest amounts of variation (14 alleles). The levels of heterozygosity at the MHC varied considerably among populations and showed significant correlations with those at putative neutral microsatellite markers, suggesting that genetic drift following a bottleneck has affected MHC variability in some populations. Comparisons between endangered and non-endangered fish species in previous reports and the present results indicate that the number of MHC alleles per population is on average 70% lower in endangered species than non-endangered species. Considering the functional consequence of this locus, attention should be paid to captive and wild endangered fish populations in terms of further loss of MHC alleles.
Collapse
Affiliation(s)
- Hitoshi Kubota
- 1 Tochigi PrefecturaI Fisheries Experimental Station, Sarado, Ohtawara, Tochigi 324-0404, Japan
| | | |
Collapse
|
236
|
Kachooei E, Moosavi-Movahedi AA, Khodagholi F, Mozaffarian F, Sadeghi P, Hadi-Alijanvand H, Ghasemi A, Saboury AA, Farhadi M, Sheibani N. Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel. J Biochem 2014; 155:361-73. [PMID: 24535601 DOI: 10.1093/jb/mvu012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeutic strategy. Peptides, surfactants and aromatic small molecules have been used as fibrillation inhibitors. Here we studied the effects of paclitaxel, a polyphenol with a high tendency for interaction with proteins, on fibrillation of insulin as a model protein. The effects of paclitaxel on insulin fibrillation were determined by Thioflavin T fluorescence, Congo red absorbance, circular dichroism and atomic force microscopy. These studies indicated that paclitaxel considerably hindered nucleation, and therefore, fibrillation of insulin in a dose-dependant manner. The isothermal titration calorimetry studies showed that the interaction between paclitaxel and insulin was spontaneous. In addition, the van der Waal's interactions and hydrogen bonds were prominent forces contributing to this interaction. Computational results using molecular dynamic simulations and docking studies revealed that paclitaxel diminished the polarity of insulin dimer and electrostatic interactions by increasing the hydrophobicity of its dimer state. Furthermore, paclitaxel reduced disrupting effects of insulin fibrils on PC12 cell's neurite outgrowth and complexity, and enhanced their survival.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USAInstitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fariba Khodagholi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Faroogh Mozaffarian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Payam Sadeghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Hamid Hadi-Alijanvand
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USAInstitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Mohammad Farhadi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Nader Sheibani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran; NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Department of Biological Sciences, Zanjan, Iran; ENT-HNS Research Center, IUMS, Tehran, Iran; and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
237
|
McKeone R, Wikstrom M, Kiel C, Rakoczy PE. Assessing the correlation between mutant rhodopsin stability and the severity of retinitis pigmentosa. Mol Vis 2014; 20:183-99. [PMID: 24520188 PMCID: PMC3919671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 02/05/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Following a previous study that demonstrated a correlation between rhodopsin stability and the severity of retinitis pigmentosa (RP), we investigated whether predictions of severity can be improved with a regional analysis of this correlation. The association between changes to the stability of the protein and the relative amount of rhodopsin reaching the plasma membrane was assessed. METHODS Crystallography-based estimations of mutant rhodopsin stability were compared with descriptions in the scientific literature of the visual function of mutation carriers to determine the extent of associations between rhodopsin stability and clinical phenotype. To test the findings of this analysis, three residues of a green fluorescent protein (GFP) tagged rhodopsin plasmid were targeted with site-directed random mutagenesis to generate mutant variants with a range of stability changes. These plasmids were transfected into HEK-293 cells, and then flow cytometry was used to measure rhodopsin on the cells' plasma membrane. The GFP signal was used to measure the ratio between this membrane-bound rhodopsin and total cellular rhodopsin. FoldX stability predictions were then compared with the surface staining data and clinical data from the database to characterize the relationship between rhodopsin stability, the severity of RP, and the expression of rhodopsin at the cell surface. RESULTS There was a strong linear correlation between the scale of the destabilization of mutant variants and the severity of retinal disease. A correlation was also seen in vitro between stability and the amount of rhodopsin at the plasma membrane. Rhodopsin is drastically reduced on the surface of cells transfected with variants that differ in their inherent stability from the wild-type by more than 2 kcal/mol. Below this threshold, surface levels are closer to those of the wild-type. CONCLUSIONS There is a correlation between the stability of rhodopsin mutations and disease severity and levels of membrane-bound rhodopsin. Measuring membrane-bound rhodopsin with flow cytometry could improve prognoses for poorly characterized mutations and could provide a platform for measuring the effectiveness of treatments.
Collapse
Affiliation(s)
- Richard McKeone
- Department of Molecular Ophthalmology, Lions Eye Institute, Perth, Western Australia,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia
| | - Matthew Wikstrom
- Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - P. Elizabeth Rakoczy
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia
| |
Collapse
|
238
|
Drolle E, Hane F, Lee B, Leonenko Z. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease. Drug Metab Rev 2014; 46:207-23. [PMID: 24495298 DOI: 10.3109/03602532.2014.882354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer's patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers - insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo , Waterloo, ON , Canada
| | | | | | | |
Collapse
|
239
|
Kawasaki T, Yaji T, Imai T, Ohta T, Tsukiyama K. Synchrotron-Infrared Microscopy Analysis of Amyloid Fibrils Irradiated by Mid-Infrared Free-Electron Laser. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajac.2014.56047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
240
|
Kawasaki T, Imai T, Tsukiyama K. Use of a Mid-Infrared Free-Electron Laser (MIR-FEL) for Dissociation of the Amyloid Fibril Aggregates of a Peptide. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jasmi.2014.41002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
241
|
Manning T, Sleator RD, Walsh P. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics. Bioengineered 2013; 5:80-95. [PMID: 24335433 PMCID: PMC4049912 DOI: 10.4161/bioe.26997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.
Collapse
Affiliation(s)
- Timmy Manning
- Department of Computer Science; Cork Institute of Technology; Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland
| | - Paul Walsh
- NSilico Ltd; Rubicon Innovation Centre; Cork, Ireland
| |
Collapse
|
242
|
Tena-Solsona M, Miravet JF, Escuder B. Tetrapeptidic Molecular Hydrogels: Self-assembly and Co-aggregation with Amyloid Fragment Aβ1-40. Chemistry 2013; 20:1023-31. [DOI: 10.1002/chem.201302651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 12/21/2022]
|
243
|
In vitro hyperglycemic condition facilitated the aggregation of lysozyme via the passage through a molten globule state. Cell Biochem Biophys 2013. [PMID: 23184703 DOI: 10.1007/s12013-012-9479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperglycemic condition i.e. an increase in blood glucose concentration has been linked to bring about structural alterations in the native state of proteins. Glucose concentrations of 50 and 100 mM in vitro, which correspond to hyperglycemic condition, were tested to investigate their effect on lysozyme native structure. Incubating enzyme with 50 and 100 mM glucose for a period of 7 days, an intermediate state on day 4 and 3 was observed, respectively. The presence of intermediate state was characterized by a 22 % increase in the intrinsic fluorescence intensity with a red shift of 20 nm compared to the native state, a 5 % increase in ANS-fluorescence intensity relative to the native due to the surfacing of hydrophobic clusters and a sharp decrease in near-UV CD signal at around 284 and 291 nm. The state retains substantial native-like secondary structure. This partially unfolded intermediate state can be referred as 'molten globule', which finally tends to aggregate on day 6 and 4 with 50 and 100 mM glucose concentration, respectively, as a result of cross-linking between lysozyme molecules. The aggregates were confirmed by the presence of β-sheet structure as depicted by far-UV CD, an increase in ThT fluorescence as well as the fibrillar morphology shown by SEM. Moreover, advanced glycation end products were also accompanied as the emission peak was observed at 460 and 470 nm corresponding to the formation of pentosidine and malonaldehyde, respectively.
Collapse
|
244
|
Hsieh S, Chang CW, Chou HH. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf B Biointerfaces 2013; 112:525-9. [DOI: 10.1016/j.colsurfb.2013.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022]
|
245
|
Molecular Assembly of Thyroglobulin Induced by In Vitro Nitric Oxide Treatments: Implication Its Role in Thyroid Cells. Protein J 2013; 32:619-25. [DOI: 10.1007/s10930-013-9524-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
246
|
Haque MA, Aldred P, Chen J, Barrow CJ, Adhikari B. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes. Food Chem 2013; 141:702-11. [DOI: 10.1016/j.foodchem.2013.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/01/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
247
|
|
248
|
Pica A, Merlino A, Buell AK, Knowles TPJ, Pizzo E, D'Alessio G, Sica F, Mazzarella L. Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2116-23. [PMID: 24100329 DOI: 10.1107/s0907444913020507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
The deletion of five residues in the loop connecting the N-terminal helix to the core of monomeric human pancreatic ribonuclease leads to the formation of an enzymatically active domain-swapped dimer (desHP). The crystal structure of desHP reveals the generation of an intriguing fibril-like aggregate of desHP molecules that extends along the c crystallographic axis. Dimers are formed by three-dimensional domain swapping. Tetramers are formed by the aggregation of swapped dimers with slightly different quaternary structures. The tetramers interact in such a way as to form an infinite rod-like structure that propagates throughout the crystal. The observed supramolecular assembly captured in the crystal predicts that desHP fibrils could form in solution; this has been confirmed by atomic force microscopy. These results provide new evidence that three-dimensional domain swapping can be a mechanism for the formation of elaborate large assemblies in which the protein, apart from the swapping, retains its original fold.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples `Federico II', Via Cintia, 80126 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Cell Mol Biol Lett 2013; 18:328-39. [PMID: 23737042 PMCID: PMC6275581 DOI: 10.2478/s11658-013-0092-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/27/2013] [Indexed: 12/03/2022] Open
Abstract
Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer's disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.
Collapse
Affiliation(s)
- Arezou Ghahghaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | | | | |
Collapse
|
250
|
Knudsen GR, Dixon RD, Amelon SK. Potential Spread of White-Nose Syndrome of Bats to the Northwest: Epidemiological Considerations. NORTHWEST SCIENCE 2013. [DOI: 10.3955/046.087.0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|