201
|
Chaudhari RS, Jangale BL, Krishna B, Sane PV. Improved abiotic stress tolerance in Arabidopsis by constitutive active form of a banana DREB2 type transcription factor, MaDREB20.CA, than its native form, MaDREB20. PROTOPLASMA 2023; 260:671-690. [PMID: 35996008 DOI: 10.1007/s00709-022-01805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Banana is grown as one of the important fruit crops in tropical and subtropical regions of the world. In this study, we report induced expression of a dehydration responsive element binding 2 (DREB2) gene (MaDREB20) under individual heat, drought, and combined drought and heat stress in root of two banana genotypes Grand Nain (GN) and Hill Banana (HB). Motif analysis of MaDREB20 protein demonstrated the presence of a negative regulatory domain (NRD) or PEST motif between 150 and 184 amino acids. Transgenic Arabidopsis overexpressing MaDREB20 gene showed more survival rate, above-ground biomass, seed yield, leaf relative water content, and proline content but less ion leakage and malonaldehyde content, revealing improved tolerance against heat and drought as well as their combination than the wild-type. Overexpression of MaDREB20.CA (constitutive active form of MaDREB20 after removal of PEST region) showed better abiotic stress tolerance in Arabidopsis than its native form (MaDREB20). Transgenic Arabidopsis overexpressing MaDREB20 and MaDREB20.CA genes appeared to be associated with reduced stomatal densities under normal condition, better regulation of stomatal aperture under drought than in wild-type plants, and differential regulation of downstream target (AtTCH4 and AtIAA1) genes under heat, drought, and combined stress. Taken together, our findings revealed important functions of MaDREB20 in abiotic stress responses in transgenic Arabidopsis and could form a basis for CRISPR/Cas9-mediated removal of its NRD to enhance stress tolerance in banana.
Collapse
Affiliation(s)
- Rakesh Shashikant Chaudhari
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| | - Bhavesh Liladhar Jangale
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| | - Bal Krishna
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India.
| | - Prafullachandra Vishnu Sane
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| |
Collapse
|
202
|
Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2023; 23:206. [PMID: 37081399 PMCID: PMC10116778 DOI: 10.1186/s12870-023-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Mengyuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xiaomiao Tian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
203
|
Bisht A, Eekhout T, Canher B, Lu R, Vercauteren I, De Jaeger G, Heyman J, De Veylder L. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis roots. THE PLANT CELL 2023; 35:1513-1531. [PMID: 36747478 PMCID: PMC10118276 DOI: 10.1093/plcell/koad028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.
Collapse
Affiliation(s)
- Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
204
|
Qian Z, Rao X, Zhang R, Gu S, Shen Q, Wu H, Lv S, Xie L, Li X, Wang X, Chen S, Liu L, He L, Li F. Genome-Wide Identification, Evolution, and Expression Analyses of AP2/ERF Family Transcription Factors in Erianthus fulvus. Int J Mol Sci 2023; 24:ijms24087102. [PMID: 37108264 PMCID: PMC10139229 DOI: 10.3390/ijms24087102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The AP2/ERF transcription factor family is one of the most important gene families in plants and plays a vital role in plant abiotic stress responses. Although Erianthus fulvus is very important in the genetic improvement of sugarcane, there are few studies concerning AP2/ERF genes in E. fulvus. Here, we identified 145 AP2/ERF genes in the E. fulvus genome. Phylogenetic analysis classified them into five subfamilies. Evolutionary analysis showed that tandem and segmental duplication contributed to the expansion of the EfAP2/ERF family. Protein interaction analysis showed that twenty-eight EfAP2/ERF proteins and five other proteins had potential interaction relationships. Multiple cis-acting elements present in the EfAP2/ERF promoter were related to abiotic stress response, suggesting that EfAP2/ERF may contribute to adaptation to environmental changes. Transcriptomic and RT-qPCR analyses revealed that EfDREB10, EfDREB11, EfDREB39, EfDREB42, EfDREB44, EfERF43, and EfAP2-13 responded to cold stress, EfDREB5 and EfDREB42 responded to drought stress, and EfDREB5, EfDREB11, EfDREB39, EfERF43, and EfAP2-13 responded to ABA treatment. These results will be helpful for better understanding the molecular features and biological role of the E. fulvus AP2/ERF genes and lay a foundation for further research on the function of EfAP2/ERF genes and the regulatory mechanism of the abiotic stress response.
Collapse
Affiliation(s)
- Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Rongqiong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shujie Gu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Qingqing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Huaying Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shaozhi Lv
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Linyan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xianli Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xianhong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Lufeng Liu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China
| |
Collapse
|
205
|
Gan Y, Liu Y, Yang S, Khan AR. TOE1/TOE2 Interacting with GIS to Control Trichome Development in Arabidopsis. Int J Mol Sci 2023; 24:ijms24076698. [PMID: 37047669 PMCID: PMC10095060 DOI: 10.3390/ijms24076698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Trichomes are common appendages originating and projecting from the epidermal cell layer of most terrestrial plants. They act as a first line of defense and protect plants against different types of adverse environmental factors. GL3/EGL3-GL1-TTG1 transcriptional activator complex and GIS family genes regulate trichome initiation through gibberellin (GA) signaling in Arabidopsis. Here, our novel findings show that TOE1/TOE2, which are involved in developmental timing, control the initiation of the main-stem inflorescence trichome in Arabidopsis. Phenotype analysis showed that the 35S:TOE1 transgenic line increases trichome density of the main-stem inflorescence in Arabidopsis, while 35S:miR172b, toe1, toe2 and toe1toe2 have the opposite phenotypes. Quantitative RT-PCR results showed that TOE1/TOE2 positively regulate the expression of GL3 and GL1. In addition, protein-protein interaction analysis experiments further demonstrated that TOE1/TOE2 interacting with GIS/GIS2/ZFP8 regulate trichome initiation in Arabidopsis. Furthermore, phenotype and expression analysis also demonstrated that TOE1 is involved in GA signaling to control trichome initiation in Arabidopsis. Taken together, our results suggest that TOE1/TOE2 interact with GIS to control trichome development in Arabidopsis. This report could provide valuable information for further study of the interaction of TOE1/TOE2 with GIS in controlling trichome development in plants.
Collapse
Affiliation(s)
- Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
206
|
Xu W, Wang Y, Xie J, Tan S, Wang H, Zhao Y, Liu Q, El-Kassaby YA, Zhang D. Growth-regulating factor 15-mediated gene regulatory network enhances salt tolerance in poplar. PLANT PHYSIOLOGY 2023; 191:2367-2384. [PMID: 36567515 PMCID: PMC10069893 DOI: 10.1093/plphys/kiac600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
Soil salinity is an important determinant of crop productivity and triggers salt stress response pathways in plants. The salt stress response is controlled by transcriptional regulatory networks that maintain regulatory homeostasis through combinations of transcription factor (TF)-DNA and TF-TF interactions. We investigated the transcriptome of poplar 84 K (Populus alba × Populus glandulosa) under salt stress using samples collected at 4- or 6-h intervals within 2 days of salt stress treatment. We detected 24,973 differentially expressed genes, including 2,231 TFs that might be responsive to salt stress. To explore these interactions and targets of TFs in perennial woody plants, we combined gene regulatory networks, DNA affinity purification sequencing, yeast two-hybrid-sequencing, and multi-gene association approaches. Growth-regulating factor 15 (PagGRF15) and its target, high-affinity K+ transporter 6 (PagHAK6), were identified as an important regulatory module in the salt stress response. Overexpression of PagGRF15 and PagHAK6 in transgenic lines improved salt tolerance by enhancing Na+ transport and modulating H2O2 accumulation in poplar. Yeast two-hybrid assays identified more than 420 PagGRF15-interacting proteins, including ETHYLENE RESPONSE FACTOR TFs and a zinc finger protein (C2H2) that are produced in response to a variety of phytohormones and environmental signals and are likely involved in abiotic stress. Therefore, our findings demonstrate that PagGRF15 is a multifunctional TF involved in growth, development, and salt stress tolerance, highlighting the capability of a multifaceted approach in identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Weijie Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yue Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Shuxian Tan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Haofei Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yiyang Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
207
|
Cano-Ramirez DL, Panter PE, Takemura T, de Fraine TS, de Barros Dantas LL, Dekeya R, Barros-Galvão T, Paajanen P, Bellandi A, Batstone T, Manley BF, Tanaka K, Imamura S, Franklin KA, Knight H, Dodd AN. Low-temperature and circadian signals are integrated by the sigma factor SIG5. NATURE PLANTS 2023; 9:661-672. [PMID: 36997687 PMCID: PMC10119024 DOI: 10.1038/s41477-023-01377-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts are a common feature of plant cells and aspects of their metabolism, including photosynthesis, are influenced by low-temperature conditions. Chloroplasts contain a small circular genome that encodes essential components of the photosynthetic apparatus and chloroplast transcription/translation machinery. Here, we show that in Arabidopsis, a nuclear-encoded sigma factor that controls chloroplast transcription (SIGMA FACTOR5) contributes to adaptation to low-temperature conditions. This process involves the regulation of SIGMA FACTOR5 expression in response to cold by the bZIP transcription factors ELONGATED HYPOCOTYL5 and ELONGATED HYPOCOTYL5 HOMOLOG. The response of this pathway to cold is gated by the circadian clock, and it enhances photosynthetic efficiency during long-term cold and freezing exposure. We identify a process that integrates low-temperature and circadian signals, and modulates the response of chloroplasts to low-temperature conditions.
Collapse
Affiliation(s)
- Dora L Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | - Annalisa Bellandi
- John Innes Centre, Norwich, UK
- Laboratoire de Reproduction et Développement des Plantes, ENS de Lyon, Université de Lyon, UCBL, INRAE, CNRS, Lyon, France
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Bethan F Manley
- School of Biological Sciences, University of Bristol, Bristol, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Japan
| | - Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Heather Knight
- Department of Biosciences, Durham University, Durham, UK
| | | |
Collapse
|
208
|
Wang C, Chen T, Li Y, Liu H, Qin W, Wu Z, Peng B, Wang X, Yan X, Fu X, Li L, Tang K. AaWIN1, an AP2/ERF protein, positively regulates glandular secretory trichome initiation in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111602. [PMID: 36690278 DOI: 10.1016/j.plantsci.2023.111602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Exploring the genetic network of glandular trichomes and manipulating genes relevant to secondary metabolite biosynthesis are of great importance and value. Artemisinin, a key antimalarial drug ingredient, is synthesized and stored in glandular secretory trichomes (GSTs) in Artemisia annua. WIN/SHN proteins, a clade of AP2/ERF family, are known as regulators for cuticle biosynthesis. However, their function in glandular trichome development is less unknown. In this study, we identified a WIN/SHN gene from A. annua and named it as AaWIN1. AaWIN1 was predominantly expressed in buds, flowers and trichomes, and encoded a nuclear-localized protein. Overexpressing AaWIN1 in A. annua significantly increased the density of GST as well as the artemisinin content. Furthermore, AaGSW2 was reported to play an important role in promoting GST initiation, and the expression of AaGSW2 was induced in AaWIN1-overexpression lines. AaMIXTA1, a MYB protein positively regulating trichome initiation and cuticle biosynthesis, was confirmed to interact with AaWIN1. In addition, the ectopic expression of AaWIN1 resulted in slender and curled leaves, fewer trichomes, and rising expressions of cuticle biosynthesis genes in Arabidopsis thaliana. Taken together, based on phenotype observations, content measurements and gene expression detections, AaWIN1 was considered as a positive regulator for GST initiation in A. annua.
Collapse
Affiliation(s)
- Chen Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangkuanyu Wu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuyun Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
209
|
Matsunami M, Murai-Hatano M, Kuwagata T, Matsushima U, Hashida Y, Tominaga Y, Masuya Y, Nagano AJ. Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate. PLANT, CELL & ENVIRONMENT 2023; 46:1176-1194. [PMID: 36111882 DOI: 10.1111/pce.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The long-term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage-dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.
Collapse
Affiliation(s)
- Maya Matsunami
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Mari Murai-Hatano
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Morioka, Japan
| | - Tsuneo Kuwagata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Uzuki Matsushima
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoichi Hashida
- Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Yoko Tominaga
- Section of Liberal Arts and Sciences, National Institute of Technology, Ichinoseki College, Ichinoseki, Japan
| | - Yusuke Masuya
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Morioka, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| |
Collapse
|
210
|
Zhao Y, Wang M, Chen Y, Gao M, Wu L, Wang Y. LcERF134 increases the production of monoterpenes by activating the terpene biosynthesis pathway in Litsea cubeba. Int J Biol Macromol 2023; 232:123378. [PMID: 36716839 DOI: 10.1016/j.ijbiomac.2023.123378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Litsea cubeba, an aromatic species of the Lauraceae family, produces a diverse array of monoterpenes. The biosynthesis of monoterpenes is regulated by transcriptional factors (TFs), such as APETALA2/ethylene response factor (AP2/ERF). However, the regulatory mechanisms that control the AP2/ERF gene responsible for the biosynthesis of monoterpenes in L. cubeba have yet to be elucidated. Here, we identified an AP2/ERF gene, LcERF134, as an activator for the accumulation of citral and other monoterpenes. The expression level of LcERF134 was consistent with terpene synthase LcTPS42 in the pericarp. The transient overexpression of LcERF134 significantly increased monoterpene production in L. cubeba as well as the expression of rate-limiting genes involved in the monoterpene biosynthesis pathway. Furthermore, yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays demonstrated that LcERF134 activated the monoterpene biosynthesis pathway by directly binding to the GCC-box elements of the LcTPS42 and LcGPPS.SSU1 promoters. However, the overexpression of LcERF134 in tomatoes had no impact on the synthesis of monoterpenes, thus indicating that LcERF134 is a species-specific TF. Our research demonstrated that LcERF134 significantly increased the biosynthesis of monoterpenes by inducing the expression of LcTPS42 and LcGPPS.SSU1, thus offering insight into how to enhance the flavor of L. cubeba essential oil.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
211
|
Su J, Song S, Wang Y, Zeng Y, Dong T, Ge X, Duan H. Genome-wide identification and expression analysis of DREB family genes in cotton. BMC PLANT BIOLOGY 2023; 23:169. [PMID: 36997878 PMCID: PMC10061749 DOI: 10.1186/s12870-023-04180-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Dehydration responsive element-binding (DREB) transcription factors are widely present in plants, and involve in signalling transduction, plant growth and development, and stress response. DREB genes have been characterized in multiple species. However, only a few DREB genes have been studied in cotton, one of the most important fibre crops. Herein, the genome‑wide identification, phylogeny, and expression analysis of DREB family genes are performed in diploid and tetraploid cotton species. RESULTS In total, 193, 183, 80, and 79 putative genes containing the AP2 domain were identified using bioinformatics approaches in G. barbadense, G. hirsutum, G. arboretum, and G. raimondii, respectively. Phylogenetic analysis showed that based on the categorization of Arabidopsis DREB genes, 535 DREB genes were divided into six subgroups (A1-A6) by using MEGA 7.0. The identified DREB genes were distributed unevenly across 13/26 chromosomes of A and/or D genomes. Synteny and collinearity analysis confirmed that during the evolution, the whole genome duplications, segmental duplications, and/or tandem duplications occurred in cotton DREB genes, and then DREB gene family was further expanded. Further, the evolutionary trees with conserved motifs, cis-acting elements, and gene structure of cotton DREB gene family were predicted, and these results suggested that DREB genes might be involved in the hormone and abiotic stresses responses. The subcellular localization showed that in four cotton species, DREB proteins were predominantly located in the nucleus. Further, the analysis of DREB gene expression was carried out by real-time quantitative PCR, confirming that the identified DREB genes of cotton were involved in response to early salinity and osmotic stress. CONCLUSIONS Collectively, our results presented a comprehensive and systematic understanding in the evolution of cotton DREB genes, and demonstrated the potential roles of DREB family genes in stress and hormone response.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shanglin Song
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yiting Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yunpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
212
|
Chen HC, Huang SC, Chen YF, Kuo CW, Chen YH, Chang MC. Overexpression of OsERF106MZ promotes parental root growth in rice seedlings by relieving the ABA-mediated inhibition of root growth under salinity stress conditions. BMC PLANT BIOLOGY 2023; 23:144. [PMID: 36922804 PMCID: PMC10018881 DOI: 10.1186/s12870-023-04136-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Roots are essential for plant growth and have a variety of functions, such as anchoring the plant to the ground, absorbing water and nutrients from the soil, and sensing abiotic stresses, among others. OsERF106MZ is a salinity-induced gene that is expressed in germinating seeds and rice seedling roots. However, the roles of OsERF106MZ in root growth remain poorly understood. RESULTS Histochemical staining to examine β-glucuronidase (GUS) activity in transgenic rice seedlings harboring OsERF106MZp::GUS indicated that OsERF106MZ is mainly expressed in the root exodermis, sclerenchyma layer, and vascular system. OsERF106MZ overexpression in rice seedlings leads to an increase in primary root (PR) length. The phytohormone abscisic acid (ABA) is thought to act as a hidden architect of root system structure. The expression of the ABA biosynthetic gene OsAO3 is downregulated in OsERF106MZ-overexpressing roots under normal conditions, while the expression of OsNPC3, an AtNPC4 homolog involved in ABA sensitivity, is reduced in OsERF106MZ-overexpressing roots under both normal and NaCl-treated conditions. Under normal conditions, OsERF106MZ-overexpressing roots show a significantly reduced ABA level; moreover, exogenous application of 1.0 µM ABA can suppress OsERF106MZ-mediated root growth promotion. Additionally, OsERF106MZ-overexpressing roots display less sensitivity to ABA-mediated root growth inhibition when treated with 5.0 µM ABA under normal conditions or exposed to NaCl-treated conditions. Furthermore, chromatin immunoprecipitation (ChIP)-qPCR and luciferase (LUC) reporter assays showed that OsERF106MZ can bind directly to the sequence containing the GCC box in the promoter region of the OsAO3 gene and repress the expression of OsAO3. CONCLUSIONS OsERF106MZ may play a role in maintaining root growth for resource uptake when rice seeds germinate under salinity stress by alleviating ABA-mediated root growth inhibition.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Shi-Cheng Huang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Fu Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Che-Wei Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Ying-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
213
|
Castro JC, Castro CG, Cobos M. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1099829. [PMID: 37021310 PMCID: PMC10069634 DOI: 10.3389/fpls.2023.1099829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) is an essential compound with pleiotropic functions in many organisms. Since its isolation in the last century, AsA has attracted the attention of the scientific community, allowing the discovery of the L-galactose pathway, which is the main pathway for AsA biosynthesis in plants. Thus, the aim of this review is to analyze the genetic and biochemical strategies employed by plant cells for regulating AsA biosynthesis through the L-galactose pathway. In this pathway, participates eight enzymes encoded by the genes PMI, PMM, GMP, GME, GGP, GPP, GDH, and GLDH. All these genes and their encoded enzymes have been well characterized, demonstrating their participation in AsA biosynthesis. Also, have described some genetic and biochemical strategies that allow its regulation. The genetic strategy includes regulation at transcriptional and post-transcriptional levels. In the first one, it was demonstrated that the expression levels of the genes correlate directly with AsA content in the tissues/organs of the plants. Also, it was proved that these genes are light-induced because they have light-responsive promoter motifs (e.g., ATC, I-box, GT1 motif, etc.). In addition, were identified some transcription factors that function as activators (e.g., SlICE1, AtERF98, SlHZ24, etc.) or inactivators (e.g., SlL1L4, ABI4, SlNYYA10) regulate the transcription of these genes. In the second one, it was proved that some genes have alternative splicing events and could be a mechanism to control AsA biosynthesis. Also, it was demonstrated that a conserved cis-acting upstream open reading frame (5'-uORF) located in the 5'-untranslated region of the GGP gene induces its post-transcriptional repression. Among the biochemical strategies discovered is the control of the enzyme levels (usually by decreasing their quantities), control of the enzyme catalytic activity (by increasing or decreasing its activity), feedback inhibition of some enzymes (GME and GGP), subcellular compartmentation of AsA, the metabolon assembly of the enzymes, and control of AsA biosynthesis by electron flow. Together, the construction of this basic knowledge has been establishing the foundations for generating genetically improved varieties of fruits and vegetables enriched with AsA, commonly used in animal and human feed.
Collapse
Affiliation(s)
- Juan C. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Carlos G. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| |
Collapse
|
214
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|
215
|
Kang P, Yoo YH, Kim DI, Yim JH, Lee H. De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes Involved in Cold Acclimation and Freezing Tolerance of the Arctic Moss Aulacomnium turgidum (Wahlenb.) Schwaegr. PLANTS (BASEL, SWITZERLAND) 2023; 12:1250. [PMID: 36986936 PMCID: PMC10054522 DOI: 10.3390/plants12061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Cold acclimation refers to a phenomenon in which plants become more tolerant to freezing after exposure to non-lethal low temperatures. Aulacomnium turgidum (Wahlenb.) Schwaegr is a moss found in the Arctic that can be used to study the freezing tolerance of bryophytes. To improve our understanding of the cold acclimation effect on the freezing tolerance of A. turgidum, we compared the electrolyte leakage of protonema grown at 25 °C (non-acclimation; NA) and at 4 °C (cold acclimation; CA). Freezing damage was significantly lower in CA plants frozen at -12 °C (CA-12) than in NA plants frozen at -12 °C (NA-12). During recovery at 25 °C, CA-12 demonstrated a more rapid and greater level of the maximum photochemical efficiency of photosystem II than NA-12, indicating a greater recovery capacity for CA-12 compared to NA-12. For the comparative analysis of the transcriptome between NA-12 and CA-12, six cDNA libraries were constructed in triplicate, and RNA-seq reads were assembled into 45,796 unigenes. The differential gene expression analysis showed that a significant number of AP2 transcription factor genes and pentatricopeptide repeat protein-coding genes related to abiotic stress and the sugar metabolism pathway were upregulated in CA-12. Furthermore, starch and maltose concentrations increased in CA-12, suggesting that cold acclimation increases freezing tolerance and protects photosynthetic efficiency through the accumulation of starch and maltose in A. turgidum. A de novo assembled transcriptome can be used to explore genetic sources in non-model organisms.
Collapse
Affiliation(s)
- Pilsung Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yo-Han Yoo
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Joung Han Yim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
- Polar Science, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
216
|
Abiraami TV, Sanyal RP, Misra HS, Saini A. Genome-wide analysis of bromodomain gene family in Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1120012. [PMID: 36968369 PMCID: PMC10030601 DOI: 10.3389/fpls.2023.1120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The bromodomain-containing proteins (BRD-proteins) belongs to family of 'epigenetic mark readers', integral to epigenetic regulation. The BRD-members contain a conserved 'bromodomain' (BRD/BRD-fold: interacts with acetylated-lysine in histones), and several additional domains, making them structurally/functionally diverse. Like animals, plants also contain multiple Brd-homologs, however the extent of their diversity and impact of molecular events (genomic duplications, alternative splicing, AS) therein, is relatively less explored. The present genome-wide analysis of Brd-gene families of Arabidopsis thaliana and Oryza sativa showed extensive diversity in structure of genes/proteins, regulatory elements, expression pattern, domains/motifs, and the bromodomain (w.r.t. length, sequence, location) among the Brd-members. Orthology analysis identified thirteen ortholog groups (OGs), three paralog groups (PGs) and four singleton members (STs). While more than 40% Brd-genes were affected by genomic duplication events in both plants, AS-events affected 60% A. thaliana and 41% O. sativa genes. These molecular events affected various regions (promoters, untranslated regions, exons) of different Brd-members with potential impact on expression and/or structure-function characteristics. RNA-Seq data analysis indicated differences in tissue-specificity and stress response of Brd-members. Analysis by RT-qPCR revealed differential abundance and salt stress response of duplicate A. thaliana and O. sativa Brd-genes. Further analysis of AtBrd gene, AtBrdPG1b showed salinity-induced modulation of splicing pattern. Bromodomain (BRD)-region based phylogenetic analysis placed the A. thaliana and O. sativa homologs into clusters/sub-clusters, mostly consistent with ortholog/paralog groups. The bromodomain-region displayed several conserved signatures in key BRD-fold elements (α-helices, loops), along with variations (1-20 sites) and indels among the BRD-duplicates. Homology modeling and superposition identified structural variations in BRD-folds of divergent and duplicate BRD-members, which might affect their interaction with the chromatin histones, and associated functions. The study also showed contribution of various duplication events in Brd-gene family expansion among diverse plants, including several monocot and dicot plant species.
Collapse
Affiliation(s)
- T. V. Abiraami
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
217
|
Zhang Q, Zhang J, Wei F, Fu X, Wei H, Lu J, Ma L, Wang H. The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. Int J Mol Sci 2023; 24:ijms24055057. [PMID: 36902489 PMCID: PMC10002529 DOI: 10.3390/ijms24055057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.
Collapse
|
218
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
219
|
Fu J, Yu Q, Zhang C, Xian B, Fan J, Huang X, Yang W, Zou X, Chen S, Su L, He Y, Li Q. CsAP2-09 confers resistance against citrus bacterial canker by regulating CsGH3.1L-mediated phytohormone biosynthesis. Int J Biol Macromol 2023; 229:964-973. [PMID: 36587648 DOI: 10.1016/j.ijbiomac.2022.12.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Citrus bacterial canker (CBC) is a serious bacterial disease affecting citrus plantations and the citrus industry all over the world. We have previously shown that an apetala 2/ethylene response factor in Citrus sinensis, CsAP2-09, positively regulated resistance to CBC, although the regulatory mechanisms remained undetermined. Here, we demonstrated that CsAP2-09 positively and sustainably controlled resistance to CBC in three-year transgenic plants. CsAP2-09 was found to be a transcriptional activator, and qRT-PCR and dual luciferase assays showed that it controlled the expression CsGH3.1L. CsAP2-09 bound directly to the promotor of CsGH3.1L, shown by yeast one-hybrid assay, with the binding site confirmed by electrophoretic mobility shift assay. Biochemical assays showed that CsAP2-09 negatively regulated the biosynthesis of indole acetic acid (IAA) and positively regulated that of salicylic acid (SA) and ethylene, verified with transient overexpression of CsGH3.1L. The combination of these results with those of previous reports indicated that SA, ethylene, and IAA can directly regulate CBC resistance. Overall, we revealed a pathway whereby CsAP2-09 conferred CBC resistance by direct binding to the CsGH3.1L promoter, activating its expression and modulating IAA, SA, and ethylene biosynthesis. Our study indicates the potential value of manipulating CsAP2-09 and CsGH3.1L in the breeding of CBC-resistant citrus.
Collapse
Affiliation(s)
- Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qiyuan Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Chenxi Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Baohang Xian
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jie Fan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xin Huang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Liyan Su
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 710065, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
220
|
Swinka C, Hellmann E, Zwack P, Banda R, Rashotte AM, Heyl A. Cytokinin Response Factor 9 Represses Cytokinin Responses in Flower Development. Int J Mol Sci 2023; 24:4380. [PMID: 36901811 PMCID: PMC10002603 DOI: 10.3390/ijms24054380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A multi-step phosphorelay system is the main conduit of cytokinin signal transduction. However, several groups of additional factors that also play a role in this signaling pathway have been found-among them the Cytokinin Response Factors (CRFs). In a genetic screen, CRF9 was identified as a regulator of the transcriptional cytokinin response. It is mainly expressed in flowers. Mutational analysis indicates that CRF9 plays a role in the transition from vegetative to reproductive growth and silique development. The CRF9 protein is localized in the nucleus and functions as a transcriptional repressor of Arabidopsis Response Regulator 6 (ARR6)-a primary response gene for cytokinin signaling. The experimental data suggest that CRF9 functions as a repressor of cytokinin during reproductive development.
Collapse
Affiliation(s)
- Christine Swinka
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Eva Hellmann
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Paul Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Ramya Banda
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Alexander Heyl
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| |
Collapse
|
221
|
Guo Z, He L, Sun X, Li C, Su J, Zhou H, Liu X. Genome-Wide Analysis of the Rhododendron AP2/ERF Gene Family: Identification and Expression Profiles in Response to Cold, Salt and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:994. [PMID: 36903855 PMCID: PMC10005251 DOI: 10.3390/plants12050994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The AP2/ERF gene family is one of the most conserved and important transcription factor families mainly occurring in plants with various functions in regulating plant biological and physiological processes. However, little comprehensive research has been conducted on the AP2/ERF gene family in Rhododendron (specifically, Rhododendron simsii), an important ornamental plant. The existing whole-genome sequence of Rhododendron provided data to investigate the AP2/ERF genes in Rhododendron on a genome-wide scale. A total of 120 Rhododendron AP2/ERF genes were identified. The phylogenetic analysis showed that RsAP2 genes were classified into five main subfamilies, AP2, ERF, DREB, RAV and soloist. Cis-acting elements involving plant growth regulators, response to abiotic stress and MYB binding sites were detected in the upstream sequences of RsAP2 genes. A heatmap of RsAP2 gene expression levels showed that these genes had different expression patterns in the five developmental stages of Rhododendron flowers. Twenty RsAP2 genes were selected for quantitative RT-PCR experiments to clarify the expression level changes under cold, salt and drought stress treatments, and the results showed that most of the RsAP2 genes responded to these abiotic stresses. This study generated comprehensive information on the RsAP2 gene family and provides a theoretical basis for future genetic improvement.
Collapse
Affiliation(s)
- Zhenhao Guo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Lisi He
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaobo Sun
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chang Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Huimin Zhou
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaoqing Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
222
|
Overexpression of TgERF1, a Transcription Factor from Tectona grandis, Increases Tolerance to Drought and Salt Stress in Tobacco. Int J Mol Sci 2023; 24:ijms24044149. [PMID: 36835560 PMCID: PMC9961280 DOI: 10.3390/ijms24044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.
Collapse
|
223
|
Sultana MH, Alamin M, Qiu J, Fan L, Ye C. Transcriptomic profiling reveals candidate allelopathic genes in rice responsible for interactions with barnyardgrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1104951. [PMID: 36875579 PMCID: PMC9982016 DOI: 10.3389/fpls.2023.1104951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Echinochloa crus-galli (barnyardgrass) is one of the most damaging weeds in rice fields worldwide. Allelopathy has been considered a possible application for weed management. Thus understanding its molecular mechanisms is important for rice production. This study generated transcriptomes from rice under mono- and co-culture with barnyardgrass at two-time points to identify the candidate genes controlling allelopathic interactions between rice and barnyardgrass. A total of 5,684 differentially expressed genes (DEGs) were detected, amongst which 388 genes were transcription factors. These DEGs include genes associated with momilactone and phenolic acid biosynthesis, which play critical roles in allelopathy. Additionally, we found significantly more DEGs at 3 hours than at 3 days, suggesting a quick allelopathic response in rice. Up-regulated DEGs involve diverse biological processes, such as response to stimulus and pathways related to phenylpropanoid and secondary metabolites biosynthesis. Down-regulated DEGs were involved in developmental processes, indicating a balance between growth and stress response to allelopathy from barnyardgrass. Comparison of DEGs between rice and barnyardgrass shows few common genes, suggesting different mechanisms underlying allelopathic interaction in these two species. Our results offer an important basis for identifying of candidate genes responsible for rice and barnyardgrass interactions and contribute valuable resources for revealing its molecular mechanisms.
Collapse
Affiliation(s)
- Most. Humaira Sultana
- Institutue of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Md. Alamin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jie Qiu
- Institutue of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institutue of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institutue of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
224
|
Wang Z, Ni L, Liu L, Yuan H, Gu C. IlAP2, an AP2/ERF Superfamily Gene, Mediates Cadmium Tolerance by Interacting with IlMT2a in Iris lactea var. chinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:823. [PMID: 36840170 PMCID: PMC9959467 DOI: 10.3390/plants12040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) stress has a major impact on ecosystems, so it is important to find suitable Cd-tolerant plants while elucidating the responsible molecular mechanism for phytoremediation to manage Cd soil contamination. Iris lactea var. chinensis is an ornamental perennial groundcover plant with strong tolerance to Cd. Previous studies found that IlAP2, an AP2/ERF superfamily gene, may be an interacting partner of the metallothionein gene IlMT2a, which plays a key role in Cd tolerance. To study the role of IlAP2 in regulating Cd tolerance in I. lactea, we analyzed its regulation function and mechanism based on a yeast two-hybrid assay, a bimolecular fluorescence complementation test, quantitative real-time PCR, transgenics and transcriptome sequencing. The results showed that IlAP2 interacts with IlMT2a and may cooperate with other transcription factors to regulate genes involved in signal transduction and plant hormones, leading to reduced Cd toxicity by hindering Cd transport. These findings provide insights into the mechanism of IlAP2-mediated stress responses to Cd and important gene resources for improving plant stress tolerance in phytoremediation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
225
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
226
|
Yang Y, Wang R, Wang L, Cui R, Zhang H, Che Z, Hu D, Chu S, Jiao Y, Yu D, Zhang D. GmEIL4 enhances soybean (Glycine max) phosphorus efficiency by improving root system development. PLANT, CELL & ENVIRONMENT 2023; 46:592-606. [PMID: 36419232 DOI: 10.1111/pce.14497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) deficiency seriously affects plant growth and development and ultimately limits the quality and yield of crops. Here, a new P efficiency-related major quantitative trait locus gene, GmEIL4 (encoding an ethylene-insensitive 3-like 1 protein), was cloned at qP2, which was identified by linkage analysis and genome-wide association study across four environments. Overexpressing GmEIL4 significantly improved the P uptake efficiency by increasing the number, length and surface area of lateral roots of hairy roots in transgenic soybeans, while interfering with GmEIL4 resulted in poor root phenotypic characteristics compared with the control plants under low P conditions. Interestingly, we found that GmEIL4 interacted with EIN3-binding F box protein 1 (GmEBF1), which may regulate the root response to low P stress. We conclude that the expression of GmEIL4 was induced by low-P stress and that overexpressing GmEIL4 improved P accumulation by regulating root elongation and architecture. Analysis of allele variation of GmEIL4 in 894 soybean accessions suggested that GmEIL4 is undergoing artificial selection during soybean evolution, which will benefit soybean production. Together, this study further elucidates how plants respond to low P stress by modifying root structure and provides insight into the great potential of GmEIL4 in crop P-efficient breeding.
Collapse
Affiliation(s)
- Yuming Yang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ruiyang Wang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Ruifan Cui
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | | | - Dandan Hu
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shanshan Chu
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yongqing Jiao
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Dan Zhang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
227
|
Rovere M, Pucciariello C, Castella C, Berger A, Forgia M, Guyet TA, Bosseno M, Pacoud M, Brouquisse R, Perata P, Boscari A. Group VII ethylene response factors, MtERF74 and MtERF75, sustain nitrogen fixation in Medicago truncatula microoxic nodules. PLANT, CELL & ENVIRONMENT 2023; 46:607-620. [PMID: 36479691 DOI: 10.1111/pce.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.
Collapse
Affiliation(s)
- Martina Rovere
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claude Castella
- INRAE, UR1115 Plantes et Systèmes de culture Horticoles (PSH), Site Agroparc, Avignon, France
| | - Antoine Berger
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Marco Forgia
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Tran A Guyet
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marc Bosseno
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | | | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
228
|
Li C, Su J, Zhao N, Lou L, Ou X, Yan Y, Wang L, Jiang J, Chen S, Chen F. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:270-282. [PMID: 36200911 PMCID: PMC9884023 DOI: 10.1111/pbi.13940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Waterlogging stress affects plant growth by limiting root respiration and reducing yield and economic value. Therefore, identifying genes involved in regulating waterlogging stress is vital. This study reports the ethylene-responsive VII transcription factor (CmRAP2.3) in the chrysanthemum. Subcellular localization and transactivation assay analyses revealed that CmRAP2.3 was localized in the nucleus and possessed transactivation activity. Overexpression of CmRAP2.3 in chrysanthemum was found to enhance waterlogging tolerance by decreasing reactive oxygen species (ROS) levels. Furthermore, we found that the transcription factor CmERF5 binds to GCC-like motifs in the CmRAP2.3 promoter region and activates CmRAP2.3 expression. Additionally, CmERF5 overexpression maintained a low ROS level and improved chrysanthemum waterlogging tolerance. Taken together, this study shows a molecular mechanism by which CmERF5 transcriptionally activates CmRAP2.3 to reduce waterlogging stress via the ROS pathway in the chrysanthemum.
Collapse
Affiliation(s)
- Chuanwei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Nan Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - La Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Xiaoli Ou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Yajun Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland AdministrationCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
229
|
Cheng H, Yu Y, Zhai Y, Wang L, Wang L, Chen S, Chen F, Jiang J. An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum. PLANT, CELL & ENVIRONMENT 2023; 46:440-450. [PMID: 36367211 DOI: 10.1111/pce.14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Plants employ several endogenous and exogenous signals to guarantee timely floral transitions with floral integrators. To avoid premature flowering, flowering plants must control the balance between vegetative and floral development. As a Group II member of BBX family, CmBBX8 promotes flowering by directly activating CmFTL1 in summer-flowering chrysanthemum. However, the mechanisms underlying this floral transition is yet to be elucidated. Here, we report that the chrysanthemum ERF3 homologue, CmERF3, physically interacts with CmBBX8 through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), pull-down, and luciferase complementation (LCI) assays. We found that CmERF3 was highly expressed at the vegetative stage and rarely expressed in the reproductive phase, indicating that CmERF3 may play a critical role in maintaining vegetative growth to prevent premature flowering. Rhythm analysis revealed that CmERF3 had a different response to rhythm compared to CmBBX8. Knockdown of CmERF3 facilitated floral initiation, whereas overexpression of CmERF3 delayed floral transition. We further found that CmERF3 repressed the transactivation activity of CmBBX8 on the downstream CmFTL1 gene. Collectively, our results indicate that the CmERF3-CmBBX8 transcriptional complex is a crucial module that balances the vegetative growth and reproductive development of chrysanthemum.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
230
|
Choi JW, Choi HH, Park YS, Jang MJ, Kim S. Comparative and expression analyses of AP2/ERF genes reveal copy number expansion and potential functions of ERF genes in Solanaceae. BMC PLANT BIOLOGY 2023; 23:48. [PMID: 36683040 PMCID: PMC9869560 DOI: 10.1186/s12870-022-04017-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The AP2/ERF gene family is a superfamily of transcription factors that are important in the response of plants to abiotic stress and development. However, comprehensive research of the AP2/ERF genes in the Solanaceae family is lacking. RESULTS Here, we updated the annotation of AP2/ERF genes in the genomes of eight Solanaceae species, as well as Arabidopsis thaliana and Oryza sativa. We identified 2,195 AP2/ERF genes, of which 368 (17%) were newly identified. Based on phylogenetic analyses, we observed expansion of the copy number of these genes, especially those belonging to specific Ethylene-Responsive Factor (ERF) subgroups of the Solanaceae. From the results of chromosomal location and synteny analyses, we identified that the AP2/ERF genes of the pepper (Capsicum annuum), the tomato (Solanum lycopersicum), and the potato (Solanum tuberosum) belonging to ERF subgroups form a tandem array and most of them are species-specific without orthologs in other species, which has led to differentiation of AP2/ERF gene repertory among Solanaceae. We suggest that these genes mainly emerged through recent gene duplication after the divergence of these species. Transcriptome analyses showed that the genes have a putative function in the response of the pepper and tomato to abiotic stress, especially those in ERF subgroups. CONCLUSIONS Our findings will provide comprehensive information on AP2/ERF genes and insights into the structural, evolutionary, and functional understanding of the role of these genes in the Solanaceae.
Collapse
Affiliation(s)
- Jin-Wook Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyeon Ho Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
231
|
Fan S, Chen J, Yang R. Candidate Genes for Salt Tolerance in Forage Sorghum under Saline Conditions from Germination to Harvest Maturity. Genes (Basel) 2023; 14:genes14020293. [PMID: 36833220 PMCID: PMC9956952 DOI: 10.3390/genes14020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
To address the plant adaptability of sorghum (Sorghum bicolor) in salinity, the research focus should shift from only selecting tolerant varieties to understanding the precise whole-plant genetic coping mechanisms with long-term influence on various phenotypes of interest to expanding salinity, improving water use, and ensuring nutrient use efficiency. In this review, we discovered that multiple genes may play pleiotropic regulatory roles in sorghum germination, growth, and development, salt stress response, forage value, and the web of signaling networks. The conserved domain and gene family analysis reveals a remarkable functional overlap among members of the bHLH (basic helix loop helix), WRKY (WRKY DNA-binding domain), and NAC (NAM, ATAF1/2, and CUC2) superfamilies. Shoot water and carbon partitioning, for example, are dominated by genes from the aquaporins and SWEET families, respectively. The gibberellin (GA) family of genes is prevalent during pre-saline exposure seed dormancy breaking and early embryo development at post-saline exposure. To improve the precision of the conventional method of determining silage harvest maturity time, we propose three phenotypes and their underlying genetic mechanisms: (i) the precise timing of transcriptional repression of cytokinin biosynthesis (IPT) and stay green (stg1 and stg2) genes; (ii) the transcriptional upregulation of the SbY1 gene and (iii) the transcriptional upregulation of the HSP90-6 gene responsible for grain filling with nutritive biochemicals. This work presents a potential resource for sorghum salt tolerance and genetic studies for forage and breeding.
Collapse
|
232
|
Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2212474120. [PMID: 36626556 PMCID: PMC9934071 DOI: 10.1073/pnas.2212474120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plants respond to oxygen deprivation by activating the expression of a set of hypoxia-responsive genes (HRGs). The master regulator of this process is a small group of transcription factors belonging to group VII of the ethylene response factors (ERF-VIIs). ERF-VIIs are highly unstable under aerobic conditions due to the continuous oxidation of their characteristic Cys residue at the N terminus by plant cysteine oxidases (PCOs). Under hypoxia, PCOs are inactive and the ERF-VIIs activate transcription of the HRGs required for surviving hypoxia. However, if the plant exposed to hypoxia has limited sugar reserves, the activity of ERF-VIIs is severely dampened. This suggests that oxygen sensing by PCO/ERF-VII is fine-tuned by another sensing pathway, related to sugar or energy availability. Here, we show that oxygen sensing by PCO/ERF-VII is controlled by the energy sensor target of rapamycin (TOR). Inhibition of TOR by genetic or pharmacological approaches leads to a much lower induction of HRGs. We show that two serine residues at the C terminus of RAP2.12, a major ERF-VII, are phosphorylated by TOR and are needed for TOR-dependent activation of transcriptional activity of RAP2.12. Our results demonstrate that oxygen and energy sensing converge in plants to ensure an appropriate transcription of genes, which is essential for surviving hypoxia. When carbohydrate metabolism is inefficient in producing ATP because of hypoxia, the lower ATP content reduces TOR activity, thus attenuating the efficiency of induction of HRGs by the ERF-VIIs. This homeostatic control of the hypoxia-response is required for the plant to survive submergence.
Collapse
|
233
|
Biosynthesis of α-Bisabolol by Farnesyl Diphosphate Synthase and α-Bisabolol Synthase and Their Related Transcription Factors in Matricaria recutita L. Int J Mol Sci 2023; 24:ijms24021730. [PMID: 36675248 PMCID: PMC9864331 DOI: 10.3390/ijms24021730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.
Collapse
|
234
|
Cheng C, An L, Li F, Ahmad W, Aslam M, Ul Haq MZ, Yan Y, Ahmad RM. Wide-Range Portrayal of AP2/ERF Transcription Factor Family in Maize ( Zea mays L.) Development and Stress Responses. Genes (Basel) 2023; 14:194. [PMID: 36672935 PMCID: PMC9859492 DOI: 10.3390/genes14010194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The APETALA2/Ethylene-Responsive Transcriptional Factors containing conservative AP2/ERF domains constituted a plant-specific transcription factor (TF) superfamily, called AP2/ERF. The configuration of the AP2/ERF superfamily in maize has remained unresolved. In this study, we identified the 229 AP2/ERF genes in the latest (B73 RefGen_v5) maize reference genome. Phylogenetic classification of the ZmAP2/ERF family members categorized it into five clades, including 27 AP2 (APETALA2), 5 RAV (Related to ABI3/VP), 89 DREB (dehydration responsive element binding), 105 ERF (ethylene responsive factors), and a soloist. The duplication events of the paralogous genes occurred from 1.724-25.855 MYA, a key route to maize evolution. Structural analysis reveals that they have more introns and few exons. The results showed that 32 ZmAP2/ERFs regulate biotic stresses, and 24 ZmAP2/ERFs are involved in responses towards abiotic stresses. Additionally, the expression analysis showed that DREB family members are involved in plant sex determination. The real-time quantitative expression profiling of ZmAP2/ERFs in the leaves of the maize inbred line B73 under ABA, JA, salt, drought, heat, and wounding stress revealed their specific expression patterns. Conclusively, this study unveiled the evolutionary pathway of ZmAP2/ERFs and its essential role in stress and developmental processes. The generated information will be useful for stress resilience maize breeding programs.
Collapse
Affiliation(s)
- Cheng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Likun An
- College of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Fangzhe Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wahaj Ahmad
- Institute of Soil and Environmental Sciences, COMSATS University Islamabad, Abbottabad 22020, Pakistan
| | - Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ramala Masood Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
235
|
Xiao L, Ren JZ, Li Q, Yang B, Liu ZJ, Chen RB, Zhang L. Genome-wide analysis of AP2/ERF superfamily in Isatis indigotica. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:77-88. [PMID: 36192353 DOI: 10.1016/j.joim.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering. METHODS To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses. RESULTS One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses. CONCLUSION This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ze Ren
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - Bin Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rui-Bing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Medical School of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
236
|
Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver MJ, Zhang D. The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:75-91. [PMID: 36416176 DOI: 10.1111/tpj.16035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soloist is a member of a distinct and small subfamily within the AP2/ERF transcriptional factor family that play important roles in plant biotic and abiotic stress responses. There are limited studies of Soloist genes and their functions are poorly understood. We characterized the abiotic and biotic stress tolerance function of the ScSoloist gene (designated as ScAPD1-like) from the desert moss Syntrichia caninervis. ScAPD1-like responded to multiple abiotic, biotic stresses and plant hormone treatments. ScAPD1-like protein located to the nucleus and bound to several DNA elements. Overexpression of ScAPD1-like in Arabidopsis did not alter abiotic stress resistance or inhibit Pseudomonas syringae pv. tomato (Pst) DC3000 infection. However, overexpression of ScAPD1-like significantly increased the resistance of transgenic Arabidopsis and S. caninervis to Verticillium dahliae infection, decreased reactive oxygen species accumulation and improved reactive oxygen species scavenging activity. ScAPD1-like overexpression plants altered the abundance of transcripts for lignin synthesis and promoted lignin accumulation in Arabidopsis. ScAPD1-like directly bind to RAV1, AC elements, and TATA-box in the promoters of AtPAL1 and AtC4H genes, respectively, in vitro. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays demonstrated ScAPD1-like directly bound to PAL and C4H genes promoters in Arabidopsis and their homologs in S. caninervis. In S. caninervis, ScAPD1-like overexpression and RNAi directly regulated the abundance of ScPAL and ScC4H transcripts and modified the metabolites of phenylpropanoid pathway. We provide insight into the function of Soloist in plant defense mechanisms that likely occurs through activation of the phenylpropanoid biosynthesis pathway. ScAPD1-like is a promising candidate gene for breeding strategies to improve resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Shimin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Melvin J Oliver
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| |
Collapse
|
237
|
Varshney V, Hazra A, Majee M. Phy meets ERFs to regulate seed germination. TRENDS IN PLANT SCIENCE 2023; 28:7-9. [PMID: 36328871 DOI: 10.1016/j.tplants.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The complex process of seed germination is impacted heavily by environmental cues, such as light, mediated via photosensory systems and phytochromes. This pathway was discovered a long time ago, but the underlying molecular mechanisms are not fully understood. Li et al. recently showed how ETHYLENE RESPONSE FACTORs (ERFs) modulate phytochrome-mediated regulation of germination.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhijit Hazra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
238
|
Du L, Huang X, Ding L, Wang Z, Tang D, Chen B, Ao L, Liu Y, Kang Z, Mao H. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. THE NEW PHYTOLOGIST 2023; 237:232-250. [PMID: 36264565 DOI: 10.1111/nph.18549] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drought stress limits wheat production and threatens food security world-wide. While ethylene-responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regulatory role of TaERF87 in mediating wheat tolerance to drought stress. TaERF87 overexpression (OE) enhances drought tolerance, while silencing leads to drought sensitivity in wheat. RNA sequencing with biochemical assays revealed that TaERF87 activates the expression of the proline biosynthesis genes TaP5CS1 and TaP5CR1 via direct binding to GCC-box elements. Furthermore, proline accumulates to higher levels in TaERF87- and TaP5CS1-OE lines than that in wild-type plants under well-watered and drought stress conditions concomitantly with enhanced drought tolerance in these transgenic lines. Moreover, the interaction between TaERF87 and the bHLH transcription factor TaAKS1 synergistically enhances TaP5CS1 and TaP5CR1 transcriptional activation. TaAKS1 OE also increases wheat drought tolerance by promoting proline accumulation. Additionally, our findings verified that TaERF87 and TaAKS1 are targets of abscisic acid-responsive element binding factor 2 (TaABF2). Together, our study elucidates the mechanisms underlying a positive response to drought stress mediated by the TaABF2-TaERF87/TaAKS1-TaP5CS1/TaP5CR1 module, and identifies candidate genes for the development of elite drought-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongxue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongling Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lanjiya Ao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| |
Collapse
|
239
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
240
|
Thuzar M, Sae-lee Y, Saensuk C, Pitaloka MK, Dechkrong P, Aesomnuk W, Ruanjaichon V, Wanchana S, Arikit S. Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut ( Cocos nucifera). PLANTS (BASEL, SWITZERLAND) 2022; 12:105. [PMID: 36616233 PMCID: PMC9823405 DOI: 10.3390/plants12010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Coconut (Cocos nucifera L.) is widely recognized as one of nature's most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture.
Collapse
Affiliation(s)
- Mya Thuzar
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yonlada Sae-lee
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Chatree Saensuk
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Mutiara K. Pitaloka
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Services Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwaret Arikit
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
241
|
Wang Y, Zhou Y, Wang R, Xu F, Tong S, Song C, Shao Y, Yi M, He J. Ethylene Response Factor LlERF110 Mediates Heat Stress Response via Regulation of LlHsfA3A Expression and Interaction with LlHsfA2 in Lilies ( Lilium longiflorum). Int J Mol Sci 2022; 23:16135. [PMID: 36555777 PMCID: PMC9781036 DOI: 10.3390/ijms232416135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
242
|
Wang Y, Ye H, Wang K, Huang C, Si X, Wang J, Xu Y, Huang Y, Huang J, Li Y. CcMYB12 Positively Regulates Flavonoid Accumulation during Fruit Development in Carya cathayensis and Has a Role in Abiotic Stress Responses. Int J Mol Sci 2022; 23:15618. [PMID: 36555261 PMCID: PMC9779359 DOI: 10.3390/ijms232415618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Flavonoid, an important secondary metabolite in plants, is involved in many biological processes. Its synthesis originates from the phenylpropane metabolic pathway, and it is catalyzed by a series of enzymes. The flavonoid biosynthetic pathway is regulated by many transcription factors, among which MYB transcription factors are thought to be key regulators. Hickory (Carya cathayensis) is an economic forest tree species belonging to the Juglandaceae family, and its fruit is rich in flavonoids. The transcriptome of exocarp and seed of hickory has previously been sequenced and analyzed by our team, revealing that CcMYB12 (CCA0691S0036) may be an important regulator of flavonoid synthesis. However, the specific regulatory role of CcMYB12 in hickory has not been clarified. Through a genome-wide analysis, a total of 153 R2R3-MYB genes were identified in hickory, classified into 23 subclasses, of which CcMYB12 was located in Subclass 7. The R2R3-MYBs showed a differential expression with the development of hickory exocarp and seed, indicating that these genes may regulate fruit development and metabolite accumulation. The phylogenetic analysis showed that CcMYB12 is a flavonol regulator, and its expression trend is the same as or opposite to that of flavonol synthesis-related genes. Moreover, CcMYB12 was found to be localized in the nucleus and have self-activation ability. The dual-luciferase reporter assay demonstrated that CcMYB12 strongly bonded to and activated the promoters of CcC4H, CcCHS, CcCHI, and CcF3H, which are key genes of the flavonoid synthesis pathway. Overexpression of CcMYB12 in Arabidopsis thaliana could increase the content of total flavonoids and the expression of related genes, including PAL, C4H, CHS, F3H, F3’H, ANS, and DFR, in the flavonoid synthesis pathway. These results reveal that CcMYB12 may directly regulate the expression of flavonoid-related genes and promote flavonoid synthesis in hickory fruit. Notably, the expression level of CcMYB12 in hickory seedlings was significantly boosted under NaCl and PEG treatments, while it was significantly downregulated under acid stress, suggesting that CcMYB12 may participate in the response to abiotic stresses. The results could provide a basis for further elucidating the regulation network of flavonoid biosynthesis and lay a foundation for developing new varieties of hickory with high flavonoid content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an District, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an District, Hangzhou 311300, China
| |
Collapse
|
243
|
Kim RJ, Lee SB, Pandey G, Suh MC. Functional conservation of an AP2/ERF transcription factor in cuticle formation suggests an important role in the terrestrialization of early land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7450-7466. [PMID: 36112045 DOI: 10.1093/jxb/erac360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The formation of a hydrophobic cuticle layer on aerial plant parts was a critical innovation for protection from the terrestrial environment during the evolution of land plants. However, little is known about the molecular mechanisms underlying cuticle biogenesis in early terrestrial plants. Here, we report an APETALA2/Ethylene Response Factor (AP2/ERF) transcriptional activator, PpWIN1, involved in cutin and cuticular wax biosynthesis in Physcomitrium patens and Arabidopsis. The transcript levels of PpWIN1 were 2.5-fold higher in gametophores than in the protonema, and increased by approximately 3- to 4.7-fold in the protonema and gametophores under salt and osmotic stresses. PpWIN1 harbouring transcriptional activation activity is localized in the nucleus of tobacco leaf epidermal cells. Δppwin1 knockout mutants displayed a permeable cuticle, increased water loss, and cutin- and wax-deficient phenotypes. In contrast, increased total cutin and wax loads, and decreased water loss rates were observed in PpWIN1-overexpressing Arabidopsis plants. The transcript levels of genes involved in cutin or wax biosynthesis were significantly up-regulated in PpWIN1-overexpressing Arabidopsis lines, indicating that PpWIN1 acts as a transcriptional activator in cuticle biosynthesis. This study suggests that Arabidopsis WIN1/SHN1 orthologs may be functionally conserved from early to vascular land plants.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Seat Buyl Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu 54874, Republic of Korea
| | - Garima Pandey
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
244
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
245
|
Zhao M, Li Y, Zhang X, You X, Yu H, Guo R, Zhao X. Genome-Wide Identification of AP2/ERF Superfamily Genes in Juglans mandshurica and Expression Analysis under Cold Stress. Int J Mol Sci 2022; 23:ijms232315225. [PMID: 36499551 PMCID: PMC9736363 DOI: 10.3390/ijms232315225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Juglans mandshurica has strong freezing resistance, surviving temperatures as low as -40 °C, making it an important freeze tolerant germplasm resource of the genus Juglans. APETALA2/ethylene responsive factor (AP2/ERF) is a plant-specific superfamily of transcription factors that regulates plant development, growth, and the response to biotic and abiotic stress. In this study, phylogenetic analysis was used to identify 184 AP2/ERF genes in the J. mandshurica genome, which were classified into five subfamilies (JmAP2, JmRAV, JmSoloist, JmDREB, and JmERF). A significant amount of discordance was observed in the 184 AP2/ERF genes distribution of J. mandshurica throughout its 16 chromosomes. Duplication was found in 14 tandem and 122 segmental gene pairs, which indicated that duplications may be the main reason for JmAP2/ERF family expansion. Gene structural analysis revealed that 64 JmAP2/ERF genes contained introns. Gene evolution analysis among Juglandaceae revealed that J. mandshurica is separated by 14.23 and 15 Mya from Juglans regia and Carya cathayensis, respectively. Based on promoter analysis in J. mandshurica, many cis-acting elements were discovered that are related to light, hormones, tissues, and stress response processes. Proteins that may contribute to cold resistance were selected for further analysis and were used to construct a cold regulatory network based on GO annotation and JmAP2/ERF protein interaction network analysis. Expression profiling using qRT-PCR showed that 14 JmAP2/ERF genes were involved in cold resistance, and that seven and five genes were significantly upregulated under cold stress in female flower buds and phloem tissues, respectively. This study provides new light on the role of the JmAP2/ERF gene in cold stress response, paving the way for further functional validation of JmAP2/ERF TFs and their application in the genetic improvement of Juglans and other tree species.
Collapse
Affiliation(s)
- Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinxin Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiangling You
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Haiyang Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ruixue Guo
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (R.G.); (X.Z.)
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (R.G.); (X.Z.)
| |
Collapse
|
246
|
Identification and Characterization of AP2/ERF Transcription Factors in Yellow Horn. Int J Mol Sci 2022; 23:ijms232314991. [PMID: 36499319 PMCID: PMC9741253 DOI: 10.3390/ijms232314991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
The AP2/ERF gene family involves numerous plant processes, including growth, development, metabolism, and various plant stress responses. However, several studies have been conducted on the AP2/ERF gene family in yellow horn, a new type of oil woody crop and an essential oil crop in China. According to sequence alignment and phylogenetic analyses, one hundred and forty-five AP2/ERF genes were detected from the yellow horn genome. They were divided into four relatively conserved subfamilies, including 21 AP2 genes, 119 ERBP genes, 4 RAV genes, and 1 Soloist gene. Gene analysis of XsAP2/ERF TFs showed 87 XsAP2/ERF TFs lacked introns. There were 75 pairs of collinearity relationships between X. sorbifolium and Arabidopsis, indicating a close similarity. In addition, the expression patterns of XsAP2/ERF TFs under cold treatments confirmed that the XsAP2/ERF TFs play essential roles in abiotic stress response. The expression of eight XsAP2/ERF transcription factors was verified in different tissues and under various stress treatments using RT-qPCR. This study establishes a starting point for further research to explore the potential mechanisms of identifying candidate AP2/ERF TFs that could respond to the abiotic stress of yellow horn.
Collapse
|
247
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
248
|
Muto A, Bruno L, Madeo ML, Ludlow R, Ferrari M, Stimpson L, LoGiudice C, Picardi E, Ferrante A, Pasti L, Müller CT, Chiappetta AAC, Rogers HJ, Bitonti MB, Spadafora ND. Comparative transcriptomic profiling of peach and nectarine cultivars reveals cultivar-specific responses to chilled postharvest storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1062194. [PMID: 36507427 PMCID: PMC9733835 DOI: 10.3389/fpls.2022.1062194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Peach (Prunus persica (L.) Batsch,) and nectarine fruits (Prunus persica (L.) Batsch, var nectarine), are characterized by a rapid deterioration at room temperature. Therefore, cold storage is widely used to delay fruit post-harvest ripening and extend fruit commercial life. Physiological disorders, collectively known as chilling injury, can develop typically after 3 weeks of low-temperature storage and affect fruit quality. METHODS A comparative transcriptomic analysis was performed to identify regulatory pathways that develop before chilling injury symptoms are detectable using next generation sequencing on the fruits of two contrasting cultivars, one peach (Sagittaria) and one nectarine, (Big Top), over 14 days of postharvest cold storage. RESULTS There was a progressive increase in the number of differentially expressed genes between time points (DEGs) in both cultivars. More (1264) time point DEGs were identified in 'Big Top' compared to 'Sagittaria' (746 DEGs). Both cultivars showed a downregulation of pathways related to photosynthesis, and an upregulation of pathways related to amino sugars, nucleotide sugar metabolism and plant hormone signal transduction with ethylene pathways being most affected. Expression patterns of ethylene related genes (including biosynthesis, signaling and ERF transcription factors) correlated with genes involved in cell wall modification, membrane composition, pathogen and stress response, which are all involved later during storage in development of chilling injury. DISCUSSION Overall, the results show that common pathways are activated in the fruit of 'Big Top' nectarine and 'Sagittaria' peach in response to cold storage but include also differences that are cultivar-specific responses.
Collapse
Affiliation(s)
- Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Richard Ludlow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Louise Stimpson
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Claudio LoGiudice
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Luisa Pasti
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Natasha Damiana Spadafora
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
249
|
Maqsood H, Munir F, Amir R, Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:1031679. [PMID: 36507398 PMCID: PMC9731513 DOI: 10.3389/fpls.2022.1031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Tomato is a drought-sensitive crop which has high susceptibility to adverse climatic changes. Dehydration-responsive element-binding (DREB) are significant plant transcription factors that have a vital role in regulating plant abiotic stress tolerance by networking with DRE/CRT cis-regulatory elements in response to stresses. In this study, bioinformatics analysis was performed to conduct the genome-wide identification and characterization of DREB genes and promoter elements in Solanum lycopersicum. In genome-wide coverage, 58 SlDREB genes were discovered on 12 chromosomes that justified the criteria of the presence of AP2 domain as conserved motifs. Intron-exon organization and motif analysis showed consistency with phylogenetic analysis and confirmed the absence of the A3 class, thus dividing the SlDREB genes into five categories. Gene expansion was observed through tandem duplication and segmental duplication gene events in SlDREB genes. Ka/Ks values were calculated in ortholog pairs that indicated divergence time and occurrence of purification selection during the evolutionary period. Synteny analysis demonstrated that 32 out of 58 and 47 out of 58 SlDREB genes were orthologs to Arabidopsis and Solanum tuberosum, respectively. Subcellular localization predicted that SlDREB genes were present in the nucleus and performed primary functions in DNA binding to regulate the transcriptional processes according to gene ontology. Cis-acting regulatory element analysis revealed the presence of 103 motifs in 2.5-kbp upstream promoter sequences of 58 SlDREB genes. Five representative SlDREB proteins were selected from the resultant DREB subgroups for 3D protein modeling through the Phyre2 server. All models confirmed about 90% residues in the favorable region through Ramachandran plot analysis. Moreover, active catalytic sites and occurrence in disorder regions indicated the structural and functional flexibility of SlDREB proteins. Protein association networks through STRING software suggested the potential interactors that belong to different gene families and are involved in regulating similar functional and biological processes. Transcriptome data analysis has revealed that the SlDREB gene family is engaged in defense response against drought and heat stress conditions in tomato. Overall, this comprehensive research reveals the identification and characterization of SlDREB genes that provide potential knowledge for improving abiotic stress tolerance in tomato.
Collapse
Affiliation(s)
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | |
Collapse
|
250
|
Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.). Mol Biol Rep 2022; 50:3593-3606. [PMID: 36418774 PMCID: PMC10042771 DOI: 10.1007/s11033-022-08064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Background
The growth and yield of pepper (Capsicum annuum L.) is often affected by the critical salt stress. Salicylic acid (SA) can improve plants’ stress tolerance by promoting growth and regulating ion absorption and transportation.
Methods and results
To uncover the alleviated mechanism of salt stress by SA in pepper, we conducted morphological, physiological, cytological, and transcriptomic analyses under a single SA treatment and NaCl with and without SA pre-treatment for 9 days. Seedlings under NaCl treatment showed yellow shrunken leaves, this tatus were alleviated by NS treatment (NaCl with SA pre-treatment). Compared with plants under NaCl treatment, those in the NS treatment showed reduced lipid peroxidation, and significantly increased contents of chlorophyll and osmotic regulators (proline, soluble sugars). Treatment with SA balanced the Na+/K+ ratio. We conducted transcriptome sequencing and identified differentially expressed genes (DEGs) contributing to alleviation of salt stress by SA in pepper. Besides photosynthesis related genes, GO and KEGG analyses revealed that the DEGs were enriched in ‘sequence-specific DNA binding’, ‘transcription regulator activity’ and ‘DNA binding transcription factor activity’ by GO terms. And our results showed that TFs, such as MYB, bZIP, BBX, AP2/ERF, NAC, etc., probably make a great contribution in the alleviation of salt stress by SA.
Conclusions
These results reveal that SA can improve plants’ stress tolerance by balancing ion absorption, gene expression and transcriptional regulation, which provide new ideas and resources for subsequent research on the mechanism of salt tolerance in pepper.
Collapse
|