201
|
Vaucheret H. AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One 2009; 4:e6442. [PMID: 19649244 PMCID: PMC2714465 DOI: 10.1371/journal.pone.0006442] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/01/2009] [Indexed: 01/05/2023] Open
Abstract
Background AGO1 associates with microRNAs (miRNAs) and regulates mRNAs through cleavage and translational repression. AGO1 homeostasis entails DCL1-dependent production of miR168 from MIR168a and MIR168b transcripts, post-transcriptional stabilization of miR168 by AGO1, and AGO1-catalyzed miR168-guided cleavage of AGO1 mRNA. Principal Findings This study reveals that MIR168a is highly expressed and predominantly produces a 21-nt miR168 species. By contrast, MIR168b is expressed at low levels and produces an equal amount of 21- and 22-nt miR168 species. Only the 21-nt miR168 is preferentially stabilized by AGO1, and consequently, the accumulation of the 22-nt but not the 21-nt miR168 is reduced when DCL1 activity is impaired. mir168a mutants with strongly reduced levels of 21-nt miR168 are viable but exhibit developmental defects, particularly during environmentally challenging conditions. Conclusions/Significance These results suggest that 22-nt miR168 ensures basal cleavage of AGO1 mRNA whereas 21-nt miR168 permits an effective response to endogenous or environmental fluctuations owing to its preferential stabilization by AGO1.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France.
| |
Collapse
|
202
|
Song LI, Zhou XY, Li LI, Xue LJ, Yang XI, Xue HW. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. MOLECULAR PLANT 2009; 2:755-772. [PMID: 19825654 DOI: 10.1093/mp/ssp039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development; however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light-responsive genes and photomorphogenesis, confirming the negative effects of BR in photomorphogenesis. This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification, cellular metabolism and energy utilization during dark-light transition. Further analysis revealed that hormone biosynthesis and signaling-related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone, and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Brassinosteroids
- Cholestanols/metabolism
- Cholestanols/pharmacology
- Chromatin Immunoprecipitation
- Cluster Analysis
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genome, Plant/genetics
- Genome-Wide Association Study
- Light
- Morphogenesis/drug effects
- Morphogenesis/radiation effects
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/radiation effects
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Steroids, Heterocyclic/metabolism
- Steroids, Heterocyclic/pharmacology
Collapse
Affiliation(s)
- L I Song
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Xiao-Yi Zhou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - L I Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Liang-Jiao Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - X I Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China.
| |
Collapse
|
203
|
Sellaro R, Hoecker U, Yanovsky M, Chory J, Casal JJ. Synergism of red and blue light in the control of Arabidopsis gene expression and development. Curr Biol 2009; 19:1216-20. [PMID: 19559617 DOI: 10.1016/j.cub.2009.05.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/12/2009] [Accepted: 05/18/2009] [Indexed: 12/30/2022]
Abstract
The synergism between red and blue light in the control of plant growth and development requires the coaction of the red light photoreceptor phytochrome B (phyB) and the blue light and UV-A receptor cryptochromes (cry). Here, we describe the mechanism of the coaction of these photoreceptors in controlling both development and physiology. In seedlings grown under red light, a transient supplement with blue light induced persistent changes in the transcriptome and growth patterns. Blue light enhanced the expression of the transcription factors LONG HYPOCOTYL 5 (HY5) and HOMOLOG OF HY5 (HYH) and of SUPPRESSOR OF PHYA 1 (SPA1) and SPA4. HY5 and HYH enhanced phyB signaling output beyond the duration of the blue light signal, and, contrary to their known role as repressors of phyA signaling, SPA1 and SPA4 also enhanced phyB signaling. These observations demonstrate that the mechanism of synergism involves the promotion by cry of positive regulators of phyB signaling. The persistence of the light-derived signal into the night commits the seedling to a morphogenetic and physiological program consistent with a photosynthetic lifestyle.
Collapse
Affiliation(s)
- Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, and CONICET, Av. San Martín 4453, 1417-Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
204
|
Abstract
Root-secreted chemicals mediate multi-partite interactions in the rhizosphere, where plant roots continually respond to and alter their immediate environment. Increasing evidence suggests that root exudates initiate and modulate dialogue between roots and soil microbes. For example, root exudates serve as signals that initiate symbiosis with rhizobia and mycorrhizal fungi. In addition, root exudates maintain and support a highly specific diversity of microbes in the rhizosphere of a given particular plant species, thus suggesting a close evolutionary link. In this review, we focus mainly on compiling the information available on the regulation and mechanisms of root exudation processes, and provide some ideas related to the evolutionary role of root exudates in shaping soil microbial communities.
Collapse
Affiliation(s)
- Dayakar V Badri
- Centre for Rhizosphere Biology and Department of Horticulture and LA, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
205
|
Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:27-40. [PMID: 19054365 DOI: 10.1111/j.1365-313x.2008.03757.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The shoot apical meristem (SAM) of angiosperms comprises a group of undifferentiated cells which divide to maintain the meristem and also give rise to all the above-ground structures of the plant. Previous studies revealed that the Arabidopsis ARGONAUTE10 [AGO10, also called PINHEAD (PNH) or ZWILLE (ZLL)] gene is one of the critical SAM regulators, but the mechanism by which AGO10 modulates the SAM is unknown. In the present study we show that AGO10 genetically represses microRNA165/166 (miR165/166) for SAM maintenance as well as establishment of leaf adaxial-abaxial polarity. Levels of miR165/166 in leaves and embryonic SAMs of pnh/zll/ago10 mutants are abnormally elevated, leading to a reduction in the quantity of homeodomain-leucine zipper (HD-ZIP) III gene transcripts, the targets of miR165/166. This reduction is the primary cause of pnh/zll SAM and leaf defects, because the aberrant pnh/zll phenotypes were partially rescued by either increasing levels of HD-ZIP III transcripts or decreasing levels of miR165/166 in the SAM and leaf. Furthermore, plants with an abnormal apex were more frequent among pnh/zll rdr6 and pnh/zll ago7 double mutants and increased levels of miR165/166 were detected in rdr6 apices. These results indicate that AGO10 and RDR6/AGO7 may act in parallel in modulating accumulation of miR165/166 for normal plant development.
Collapse
Affiliation(s)
- Qili Liu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
206
|
Miyashima S, Hashimoto T, Nakajima K. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway. PLANT & CELL PHYSIOLOGY 2009; 50:626-34. [PMID: 19188262 DOI: 10.1093/pcp/pcp020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.
Collapse
Affiliation(s)
- Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
207
|
Diurnal oscillation in the accumulation ofArabidopsismicroRNAs, miR167, miR168, miR171 and miR398. FEBS Lett 2009; 583:1039-44. [DOI: 10.1016/j.febslet.2009.02.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/15/2009] [Indexed: 12/27/2022]
|
208
|
Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei MR. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. THE NEW PHYTOLOGIST 2009; 181:613-25. [PMID: 19076299 DOI: 10.1111/j.1469-8137.2008.02704.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Adventitious root formation (ARF) in the model plant Petunia hybrida cv. Mitchell has been analysed in terms of anatomy, gene expression, enzymatic activities and levels of metabolites. This study focuses on the involvement of wound response and primary metabolism. Microscopic techniques were complemented with targeted transcript, enzyme and metabolite profiling using real time polymerase chain reaction (PCR), Northern blot, enzymatic assays, chromatography and mass spectrometry. Three days after severance from the stock plants, first meristematic cells appeared which further developed into root primordia and finally adventitious roots. Excision of cuttings led to a fast and transient increase in the wound-hormone jasmonic acid, followed by the expression of jasmonate-regulated genes such as cell wall invertase. Analysis of soluble and insoluble carbohydrates showed a continuous accumulation during ARF. A broad metabolite profiling revealed a strong increase in organic acids and resynthesis of essential amino acids. Substantial changes in enzyme activities and metabolite levels indicate that specific enzymes and metabolites might play a crucial role during ARF. Three metabolic phases could be defined: (i) sink establishment phase characterized by apoplastic unloading of sucrose and being probably mediated by jasmonates; (ii) recovery phase; and (iii) maintenance phase, in which a symplastic unloading occurs.
Collapse
Affiliation(s)
- Amir H Ahkami
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. ANNALS OF BOTANY 2008; 102:509-19. [PMID: 18669574 PMCID: PMC2701776 DOI: 10.1093/aob/mcn129] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/07/2008] [Accepted: 06/16/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Anaerobic or low oxygen conditions occur when maize plants are submerged or subjected to flooding of the soil. Maize survival under low oxygen conditions is largely dependent on metabolic, physiological and morphological adaptation strategies; the regulation mechanisms of which remain unknown. MicroRNAs (miRNAs) play critical roles in the response to adverse biotic or abiotic stresses at the post-transcriptional level. The aim of this study was to understand submergence-responsive miRNAs and their potential roles in submerged maize roots. METHODS A custom muParaflo microfluidic array containing plant miRNA (miRBase: http://microrna.sanger.ac.uk) probes was used to explore differentially expressed miRNAs. Small RNAs from treated roots were hybridized with the microarray. The targets and their cis-acting elements of small RNA were predicted and analysed by RT-PCR. KEY RESULTS Microarray data revealed that the expression levels of 39 miRNAs from nine maize and some other plant miRNA families were significantly altered (P < 0.01). Four expression profiles were identified across different submergence time-points. The zma-miRNA166, zma-miRNA167, zma-miRNA171 and osa-miRNA396-like were induced in the early phase, and their target genes were predicted to encode important transcription factors, including; HD-ZIP, auxin response factor, SCL and the WRKY domain protein. zma-miR159, ath-miR395-like, ptc-miR474-like and osa-miR528-like were reduced at the early submergence phase and induced after 24 h of submergence. The predicted targets for these miRNAs were involved in carbohydrate and energy metabolism, including starch synthase, invertase, malic enzyme and ATPase. In addition, many of the predicted targets were involved in the elimination of reactive oxygen species and acetaldehyde. Overall, most of the targets of induced miRNAs contained the cis-acting element, which is essential for the anaerobic response or hormone induction. CONCLUSIONS Submergence-responsive miRNAs are involved in the regulation of metabolic, physiological and morphological adaptations of maize roots at the post-transcriptional level.
Collapse
Affiliation(s)
- Zuxin Zhang
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- College of Life Science, Yangtze University, Jingzhou 434025, China
- For correspondence. E-mail or
| | - Liya Wei
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Xilin Zou
- Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongsheng Tao
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Zhijie Liu
- Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonglian Zheng
- Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- For correspondence. E-mail or
| |
Collapse
|
210
|
Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. PLANT PHYSIOLOGY 2008; 147:1936-46. [PMID: 18567826 PMCID: PMC2492630 DOI: 10.1104/pp.108.121459] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/05/2008] [Indexed: 05/18/2023]
Abstract
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.
Collapse
Affiliation(s)
- Teresita Flores
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:131-51. [PMID: 18363789 DOI: 10.1111/j.1365-313x.2008.03497.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of </=2.5 for mismatched patterns in the miRNA:mRNA duplexes as the criterion. Six of the selected targets were validated experimentally. The expression of a majority of the novel miRNAs was altered in response to cold, heat, salt, dehydration, and mechanical stresses. Microarray analysis of known Ptc-miRNAs identified 19 additional cold stress-responsive Ptc-miRNAs from 14 miRNA gene families. Interestingly, we found that individual miRNAs of a family responded differentially to stress, which suggests that the members of a family may have different functions. These results reveal possible roles for miRNAs in the regulatory networks associated with the long-term growth of tree species and provide useful information for developing trees with a greater level of stress resistance.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
212
|
Vaucheret H. Plant ARGONAUTES. TRENDS IN PLANT SCIENCE 2008; 13:350-8. [PMID: 18508405 DOI: 10.1016/j.tplants.2008.04.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 05/20/2023]
Abstract
ARGONAUTE (AGO) proteins are integral players in all known small RNA-directed regulatory pathways. Eukaryotes produce numerous types of small RNAs, such as microRNAs (miRNA), small interfering RNAs (siRNA), PIWI-interacting RNAs (piRNAs), scanRNAs and 21U-RNAs, and these RNA species associate with different types of AGO family members, such as AGO, PIWI and group 3 proteins. Small RNA-guided AGO proteins regulate gene expression at various levels, including internal genomic DNA sequence elimination (in ciliates), translational repression (animals), and RNA cleavage (all eukaryotes), which in some cases is followed by DNA methylation and chromatin remodeling. The plant model species Arabidopsis contains ten AGO proteins belonging to three phylogenetic clades. This review covers our current knowledge of plant AGO functions during miRNA- and siRNA-mediated regulation of development and stress responses, siRNA-mediated antiviral immune response, and siRNA-mediated regulation of chromatin structure and transposons.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| |
Collapse
|
213
|
Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 2008; 133:164-76. [PMID: 18394996 DOI: 10.1016/j.cell.2008.01.049] [Citation(s) in RCA: 736] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/15/2007] [Accepted: 01/24/2008] [Indexed: 12/25/2022]
Abstract
Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.
Collapse
Affiliation(s)
- Yi Tao
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 2008; 9:160. [PMID: 18402695 PMCID: PMC2335117 DOI: 10.1186/1471-2164-9-160] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/10/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small RNAs regulate a number of developmental processes in plants and animals. However, the role of small RNAs in legume-rhizobial symbiosis is largely unexplored. Symbiosis between legumes (e.g. soybean) and rhizobia bacteria (e.g. Bradyrhizobium japonicum) results in root nodules where the majority of biological nitrogen fixation occurs. We sought to identify microRNAs (miRNAs) regulated during soybean-B. japonicum symbiosis. RESULTS We sequenced approximately 350000 small RNAs from soybean roots inoculated with B. japonicum and identified conserved miRNAs based on similarity to miRNAs known in other plant species and new miRNAs based on potential hairpin-forming precursors within soybean EST and shotgun genomic sequences. These bioinformatics analyses identified 55 families of miRNAs of which 35 were novel. A subset of these miRNAs were validated by Northern analysis and miRNAs differentially responding to B. japonicum inoculation were identified. We also identified putative target genes of the identified miRNAs and verified in vivo cleavage of a subset of these targets by 5'-RACE analysis. Using conserved miRNAs as internal control, we estimated that our analysis identified approximately 50% of miRNAs in soybean roots. CONCLUSION Construction and analysis of a small RNA library led to the identification of 20 conserved and 35 novel miRNA families in soybean. The availability of complete and assembled genome sequence information will enable identification of many other miRNAs. The conserved miRNA loci and novel miRNAs identified in this study enable investigation of the role of miRNAs in rhizobial symbiosis.
Collapse
Affiliation(s)
- Senthil Subramanian
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Yan Fu
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - W Brad Barbazuk
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Jian-Kang Zhu
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
215
|
Teotia PS, Mukherjee SK, Mishra NS. Fine tuning of auxin signaling by miRNAs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:81-90. [PMID: 23572875 PMCID: PMC3550664 DOI: 10.1007/s12298-008-0007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) constitute a major class of endogenous non-coding regulatory small RNAs. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The miRNAs are involved in various biological processes, including differentiation, organ development, phase change, signaling, disease resistance and response to environmental stresses. This review provides a general background on the discovery, history, biogenesis and function of miRNAs. However, the focus is on the role for miRNA in controlling auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Preeti Singh Teotia
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sunil Kumar Mukherjee
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
216
|
Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K. Auxin as a model for the integration of hormonal signal processing and transduction. MOLECULAR PLANT 2008; 1:229-37. [PMID: 19825535 DOI: 10.1093/mp/ssn006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of plant growth responds to many stimuli. These responses allow environmental adaptation, thereby increasing fitness. In many cases, the relay of information about a plant's environment is through plant hormones. These messengers integrate environmental information into developmental pathways to determine plant shape. This review will use, as an example, auxin in the root of Arabidopsis thaliana to illustrate the complex nature of hormonal signal processing and transduction. It will then make the case that the application of a systems-biology approach is necessary, if the relationship between a plant's environment and its growth/developmental responses is to be properly understood.
Collapse
Affiliation(s)
- W D Teale
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Oh TJ, Wartell RM, Cairney J, Pullman GS. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). THE NEW PHYTOLOGIST 2008; 179:67-80. [PMID: 18433430 DOI: 10.1111/j.1469-8137.2008.02448.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are known to regulate plant development, but have not been studied in gymnosperm seed tissues. The presence and characteristics of several miRNAs were examined in zygotic embryos (ZEs) and female gametophytes (FGs) of Pinus taeda (loblolly pine). Evidence for miRNAs was obtained using northern analyses and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mediated with poly(A) polymerase. Partial sequences of two miRNAs were verified. Three regions of putative mRNA targets were analyzed by qRT-PCR to monitor the occurrence of stage-dependent miRNA-mediated cleavage. Five miRNAs were identified in ZEs and FGs along with partial sequences of Pta-miR166 and Pta-miR167. Both miRNAs showed differing degrees of tissue-specific and stage-specific modulation. Analysis of HB15L mRNA (a potential Pta-miR166 target) suggested miRNA-guided cleavage in ZEs and FGs. Analysis of ARF8L mRNA (a potential Pta-miR167 target) implied cleavage in ZEs but not in FGs. Argonaute9-like mRNA (ptAGO9L) showed stage-specific modulation of expression in ZEs that appeared to be inverted in the corresponding FGs. MicroRNAs and argonaute genes varied spatiotemporally during seed development. The peak levels of Pta-miR166 in FGs and ptAGO9L in embryos occurred at stage 9.1, a critical transition point during embryo development and a point where somatic embryo maturation often stops. MicroRNAs identified in FG tissue may play a role in embryogenesis.
Collapse
Affiliation(s)
- Thomas J Oh
- Forest Biology, Institute of Paper Science and Technology (IPST)
| | - Roger M Wartell
- School of Biology and
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA
| | - John Cairney
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| | - Gerald S Pullman
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| |
Collapse
|
218
|
Batish DR, Singh HP, Kaur S, Kohli RK, Yadav SS. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:297-305. [PMID: 17643552 DOI: 10.1016/j.jplph.2007.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/11/2007] [Accepted: 05/11/2007] [Indexed: 05/16/2023]
Abstract
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis.
Collapse
Affiliation(s)
- Daizy R Batish
- Department of Botany, Panjab University, Chandigarh 160 014, India.
| | | | | | | | | |
Collapse
|
219
|
Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. THE PLANT CELL 2007; 19:3451-61. [PMID: 17993620 PMCID: PMC2174888 DOI: 10.1105/tpc.107.055319] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 05/18/2023]
Abstract
The eukaryotic defense response posttranscriptional gene silencing (PTGS) is directed by short-interfering RNAs and thwarts invading nucleic acids via the RNA slicing activity of conserved ARGONAUTE (AGO) proteins. PTGS can be counteracted by exogenous or endogenous suppressors, including the cytoplasmic exoribonuclease XRN4, which also degrades microRNA (miRNA)-guided mRNA cleavage products but does not play an obvious role in development. Here, we show that the nuclear exoribonucleases XRN2 and XRN3 are endogenous PTGS suppressors. We also identify excised MIRNA loops as templates for XRN2 and XRN3 and show that XRN3 is critical for proper development. Independently, we identified the nucleotidase/phosphatase FIERY1 (FRY1) as an endogenous PTGS suppressor through a suppressor screen in a hypomorphic ago1 genetic background. FRY1 is one of six Arabidopsis thaliana orthologs of yeast Hal2. Yeast hal2 mutants overaccumulate 3'-phosphoadenosine 5'-phosphate, which suppresses the 5'-->3' exoribonucleases Xrn1 and Rat1. fry1 mutant plants recapitulate developmental and molecular characteristics of xrn mutants and likely restore PTGS in ago1 hypomorphic mutants by corepressing XRN2, XRN3, and XRN4, thus increasing RNA silencing triggers. We anticipate that screens incorporating partially compromised silencing components will uncover additional PTGS suppressors that may not be revealed using robust silencing systems.
Collapse
Affiliation(s)
- Isabelle Gy
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Michniewicz M, Brewer PB, Friml JÍ. Polar auxin transport and asymmetric auxin distribution. THE ARABIDOPSIS BOOK 2007; 5:e0108. [PMID: 22303232 PMCID: PMC3243298 DOI: 10.1199/tab.0108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Marta Michniewicz
- Center for Plant Molecular Biology, Auf der Morgenstelle 3, University Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
221
|
Linke B, Schmidt W. Nutrients as Regulators of Root Morphology and Architecture. THE RHIZOSPHERE 2007. [DOI: 10.1201/9781420005585.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
222
|
Vieten A, Sauer M, Brewer PB, Friml J. Molecular and cellular aspects of auxin-transport-mediated development. TRENDS IN PLANT SCIENCE 2007; 12:160-8. [PMID: 17369077 DOI: 10.1016/j.tplants.2007.03.006] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/06/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin is frequently observed to be asymmetrically distributed across adjacent cells during crucial stages of growth and development. These auxin gradients depend on polar transport and regulate a wide variety of processes, including embryogenesis, organogenesis, vascular tissue differentiation, root meristem maintenance and tropic growth. Auxin can mediate such a perplexing array of developmental processes by acting as a general trigger for the change in developmental program in cells where it accumulates and by providing vectorial information to the tissues by its polar intercellular flow. In recent years, a wealth of molecular data on the mechanism of auxin transport and its regulation has been generated, providing significant insights into the action of this versatile coordinative signal.
Collapse
Affiliation(s)
- Anne Vieten
- Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 3, University Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
223
|
Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:93-113. [PMID: 17177637 DOI: 10.1146/annurev.arplant.58.032806.104006] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
Collapse
Affiliation(s)
- Karen S Osmont
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
224
|
Mikosch M, Hurst AC, Hertel B, Homann U. Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. PLANT PHYSIOLOGY 2006; 142:923-30. [PMID: 16950859 PMCID: PMC1630742 DOI: 10.1104/pp.106.087064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For a number of mammalian ion channels, trafficking to the plasma membrane was found to be controlled by intrinsic sequence motifs. Among these sequences are diacidic motifs that function as endoplasmic reticulum (ER) export signals. So far it is unclear if similar motifs also exist in plant ion channels. In this study we analyzed the function of four diacidic DXE/DXD motifs of the plant K(+) channel KAT1. Mutation of the first diacidic DXE motif resulted in a strong reduction of the KAT1 conductance in both guard cell protoplasts and HEK293 cells (human embryonic kidney cells). Confocal fluorescence microscopy of guard cells expressing the mutated KAT1 fused to green fluorescent protein revealed localization of the mutated channel only in intracellular structures around the nucleus. These structures could be identified as part of the ER via coexpression of KAT1 fused to yellow fluorescent protein with an ER-retained protein (HDEL) fused to cyan fluorescent protein. Block of vesicle formation from the ER by overexpression of the small GTP-binding protein Sar1 fixed in its GDP-bound form led to retention of wild-type KAT1 in similar parts of the ER. Mutation of the three other diacidic motifs had no effect. Together, the results demonstrate that one diacidic motif of KAT1 is essential for ER export of the functional channel in both guard cell protoplasts and HEK293 cells. This suggests that trafficking of plant plasma membrane ion channels is controlled via a conserved mechanism.
Collapse
Affiliation(s)
- Melanie Mikosch
- Institute of Botany, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
225
|
Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. PLANT & CELL PHYSIOLOGY 2006; 47:853-63. [PMID: 16699177 DOI: 10.1093/pcp/pcj057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In higher plants, class I KNOTTED1-like homeobox (KNOX) gene suppression and leaf polarity establishment are two processes crucial for leaf morphogenesis. The Arabidopsis genes, ASYMMETRIC LEAVES1 and 2 (AS1 and AS2), are required for repressing the class I KNOX genes and promoting leaf adaxial cell fates. In addition, the RNA-DEPENDENT RNA POLYMERASE6 (RDR6) gene acts synergistically with AS1 and AS2 to specify the adaxial polarity and repress the KNOX genes in leaves. It is known that RDR6 is one of the key components in plant post-transcriptional gene silencing (PTGS), and is likely to function with other silencing components in a genetic pathway in regulating leaf patterning. Here we report phenotypic analyses of double mutants combining as1 or as2 with other mutations relating to different RNA silencing pathways. We show that plants carrying rdr6, suppressor of gene silencing3 (sgs3) or zippy (zip, also called ago7) in combination with as1 or as2 demonstrate severe morphological defects, and the double mutant plants are generally similar to one another. Detailed phenotypic and molecular analyses reveal that leaves of rdr6 as2(1), sgs3 as2(1) and zip as2(1) all show an abnormal adaxial identity, and contain high levels of microRNA165/166 and FILAMENTOUS FLOWER (FIL) transcripts. These results suggest that RDR6, SGS3 and AGO7 act in the same pathway, which genetically interacts with the AS1-AS2 pathway for leaf development. The RDR6-SGS3-AGO7 pathway was previously identified as regulating the plant vegetative phase change. Our results reveal a new function of the pathway, which is also required for normal leaf morphogenesis.
Collapse
Affiliation(s)
- Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:112-23. [PMID: 16740145 DOI: 10.1111/j.1365-313x.2006.02775.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gynoecia of the Arabidopsis mutant sty1-1 display abnormal style morphology and altered vascular patterning. These phenotypes, which are enhanced in the sty1-1 sty2-1 double mutant, suggest that auxin homeostasis or signalling might be affected by mutations in STY1 and STY2, both members of the SHI gene family. Chemical inhibition of polar auxin transport (PAT) severely affects the apical-basal patterning of the gynoecium, as do mutations in the auxin transport/signalling genes PIN1, PID and ETT. Here we show that the apical-basal patterning of sty1-1 and sty1-1 sty2-1 gynoecia is hypersensitive to reductions in PAT, and that sty1-1 enhances the PAT inhibition-like phenotypes of pin1-5, pid-8 and ett-1 gynoecia. Furthermore, we show that STY1 activates transcription of the flavin monooxygenase-encoding gene THREAD/YUCCA4, involved in auxin biosynthesis, and that changes in expression of STY1 and related genes lead to altered auxin homeostasis. Our results suggest that STY1 and related genes promote normal development of the style and affect apical-basal patterning of the gynoecium through regulation of auxin homeostasis.
Collapse
Affiliation(s)
- Joel J Sohlberg
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
227
|
Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H. Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. PLANT MOLECULAR BIOLOGY 2006; 61:63-78. [PMID: 16786292 DOI: 10.1007/s11103-005-5992-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/17/2005] [Indexed: 05/09/2023]
Abstract
Genes that encode the ARGONAUTE (AGO) proteins make up a highly conserved family, and several members in the family have been defined to function in posttranscriptional gene silencing (PTGS) in plants, quelling in fungi and RNAi in animals. The Arabidopsis AGO1 gene has been demonstrated to be crucial in multiple RNA silencing pathways (PTGS, microRNA and trans-acting siRNA pathways); however, its biological functions do not seem to be fully addressed. Here we report characterizations of a new hypomorphic ago1 allele, ago1-37, and show novel AGO1 functions important in lateral organ development. We found that double mutants combining ago1-37 with asymmetric leaves1 (as1) or asymmetric leaves2 (as2) produced more severe phenotypes than the single mutants, indicating that AGO1 genetically interacts with AS1 and AS2 for plant development. Similar to the previously characterized mutants rdr6, sgs3 and zippy, which are deficient in the trans-acting siRNA activity, ago1-37 also showed an earlier phase transition from juvenile to adult leaves. Moreover, based on the detailed phenotypic analyses of single and double mutant plants, we found that the AGO1 functions are required for repressing several class I KNOTTED1-like homeobox (KNOX) genes in leaves, and for specifying both adaxial and abaxial identities of the leaf and petal. Our results demonstrate several important AGO1 functions in plant lateral organ development.
Collapse
Affiliation(s)
- Li Yang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
228
|
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. ANNALS OF BOTANY 2006; 97:883-93. [PMID: 16473866 PMCID: PMC2803412 DOI: 10.1093/aob/mcl027] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/12/2005] [Accepted: 11/30/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.
Collapse
Affiliation(s)
- R Aloni
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
229
|
Yang JH, Han SJ, Yoon EK, Lee WS. 'Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells'. Nucleic Acids Res 2006; 34:1892-9. [PMID: 16598073 PMCID: PMC1447648 DOI: 10.1093/nar/gkl118] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNA167 (miR167) was shown to cleave auxin responsive factor 8 (ARF8) mRNA in cultured rice cells. MiR167 level was found to be controlled by the presence of auxin in the growth medium. When cells grew in auxin-free medium, miR167 level decreased, resulting in an increase in the level of ARF8 mRNA. Cells growing in the normal growth medium containing auxin showed a reversed trend. It was also shown that expression of OsGH3-2, an rice IAA-conjugating enzyme, was positively regulated by ARF8. Delivery of synthesized miR167 into cells led to decrease of both ARF8 mRNA and OsGH3-2 mRNA. This study provides an evidence in which the exogeneous auxin signal is transduced to OsGH3-2 through miR167 and ARF8 in sequence. This proposed auxin signal transduction pathway, auxin-miR167-ARF8-OsGH3-2, could be, in conjunction with the other microRNA-mediated auxin signals, an important one for responding to exogeneous auxin and for determining the cellular free auxin level which guides appropriate auxin responses.
Collapse
Affiliation(s)
| | | | | | - Woo Sung Lee
- To whom correspondence should be addressed. Tel: +82 31 290 7014; Fax: +82 31 290 7015;
| |
Collapse
|
230
|
Kebrom TH, Burson BL, Finlayson SA. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. PLANT PHYSIOLOGY 2006; 140:1109-17. [PMID: 16443694 PMCID: PMC1400571 DOI: 10.1104/pp.105.074856] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Light is one of the environmental signals that regulate the development of shoot architecture. Molecular mechanisms regulating shoot branching by light signals have not been investigated in detail. Analyses of light signaling mutants defective in branching provide insight into the molecular events associated with the phenomenon. It is well documented that phytochrome B (phyB) mutant plants display constitutive shade avoidance responses, including increased plant height and enhanced apical dominance. We investigated the phyB-1 mutant sorghum (Sorghum bicolor) and analyzed the expression of the sorghum Teosinte Branched1 gene (SbTB1), which encodes a putative transcription factor that suppresses bud outgrowth, and the sorghum dormancy-associated gene (SbDRM1), a marker of bud dormancy. Buds are formed in the leaf axils of phyB-1; however, they enter into dormancy soon after their formation. The dormant state of phyB-1 buds is confirmed by the high level of expression of the SbDRM1 gene. The level of SbTB1 mRNA is higher in the buds of phyB-1 compared to wild type, suggesting that phyB mediates the growth of axillary shoots in response to light signals in part by regulating the mRNA abundance of SbTB1. These results are confirmed by growing wild-type seedlings with supplemental far-red light that induces shade avoidance responses. We hypothesize that active phyB (Pfr) suppresses the expression of the SbTB1 gene, thereby inducing bud outgrowth, whereas environmental conditions that inactivate phyB allow increased expression of SbTB1, thereby suppressing bud outgrowth.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Department of Soil and Crop Sciences, Texas A&M University, College Station, 77843-2474, USA
| | | | | |
Collapse
|
231
|
Hardtke CS. Root development--branching into novel spheres. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:66-71. [PMID: 16324881 DOI: 10.1016/j.pbi.2005.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Recent progress in deciphering the genetics of Arabidopsis root development has been driven by the availability of novel molecular tools. For instance, combining enhancer trap lines and microarray analyses enabled the creation of an expression map for over 22000 genes at cellular resolution. Such expression profiles often suggest redundant action of homologous genes, which has indeed been observed for several pivotal factors that are required for the organization and maintenance of root meristems. Additional regulators of root development are also being identified by analysis of natural genetic variation. Moreover, microRNA control of gene expression has recently been implicated in root development, and progress has been made in understanding the interplay between environmental and genetic factors in root branching.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
232
|
|
233
|
Abstract
microRNAs (miRNAs) are an abundant class of newly identified endogenous non-protein-coding small RNAs. They exist in animals, plants, and viruses, and play an important role in gene silencing. Translational repression, mRNA cleavage, and mRNA decay initiated by miRNA-directed deadenylation of targeted mRNAs are three mechanisms of miRNA-guided gene regulation at the post-transcriptional levels. Many miRNAs are highly conserved in animals and plants, suggesting that they play an essential function in plants and animals. Lots of investigations indicate that miRNAs are involved in multiple biological processes, including stem cell differentiation, organ development, phase change, signaling, disease, cancer, and response to biotic and abiotic environmental stresses. This review provides a general background and current advance on the discovery, history, biogenesis, genomics, mechanisms, and functions of miRNAs.
Collapse
Affiliation(s)
- Baohong Zhang
- The Institute of Environmental and Human Health, and Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | |
Collapse
|
234
|
Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. PLANT PHYSIOLOGY 2006; 140:349-64. [PMID: 16377752 PMCID: PMC1326056 DOI: 10.1104/pp.105.067868] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities.
Collapse
Affiliation(s)
- Céline Sorin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Zhang B, Pan X, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol 2005; 289:3-16. [PMID: 16325172 DOI: 10.1016/j.ydbio.2005.10.036] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Revised: 10/10/2005] [Accepted: 10/17/2005] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are an abundant new class of non-coding approximately 20-24 nt small RNAs. To date, 872 miRNAs, belonging to 42 families, have been identified in 71 plant species by genetic screening, direct cloning after isolation of small RNAs, computational strategy, and expressed sequence tag (EST) analysis. Many plant miRNAs are evolutionarily conserved from species to species, some from angiosperms to mosses. miRNAs may originate from inverted duplications of target gene sequences in plants. Although miRNA precursors display high variability, their mature sequences display extensive sequence complementarity to their target mRNA sequences. miRNAs play important roles in plant post-transcriptional gene regulation by targeting mRNAs for cleavage or repressing translation. miRNAs are involved in plant development, signal transduction, protein degradation, response to environmental stress and pathogen invasion, and regulate their own biogenesis. miRNAs regulate the expression of many important genes; a majority of these genes are transcriptional factors.
Collapse
Affiliation(s)
- Baohong Zhang
- The Institute of Environmental and Human Health (TIEHH), and Department of Environmental Toxicology, Texas Tech. University, Lubbock, 79409-1163, USA.
| | | | | | | |
Collapse
|
236
|
Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. PLANT PHYSIOLOGY 2005; 139:296-305. [PMID: 16126864 PMCID: PMC1203379 DOI: 10.1104/pp.105.063420] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.
Collapse
MESH Headings
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosome Mapping
- Chromosomes, Plant
- Cloning, Molecular
- DNA, Satellite/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oryza/anatomy & histology
- Oryza/genetics
- Oryza/growth & development
- Oryza/metabolism
- Phylogeny
- Plants, Genetically Modified
- RNA Interference
- RNA, Plant/analysis
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Ribonuclease III/deficiency
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
Collapse
Affiliation(s)
- Bin Liu
- National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing
| | | | | | | | | | | | | |
Collapse
|
237
|
Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. THE PLANT CELL 2005; 17:2204-16. [PMID: 16006581 PMCID: PMC1182483 DOI: 10.1105/tpc.105.033076] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 05/03/2023]
Abstract
The plant root cap mediates the direction of root tip growth and protects internal cells. Root cap cells are continuously produced from distal stem cells, and the phytohormone auxin provides position information for root distal organization. Here, we identify the Arabidopsis thaliana auxin response factors ARF10 and ARF16, targeted by microRNA160 (miR160), as the controller of root cap cell formation. The Pro(35S):MIR160 plants, in which the expression of ARF10 and ARF16 is repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect, with uncontrolled cell division and blocked cell differentiation in the root distal region and show a tumor-like root apex and loss of gravity-sensing. ARF10 and ARF16 play a role in restricting stem cell niche and promoting columella cell differentiation; although functionally redundant, the two ARFs are indispensable for root cap development, and the auxin signal cannot bypass them to initiate columella cell production. In root, auxin and miR160 regulate the expression of ARF10 and ARF16 genes independently, generating a pattern consistent with root cap development. We further demonstrate that miR160-uncoupled production of ARF16 exerts pleiotropic effects on plant phenotypes, and miR160 plays an essential role in regulating Arabidopsis development and growth.
Collapse
Affiliation(s)
- Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Wen-Juan Cai
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
238
|
Research Highlights. Nat Genet 2005. [DOI: 10.1038/ng0605-571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|