201
|
Ricciardiello F, Bergamaschi L, De Vitto H, Gang Y, Zhang T, Palorini R, Chiaradonna F. Suppression of the HBP Function Increases Pancreatic Cancer Cell Sensitivity to a Pan-RAS Inhibitor. Cells 2021; 10:cells10020431. [PMID: 33670598 PMCID: PMC7923121 DOI: 10.3390/cells10020431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death and the search for a resolutive therapy is still a challenge. Since KRAS is commonly mutated in PDAC and is one of the main drivers of PDAC progression, its inhibition should be a key strategy for treatment, especially considering the recent development of specific KRAS inhibitors. Nevertheless, the effects of KRAS inhibition can be increased through the co-inhibition of other nodes important for cancer development. One of them could be the hexosamine biosynthetic pathway (HBP), whose enhancement is considered fundamental for PDAC. Here, we demonstrate that PDAC cells expressing oncogenic KRAS, owing to an increase in the HBP flux, become strongly reliant on HBP for both proliferation and survival. In particular, upon treatment with two different compounds, 2-deoxyglucose and FR054, inhibiting both HBP and protein N-glycosylation, these cells undergo apoptosis significantly more than PDAC cells expressing wild-type KRAS. Importantly, we also show that the combined treatment between FR054 and the pan-RAS inhibitor BI-2852 has an additive negative effect on cell proliferation and survival by means of the suppression of both Akt activity and cyclin D1 expression. Thus, co-inhibition of HBP and oncogenic RAS may represent a novel therapy for PDAC patients.
Collapse
Affiliation(s)
- Francesca Ricciardiello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Laura Bergamaschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Humberto De Vitto
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Yang Gang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| |
Collapse
|
202
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
203
|
Singh K, Pruski M, Bland R, Younes M, Guha S, Thosani N, Maitra A, Cash BD, McAllister F, Logsdon CD, Chang JT, Bailey-Lundberg JM. Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer. J Transl Med 2021; 101:177-192. [PMID: 33009500 PMCID: PMC8172380 DOI: 10.1038/s41374-020-00490-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States. Despite the high prevalence of Kras mutations in pancreatic cancer patients, murine models expressing the oncogenic mutant Kras (Krasmut) in mature pancreatic cells develop PDAC at a low frequency. Independent of cell of origin, a second genetic hit (loss of tumor suppressor TP53 or PTEN) is important for development of PDAC in mice. We hypothesized ectopic expression and elevated levels of oncogenic mutant Kras would promote PanIN arising in pancreatic ducts. To test our hypothesis, the significance of elevating levels of K-Ras and Ras activity has been explored by expression of a CAG driven LGSL-KrasG12V allele (cKras) in pancreatic ducts, which promotes ectopic Kras expression. We predicted expression of cKras in pancreatic ducts would generate neoplasia and PDAC. To test our hypothesis, we employed tamoxifen dependent CreERT2 mediated recombination. Hnf1b:CreERT2;KrasG12V (cKrasHnf1b/+) mice received 1 (Low), 5 (Mod) or 10 (High) mg per 20 g body weight to recombine cKras in low (cKrasLow), moderate (cKrasMod), and high (cKrasHigh) percentages of pancreatic ducts. Our histologic analysis revealed poorly differentiated aggressive tumors in cKrasHigh mice. cKrasMod mice had grades of Pancreatic Intraepithelial Neoplasia (PanIN), recapitulating early and advanced PanIN observed in human PDAC. Proteomics analysis revealed significant differences in PTEN/AKT and MAPK pathways between wild type, cKrasLow, cKrasMod, and cKrasHigh mice. In conclusion, in this study, we provide evidence that ectopic expression of oncogenic mutant K-Ras in pancreatic ducts generates early and late PanIN as well as PDAC. This Ras rheostat model provides evidence that AKT signaling is an important early driver of invasive ductal derived PDAC.
Collapse
Affiliation(s)
- Kanchan Singh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Melissa Pruski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Rachael Bland
- Kings College London, Department of Pharmacology, London, UK
| | - Mamoun Younes
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Sushovan Guha
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Nirav Thosani
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooks D Cash
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jennifer M Bailey-Lundberg
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA.
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
204
|
Gaida MM. [The ambiguous role of the inflammatory micromilieu in solid tumors]. DER PATHOLOGE 2021; 41:118-123. [PMID: 33104890 DOI: 10.1007/s00292-020-00837-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Besides host defense against infections, the main function of the immune system is to eliminate tumor cells. Therefore, nearly, all solid tumors have a heterogeneous fibro-inflammatory microenvironment, which consists of myofibroblastic cells, extracellular matrix components, and infiltrates from various types of immune cell. In particular, pancreatic ductal adenocarcinoma is a prototype of a tumor with a pronounced inflammatory microenvironment, in which the majority of the tumor mass consists of nonneoplastic stromal and immune cells. Our own data and data from the literature indicate a protective role of tumor-infiltrating T cells for the host. On the other hand, we were able to show that a defined T cell subpopulation paradoxically promotes the progression of the tumor. Our investigations now focus on these cells, known as "Th17," in the tumor microenvironment. OBJECTIVES To elucidate the mechanisms of the infiltrated immune cells and their mediators in the tumor microenvironment. MATERIALS AND METHODS Human pancreatic cancer tissue was used for (immune) histological staining and morphometric analysis and the results were correlated with clinical parameters and with diffusion-weighted magnetic resonance imaging images. The molecular mechanisms were analyzed in cell culture approaches using human tumor cells and human immune cells. With molecular biological methods and functional assays cell growth, invasion and colony formation were assessed. The in vivo correlation of the results and functional interventions were tested in murine and avian (xenograft) models. RESULTS AND CONCLUSION Tumor-infiltrating immune cells of type Th17 and their mediators promoted the progression of the tumor depending on density, activation status, and cytokine profile. On molecular level, we identified a Th17-mediated increase of tumor cell migration and invasion, an increased neoangiogenesis, as well as a reorganization of the tumor stroma and microarchitecture. The data show that the progression of pancreatic cancer, depends on the status of activation and the cytokine profile of the infiltrated T cells.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institut für Pathologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
205
|
Dey P, Kimmelman AC, DePinho RA. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov 2021; 11:1067-1081. [PMID: 33504580 DOI: 10.1158/2159-8290.cd-20-1211] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Tumor Immunology and Immunotherapy Program, State University of New York (SUNY) at Buffalo, Buffalo, New York
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
206
|
Fleury E, Nimir C, D'Alessandro GS. The Breast Tumor Microenvironment: Could Silicone Breast Implant Elicit Breast Carcinoma? BREAST CANCER-TARGETS AND THERAPY 2021; 13:45-58. [PMID: 33488119 PMCID: PMC7815077 DOI: 10.2147/bctt.s294166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023]
Abstract
Complications related to breast implants have received much attention recently. Breast implant-associated anaplastic large cell lymphoma, silicone-induced granuloma of breast implant capsule, and breast implant illness are the main complications reported in the medical literature. However, the literature contains limited evidence regarding the possibility of silicone implants eliciting breast carcinoma. In this manuscript, we propose a theory in which the immune response to silicone breast implant gel bleeding acts as a triggering point for tumor oncogenesis in breast tissue. This hypothesis is derived from our findings of a case of invasive and undifferentiated medullary carcinoma in a patient with a silicone breast implant. The following concepts have been used to support this theory: 1) silicone bleeding from intact breast implants; 2) metaplasia: an adaptation to injury and precursor to dysplasia and cancer; 3) T-cell dysfunction in cancer immunity; 4) inhibitory cells in the tumor microenvironment (TME); 5) morphogenesis and bauplan; and 6) concepts underlying medullary carcinoma. We propose that the inflammatory process in response to silicone particles in the pericapsular glandular tissue favors the development of cellular mutations in specialized epithelial cells. This reverse morphogenesis could have resulted in breast carcinoma of the medullary type in the present case.
Collapse
Affiliation(s)
- Eduardo Fleury
- Service of Radiology, IBCC - Instituto Brasileiro de Controle do Câncer, São Paulo, SP, Brazil
| | - Cristiane Nimir
- Service of Pathology, FEMME - Laboratório da Mulher, São Paulo, SP, Brazil
| | | |
Collapse
|
207
|
Hussung S, Akhoundova D, Hipp J, Follo M, Klar RFU, Philipp U, Scherer F, von Bubnoff N, Duyster J, Boerries M, Wittel U, Fritsch RM. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021; 21:49. [PMID: 33430810 PMCID: PMC7802224 DOI: 10.1186/s12885-020-07736-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Novel biomarkers and molecular monitoring tools hold potential to improve outcome for patients following resection of pancreatic ductal adenocarcinoma (PDAC). We hypothesized that the combined longitudinal analysis of mutated cell-free plasma KRAS (cfKRASmut) and CA 19–9 during adjuvant treatment and follow-up might more accurately predict disease course than hitherto available parameters. Methods Between 07/2015 and 10/2018, we collected 134 plasma samples from 25 patients after R0/R1-resection of PDAC during adjuvant chemotherapy and post-treatment surveillance at our institution. Highly sensitive discriminatory multi-target ddPCR assays were employed to screen plasma samples for cfKRASmut. cfKRASmut and CA 19–9 dynamics were correlated with recurrence-free survival (RFS) and overall survival (OS). Patients were followed-up until 01/2020. Results Out of 25 enrolled patients, 76% had undergone R0 resection and 48% of resected PDACs were pN0. 17/25 (68%) of patients underwent adjuvant chemotherapy. Median follow-up was 22.0 months, with 19 out of 25 (76%) patients relapsing during study period. Median RFS was 10.0 months, median OS was 22.0 months. Out of clinicopathologic variables, only postoperative CA 19–9 levels and administration of adjuvant chemotherapy correlated with survival endpoints. cfKRASmut. was detected in 12/25 (48%) of patients, and detection of high levels inversely correlated with survival endpoint. Integration of cfKRASmut and CA 19–9 levels outperformed either individual marker. cfKRASmut outperformed CA 19–9 as dynamic marker since increase during adjuvant chemotherapy and follow-up was highly predictive of early relapse and poor OS. Conclusions Integrated analysis of cfKRASmut and CA 19–9 levels is a promising approach for molecular monitoring of patients following resection of PDAC. Larger prospective studies are needed to further develop this approach and dissect each marker’s specific potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07736-x.
Collapse
Affiliation(s)
- Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Dilara Akhoundova
- Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Julian Hipp
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Rhena F U Klar
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Ulrike Philipp
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Wittel
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Ralph M Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany. .,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland. .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
208
|
Ferreira RG, Narvaez LEM, Espíndola KMM, Rosario ACRS, Lima WGN, Monteiro MC. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front Oncol 2021; 11:594917. [PMID: 34354940 PMCID: PMC8329661 DOI: 10.3389/fonc.2021.594917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive, devastating disease due to its invasiveness, rapid progression, and resistance to surgical, pharmacological, chemotherapy, and radiotherapy treatments. The disease develops from PanINs lesions that progress through different stages. KRAS mutations are frequently observed in these lesions, accompanied by inactivation of PTEN, hyperactivation of the PI3K/AKT pathway, and chronic inflammation with overexpression of COX-2. Nimesulide is a selective COX-2 inhibitor that has shown anticancer effects in neoplastic pancreatic cells. This drug works by increasing the levels of PTEN expression and inhibiting proliferation and apoptosis. However, there is a need to improve nimesulide through its encapsulation by solid lipid nanoparticles to overcome problems related to the hepatotoxicity and bioavailability of the drug.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Luis Eduardo Mosquera Narvaez
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Kaio Murilo Monteiro Espíndola
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Amanda Caroline R. S. Rosario
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Wenddy Graziela N. Lima
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Marta Chagas Monteiro
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
- *Correspondence: Marta Chagas Monteiro,
| |
Collapse
|
209
|
Venkateshaiah SU, Kandikattu HK, Kumar S, Mishra A. Possible novel non-invasive biomarker for inflammation mediated pancreatic malignancy. INTERNATIONAL JOURNAL OF BASIC AND CLINICAL IMMUNOLOGY 2020; 3:1-8. [PMID: 34136883 PMCID: PMC8204699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Pancreatic malignancy is a major public health problem worldwide and recent reports indicated that pancreatic cancer will be second most common cause of cancer-related deaths by the end of 2021. The cause of increasing death rate is due to the nonexistence of detection tools to early diagnose, poor prognosis, resistance to chemotherapy and also lack in understanding the mechanism of PDAC pathogenesis. Circulating tumor cells (CTCs) play a major role in metastatic step of intravasation and presence of these cells are strong prognostic marker for the progression of pancreatic malignancy in chronic pancreatitis (CP). GOAL Identifying the novel CTCs in the chronic inflammation mediated experimental model for the progression of malignancy in CP. METHODS We have performed flow cytometer and immunofluorescence analyses in the lymphoid and lung samples was performed o detect CTCs in the chronic inflammation induced mouse model CP. RESULTS We report that induced SOX9 positive cells were observed in the blood, lymph node and spleen samples of cerulein with azoximethane (AOM) treated mouse model of CP compared to cerulein alone. Further, we provide evidence that early metastasis through the migration and homing of mega merged SOX9+ and PDX+ ductal stem cells (CTCs) in the lungs of cerulein with AOM treated mice. These identified CTCs in experimentally induced malignant pancreatitis may serve as a novel finding to identify a non-invasive biomarker that needs to be examined in the blood of human pancreatic cancer. CONCLUSIONS Taken together, the presented data of identified mega merged SOX9+ and PDX+ ductal stem cells (CTCs) may serve a non-invasive biomarker for the early detection of pancreatic malignancy and metastasis.
Collapse
Affiliation(s)
- Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sandeep Kumar
- Department of Medicine, Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anil Mishra
- Department of Medicine, Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
210
|
Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. J Clin Med 2020; 9:jcm9124128. [PMID: 33371431 PMCID: PMC7767410 DOI: 10.3390/jcm9124128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
Collapse
|
211
|
Mortezaee K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol Int 2020; 45:273-286. [PMID: 33236822 DOI: 10.1002/cbin.11506] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Tumor cells need to cope with the host environment for survival and keep growing in hard conditions. This suggests that tumors must acquire characteristics more potent than what is seen for normal tissue cells, without which they are condemned to disruption. For example, cancer cells have more potent redox tolerance compared with normal cells, which is due to their high adaptation to an oxidative crisis. In addition, increased demand for bioenergetics and biosynthesis can cause a rise in nutrient uptake in tumors. Utilizing nutrients in low nutrient conditions suggests that tumors are also equipped with adaptive metabolic processes. Switching the metabolic demands toward glucose consumption upon exposure to the hypoxic tumor microenvironment, or changing toward using other sources when there is an overconsumption of glucose in the tumor area are examples of fitness metabolic systems in tumors. In fact, cancer cells in cooperation with their nearby stroma (in a process called metabolic coupling) can reprogram their metabolic systems in their favor. This suggests the high importance of stroma for meeting the metabolic demands of a growing tumor, an example in this context is the metabolic symbiosis between cancer-associated fibroblasts with cancer cells. The point is that redox tolerance and metabolic reprogramming are interrelated, and that, without a doubt, disruption of redox tolerance systems by transient exposure to either oxidative or antioxidative loading, or targeting metabolic rewiring by modulation of tumor glucose availability, controlling tumor/stroma interactions, etc. can be effective from a therapeutic standpoint.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
212
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
213
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
214
|
Suri R, Zimmerman JW, Burkhart RA. Modeling human pancreatic ductal adenocarcinoma for translational research: current options, challenges, and prospective directions. ANNALS OF PANCREATIC CANCER 2020; 3:17. [PMID: 33889840 PMCID: PMC8059695 DOI: 10.21037/apc-20-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with one of the lowest survival rates. Early detection, an improved understanding of tumor biology, and novel therapeutic discoveries are needed in order to improve overall patient survival. Scientific progress towards meeting these goals relies upon accurate modeling of the human disease. From two-dimensional (2D) cell lines to the advanced modeling available today, we aim to characterize the critical tools in efforts to further understand PDAC biology. The National Center for Biotechnology Information's PubMed and the Elsevier's SCOPUS were used to perform a comprehensive literature review evaluating preclinical human-derived PDAC models. Keywords included pancreatic cancer, PDAC, preclinical models, KRAS mutations, xenograft, co-culturing fibroblasts, co-culturing lymphocytes and PDAC immunotherapy Initial search was limited to articles about PDAC and was then expanded to include other gastrointestinal malignancies where information may complement our effort. A supervised review of the key literature's references was utilized to augment the capture of relevant data. The discovery and refinement of techniques enabling immortalized 2D cell culture provided the cornerstone for modern cancer biology research. Cell lines have been widely used to represent PDAC in vitro but are limited in capacity to model three-dimensional (3D) tumor attributes and interactions within the tumor microenvironment. Xenografts are an alternative method to model PDAC with improved capacity to understand certain aspects of 3D tumor biology in vivo while limited by the use of immunodeficient mice. Advances of in vitro modeling techniques have led to 3D organoid models for PDAC biology. Co-culturing models in the 3D environment have been proposed as an efficient modeling system for improving upon the limitations encountered in the standard 2D and xenograft tumor models. The integrated network of cells and stroma that comprise PDAC in vivo need to be accurately depicted ex vivo to continue to make progress in this disease. Recapitulating the complex tumor microenvironment in a preclinical model of human disease is an outstanding and urgent need in PDAC. Definitive characterization of available human models for PDAC serves to further the core mission of pancreatic cancer translational research.
Collapse
Affiliation(s)
- Reecha Suri
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Richard A. Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
215
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
216
|
Cortesi M, Zamagni A, Pignatta S, Zanoni M, Arienti C, Rossi D, Collina S, Tesei A. Pan-Sigma Receptor Modulator RC-106 Induces Terminal Unfolded Protein Response In In Vitro Pancreatic Cancer Model. Int J Mol Sci 2020; 21:ijms21239012. [PMID: 33260926 PMCID: PMC7734580 DOI: 10.3390/ijms21239012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| |
Collapse
|
217
|
Pancreatic and duodenal homeobox-1 in pancreatic ductal adenocarcinoma and diabetes mellitus. Chin Med J (Engl) 2020; 133:344-350. [PMID: 31904730 PMCID: PMC7004619 DOI: 10.1097/cm9.0000000000000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus and pancreatic ductal adenocarcinoma are two common diseases worldwidely which are both derived from different components of pancreas. The pancreatic and duodenal homeobox-1 (PDX1) is an essential transcription factor for the early development of pancreas that is required for the differentiation of all pancreatic cell lineages. Current evidence suggests an important role of PDX1 in both the origin and progression of pancreatic diseases. In this review, we discussed recent studies of PDX1 in diabetes mellitus and pancreatic cancer, and the therapeutic strategies derived from this transcription factor.
Collapse
|
218
|
Brown WS, McDonald PC, Nemirovsky O, Awrey S, Chafe SC, Schaeffer DF, Li J, Renouf DJ, Stanger BZ, Dedhar S. Overcoming Adaptive Resistance to KRAS and MEK Inhibitors by Co-targeting mTORC1/2 Complexes in Pancreatic Cancer. Cell Rep Med 2020; 1:100131. [PMID: 33294856 PMCID: PMC7691443 DOI: 10.1016/j.xcrm.2020.100131] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Activating KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs), yet KRAS has remained a difficult target to inhibit pharmacologically. Here, we demonstrate, using several human and mouse models of PDACs, rapid acquisition of tumor resistance in response to targeting KRAS or MEK, associated with integrin-linked kinase (ILK)-mediated increased phosphorylation of the mTORC2 component Rictor, and AKT. Although inhibition of mTORC1/2 results in a compensatory increase in ERK phosphorylation, combinatorial treatment of PDAC cells with either KRAS (G12C) or MEK inhibitors, together with mTORC1/2 inhibitors, results in synergistic cytotoxicity and cell death reflected by inhibition of pERK and pRictor/pAKT and of downstream regulators of protein synthesis and cell survival. Relative to single agents alone, this combination leads to durable inhibition of tumor growth and metastatic progression in vivo and increased survival. We have identified an effective combinatorial treatment strategy using clinically viable inhibitors, which can be applied to PDAC tumors with different KRAS mutations.
Collapse
Affiliation(s)
- Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shawn C. Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, BC V3Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jinyang Li
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Renouf
- Medical Oncology, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Ben Z. Stanger
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
219
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
220
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
221
|
Ponath V, Frech M, Bittermann M, Al Khayer R, Neubauer A, Brendel C, Pogge von Strandmann E. The Oncoprotein SKI Acts as A Suppressor of NK Cell-Mediated Immunosurveillance in PDAC. Cancers (Basel) 2020; 12:E2857. [PMID: 33023028 PMCID: PMC7601115 DOI: 10.3390/cancers12102857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Drugs targeting epigenetic mechanisms such as histone deacetylase inhibitors (HDACi) suppress tumor growth. HDACi also induce the expression of ligands for the cytotoxicity receptor NKG2D rendering tumors more susceptible to natural killer (NK) cell-dependent killing. The major acetylases responsible for the expression of NKG2D ligands (NKG2D-L) are CBP and p300. The role of the oncogene and transcriptional repressor SKI, an essential part of an HDAC-recruiting co-repressor complex, which competes with CBP/p300 for binding to SMAD3 in TGFβ signaling, is unknown. Here we show that the siRNA-mediated downregulation of SKI in the pancreatic cancer cell lines Panc-1 and Patu8988t leads to an increased target cell killing by primary NK cells. However, the higher cytotoxicity of NK cells did not correlate with the induction of NKG2D-L. Of note, the expression of NKG2D-L and consequently NK cell-dependent killing could be induced upon LBH589 (LBH, panobinostat) or valproic acid (VPA) treatment irrespective of the SKI expression level but was significantly higher in pancreatic cancer cells upon genetic ablation of SKI. These data suggest that SKI represses the inducible expression of NKG2D-L. The combination of HDACi with NK cell-based immunotherapy is an attractive treatment option for pancreatic tumors, specifically for patients with high SKI protein levels.
Collapse
Affiliation(s)
- Viviane Ponath
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Mathis Bittermann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Reem Al Khayer
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Cornelia Brendel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| |
Collapse
|
222
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
223
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
224
|
Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020; 10:572722. [PMID: 33117704 PMCID: PMC7550743 DOI: 10.3389/fonc.2020.572722] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies with an extremely poor prognosis. Energy metabolism reprogramming, an emerging hallmark of cancer, has been implicated in the tumorigenesis and development of pancreatic cancer. In addition to well-elaborated enhanced glycolysis, investigating the role of reprogramming of amino acid metabolism has sparked great interests in recent years. The rewiring amino acid metabolism orchestrated by genetic alterations contributes to pancreatic cancer malignant characteristics including cell proliferation, invasion, metastasis, angiogenesis and redox balance. In the unique hypoperfused and nutrient-deficient tumor microenvironment (TME), the interactions between cancer cells and stromal components and salvaging processes including autophagy and macropinocytosis play critical roles in fulfilling the metabolic requirements and supporting growth of PDAC. In this review, we elucidate the recent advances in the amino acid metabolism reprogramming in pancreatic cancer and the mechanisms of amino acid metabolism regulating PDAC progression, which will provide opportunities to develop promising therapeutic strategies.
Collapse
Affiliation(s)
- Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
225
|
Luongo M, Marinelli O, Zeppa L, Aguzzi C, Morelli MB, Amantini C, Frassineti A, di Costanzo M, Fanelli A, Santoni G, Nabissi M. Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers (Basel) 2020; 12:E2774. [PMID: 32992648 PMCID: PMC7600087 DOI: 10.3390/cancers12102774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is related to lifestyle risks, chronic inflammation, and germline mutations in BRCA1/2, ATM, MLH1, TP53, or CDKN2A. Surgical resection and adjuvant chemotherapy are the main therapeutic strategies but are less effective in patients with high-grade tumors. Oxygen-ozone (O2/O3) therapy is an emerging alternative tool for the treatment of several clinical disorders. O2/O3 therapy has been found to ameliorate mechanisms promoting chronic pain and inflammation, including hypoxia, inflammatory mediators, and infection. The advantages of using cannabinoids have been evaluated in vitro and in vivo models of several human cancers. Regarding PDAC, activation of cannabinoid receptors was found to induce pancreatic cancer cell apoptosis without affecting the normal pancreas cells. In a murine model of PDAC, a combination of cannabidiol (CBD) and gemcitabine increased survival length by nearly three times. Herein, we evaluate the anticancer effect of CBD and O2/O3, alone or in combination, on two human PDAC cell lines, PANC-1 and MiaPaCa-2, examining expression profiles of 92 pancreatic adenocarcinoma associated genes, cytotoxicity, migration properties, and cell death. Finally, we assess the combination effects with gemcitabine and paclitaxel. Summarizing, for the first time the antitumoral effect of combined therapy with CBD and oxygen-ozone therapy in PDAC is evidenced.
Collapse
Affiliation(s)
- Margherita Luongo
- “Maria Guarino” Foundation—AMOR No Profit Association, 80078 Pozzuoli, Italy; (M.L.); (A.F.); (M.d.C.)
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
| | - Laura Zeppa
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy;
| | - Andrea Frassineti
- “Maria Guarino” Foundation—AMOR No Profit Association, 80078 Pozzuoli, Italy; (M.L.); (A.F.); (M.d.C.)
| | - Marianne di Costanzo
- “Maria Guarino” Foundation—AMOR No Profit Association, 80078 Pozzuoli, Italy; (M.L.); (A.F.); (M.d.C.)
| | | | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (L.Z.); (C.A.); (M.B.M.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
226
|
Frappart PO, Hofmann TG. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers (Basel) 2020; 12:E2750. [PMID: 32987786 PMCID: PMC7598647 DOI: 10.3390/cancers12102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of pancreatic malignancies. In contrast to many other tumor entities, the prognosis of PDAC has not significantly improved during the past thirty years. Patients are often diagnosed too late, leading to an overall five-year survival rate below 10%. More dramatically, PDAC cases are on the rise and it is expected to become the second leading cause of death by cancer in western countries by 2030. Currently, the use of gemcitabine/nab-paclitaxel or FOLFIRINOX remains the standard chemotherapy treatment but still with limited efficiency. There is an urgent need for the development of early diagnostic and therapeutic tools. To this point, in the past 5 years, organoid technology has emerged as a revolution in the field of PDAC personalized medicine. Here, we are reviewing and discussing the current technical and scientific knowledge on PDAC organoids, their future perspectives, and how they can represent a game change in the fight against PDAC by improving both diagnosis and treatment options.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
227
|
Paradoxical Role of AT-rich Interactive Domain 1A in Restraining Pancreatic Carcinogenesis. Cancers (Basel) 2020; 12:cancers12092695. [PMID: 32967217 PMCID: PMC7564752 DOI: 10.3390/cancers12092695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Genes with deleterious mutations in tumors are widely accepted as tumor suppressors, since, loss of their normal expression often promotes tumor development. However, most tumors develop over a long period, with gradual accumulation of tumor-promoting events. Thus, to comprehend the role of individual genes in this evolving process of tumorigenesis, it is critical to investigate their role in both early precursors and established tumor cells. Despite recurrent mutations in ARID1A in genomes of human cancer, including pancreatic cancer, its role in tumorigenesis is not clear. We aim to understand the role of Arid1a in pancreatic cancer development and maintenance by investigating its role in both early pancreatic precursor cells and established pancreatic cancer cells. Besides novel understanding of context-dependent role of Arid1a in pancreatic cancer, this study will also enable development of therapeutic strategies for pancreatic cancers patients with ARID1A mutations, which is currently a critical unmet need in clinic. Abstract Background & Aims: ARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model and PDAC cell lines. Methods: Pancreas-specific mutant Arid1a-driven GEM model (Ptf1a-Cre; KrasG12D; Arid1af/f or “KAC”) was generated by crossing Ptf1a-Cre; KrasG12D (“KC”) mice with Arid1af/f mice and characterized histologically with timed necropsies. Arid1a was also deleted using CRISPR-Cas9 system in established human and murine PDAC cell lines to study the immediate effects of Arid1a loss in isogenic models. Cell lines with or without Arid1a expression were developed from respective autochthonous PDAC GEM models, compared functionally using various culture assays, and subjected to RNA-sequencing for comparative gene expression analysis. DNA damage repair was analyzed in cultured cells using immunofluorescence and COMET assay. Results: Retention of Arid1a is critical for early progression of mutant Kras-driven pre-malignant lesions into PDAC, as evident by lower Ki-67 and higher apoptosis staining in “KAC” as compared to “KC” mice. Enforced deletion of Arid1a in established PDAC cell lines caused suppression of cellular growth and migration, accompanied by compromised DNA damage repair. Despite early development of relatively indolent cystic precursor lesions called intraductal papillary mucinous neoplasms (IPMNs), a subset of “KAC” mice developed aggressive PDAC in later ages. PDAC cells obtained from older autochthonous “KAC” mice revealed various compensatory (“escaper”) mechanisms to overcome the growth suppressive effects of Arid1a loss. Conclusions: Arid1a is an essential survival gene whose loss impairs cellular growth, and thus, its expression is critical during early stages of pancreatic tumorigenesis in mouse models. In tumors that arise in the setting of ARID1A loss, a multitude of “escaper” mechanisms drive progression.
Collapse
|
228
|
Zhang Y, Chen D, Zhang G, Wu X, Zhou L, Lin Y, Ding J, An F, Zhan Q. MicroRNA-23b-3p promotes pancreatic cancer cell tumorigenesis and metastasis via the JAK/PI3K and Akt/NF-κB signaling pathways. Oncol Lett 2020; 20:160. [PMID: 32934728 PMCID: PMC7471709 DOI: 10.3892/ol.2020.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-23b-3p plays an important role in tumor growth, proliferation, invasion and migration in pancreatic cancer (PC). However, the function and mechanistic role of miR-23b-3p in the development of PC remains largely unknown. In the present study, the miR-23b-3p levels in the serum of patients with PC were found to be elevated, and the phosphorylation levels of Janus kinase (JAK)2, PI3K, Akt and NF-κВ were found to be upregulated. In addition, miR-23b-3p was induced in response to interleukin-6 (IL-6), which is known to be involved in the progression of PC. Overexpression of miR-23b-3p, on the other hand, activated the JAK/PI3K and Akt/NF-κB signaling pathways in PC cells, as evidenced by miR-23b-3p-induced upregulation of phosphorylated (p-)JAK2, p-PI3K, p-Akt and p-NF-κВ, as well as the downregulation of PTEN; and these effects were found to be reversible by miR-23b-3p inhibition. Furthermore, miR-23b-3p was found to downregulate PTEN by directly targeting the 3′-untranslated region of PTEN mRNA. Notably, in an in vivo xenograft mouse model, overexpression of miR-23b-3p accelerated PC cell-derived tumor growth, activated the JAK/Akt/NF-κВ signaling pathway and promoted liver metastasis. In contrast, knockdown of miR-23b-3p suppressed tumor growth and metastasis as well as JAK/Akt/NF-κВ signaling activity. In vivo imaging of the mice further confirmed the metastasis promoting role of miR-23b-3p in PC. These results suggested that miR-23b-3p enhances PC cell tumorigenesis and metastasis, at least, partially via the JAK/PI3K and Akt/NF-κB signaling pathways. Therefore, targeting miR-23b-3p or the JAK/PI3K and Akt/NF-κB signalings may be potential therapeutic strategy against PC.
Collapse
Affiliation(s)
- Yunan Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Dayang Chen
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Guoqiang Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiongbo Wu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Liangyun Zhou
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yexin Lin
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Junli Ding
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
229
|
The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers (Basel) 2020; 12:cancers12092353. [PMID: 32825312 PMCID: PMC7564395 DOI: 10.3390/cancers12092353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This meta-analysis aims to identify the diagnostic accuracy of mutations in the Kirsten Rat Sarcoma (KRAS) oncogene in the diagnosis of pancreatic ductal adenocarcinoma (PDAC). The survival of PDAC remains poor often due to the fact that disease is advanced at diagnosis. We analysed 22 studies, with a total of 2156 patients, to identify if the detection of KRAS mutations from pancreatic exocrine secretions yields sufficient specificity and sensitivity to detect patients with PDAC amongst healthy individuals. The majority of the studies were retrospective, samples were obtained endoscopically or surgically, and included comparator populations of patients with chronic pancreatitis and pre-malignant pancreatic lesions (PanIN) as well as healthy controls. We performed several analyses to identify the diagnostic accuracy for PDAC among these patient populations. Our results highlighted that the diagnostic accuracy of KRAS mutation for PDAC was of variable sensitivity and specificity when compared with PanINs and chronic pancreatitis, but had a higher specificity among healthy individuals. The sensitivity of this test must be improved to prevent missing early PDAC or PanINs. This could be achieved with rigorous prospective cohort studies, in which high-risk patients with normal cross-sectional imaging undergo surveillance following KRAS mutation testing.
Collapse
|
230
|
Wang F, Qi XM, Wertz R, Mortensen M, Hagen C, Evans J, Sheinin Y, James M, Liu P, Tsai S, Thomas J, Mackinnon A, Dwinell M, Myers CR, Bartrons Bach R, Fu L, Chen G. p38γ MAPK Is Essential for Aerobic Glycolysis and Pancreatic Tumorigenesis. Cancer Res 2020; 80:3251-3264. [PMID: 32580961 PMCID: PMC9358694 DOI: 10.1158/0008-5472.can-19-3281] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/20/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022]
Abstract
KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan Wertz
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew Mortensen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Catherine Hagen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John Evans
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael James
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Michael Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ramon Bartrons Bach
- Department de Ciencies Fisiologiques, Facultat de Medicina. Universitat de Barcelona, Spain
| | - Liwu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
231
|
Li T, Liu Q, Zhang R, Liao Q, Zhao Y. Identification of prognosis-related genes and construction of multi-regulatory networks in pancreatic cancer microenvironment by bioinformatics analysis. Cancer Cell Int 2020; 20:341. [PMID: 32724299 PMCID: PMC7382032 DOI: 10.1186/s12935-020-01426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background As one of the most lethal cancers, pancreatic cancer has been characterized by abundant supportive tumor-stromal cell microenvironment. Although the advent of tumor-targeted immune checkpoint blockers has brought light to patients with other cancers, its clinical efficacy in pancreatic cancer has been greatly limited due to the protective stroma. Thus, it is urgent to find potential new targets and establish multi-regulatory networks to predict patient prognosis and improve treatment. Methods We followed a strategy based on mining the Cancer Genome Atlas (TCGA) database and ESTIMATE algorithm to obtain the immune scores and stromal scores. Differentially expressed genes (DEGs) associated with poor overall survival of pancreatic cancer were screened from a TCGA cohort. By comparing global gene expression with high vs. low immune scores and subsequent Kaplan–Meier analysis, DEGs that significantly correlate with poor overall survival of pancreatic cancer in TCGA cohort were extracted. After constructing the protein–protein interaction network using STRING and limiting the genes within the above DEGs, we utilized RAID 2.0, TRRUST v2 database and degree and betweenness analysis to obtain non-coding RNA (ncRNA)-pivotal nodes and TF-pivotal nodes. Finally, multi-regulatory networks have been constructed and pivotal drugs with potential benefit for pancreatic cancer patients were obtained by screening in the DrugBank. Results In this study, we obtained 246 DEGs that significantly correlate with poor overall survival of pancreatic cancer in the TCGA cohort. With the advent of 38 ncRNA-pivotal nodes and 7 TF-pivotal nodes, the multi-factor regulatory networks were constructed based on the above pivotal nodes. Prognosis-related genes and factors such as HCAR3, PPY, RFWD2, WSPAR and Amcinonide were screened and investigated. Conclusion The multi-regulatory networks constructed in this study are not only beneficial to improve treatment and evaluate patient prognosis with pancreatic cancer, but also favorable for implementing early diagnosis and personalized treatment. It is suggested that these factors may play an essential role in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Tong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
232
|
Beyond the Genomic Mutation: Rethinking the Molecular Biomarkers of K-RAS Dependency in Pancreatic Cancers. Int J Mol Sci 2020; 21:ijms21145023. [PMID: 32708716 PMCID: PMC7404119 DOI: 10.3390/ijms21145023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenic v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) plays a key role in the development and maintenance of pancreatic ductal adenocarcinoma (PDAC). The targeting of K-RAS would be beneficial to treat tumors whose growth depends on active K-RAS. The analysis of K-RAS genomic mutations is a clinical routine; however, an emerging question is whether the mutational status is able to identify tumors effectively dependent on K-RAS for tailoring targeted therapies. With the emergence of novel K-RAS inhibitors in clinical settings, this question is relevant. Several studies support the notion that the K-RAS mutation is not a sufficient biomarker deciphering the effective dependency of the tumor. Transcriptomic and metabolomic profiles of tumors, while revealing K-RAS signaling complexity and K-RAS-driven molecular pathways crucial for PDAC growth, are opening the opportunity to specifically identify K-RAS-dependent- or K-RAS-independent tumor subtypes by using novel molecular biomarkers. This would help tumor selection aimed at tailoring therapies against K-RAS. In this review, we will present studies about how the K-RAS mutation can also be interpreted in a state of K-RAS dependency, for which it is possible to identify specific K-RAS-driven molecular biomarkers in certain PDAC subtypes, beyond the genomic K-RAS mutational status.
Collapse
|
233
|
Jiao H, Zeng L, Yang S, Zhang J, Lou W. Knockdown EIF3C Suppresses Cell Proliferation and Increases Apoptosis in Pancreatic Cancer Cell. Dose Response 2020; 18:1559325820950061. [PMID: 32973416 PMCID: PMC7493259 DOI: 10.1177/1559325820950061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/02/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence shows that eukaryotic initiation factor subunit (EIF3C) plays a crucial role in development of tumors. However, the underlying roles of EIF3Cin the development of pancreatic cancer (PC) remain unknown. In this study, we examined the expression of EIF3C in PC tissues, their adjacent normal tissues and 3 cell lines (SW1990, PANC-1 and AsPC-1). Moreover, the EIF3C-shRNA lentivirus was constructed to suppress EIF3C expression. Following this, the cell colony formation assay was employed to evaluate proliferation ability of PC cells. Meanwhile, the cell cycle and apoptotic assays were also performed by flow cytometry. We found that level of EIF3C in PC tissues was significantly increased compared with that in adjacent normal tissues. Furthermore, the knockdown of EIF3C can significantly reduce cell proliferation, block cell cycle in G2/M and induce apoptosis in both SW1990 and PANC-1 cells. Our findings suggest that EIF3C plays a crucial role in the progression of PC and may be a potential target in the treatment of PC.
Collapse
Affiliation(s)
- Heng Jiao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxiao Zeng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Jianpeng Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
234
|
Ma Y, Li J, Wang H, Chiu Y, Kingsley CV, Fry D, Delaney SN, Wei SC, Zhang J, Maitra A, Yee C. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology 2020; 159:306-319.e12. [PMID: 32179091 PMCID: PMC7387152 DOI: 10.1053/j.gastro.2020.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Advanced pancreatic ductal adenocarcinoma (PDAC) is resistant to therapy, including immune checkpoint inhibitors. We evaluated the effects of a neutralizing antibody against programmed cell death 1 (PD-1) and an agonist of OX40 (provides a survival signal to activated T cells) in mice with pancreatic tumors. METHODS We performed studies in C57BL/6 mice (controls), KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) mice, and mice with orthotopic tumors grown from Panc02 cells, KrasG12D;P53flox/flox;PDX-1-Cre;Luciferase (KPC-Luc) cells, or mT4 cells. After tumors developed, mice were given injections of control antibody or anti-OX40 and/or anti-PD-1 antibody. Some mice were then given injections of antibodies against CD8, CD4, or NK1.1 to deplete immune cells, and IL4 or IL7RA to block cytokine signaling. Bioluminescence imaging was used to monitor tumor growth. Tumor tissues collected and single-cell suspensions were analyzed by time of flight mass spectrometry analysis. Mice that were tumor-free 100 days after implantation of orthotopic tumors were rechallenged with PDAC cells (KPC-Luc or mT4) and survival was measured. Median levels of PD-1 and OX40 mRNAs in PDACs were determined from The Cancer Genome Atlas and compared with patient survival times. RESULTS In mice with orthotopic tumors, all those given control antibody or anti-PD-1 died within 50 days, whereas 43% of mice given anti-OX40 survived for 225 days; almost 100% of mice given the combination of anti-PD-1 and anti-OX40 survived for 225 days, and tumors were no longer detected. KPC mice given control antibody, anti-PD-1, or anti-OX40 had median survival times of 50 days or less, whereas mice given the combination of anti-PD-1 and anti-OX40 survived for a median 88 days. Mice with orthotopic tumors that were given the combination of anti-PD-1 and anti-OX40 and survived 100 days were rechallenged with a second tumor; those rechallenged with mT4 cells survived an additional median 70 days and those rechallenged with KPC-Luc cells survived long term, tumor free. The combination of anti-PD-1 and anti-OX40 did not slow tumor growth in mice with antibody-mediated depletion of CD4+ T cells. Mice with orthotopic tumors given the combination of anti-PD-1 and anti-OX40 that survived after complete tumor rejection were rechallenged with KPC-Luc cells; those with depletion of CD4+ T cells before the rechallenge had uncontrolled tumor growth. Furthermore, KPC orthotopic tumors from mice given the combination contained an increased number of CD4+ T cells that expressed CD127 compared with mice given control antibody. The combination of agents reduced the proportion of T-regulatory and exhausted T cells and decreased T-cell expression of GATA3; tumor size was negatively associated with numbers of infiltrating CD4+ T cells, CD4+CD127+ T cells, and CD8+CD127+ T cells, and positively associated with numbers of CD4+PD-1+ T cells, CD4+CD25+ T cells, and CD8+PD-1+ T cells. PDACs with high levels of OX40 and low levels of PD-1 were associated with longer survival times of patients. CONCLUSIONS Pancreatic tumors appear to evade the immune response by inducing development of immune-suppressive T cells. In mice, the combination of anti-PD-1 inhibitory and anti-OX40 agonist antibodies reduces the proportion of T-regulatory and exhausted T cells in pancreatic tumors and increases numbers of memory CD4+ and CD8+ T cells, eradicating all detectable tumor. This information can be used in development of immune-based combination therapies for PDAC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Huamin Wang
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Charles V. Kingsley
- Department of Imaging Physics, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - David Fry
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Samantha N. Delaney
- Department of Melanoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Spencer C. Wei
- Center for Cancer Immunology ResearchThe University of
Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030;,Department of Immunology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
235
|
Saha G, Singh R, Mandal A, Das S, Chattopadhyay E, Panja P, Roy P, DeSarkar N, Gulati S, Ghatak S, Ghosh S, Banerjee S, Roy B, Ghosh S, Chaudhuri D, Arora N, Biswas NK, Sikdar N. A novel hotspot and rare somatic mutation p.A138V, at TP53 is associated with poor survival of pancreatic ductal and periampullary adenocarcinoma patients. Mol Med 2020; 26:59. [PMID: 32552660 PMCID: PMC7302128 DOI: 10.1186/s10020-020-00183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is a cancer of the exocrine pancreas and 5-year survival rates remain constant at 7%. Along with PDAC, Periampullary Adenocarcinoma (PAC) accounts for 0.5-2% of all gastrointestinal malignancies. Genomic observations were well concluded for PDAC and PACs in western countries but no reports are available from India till now. METHODS Targeted Next Generation Sequencing were performed in 8 (5 PDAC and 3 PAC) tumour normal pairs, using a panel of 412 cancer related genes. Primary findings were replicated in 85 tumour samples (31 PDAC and 54 PAC) using the Sanger sequencing. Mutations were also validated by ASPCR, RFLP, and Ion Torrent sequencing. IHC along with molecular dynamics and docking studies were performed for the p.A138V mutant of TP53. Key polymorphisms at TP53 and its associated genes were genotyped by PCR-RFLP method and association with somatic mutations were evaluated. All survival analysis was done using the Kaplan-Meier survival method which revealed that the survival rates varied significantly depending on the somatic mutations the patients harboured. RESULTS Among the total 114 detected somatic mutations, TP53 was the most frequently mutated (41%) gene, followed by KRAS, SMAD4, CTNNB1, and ERBB3. We identified a novel hotspot TP53 mutation (p.A138V, in 17% of all patients). Low frequency of KRAS mutation (33%) was detected in these samples compared to patients from Western counties. Molecular Dynamics (MD) simulation and DNA-protein docking analysis predicted p.A138V to have oncogenic characteristics. Patients with p.A138V mutation showed poorer overall survival (p = 0.01). So, our finding highlights elevated prevalence of the p53p.A138V somatic mutation in PDAC and pancreatobiliary PAC patients. CONCLUSION Detection of p.A138V somatic variant in TP53 might serve as a prognostic marker to classify patients. It might also have a role in determining treatment regimes. In addition, low frequency of KRAS hotspot mutation mostly in Indian PDAC patient cohort indicates presence of other early drivers in malignant transformation.
Collapse
Affiliation(s)
- Gourab Saha
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Richa Singh
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Argha Mandal
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Esita Chattopadhyay
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Prasun Panja
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Paromita Roy
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Navonil DeSarkar
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, USA
| | - Sumit Gulati
- Department of Surgical Gastroenterology, Calcutta Medical Research Institute, Kolkata, India
| | - Supriyo Ghatak
- Department of Surgical Gastroenterology, Calcutta Medical Research Institute, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sudeep Banerjee
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Dipankar Chaudhuri
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Neeraj Arora
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India.
| |
Collapse
|
236
|
Xie J, Cheng CS, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM, Meng ZQ. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging (Albany NY) 2020; 11:2681-2698. [PMID: 31076559 PMCID: PMC6535063 DOI: 10.18632/aging.101940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
The aim of this study was to identify the function of the Mg2+ transporter protein solute carrier family 41 member 1 SLC41A1 in pancreatic ductal adenocarcinoma and the underlying mechanisms. A total of 27 solute carrier proteins were differentially expressed in pancreatic ductal adenocarcinoma. Three of these proteins were correlated with clinical outcomes in patients, among which SLC41A1 was downregulated in tumour. Overexpression of SLC41A1 suppressed orthotopic tumour growth in a mouse model and reduced the cell proliferation, colony formation, and invasiveness of KP3 and Panc-1 cells, which may have been associated with the increased population of apoptotic-prone cells. Overexpression of SLC41A1 reduced the mitochondrial membrane potential, induced Bax while suppressed Bcl-2 expression. Suppression of Bax abrogated the tumour-suppressive effects of SLC41A1. Furthermore, overexpression of SLC41A1 promoted Mg2+ efflux and suppressed Akt/mTOR activity, which is the upstream regulator of Bax and Bcl-2. An increase in Akt activity and supplementation with Mg2+ abolished SLC41A1-induced tumour suppression. The results of this study suggest that SLC41A1 may be a potential target for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao Yan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ye Hua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Li Bin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi Qiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
237
|
Bararia A, Dey S, Gulati S, Ghatak S, Ghosh S, Banerjee S, Sikdar N. Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary Pancreat Dis Int 2020; 19:205-217. [PMID: 32312637 DOI: 10.1016/j.hbpd.2020.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal diseases with an incidence almost equal to the mortality. In addition to having genetic causes, cancer can also be considered an epigenetic disease. DNA methylation is the premier epigenetic modification and patterns of aberrant DNA methylation are recognized to be a common hallmark of human tumor. In the multistage carcinogenesis of pancreas starting from precancerous lesions to pancreatic ductal adenocarcinoma (PDAC), the epigenetic changes play a significant role. DATA SOURCES Relevant studies for this review were derived via an extensive literature search in PubMed via using various keywords such as pancreatic ductal adenocarcinoma, precancerous lesions, methylation profile, epigenetic biomarkers that are relevant directly or closely associated with the concerned area of our interest. The literature search was intensively done considering a time frame of 20 years (1998-2018). RESULT In this review we have highlighted the hypermethylation and hypomethylation of the precancerous PDAC lesions (pancreatic intra-epithelial neoplasia, intraductal papillary mucinous neoplasm, mucinous cystic neoplasm and chronic pancreatitis) and PDAC along with the potential biomarkers. We have also achieved the early epigenetic driver that leads to progression from precancerous lesions to PDAC. A bunch of epigenetic driver genes leads to progression of precancerous lesions to PDAC (ppENK, APC, p14/5/16/17, hMLH1 and MGMT) are also documented. We summarized the importance of these observations in therapeutics and diagnosis of PDAC hence identifying the potential use of epigenetic biomarkers in epigenetic targeted therapy. Epigenetic inactivation occurs by hypermethylation of CpG islands in the promoter regions of tumor suppressor genes. We listed all hyper- and hypomethylation of CpG islands of several genes in PDAC including its precancerous lesions. CONCLUSIONS The concept of the review would help to understand their biological effects, and to determine whether they may be successfully combined with other epigenetic drugs. However, we need to continue our research to develop more specific DNA-demethylating agents, which are the targets for hypermethylated CpG methylation sites.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Subhankar Dey
- Department of Zoology, New Alipore College, University of Calcutta, Kolkata, India
| | - Sumit Gulati
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Supriyo Ghatak
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
238
|
Quoc Lam B, Shrivastava SK, Shrivastava A, Shankar S, Srivastava RK. The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. J Cell Mol Med 2020; 24:7706-7716. [PMID: 32458441 PMCID: PMC7348166 DOI: 10.1111/jcmm.15413] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/18/2023] Open
Abstract
The incidence of obesity and type 2 diabetes (T2DM) in the Western world has increased dramatically during the recent decades. According to the American Cancer Society, pancreatic cancer (PC) is the fourth leading cause of cancer‐related death in the United States. The relationship among obesity, T2DM and PC is complex. Due to increase in obesity, diabetes, alcohol consumption and sedentary lifestyle, the mortality due to PC is expected to rise significantly by year 2040. The underlying mechanisms by which diabetes and obesity contribute to pancreatic tumorigenesis are not well understood. Furthermore, metabolism and microenvironment within the pancreas can also modulate pancreatic carcinogenesis. The risk of PC on a population level may be reduced by modifiable lifestyle risk factors. In this review, the interactions of diabetes and obesity to PC development were summarized, and novel strategies for the prevention and treatment of diabetes and PC were discussed.
Collapse
Affiliation(s)
- Bao Quoc Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sushant K Shrivastava
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Anju Shrivastava
- Department of Oncology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
239
|
Ohkuma R, Yada E, Ishikawa S, Komura D, Kubota Y, Hamada K, Horiike A, Ishiguro T, Hirasawa Y, Ariizumi H, Shida M, Watanabe M, Onoue R, Ando K, Tsurutani J, Yoshimura K, Sasada T, Aoki T, Murakami M, Norose T, Ohike N, Takimoto M, Kobayashi S, Tsunoda T, Wada S. High expression levels of polymeric immunoglobulin receptor are correlated with chemoresistance and poor prognosis in pancreatic cancer. Oncol Rep 2020; 44:252-262. [PMID: 32627041 PMCID: PMC7251687 DOI: 10.3892/or.2020.7610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer has extremely poor prognosis, warranting the discovery of novel therapeutic and prognostic markers. The expression of polymeric immunoglobulin receptor (pIgR), a key component of the mucosal immune system, is increased in several cancers. However, its clinical relevance in pancreatic cancer remains unclear. In the present study, the prognostic value of pIgR in pancreatic cancer patients after surgical resection was assessed and it was determined that the expression of pIgR was correlated with poor prognosis. Ten pancreatic cancer patient‑derived xenograft (PDX) lines were established, followed by next‑generation sequencing of tumor tissues from these lines after standard chemotherapy. Immunohistochemical analysis of chemoresistance‑related molecules using 77 pancreatic cancer tissues was also performed. The expression of pIgR mRNA in the PDX group treated with anticancer drugs was higher than in the untreated group. High pIgR expression in tissue specimens from 77 pancreatic cancer patients was significantly associated with poor prognosis and was revealed to be an independent prognostic factor, predicting poor outcomes. High pIgR mRNA and protein levels were independent prognostic factors, indicating that pIgR could be a novel predictor for poor prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Erica Yada
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Shumpei Ishikawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑0033, Japan
| | - Daisuke Komura
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑0033, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Kazuyuki Hamada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Atsushi Horiike
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Tomoyuki Ishiguro
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Midori Shida
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Rie Onoue
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Kiyohiro Ando
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Junji Tsurutani
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Takeshi Aoki
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University, Tokyo 142‑8555, Japan
| | - Masahiko Murakami
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University, Tokyo 142‑8555, Japan
| | - Tomoko Norose
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Nobuyuki Ohike
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
| |
Collapse
|
240
|
Zhang X, Xu J, Yan R, Zhang Y, Hu Z, Fu H, You Q, Cai Q, Yang D. FAM84B, amplified in pancreatic ductal adenocarcinoma, promotes tumorigenesis through the Wnt/β-catenin pathway. Aging (Albany NY) 2020; 12:6808-6822. [PMID: 32291380 PMCID: PMC7202512 DOI: 10.18632/aging.103044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 01/05/2023]
Abstract
Altered expression of family with sequence similarity 84, member B (FAM84B) has been found in various human cancers. However, the expression and function of FAM84B in pancreatic ductal adenocarcinoma (PDAC) has not been studied. Here, by analyzing The Cancer Genome Atlas cohort, we found that FAM84B amplification was observed in 11% of 141 PDAC patients, and FAM84B amplification was correlated with higher mRNA expression of FAM84B. FAM84B amplification and overexpression was significantly correlated with poor overall survival. Moreover, knockdown of FAM84B in PDAC cell lines suppressed cell proliferation and induced apoptosis. FAM84B knockdown also suppressed mitochondrial function and glycolysis of PDAC cells. Interestingly, knockdown of FAM84B decreased the nuclear accumulation of β-catenin, and the expression of c-Myc and lactate dehydrogenase A, but enhanced the expression of Survivin. On the contrary, FAM84B overexpression displayed reversed effects in cell proliferation, apoptosis, mitochondrial function, and glycolysis, which was blocked by the Wnt/β-catenin pathway inhibitor (XAV939). In addition, PDAC cells with lower expression of FAM84B were more sensitive to gemcitabine-induced cell proliferation inhibition both in vitro and in vivo. In conclusion, FAM84B plays an important role in aerobic glycolysis and tumorigenesis in PDAC and Wnt/β-catenin may be involved in this process.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastrointestinal surgery, Changhai Hospital, Second Military Medical University, Yangpu 200433, Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Huangpu 200003, Shanghai, China
| |
Collapse
|
241
|
Tsang YH, Wang Y, Kong K, Grzeskowiak C, Zagorodna O, Dogruluk T, Lu H, Villafane N, Bhavana VH, Moreno D, Elsea SH, Liang H, Mills GB, Scott KL. Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression. eLife 2020; 9:48963. [PMID: 32270762 PMCID: PMC7164953 DOI: 10.7554/elife.48963] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The melanoma-associated antigen family A (MAGEA) antigens are expressed in a wide variety of malignant tumors but not in adult somatic cells, rendering them attractive targets for cancer immunotherapy. Here we show that a number of cancer-associated MAGEA mutants that undergo proteasome-dependent degradation in vitro could negatively impact their utility as immunotherapeutic targets. Importantly, in pancreatic ductal adenocarcinoma cell models, MAGEA6 suppresses macroautophagy (autophagy). The inhibition of autophagy is released upon MAGEA6 degradation, which can be induced by nutrient deficiency or by acquisition of cancer-associated mutations. Using xenograft mouse models, we demonstrated that inhibition of autophagy is critical for tumor initiation whereas reinstitution of autophagy as a consequence of MAGEA6 degradation contributes to tumor progression. These findings could inform cancer immunotherapeutic strategies for targeting MAGEA antigens and provide mechanistic insight into the divergent roles of MAGEA6 during pancreatic cancer initiation and progression.
Collapse
Affiliation(s)
- Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Cell, Develop & Cancer Biology, Oregon Health & Science University, Portland, United States
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Kathleen Kong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Caitlin Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Oksana Zagorodna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Turgut Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Nicole Villafane
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, United States
| | | | - Daniela Moreno
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, United States.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Gordon B Mills
- Cell, Develop & Cancer Biology, Oregon Health & Science University, Portland, United States.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
242
|
Smith SJ, Li CM, Lingeman RG, Hickey RJ, Liu Y, Malkas LH, Raoof M. Molecular Targeting of Cancer-Associated PCNA Interactions in Pancreatic Ductal Adenocarcinoma Using a Cell-Penetrating Peptide. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:250-256. [PMID: 32368614 PMCID: PMC7190754 DOI: 10.1016/j.omto.2020.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma is a particularly difficult cancer to treat due to a lack of effective screening or treatment. Pancreatic cancer cells exhibit high proliferating cell nuclear antigen (PCNA) expression, which is associated with poor prognosis. PCNA, an important nuclear DNA replication and repair protein, regulates a myriad of proteins via the interdomain connector loop. Within this region, amino acids 126–133 are critical for PCNA interactions in cancer cells. Here, we investigate the ability of a decoy cell-penetrating peptide, R9-caPeptide, that mimics the interdomain connector loop region of PCNA to disrupt PCNA-protein interactions in pancreatic cancer cells. Our data suggest that R9-caPeptide causes dose-dependent toxicity in a panel of pancreatic cancer cell lines by inhibiting DNA replication fork progression and PCNA-regulated DNA repair, ultimately causing lethal DNA damage. Overall, these studies lay the foundation for novel therapeutic strategies that target PCNA in pancreatic cancer.
Collapse
Affiliation(s)
- Shanna J Smith
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Caroline M Li
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Robert G Lingeman
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
243
|
Li B, Zhang C, Wang J, Zhang M, Liu C, Chen Z. Impact of genetic variants of ABCB1, APOB, CAV1, and NAMPT on susceptibility to pancreatic ductal adenocarcinoma in Chinese patients. Mol Genet Genomic Med 2020; 8:e1226. [PMID: 32243098 PMCID: PMC7284033 DOI: 10.1002/mgg3.1226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Among the different types of cancer, pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), is the most lethal malignancy, with poor early detection rates and prognosis. The aim of the present study was to investigate the potential genetic effects of the single-nucleotide polymorphisms (SNPs) in ABCB1 (rs1045642, rs3789243, rs4148737), APOB (rs693, rs1042031), CAV1 (rs12672038, rs1997623, rs3807987, rs7804372), and NAMPT (rs9034, rs2505568, rs61330082) on PDAC. METHODS A total of 273 patients with PDAC and 263 healthy controls were genotyped using PCR and direct Sanger sequencing. Unconditional logistic regression models were used to evaluate the potential effects of the genotypes, alleles, and haplotypes on the risk of developing PDAC. RESULTS Patients with PDAC possessed a considerably lower frequency of genotypes AG, GG, and allele G at ABCB1 rs4148737 compared with controls. Based on age, sex, smoking status, drinking status, diabetes, and family history of cancer, stratified analyses showed a significant correlation between SNPs at rs4148737 and PDAC. According to specific SNPs, eight haplotypes were constructed along with ABCB1 rs4148737, rs1045642, and rs3789243. Carriers with haplotypes ACC and ATC were more susceptible to developing PDAC, whereas haplotypes GCC and GTC were associated with a reduced likelihood of developing PDAC. The distributions of the other SNPs in each group were not significantly associated with PDAC risk. CONCLUSIONS These results suggested that genetic polymorphisms of ABCB1 rs4148737 may influence an individual's risk of developing PDAC.
Collapse
Affiliation(s)
- Baohuan Li
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chuanzhen Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingjing Wang
- Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Meijuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changhong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ziping Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
244
|
Collet L, Ghurburrun E, Meyers N, Assi M, Pirlot B, Leclercq IA, Couvelard A, Komuta M, Cros J, Demetter P, Lemaigre FP, Borbath I, Jacquemin P. Kras and Lkb1 mutations synergistically induce intraductal papillary mucinous neoplasm derived from pancreatic duct cells. Gut 2020; 69:704-714. [PMID: 31154393 DOI: 10.1136/gutjnl-2018-318059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pancreatic cancer can arise from precursor lesions called intraductal papillary mucinous neoplasms (IPMN), which are characterised by cysts containing papillae and mucus-producing cells. The high frequency of KRAS mutations in IPMN and histological analyses suggest that oncogenic KRAS drives IPMN development from pancreatic duct cells. However, induction of Kras mutation in ductal cells is not sufficient to generate IPMN, and formal proof of a ductal origin of IPMN is still missing. Here we explore whether combining oncogenic KrasG12D mutation with an additional gene mutation known to occur in human IPMN can induce IPMN from pancreatic duct cells. DESIGN We created and phenotyped mouse models in which mutations in Kras and in the tumour suppressor gene liver kinase B1 (Lkb1/Stk11) are conditionally induced in pancreatic ducts using Cre-mediated gene recombination. We also tested the effect of β-catenin inhibition during formation of the lesions. RESULTS Activating KrasG12D mutation and Lkb1 inactivation synergised to induce IPMN, mainly of gastric type and with malignant potential. The mouse lesions shared several features with human IPMN. Time course analysis suggested that IPMN developed from intraductal papillae and glandular neoplasms, which both derived from the epithelium lining large pancreatic ducts. β-catenin was required for the development of glandular neoplasms and subsequent development of the mucinous cells in IPMN. Instead, the lack of β-catenin did not impede formation of intraductal papillae and their progression to papillary lesions in IPMN. CONCLUSION Our work demonstrates that IPMN can result from synergy between KrasG12D mutation and inactivation of a tumour suppressor gene. The ductal epithelium can give rise to glandular neoplasms and papillary lesions, which probably both contribute to IPMN formation.
Collapse
Affiliation(s)
- Louis Collet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Elsa Ghurburrun
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Nora Meyers
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Mohamad Assi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Boris Pirlot
- Université catholique de Louvain, IREC, Brussels, Belgium
| | | | - Anne Couvelard
- Université Paris Diderot, U1149, Paris, France.,Hôpital Bichat, Department of Pathology, AP-HP, DHU UNITY, Paris, France
| | - Mina Komuta
- Université catholique de Louvain, Cliniques universitaires Saint- Luc, Department of Pathology, Brussels, Belgium
| | - Jérôme Cros
- Hôpital Beaujon, Department of Pathology, INSERM U1149, Paris, France
| | - Pieter Demetter
- Université libre de Bruxelles, Erasme University Hospital, Department of Pathology, Brussels, Belgium
| | | | - Ivan Borbath
- Université catholique de Louvain, IREC, Brussels, Belgium.,Université catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
245
|
Dey P, Li J, Zhang J, Chaurasiya S, Strom A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, Yen EY, Genovese G, Gulhati P, Liu J, Chakravarti D, Deng P, Zhang T, Carbone F, Chang Q, Ying H, Shang X, Spring DJ, Ghosh B, Putluri N, Maitra A, Wang YA, DePinho RA. Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment. Cancer Discov 2020; 10:608-625. [PMID: 32046984 PMCID: PMC7125035 DOI: 10.1158/2159-8290.cd-19-0297] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surendra Chaurasiya
- Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, Texas
| | - Anders Strom
- Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, Texas
| | - Huamin Wang
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen-Ting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick Cavallaro
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Parker Denz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pat Gulhati
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jielin Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tingxin Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Federica Carbone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Chang
- Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
246
|
Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai VR, Velez-Delgado A, Donahue K, Carpenter ES, Brown KL, Irizarry-Negron V, Nevison AC, Vinta A, Anderson MA, Crawford HC, Lyssiotis CA, Frankel TL, Bednar F, Pasca di Magliano M. Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discov 2020; 10:422-439. [PMID: 31911451 PMCID: PMC7224338 DOI: 10.1158/2159-8290.cd-19-0958] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/14/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFβ ligands and, accordingly, their depletion reprogramed the fibroblast population, with loss of tumor-restraining, smooth muscle actin-expressing fibroblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6, and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4+ T-cell responses. Our data point to new mechanisms regulating fibroblast differentiation in pancreatic cancer and support the notion that fibroblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. SIGNIFICANCE: Here, we describe an unexpected cross-talk between Tregs and fibroblasts in pancreatic cancer. Treg depletion resulted in differentiation of inflammatory fibroblast subsets, in turn driving infiltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.See related commentary by Aykut et al., p. 345.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rosa E Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Katelyn Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Kristee L Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Anna C Nevison
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Alekya Vinta
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
247
|
Yao W, Maitra A, Ying H. Recent insights into the biology of pancreatic cancer. EBioMedicine 2020; 53:102655. [PMID: 32139179 PMCID: PMC7118569 DOI: 10.1016/j.ebiom.2020.102655] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PDAC) is one of the deadliest types of human cancers, owing to late stage at presentation and pervasive therapeutic resistance. The extensive tumour heterogeneity, as well as substantial crosstalk between the neoplastic epithelium and components within the microenvironment are the defining features of PDAC biology that dictate the dismal natural history. Recent advances in genomic and molecular profiling have informed on the genetic makeup and evolutionary patterns of tumour progression, leading to treatment breakthroughs in minor subsets of patients with specific tumour mutational profiles. The nature and function of tumour heterogeneity, including stromal heterogeneity, in PDAC development and therapeutic resistance, are increasingly being elucidated. Deep insight has been gained regarding the metabolic and immunological deregulation, which further sheds light on the complex biology and the observed treatment recalcitrance. Here we will summarize these recent achievements and offer our perspective on the path forward.
Collapse
Affiliation(s)
- Wantong Yao
- Department of Translational Molecular Pathology, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Houston, TX, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
248
|
Tumas J, Jasiūnas E, Strupas K, Šileikis A. Effects of Immunonutrition on Comprehensive Complication Index in Patients Undergoing Pancreatoduodenectomy. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E52. [PMID: 31991566 PMCID: PMC7074545 DOI: 10.3390/medicina56020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Background and objectives: Immunonutrition is recommended by enhanced recovery after surgery in patients undergoing pancreatoduodenectomy for 5-7 days perioperatively as it may reduce the rate of infectious complications. However, data on effect of immunonutrition on the overall complication rate are contradictory and it is not clear, which groups of patients benefit most. The aims of this study are to evaluate the effects of immunonutrition on the overall complication rate and the rate of severe and/or multiple complications in patients with pancreatic tumours stratified according to final histological diagnosis-patients with pancreatic ductal adenocarcinoma (PDAC) vs. other tumours-and nutritional state, using more sensitive Comprehensive Complication Index. Materials and Methods: Seventy consecutive patients scheduled for pancreatoduodenectomy because of pancreatic tumours were randomised into immunonutrition vs. control groups and stratified according to final histological diagnosis and nutritional status. Surgical outcomes were assessed postoperatively using Clavien-Dindo classification (CDC) and Comprehensive Complication Index (CCI). Results: No significant differences in the overall complication rates in immunonutrition vs. control, patients with malnutrition vs. no malnutrition, PDAC vs. other pancreatic tumours groups were detected. However, significant differences in the rates of severe and/or multiple complications in immunonutrition vs. control groups and in PDAC patients segregated according to immunonutrition were obtained using CCI. Conclusions: Patients with PDAC may experience greater benefits of immunonutrition as compared to patients with benign pancreatic diseases or less aggressive tumours, while nutritional status was not a determining factor for the efficacy of immunonutrition.
Collapse
Affiliation(s)
- Jaroslav Tumas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.S.); (A.Š.)
| | - Eugenijus Jasiūnas
- Centre of Informatics and Development, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Kęstutis Strupas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.S.); (A.Š.)
| | - Audrius Šileikis
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.S.); (A.Š.)
| |
Collapse
|
249
|
Wang D, Liu K, Yang Y, Wang T, Rao Q, Guo W, Zhang Z. Prognostic value of leukemia inhibitory factor and its receptor in pancreatic adenocarcinoma. Future Oncol 2020; 16:4461-4473. [PMID: 31854204 DOI: 10.2217/fon-2019-0684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, the prognostic effects of leukemia inhibitory factor (LIF) and LIF receptor (LIFR) in pancreatic adenocarcinoma (PAAD) are not clear. In the present study, we utilized the large datasets from four public databases to investigate the expression of LIF and LIFR and their clinical significance in PAAD. Eight cohorts containing 1278 cases with PAAD were identified and the analysis results suggested that LIF was highly expressed while LIFR was lowly expressed in PAAD tissues compared with adjacent or normal tissues. Kaplan-Meier plot curves and univariate and multivariate Cox proportional hazards regression analyses indicated high LIF expression was associated with shorter overall survival (adjusted hazard ratio = 1.641, 95% CI: 1.399-1.925, p < 0.001) whereas high LIFR expression was associated with longer overall survival (adjusted hazard ratio = 0.653, 95% CI: 0.517-0.826, p < 0.001).
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Tingting Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Wei Guo
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion & Metastasis Research & National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, PR China
| |
Collapse
|
250
|
Singh K, Pruski MA, Polireddy K, Jones NC, Chen Q, Yao J, Dar WA, McAllister F, Ju C, Eltzschig HK, Younes M, Moran C, Karmouty-Quintana H, Ying H, Bailey JM. Mst1/2 kinases restrain transformation in a novel transgenic model of Ras driven non-small cell lung cancer. Oncogene 2020; 39:1152-1164. [PMID: 31570790 DOI: 10.1038/s41388-019-1031-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Non-small cell lung cancer remains a highly lethal malignancy. Using the tamoxifen inducible Hnf1b:CreERT2 (H) transgenic mouse crossed to the LsL-KrasG12D (K) transgenic mouse, we recently discovered that an Hnf1b positive cell type in the lung is sensitive to adenoma formation when expressing a mutant KrasG12D allele. In these mice, we observe adenoma formation over a time frame of three to six months. To study specificity of the inducible Hnf1b:CreERT2 in the lung, we employed lineage tracing using an mTmG (G) reporter allele. This technique revealed recombined, GFP+ cells were predominantly SPC+. We further employed this technique in HKG mice to determine Hnf1b+ cells give rise to adenomas that express SPC and TTF1. Review of murine lung tissue confirmed a diagnosis of adenoma and early adenocarcinoma, a pathologic subtype of non-small cell lung cancer. Our expanded mouse model revealed loss of Mst1/2 promotes aggressive lung adenocarcinoma and large-scale proteomic analysis revealed upregulation of PKM2 in the lungs of mice with genetic deletion of Mst1/2. PKM2 is a known metabolic regulator in proliferating cells and cancer. Using a human lung adenocarcinoma cell line, we show pharmacologic inhibition of Mst1/2 increases the abundance of PKM2, indicating genetic loss or pharmacologic inhibition of Mst1/2 directly modulates the abundance of PKM2. In conclusion, here we report a novel model of non-small cell lung cancer driven by a mutation in Kras and deletion of Mst1/2 kinases. Tumor development is restricted to a subset of alveolar type II cells expressing Hnf1b. Our data show loss of Mst1/2 regulates levels of a potent metabolic regulator, PKM2.
Collapse
Affiliation(s)
- Kanchan Singh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Melissa A Pruski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kishore Polireddy
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Neal C Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingzheng Chen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Wasim A Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mamoun Younes
- Department of Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cesar Moran
- Department of Pathology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer M Bailey
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|