201
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|
202
|
Chivasa S, Tomé DFA, Slabas AR. UDP-glucose pyrophosphorylase is a novel plant cell death regulator. J Proteome Res 2013; 12:1743-53. [PMID: 23438466 DOI: 10.1021/pr3010887] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Programmed cell death (PCD) is an essential process that functions in plant organ sculpture, tissue differentiation, nutrient recycling, and defense against pathogen attack. A full understanding of the mechanism of PCD in plants is hindered by the limited identification of protein components of the complex signaling circuitry that underpins this important physiological process. Here we have used Arabidopsis thaliana and fumonisin B1 (FB1) to identify proteins that constitute part of the PCD signaling network. We made an inadvertent, but important observation that exogenous sucrose modulates FB1-induced cell death and identified sucrose-induced genes from publicly available transcriptomic data sets for reverse genetic analyses. Using transfer-DNA gene knockout plants, UDP-glucose pyrophosphorylase 1 (UGP1), a sucrose-induced gene, was demonstrated to be a critical factor that regulates FB1-induced PCD. We employed 2D-DiGE to identify proteomic changes preceding PCD after exposure of Arabidopsis to FB1 and used UGP1 knockout plants to refine the analysis and isolate downstream candidate proteins with a putative PCD regulatory function. Our results reveal chloroplasts as the predominantly essential organelles in FB1-induced PCD. Overall, this study reveals a novel function of UGP1 as a cell death regulator and provides candidate proteins likely recruited downstream in the activation of plant PCD.
Collapse
Affiliation(s)
- Stephen Chivasa
- School of Biological and Biomedical Sciences, Durham University , Durham DH1 3LE, United Kingdom
| | | | | |
Collapse
|
203
|
Iakimova ET, Sobiczewski P, Michalczuk L, Węgrzynowicz-Lesiak E, Mikiciński A, Woltering EJ. Morphological and biochemical characterization of Erwinia amylovora-induced hypersensitive cell death in apple leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:292-305. [PMID: 23321023 DOI: 10.1016/j.plaphy.2012.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/19/2012] [Indexed: 05/20/2023]
Abstract
In attached apple leaves, spot-inoculated with Erwinia amylovora, the phenotypic appearance of the hypersensitive response (HR) and the participation of ethylene, reactive oxygen species (ROS) and of vacuolar processing enzyme (VPE) (a plant caspase-1-like protease) were analysed. The HR in both the resistant and susceptible genotypes expressed a similar pattern of distinguishable micro HR lesions that progressed into confined macro HR lesions. The HR symptoms in apple were compared to those in non-host tobacco. The morphology of dead cells (protoplast shrinkage and retraction from cell wall) in apple leaves resembled necrotic programmed cell death (PCD). Lesion formation in both cv. Free Redstar (resistant) and cv. Idared (highly susceptible) was preceded by ROS accumulation and elevation of ethylene levels. Treatment of infected leaves with an inhibitor of ethylene synthesis led to a decrease of ethylene emission and suppression of lesion development in both cultivars. In the resistant but not in the susceptible apple cultivar an early and late increase in VPE gene expression was detected. This suggests that VPE might be an underlying component of the response to E. amylovora in resistant apple cultivars. The findings show that in the studied pathosystem the cell death during the HR proceeds through a signal transduction cascade in which ROS, ethylene and VPE pathways play a role.
Collapse
|
204
|
Abstract
Necrosis plays a fundamental role in plant physiology and pathology. When plants or plant cell cultures are subjected to abiotic stress they initiate rapid cell death with necrotic morphology. Likewise, when plants are attacked by pathogens, they develop necrotic lesions, the reaction known as hypersensitive response. Great advances in the understanding of signaling pathways that lead to necrosis during plant-pathogen interaction have been made in the last two decades using Arabidopsis thaliana as a model plant. Further understanding of these signaling pathways, as well as those regulating the execution phase of necrotic cell death per se would require a robust set of readout assays to detect and measure necrosis in various plant model systems. Here we provide description of such assays, beginning from electron microscopy, as the "gold standard" to diagnose necrosis. This is followed by two groups of biochemical and cytochemical assays used by our group to detect and quantify mitochondrial dysfunction and the loss of protoplast integrity during necrosis in Arabidopsis plants and cell suspension cultures of both Arabidopsis and Norway spruce.
Collapse
|
205
|
Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:543-70. [PMID: 23915134 DOI: 10.1146/annurev-phyto-081211-173027] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.
Collapse
Affiliation(s)
- Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Center for Cell Death and Differentiation, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
206
|
Ishikawa T, Uchimiya H, Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death. Methods Enzymol 2013; 527:239-56. [PMID: 23830635 DOI: 10.1016/b978-0-12-405882-8.00013-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen peroxide (H2O2) is known to be a typical endogenous signaling molecule that triggers programmed cell death in plants and metazoan. In this respect, they seem to share the mechanism of cell death caused by H2O2 and other reactive oxygen species (ROS). Bax inhibitor-1 (BI-1) is a well-conserved protein in plants and animals that serves as the inhibitor of mammalian proapoptotic proteins as well as plant ROS-induced cell death. As a target of H2O2, mitochondrion is considered to be an organelle of the primary ROS generation and perception. Thus, analysis of mitochondrial behavior in relation to functional roles of regulatory proteins (e.g., BI-1) will lead us to understand the core mechanisms of cell death regulation conserved in eukaryotes. In this chapter, we first introduce techniques of analyzing H2O2- (and ROS-) mediated changes in mitochondrial behavior. Next, we describe our understanding of the functions of plant BI-1 in regulation of ROS-induced cell death, with a technical basis for assessment of tolerance to ROS-mediated cell death in model plant systems.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama City, Saitama, Japan
| | | | | |
Collapse
|
207
|
Navid A, Almaas E. Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC SYSTEMS BIOLOGY 2012; 6:150. [PMID: 23216785 PMCID: PMC3572438 DOI: 10.1186/1752-0509-6-150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023]
Abstract
Background Constraint-based computational approaches, such as flux balance analysis (FBA), have proven successful in modeling genome-level metabolic behavior for conditions where a set of simple cellular objectives can be clearly articulated. Recently, the necessity to expand the current range of constraint-based methods to incorporate high-throughput experimental data has been acknowledged by the proposal of several methods. However, these methods have rarely been used to address cellular metabolic responses to some relevant perturbations such as antimicrobial or temperature-induced stress. Here, we present a new method for combining gene-expression data with FBA (GX-FBA) that allows modeling of genome-level metabolic response to a broad range of environmental perturbations within a constraint-based framework. The method uses mRNA expression data to guide hierarchical regulation of cellular metabolism subject to the interconnectivity of the metabolic network. Results We applied GX-FBA to a genome-scale model of metabolism in the gram negative bacterium Yersinia pestis and analyzed its metabolic response to (i) variations in temperature known to induce virulence, and (ii) antibiotic stress. Without imposition of any a priori behavioral constraints, our results show strong agreement with reported phenotypes. Our analyses also lead to novel insights into how Y. pestis uses metabolic adjustments to counter different forms of stress. Conclusions Comparisons of GX-FBA predicted metabolic states with fluxomic measurements and different reported post-stress phenotypes suggest that mass conservation constraints and network connectivity can be an effective representative of metabolic flux regulation in constraint-based models. We believe that our approach will be of aid in the in silico evaluation of cellular goals under different conditions and can be used for a variety of analyses such as identification of potential drug targets and their action.
Collapse
Affiliation(s)
- Ali Navid
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-0808, USA.
| | | |
Collapse
|
208
|
Bashi ZD, Rimmer SR, Khachatourians GG, Hegedus DD. Brassica napus polygalacturonase inhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants. Can J Microbiol 2012; 59:79-86. [PMID: 23461514 DOI: 10.1139/cjm-2012-0352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sclerotinia sclerotiorum releases a battery of polygalacturonases (PGs) during infection, which the host plant may cope with through production of polygalacturonase inhibitor proteins (PGIPs). To study the interaction between S. sclerotiorum PGs and Brassica napus PGIPs, 5 S. sclerotiorum PGs and 4 B. napus PGIPs were expressed in Pichia pastoris. SsPG3, SsPG6, and BnPGIP1 were successfully produced in the yeast system, and BnPGIP1 inhibited SsPG6 enzymatic activity in vitro. SsPG3 and SsPG6 both induced light-dependent necrosis when infiltrated into leaves, which was reduced in an Arabidopsis thaliana line expressing BnPGIP2 and to a lesser extent in a line expressing BnPGIP1. The line expressing BnPGIP2 also exhibited a delay in the onset of symptoms upon S. sclerotiorum inoculation, but no long-term effect on S. sclerotiorum disease progression was observed. The P. pastoris system was found to be suitable for expressing high levels of some S. sclerotiorum PGs, but PGIP interaction studies were best performed in planta. Arabidopsis thaliana forms necrotic lesions upon infiltration of PGs, is susceptible to S. sclerotiorum, and is easily transformed, and thus, is well-suited for the qualitative study of PG-PGIP interactions.
Collapse
Affiliation(s)
- Zafer Dallal Bashi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | | | | | | |
Collapse
|
209
|
The mitochondrial permeability transition pore (PTP) — An example of multiple molecular exaptation? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2072-86. [DOI: 10.1016/j.bbabio.2012.06.620] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 11/21/2022]
|
210
|
Li S, Wan C, Hu C, Gao F, Huang Q, Wang K, Wang T, Zhu Y. Mitochondrial mutation impairs cytoplasmic male sterility rice in response to H₂O₂ stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:143-50. [PMID: 22921008 DOI: 10.1016/j.plantsci.2012.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 05/23/2023]
Abstract
Cytoplasmic male sterility (CMS) is a phenomenon widely observed in various plant species characterized with disrupted anther development caused by mitochondrial mutation. CMS is becoming a model system for the investigations of nucleus-cytoplasmic interaction. To reveal the possible effects of CMS genes on plant growth in adverse environment, plant development and biochemical characters of mitochondria from Honglian (HL)-CMS line Yuetai A and maintainer Yuetai B treated with H(2)O(2) were analyzed. Results showed that 40-60mM H(2)O(2) significantly inhibits rice seedling development and growth. When treated with H(2)O(2), ATP content and mitochondrial membrane potential in Yuetai A decreased significantly faster than those of Yuetai B. These biochemical changes were accompanied by the severe nuclear DNA fragmentation and the release of mitochondrial cytochrome c in the leaf cells of Yuetai A. In addition, the antioxidative enzyme activities and mitochondrial electron transfer chain complexes were significantly down-regulated. Disturbance of the biochemical indexes indicate that HL-CMS line is more susceptible to H(2)O(2) stress than the maintainer line, the deleterious effects caused by the CMS-related ORFH79 peptide compromises the adaptability of HL-CMS line to the adverse environment.
Collapse
Affiliation(s)
- Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Hatsugai N, Perez Koldenkova V, Imamura H, Noji H, Nagai T. Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging. PLANT & CELL PHYSIOLOGY 2012; 53:1768-75. [PMID: 22942251 DOI: 10.1093/pcp/pcs119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hypersensitive cell death is known to involve dynamic remodeling of intracellular structures that uses energy released during ATP hydrolysis. However, the relationship between intracellular structural changes and ATP levels during hypersensitive cell death remains unclear. Here, to visualize ATP dynamics directly in real time in individual living plant cells, we applied a genetically encoded Förster resonance energy transfer (FRET)-based fluorescent ATP indicator, ATeam1.03-nD/nA, for plant cells. Intracellular ATP levels increased approximately 3 h after inoculation with the avirulent strain DC3000/avrRpm1 of Pseudomonas syringae pv. tomato (Pst), which was accompanied by the simultaneous disappearance of transvacuolar strands and appearance of bulb-like structures within the vacuolar lumen. Approximately 5 h after bacterial inoculation, the bulb-like structures disappeared and ATP levels drastically decreased. After another 2 h, the large central vacuole was disrupted. In contrast, no apparent changes in intracellular ATP levels were observed in the leaves inoculated with the virulent strain Pst DC3000. The Pst DC3000/avrRpm1-induced hypersensitive cell death was strongly suppressed by inhibiting ATP synthesis after oligomycin A application within 4 h after bacterial inoculation. When the inhibitor was applied 7 h after bacterial inoculation, cell death was unaffected. These observations show that changes in intracellular ATP levels correlate with intracellular morphological changes during hypersensitive cell death, and that ATP is required just before vacuolar rupture in response to bacterial infection.
Collapse
Affiliation(s)
- Noriyuki Hatsugai
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638 Japan
| | | | | | | | | |
Collapse
|
212
|
Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: In vivo ROS detection and alterations in antioxidant enzymes. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
213
|
Scutellaria baicalensis Extracts and Flavonoids Protect Rat L6 Cells from Antimycin A-Induced Mitochondrial Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:517965. [PMID: 22969827 PMCID: PMC3437297 DOI: 10.1155/2012/517965] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/17/2022]
Abstract
Antimycin A (AMA) damages mitochondria by inhibiting mitochondrial electron transport and can produce reactive oxygen species (ROS). ROS formation, aging, and reduction of mitochondrial biogenesis contribute to mitochondrial dysfunction. The present study sought to investigate extracts of Scutellaria baicalensis and its flavonoids (baicalin, baicalein, and wogonin), whether they could protect mitochondria against oxidative damage. The viability of L6 cells treated with AMA increased in the presence of flavonoids and extracts of S. baicalensis. ATP production decreased in the AMA treated group, but increased by 50% in cells treated with flavonoids (except wogonin) and extracts of S. baicalensis compared to AMA-treated group. AMA treatment caused a significant reduction (depolarized) in mitochondrial membrane potential (MMP), whereas flavonoid treatment induced a significant increase in MMP. Mitochondrial superoxide levels increased in AMA treated cells, whereas its levels decreased when cells were treated with flavonoids or extracts of S. baicalensis. L6 cells treated with flavonoids and extracts of S. baicalensis increased their levels of protein expression compared with AMA-treated cells, especially water extracts performed the highest levels of protein expression. These results suggest that the S. baicalensis extracts and flavonoids protect against AMA-induced mitochondrial dysfunction by increasing ATP production, upregulating MMP, and enhancing mitochondrial function.
Collapse
|
214
|
Díaz-Tielas C, Graña E, Sotelo T, Reigosa MJ, Sánchez-Moreiras AM. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. PLANT, CELL & ENVIRONMENT 2012; 35:1500-17. [PMID: 22428920 DOI: 10.1111/j.1365-3040.2012.02506.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chalcone (1,3-diphenyl-2-propen-1-one) is an aromatic ketone precursor of important molecules in plants such as flavonoids or anthocyanins. Its phytotoxicity has been demonstrated on different plant species, but to date little is known about the mechanisms of action of this secondary metabolite at plant cellular level. Detailed analysis by light and transmission electron microscopy (TEM) was conducted to examine the root meristems' ultrastructure of control and chalcone-treated Arabidopsis seedlings. Mitochondrial dysfunction was analysed by measuring mitochondrial membrane potential with JC-1 fluorochrome. Finally, acridine orange/ethidium bromide staining was used for the detection of programmed cell death. Microscopy revealed tissue alterations, inhibition of root hair formation and important changes after 7 and 14 d at the chalcone IC(50) value. Chalcone-treated cells showed signs of programmed cell death such as mitochondrial condensation, disruption of organelles and chromatin fragmentation. Acridine orange/ethidium bromide staining confirmed the programmed cell death, which could be induced by the reduction of mitochondrial transmembrane potential (ΔΨ(m)) that was detected after chalcone treatment. These results confirm the phytotoxic activity of chalcone on Arabidopsis seedlings, the alteration of mitochondrial membrane potential and the induction of programmed cell death.
Collapse
Affiliation(s)
- Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
215
|
Cvetkovska M, Vanlerberghe GC. Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2012; 35:1121-36. [PMID: 22211396 DOI: 10.1111/j.1365-3040.2011.02477.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We characterized responses of Nicotiana tabacum to pathovars of the bacterial pathogen Pseudomonas syringae. These included a compatible response associated with necrotic cell death (pv. tabaci), an incompatible response that included hypersensitive response (HR) cell death (pv. maculicola) and an incompatible response that induced defences but lacked the HR (pv. phaseolicola). Signalling molecules (salicylic acid, nitric oxide, H(2)O(2)) known to induce the stress responsive tobacco Aox1a gene [that encodes the mitochondrial electron transport chain (ETC) component alternative oxidase (AOX)] accumulated preferentially during the HR, but this did not elevate Aox1a transcript or AOX protein, while the transcript and protein were strongly elevated during the defence response to pv. phaseolicola. In addition, matrix manganese superoxide dismutase (MnSOD) activity declined during the HR, unlike its response to the other pathovars, and unlike the response of other superoxide dismutase (SOD) enzymes. Finally, the HR (but not the response to pv. phaseolicola or pv. tabaci) was accompanied by an early and persistent mitochondrial superoxide (O(2)(-)) burst prior to cell death. We propose that a coordinated response of the major ETC mechanism to avoid O(2)(-) generation (AOX) and the sole enzymatic means to scavenge mitochondrial O(2)(-) (MnSOD) is important in the determination of cell fate during responses to pathogen.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
216
|
Sun J, Zhang CL, Deng SR, Lu CF, Shen X, Zhou XY, Zheng XJ, Hu ZM, Chen SL. An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. PLANT, CELL & ENVIRONMENT 2012; 35:893-916. [PMID: 22070751 DOI: 10.1111/j.1365-3040.2011.02461.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose- and time-dependent reduction in viability, and the agonist-treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca(2+) levels, resulting in Ca(2+) uptake by the mitochondria and subsequent H(2) O(2) accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP-induced increase of intracellular ATP, essential for the activation of caspase-like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca(2+) concentration but plays a negligible role in eATP-stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.
Collapse
Affiliation(s)
- Jian Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083 College of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Lord CEN, Gunawardena AHLAN. Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 2012; 91:603-13. [PMID: 22512890 DOI: 10.1016/j.ejcb.2012.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein level, and also by filling in gaps detailing plant apoptotic factors not yet amalgamated within the literature.
Collapse
Affiliation(s)
- Christina E N Lord
- Dalhousie University, Department of Biology, 1355 Oxford Street Halifax, Nova Scotia, B3H 4R2 Canada.
| | | |
Collapse
|
218
|
Combining microdilution with MicroResp™: Microbial substrate utilization, antimicrobial susceptibility and respiration. J Microbiol Methods 2012; 88:399-412. [DOI: 10.1016/j.mimet.2012.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2012] [Indexed: 01/15/2023]
|
219
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
220
|
Pattanayak GK, Venkataramani S, Hortensteiner S, Kunz L, Christ B, Moulin M, Smith AG, Okamoto Y, Tamiaki H, Sugishima M, Greenberg JT. Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:589-600. [PMID: 21988537 PMCID: PMC3274588 DOI: 10.1111/j.1365-313x.2011.04814.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 (+) sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as being cell non-autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.
Collapse
Affiliation(s)
- Gopal K. Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Sujatha Venkataramani
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | - Lukas Kunz
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Michael Moulin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, United Kingdom
| | - Yukihiro Okamoto
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
221
|
Gupta SK, Rai AK, Kanwar SS, Chand D, Singh NK, Sharma TR. The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:757-72. [PMID: 22058403 DOI: 10.1093/jxb/err297] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Pi54 gene (Pi-k(h)) confers a high degree of resistance to diverse strains of the fungus Magnaporthe oryzae. In order to understand the genome-wide co-expression of genes in the transgenic rice plant Taipei 309 (TP) containing the Pi54 gene, microarray analysis was performed at 72 h post-inoculation of the M. oryzae strain PLP-1. A total of 1154 differentially expressing genes were identified in TP-Pi54 plants. Of these, 587 were up-regulated, whereas 567 genes were found to be down-regulated. 107 genes were found that were exclusively up-regulated and 58 genes that were down- regulated in the case of TP-Pi54. Various defence response genes, such as callose, laccase, PAL, and peroxidase, and genes related to transcription factors like NAC6, Dof zinc finger, MAD box, bZIP, and WRKY were found to be up-regulated in the transgenic line. The enzymatic activities of six plant defence response enzymes, such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, β-1,3-glucanase, and chitinase, were found to be significantly high in TP-Pi54 at different stages of inoculation by M. oryzae. The total phenol content also increased significantly in resistant transgenic plants after pathogen inoculation. This study suggests the activation of defence response and transcription factor-related genes and a higher expression of key enzymes involved in the defence response pathway in the rice line TP-Pi54, thus leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Santosh Kumar Gupta
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, Pusa Campus, New Delhi-110012, India
| | | | | | | | | | | |
Collapse
|
222
|
Li A, Zhang R, Pan L, Tang L, Zhao G, Zhu M, Chu J, Sun X, Wei B, Zhang X, Jia J, Mao L. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance. PLoS One 2011; 6:e28810. [PMID: 22174904 PMCID: PMC3236209 DOI: 10.1371/journal.pone.0028810] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/15/2011] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H(2)O(2)) plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2)O(2) stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2)O(2), we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2)O(2) treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2)O(2) responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2)O(2)-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2)O(2)-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H(2)O(2) and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2)O(2) stress and uncovers potential links between H(2)O(2) and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.
Collapse
Affiliation(s)
- Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Rongzhi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Lei Pan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Lichuan Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Mingzhu Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaohong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiangqi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, MOA Key Lab for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| |
Collapse
|
223
|
El-Maarouf-Bouteau H, Mazuy C, Corbineau F, Bailly C. DNA alteration and programmed cell death during ageing of sunflower seed. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5003-11. [PMID: 21765164 PMCID: PMC3193007 DOI: 10.1093/jxb/err198] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 05/20/2023]
Abstract
Sunflower (Helianthus annuus L.) seed viability is affected by moisture content (MC) during ageing and is related to accumulation of hydrogen peroxide and changes in energy metabolism. The aim of the present work was to investigate the effect of ageing on DNA alteration events by RAPD (random amplification of polymorphic DNA) analysis and to determine whether loss of seed viability might correspond to a controlled programmed cell death (PCD). Ageing of sunflower seeds was carried out at 35 °C for 7 d at different MCs. The higher the MC, the lower was the seed viability. RAPD analysis showed that DNA alterations occurred during ageing especially in seeds containing a high MC. In addition, PCD, as revealed by DNA fragmentation and TUNEL (terminal deoxynucleotide transferase-mediated dUTP nick-end labelling) assay, was detected in aged seeds at MCs which resulted in ∼50% seed viability. At the cellular level, TUNEL assay and propidium iodide staining showed that cell death concerns all the cells of the embryonic axis. The quantification of the adenylate pool highlights mitochondrial dysfunction in aged seeds containing a high MC. The involvement of oxidative burst, mitochondria dysfunction, and PCD in seed loss of viability is proposed.
Collapse
Affiliation(s)
- Hayat El-Maarouf-Bouteau
- UR5 EAC7180 CNRS, UPMC Universite Paris 06, Bat C 2 ème étage, 4, place Jussieu, 75005 Paris, France.
| | | | | | | |
Collapse
|
224
|
Dube PN, Hosetti BB. Inhibition of ATPase activity in the freshwater fishLabeo rohita(Hamilton) exposed to sodium cyanide. Toxicol Mech Methods 2011; 21:591-5. [DOI: 10.3109/15376516.2011.585430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
225
|
Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. NANOTECHNOLOGY 2011; 22:295101. [PMID: 21673379 DOI: 10.1088/0957-4484/22/29/295101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml(-1)) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
Collapse
Affiliation(s)
- Mohammad Alimohammadi
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | | | | | | | | |
Collapse
|
226
|
Lord CEN, Wertman JN, Lane S, Gunawardena AHLAN. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death? BMC PLANT BIOLOGY 2011; 11:102. [PMID: 21645374 PMCID: PMC3118178 DOI: 10.1186/1471-2229-11-102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/06/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. RESULTS The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. CONCLUSIONS Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.
Collapse
Affiliation(s)
- Christina EN Lord
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | - Jaime N Wertman
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | - Stephanie Lane
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | | |
Collapse
|
227
|
Mitochondrial Unselective Channels throughout the eukaryotic domain. Mitochondrion 2011; 11:382-90. [DOI: 10.1016/j.mito.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/16/2011] [Accepted: 02/25/2011] [Indexed: 02/03/2023]
|
228
|
Lehtimäki N, Shunmugam S, Jokela J, Wahlsten M, Carmel D, Keränen M, Sivonen K, Aro EM, Allahverdiyeva Y, Mulo P. Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). JOURNAL OF PLANT PHYSIOLOGY 2011; 168:594-600. [PMID: 21093957 DOI: 10.1016/j.jplph.2010.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 05/21/2023]
Abstract
The bloom-forming cyanobacterium Nodularia spumigena produces toxic compounds, including nodularin, which is known to have adverse effects on various organisms. We monitored the primary effects of nodularin exposure on physiological parameters in Spinachia oleracea. We present the first evidence for the uptake of nodularin by a terrestrial plant, and show that the exposure of spinach to cyanobacterial crude water extract from nodularin-producing strain AV1 results in inhibition of growth and bleaching of the leaves. Despite drastic effects on phenotype and survival, nodularin did not disturb the photosynthetic performance of plants or the structure of the photosynthetic machinery in the chloroplast thylakoid membrane. Nevertheless, the nodularin-exposed plants suffered from oxidative stress, as evidenced by a high level of oxidative modifications targeted to various proteins, altered levels of enzymes involved in scavenging of reactive oxygen species (ROS), and increased levels of α-tocopherol, which is an important antioxidant. Moreover, the high level of cytochrome oxidase (COX II), a typical marker for mitochondrial respiratory protein complexes, suggests that the respiratory capacity is increased in the leaves of nodularin-exposed plants. Actively respiring plant mitochondria, in turn, may produce ROS at high rates. Although the accumulation of ROS and induction of the ROS scavenging network enable the survival of the plant upon toxin exposure, the upregulation of the enzymatic defense system is likely to increase energetic costs, reducing growth and the ultimate fitness of the plants.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN 20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Riazantseva NV, Zhavoronok TV, Stepovaia EA, Starikov IV, Bychkov VA. [The role of nitric oxide synthesis induction and inhibition in regulation of blood neutrophil cell death during oxidative disbalance]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 56:587-95. [PMID: 21254629 DOI: 10.18097/pbmc20105605587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modeling oxidative stress in vitro with 5mM H2O2 has demonstrated a protective role of nitric oxide on realization of constitutional blood neutrophil cell death. The NO-synthase inductor L-arginine and the inhibitor of nitric oxide synthesis, L-NAME, influenced on the amount of annexin-positive cells, the content of Bax protein, reactive oxygen species, cyclic nucleotides, and calcium homeostasis in neutrophils under conditions realizing programmed death during oxidative stress in vitro and under acute inflammation. During oxidative stress L-arginine normalized the increased intracellular Ca2+ level and the cAMP/cGMP ratio due to increase of cGMP level, stabilized metabolism and prolonged neutrophil life. During acute inflammation NO induction was insufficient for limitation of Ca2+ release into cytosol and for onset of the apoptotic effect; blockade of NO synthesis deteriorated this situation by activating neutrophil apoptosis due to the sharp increase in Ca2+ content and reduction of cyclic nucleotides in cytosol. The protective effect of NO on neutrophil cell death during oxidative dysbalance is not associated with regulation of apoptotic protein Bax.
Collapse
|
230
|
Cheng DD, Jia YJ, Gao HY, Zhang LT, Zhang ZS, Xue ZC, Meng QW. Characterization of the programmed cell death induced by metabolic products of Alternaria alternata in tobacco BY-2 cells. PHYSIOLOGIA PLANTARUM 2011; 141:117-29. [PMID: 20946348 DOI: 10.1111/j.1399-3054.2010.01422.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells. MP treatment led to significant cell death that was proven to be PCD by the concurrent cytoplasm shrinkage, chromatin condensation and DNA laddering observed in the cells. Moreover, MP treatment resulted in the overproduction of reactive oxygen species (ROS), rapid ATP depletion and a respiratory decline in the tobacco BY-2 cells. It was concluded that the direct inhibition of the mitochondrial electron transport chain (ETC), alternative pathway (AOX) capacity and catalase (CAT) activity by the MP might be the main contributors to the MP-induced ROS burst observed in tobacco BY-2 cells. The addition of adenosine together with the MP significantly inhibited ATP depletion without preventing PCD; however, when the cells were treated with the MP plus CAT, ROS overproduction was blocked and PCD did not occur. The data presented here demonstrate that the ROS burst played an important role in MP-induced PCD in the tobacco BY-2 cells.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
231
|
Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:194-205. [PMID: 21223385 DOI: 10.1111/j.1365-313x.2010.04416.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant U-box (PUB) protein functions as an E3 ligase to poly-ubiquitinate a target protein for its degradation or post-translational modification. Here, we report functional roles for OsPUB15, which encodes a cytosolic U-box protein in the class-II PUB family. Self-ubiquitination assays showed that bacterially expressed MBP-OsPUB15 protein has E3 ubiquitin ligase activity. A T-DNA insertional mutation in OsPUB15 caused severe growth retardation and a seedling-lethal phenotype. Mutant seeds did not produce primary roots, and their shoot development was significantly delayed. Transgenic plants expressing the OsPUB15 antisense transcript phenocopied these mutant characters. The abnormal phenotypes were partially rescued by two antioxidants, catechin and ascorbic acid. Germinating seeds in the dark also recovered the rootless defect. Levels of H2O2 and oxidized proteins were higher in the knock-out mutant compared with the wild type. OsPUB15 transcript levels were increased upon H2O2, salt and drought stresses; plants overexpressing the gene grew better than the wild type under high salinity. These results indicate that PUB15 is a regulator that reduces reactive oxygen species (ROS) stress and cell death.
Collapse
Affiliation(s)
- Jong-Jin Park
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Hüve K, Bichele I, Rasulov B, Niinemets U. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H₂O₂ formation. PLANT, CELL & ENVIRONMENT 2011; 34:113-26. [PMID: 21029116 DOI: 10.1111/j.1365-3040.2010.02229.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photosynthesis rate (A(n)) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of A(n), dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H₂O₂ generation [3,3'-diaminobenzidine 4HCl (DAB)-staining]. Critical temperature for dark fluorescence (F(0) ) rise (T(F)) was at 46-48 °C, and a burst of respiration was observed near T(F). However, A(n) was strongly inhibited already before T(F) was reached. Membrane permeability increased with temperature according to a switch-type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold-type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat-dose. Beyond the 'point of no return', propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time-dependent propagation of cellular lesions.
Collapse
Affiliation(s)
- Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
233
|
Liu JX, Bennett J. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. MOLECULAR PLANT 2011; 4:59-69. [PMID: 20643753 DOI: 10.1093/mp/ssq039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Crop yield is most sensitive to water deficit during the reproductive stage. For rice, the most sensitive yield component is spikelet fertility and the most sensitive stage is immediately before heading. Here, we examined the effect of drought on the anther proteome of two rice genotypes: Moroberekan and IR64. Water was withheld for 3 d before heading (3DBH) in well watered controls for 5 d until the flag leaf relative water content (RWC) had declined to 45-50%. Plants were then re-watered and heading occurred 2-3 d later, representing a delay of 4-5 d relative to controls. The anther proteins were separated at 3 DBH, at the end of the stress period, and at heading in stressed/re-watered plants and controls by two-dimensional (2-D) gel electrophoresis, and 93 protein spots were affected reproducibly in abundance by drought during the experiment across two rice genotypes. After drought stress, upon re-watering, expressions of 24 protein spots were irreversible in both genotypes, 60 protein spots were irreversible in IR64 but reversible in Moroberekan, only nine protein spots were irreversible in Moroberekan while reversible in IR64. Among them, there were 14 newly drought-induced protein spots in IR64; none of them was reversible on re-watering. However, there were 13 newly drought-induced protein spots in Moroberekan, 10 of them were reversible on re-watering, including six drought-induced protein spots that were not reversed in IR64. Taken together, our proteomics data reveal that drought-tolerant genotype Moroberekan possessed better recovery capability following drought and re-watering at the anther proteome level than the drought-sensitive genotype IR64. The disruptions of drought to rice anther development and pollen cell functions are also discussed in the paper.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- Plant Breeding, Genetics and Biochemistry Division, International Rice Research Institute, Metro Manila, Philippines.
| | | |
Collapse
|
234
|
Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 2010; 585:231-9. [PMID: 21130768 DOI: 10.1016/j.febslet.2010.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/26/2010] [Accepted: 11/27/2010] [Indexed: 12/23/2022]
Abstract
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H(2)O(2)-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψ(m)) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψ(m) relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψ(m) and inhibiting the amplification of ROS.
Collapse
Affiliation(s)
- Yaocheng Qi
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
235
|
Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS NANO 2010; 4:5743-5748. [PMID: 20925388 DOI: 10.1021/nn101430g] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effect of water-soluble fullerene C(70)(C(COOH)(2))(4-8) on plant growth was investigated, using the transgenic seedling lines expressing fluorescent makers. The retarded roots with shortened length and loss of root gravitropism were observed for seedlings grown in the fullerene-containing medium. Fluorescence imaging revealed the abnormalities of root tips in hormone distribution, cell division, microtubule organization, and mitochondrial activity. The study of the inhibitory effects at the cellular level provides new information on the phytotoxicity mechanism of fullerene.
Collapse
Affiliation(s)
- Qiaoling Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Taylor NL, Howell KA, Heazlewood JL, Tan TYW, Narsai R, Huang S, Whelan J, Millar AH. Analysis of the rice mitochondrial carrier family reveals anaerobic accumulation of a basic amino acid carrier involved in arginine metabolism during seed germination. PLANT PHYSIOLOGY 2010; 154:691-704. [PMID: 20720170 PMCID: PMC2948988 DOI: 10.1104/pp.110.162214] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Given the substantial changes in mitochondrial gene expression, the mitochondrial proteome, and respiratory function during rice (Oryza sativa) germination under anaerobic and aerobic conditions, we have attempted to identify changes in mitochondrial membrane transport capacity during these processes. We have assembled a preliminary rice mitochondrial carrier gene family of 50 members, defined its orthology to carriers of known function, and observed significant changes in microarray expression data for these rice genes during germination under aerobic and anaerobic conditions and across rice development. To determine if these transcript changes reflect alteration of the carrier profile itself and to determine which members of the family encode the major mitochondrial carrier proteins, we analyzed mitochondrial integral membrane protein preparations using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass spectrometry, identifying seven distinct carrier proteins. We have used mass spectrometry-based quantitative approaches to compare the abundance of these carriers between mitochondria from dry seeds and those from aerobic- or anaerobic-germinated seeds. We highlight an anaerobic-enhanced basic amino acid carrier and show concomitant increases in mitochondrial arginase and the abundance of arginine and ornithine in anaerobic-germinated seeds, consistent with an anaerobic role of this mitochondria carrier. The potential role of this carrier in facilitating mitochondrial involvement in arginine metabolism and the plant urea cycle during the growth of rice coleoptiles and early seed nitrate assimilation under anaerobic conditions are discussed.
Collapse
|
237
|
Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal MS, Maity P, Adhikari SS, Bandyopadhyay U. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radic Biol Med 2010; 49:258-67. [PMID: 20406680 DOI: 10.1016/j.freeradbiomed.2010.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/31/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P. The mitochondrial permeability transition from yeast to mammals. FEBS Lett 2010; 584:2504-9. [PMID: 20398660 PMCID: PMC2878904 DOI: 10.1016/j.febslet.2010.04.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 01/05/2023]
Abstract
Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a "permeability transition" similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A (CsA) unmasks an inhibitory site for inorganic phosphate (Pi) [Basso, E., Petronilli, V., Forte, M.A. and Bernardi, P. (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307-26311], the classical inhibitor of the permeability transition of yeast and (ii) that under proper experimental conditions a matrix Ca(2+)-dependence can be demonstrated in yeast as well [Yamada, A., Yamamoto, T., Yoshimura, Y., Gouda, S., Kawashima, S., Yamazaki, N., Yamashita, K., Kataoka, M., Nagata, T., Terada, H., Pfeiffer, D.R. and Shinohara Y. (2009) Ca(2+)-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim. Biophys. Acta 1787, 1486-1491] suggest that the mitochondrial permeability transition has been conserved during evolution.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon
| | | |
Collapse
|
239
|
Hu C, Sun Q, Peng X, Huang Q, Wang M, Li S, Zhu Y. Flow cytometric analysis of mitochondrial populations in HL-CMS systems of rice under H2O2 stress. PROTOPLASMA 2010; 241:91-8. [PMID: 20157834 DOI: 10.1007/s00709-009-0101-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/22/2009] [Indexed: 05/15/2023]
Abstract
Cytoplasmic male sterility (CMS) has often been associated with mitochondrial dysfunction. In this report, the heterogeneity of mitochondria was analyzed in both Honglian (HL) CMS (YtA) rice seedlings and those of its corresponding maintainers (YtB) by flow cytometry and staining with rhodamine-123 (Rh-123). Both lines revealed two distinct fluorescence populations: high fluorescence populations (HFP) and light fluorescence populations (LFP), and a somewhat lower LFP/HFP ratio was detected in conjunction with the higher reactive oxygen species (ROS) content in YtA. In addition, use of the specific effector hydrogen peroxide (H2O2) demonstrated a correlation between the LFP/HFP ratio and ROS levels in both lines. Higher ROS content caused a more swift decrease of F(0)F(1)-ATPase activity and ATP contents in YtA than those in YtB, which accompanied with an obvious decline of the LFP/HFP ratio in YtA. Furthermore, a mitochondrial genomic DNA smear was detected by pulsed field gel electrophoresis. Taken together, these results implied that HL-CMS line rice seedlings and those of its corresponding maintainer have different proportion of Rh-123 staining mitochondria populations, which may be accounted for by ROS contents on the basis of ATPase activity and ATP contents.
Collapse
Affiliation(s)
- Chaofeng Hu
- Key laboratory of MOE for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
240
|
Cuperus R, Leen R, Tytgat GAM, Caron HN, van Kuilenburg ABP. Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 2010; 67:807-16. [PMID: 19941060 PMCID: PMC2824117 DOI: 10.1007/s00018-009-0212-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 02/08/2023]
Abstract
Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Roos Cuperus
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - René Leen
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Godelieve A. M. Tytgat
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Huib N. Caron
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - André B. P. van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
241
|
Palmieri MC, Lindermayr C, Bauwe H, Steinhauser C, Durner J. Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation. PLANT PHYSIOLOGY 2010; 152:1514-28. [PMID: 20089767 PMCID: PMC2832280 DOI: 10.1104/pp.109.152579] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/18/2010] [Indexed: 05/18/2023]
Abstract
Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enzyme of the photorespiratory C(2) cycle in C3 plants. GDC activity was inhibited by S-nitrosoglutathione due to S-nitrosylation/S-glutathionylation of several cysteine residues. Gas-exchange measurements demonstrated that the bacterial elicitor harpin, a strong inducer of reactive oxygen species and NO, inhibits GDC activity. Furthermore, an inhibitor of GDC, aminoacetonitrile, was able to mimic mitochondrial depolarization, hydrogen peroxide production, and cell death in response to stress or harpin treatment of cultured Arabidopsis cells. These findings indicate that the mitochondrial photorespiratory system is involved in the regulation of NO signal transduction in Arabidopsis.
Collapse
|
242
|
|
243
|
Andronis EA, Roubelakis-Angelakis KA. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. PLANTA 2010; 231:437-48. [PMID: 19937341 DOI: 10.1007/s00425-009-1060-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/30/2009] [Indexed: 05/08/2023]
Abstract
Recent results have identified mitochondria as centers of stress-induced generation of reactive oxygen species in plants. Depolarization of plant mitochondrial membrane during stress results the release of programmed cell death (PCD)-inducing factors in the cytosol in a fashion similar to the onset of animal-like PCD. Herein, we report significant similarities of animal-like PCD and salinity stress-induced plant PCD. Short-term salinity stress (3 h) led to depolarization of the mitochondrial membrane, release of cytochrome c (CYT-c), which was visualized using a contemporary molecular technique, activation of caspase-3 type proteases and the onset of PCD in wild type tobacco plants, Nicotiana tabacum cv. Petit Havana. However, PCD was not manifested during long-term salinity stress (24 h). Interestingly long-term salinity stress led to necrotic-like features, which were accompanied by collapse of respiration, reduction of key components of the respiratory chain, such as CYT-c and alternative oxidase, ATP depletion and high proteolytic activity. The results suggest that salinity stress of tobacco plants in planta leads to the onset of animal-like PCD only during the early stages post-stress, while long-term stress leads to necrotic-like features.
Collapse
Affiliation(s)
- Efthimios A Andronis
- Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklion Crete, Greece.
| | | |
Collapse
|
244
|
Ishikawa T, Takahara K, Hirabayashi T, Matsumura H, Fujisawa S, Terauchi R, Uchimiya H, Kawai-Yamada M. Metabolome Analysis of Response to Oxidative Stress in Rice Suspension Cells Overexpressing Cell Death Suppressor Bax Inhibitor-1. ACTA ACUST UNITED AC 2009; 51:9-20. [DOI: 10.1093/pcp/pcp162] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
245
|
Segovia M, Berges JA. INHIBITION OF CASPASE-LIKE ACTIVITIES PREVENTS THE APPEARANCE OF REACTIVE OXYGEN SPECIES AND DARK-INDUCED APOPTOSIS IN THE UNICELLULAR CHLOROPHYTE DUNALIELLA TERTIOLECTA(1). JOURNAL OF PHYCOLOGY 2009; 45:1116-1126. [PMID: 27032357 DOI: 10.1111/j.1529-8817.2009.00733.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When the chlorophyte alga Dunaliella tertiolecta Butcher is placed in darkness, a form of programmed cell death with many similarities to apoptosis is induced, including the induction of caspase-like proteases. Many uncertainties about the regulation and mediators that participate in the process remain. To examine the relationship between caspase-like activities and different apoptotic events (i.e., phosphatidylserine [PS] translocation), increases in membrane permeability and numbers of dead cells revealed by SYTOX-green staining, and the generation of reactive oxygen species (ROS), we used the broad-range caspase inhibitor Boc-D-FMK to block the activity of the whole class of caspase-like proteins simultaneously. In the presence of the inhibitor, ROS were not produced, and cells did not die. Loss of membrane asymmetry, indicated by external labeling of PS by annexin V, was apparent at midstages of light deprivation, although it did not conform to the typical pattern for PS exposure observed in metazoans or vascular plants, which occurs at early stages of the apoptotic event. Thus, we have evidence for a link between ROS and cell death involving caspase-like enzymes in an alga. The fact that caspase-like inhibitors prevent not only cell death, but also ROS and loss of cell membrane integrity and asymmetry, suggests that caspase-like proteases might have regulatory roles early in cell death, in addition to dismantling functions.
Collapse
Affiliation(s)
- María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, 29071-Málaga, SpainDepartment of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
| | - John A Berges
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, 29071-Málaga, SpainDepartment of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
246
|
Kusano T, Tateda C, Berberich T, Takahashi Y. Voltage-dependent anion channels: their roles in plant defense and cell death. PLANT CELL REPORTS 2009; 28:1301-1308. [PMID: 19585120 DOI: 10.1007/s00299-009-0741-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information. Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant pathogen defense and cell death.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai-City, Miyagi, 980-8577, Japan.
| | | | | | | |
Collapse
|
247
|
Mochizuki T, Hirai K, Kanda A, Ohnishi J, Ohki T, Tsuda S. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology 2009; 390:239-49. [PMID: 19501870 DOI: 10.1016/j.virol.2009.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/21/2009] [Accepted: 05/10/2009] [Indexed: 01/10/2023]
Abstract
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.
Collapse
|
248
|
Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W. Mitochondrial proteome during salt stress-induced programmed cell death in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:407-15. [PMID: 19217306 DOI: 10.1016/j.plaphy.2008.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 12/29/2008] [Accepted: 12/31/2008] [Indexed: 05/19/2023]
Abstract
It has been shown that mitochondria play a pivotal role in plant programmed cell death (PCD). Previous study established a salt stress-induced PCD model in rice (Oryza sativa L. cv. WYJ 8th) root tip cells, demonstrated by DNA laddering, cytochrome c release, and TUNEL positive reaction. In this study, the role of mitochondria during the early phase of PCD (2h-PCD) was analyzed in rice roots. After 2h-PCD induction, the integrity of mitochondria decreased slightly, consistent with a small release of cytochrome c. 2h-PCD partially inhibited electron transport, resulting in oxidative burst in mitochondria. However, ATP production maintained constant. Mitochondria proteome were analyzed by two-dimensional IEF/SDS-PAGE before and after 2h-PCD induction, and eight PCD-related proteins were identified. Among them, four proteins were up-regulated after PCD induction, which included glycoside hydrolase, mitochondrial heat shock protein 70, 20S proteasome subunit, and Cu/Zn-superoxide dismutase, and four were down-regulated, namely ATP synthase beta subunit, cytochrome c oxidase subunit 6b, S-adenosylmethionine synthetase 2, and transcription initiation factor eIF-3 epsilon. These results suggested that ATP synthase may not be the major producer of ATP in mitochondria during the early stage of PCD in rice. Glycoside hydrolase may be involved in ETC impairment and ROS burst, and mitochondrial HSP70 is a potential candidate for PCD regulation. The possible roles of other proteins on PCD initiation were also discussed.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, Nanjing Agricultural University, Weigang, China
| | | | | | | | | | | |
Collapse
|
249
|
Wu J, Wang F, Gong Y, Li D, Sha J, Huang X, Han X. Proteomic Analysis of Changes Induced By Nonylphenol in Sprague−Dawley Rat Sertoli Cells. Chem Res Toxicol 2009; 22:668-75. [DOI: 10.1021/tx800406z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiang Wu
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Fuqiang Wang
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yi Gong
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Dongmei Li
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jiahao Sha
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Xiaoyan Huang
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Xiaodong Han
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, 210093, P. R. China, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, P. R. China, and Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China
| |
Collapse
|
250
|
Tateda C, Yamashita K, Takahashi F, Kusano T, Takahashi Y. Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. PLANT CELL REPORTS 2009; 28:41-51. [PMID: 18953543 DOI: 10.1007/s00299-008-0630-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/08/2008] [Accepted: 10/12/2008] [Indexed: 05/09/2023]
Abstract
The voltage-dependent anion channel (VDAC) is a major outer mitochondrial membrane protein. It is well documented that VDAC plays an important role in apoptosis, a kind of programmed cell death, in mammalian systems. However, little is known about the role of the plant counterpart during the process of plant-specific cell death such as pathogen-induced hypersensitive response. To address this issue, we isolated three VDAC full-length cDNAs (NtVDAC1-3) from Nicotiana tabacum. The deduced products, NtVDACs, share 78-85% identity and retain the conserved eukaryotic mitochondrial porin signature distal to their C-terminal regions. Mitochondrial localization of three NtVDACs in plant cells was confirmed via a green fluorescent protein fusion method. Then, we addressed the main issue concerning pathogenesis relation. The N. benthamiana orthologues of NtVDACs were upregulated by challenge with the non-host pathogen Pseudomonas cichorii, but not after challenge with the virulent pathogen P. syringae pv. tabaci. Both the pharmaceutical inhibition of VDAC and silencing of NbVDACs genes compromised the non-host resistance against P. cichorii, suggesting the involvement of VDACs in defense against non-host pathogen. Involvement of NbVDACs in Bax-mediated cell death was also verified using a similar approach.
Collapse
Affiliation(s)
- Chika Tateda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan
| | | | | | | | | |
Collapse
|