201
|
Jin GH, Gho HJ, Jung KH. A systematic view of rice heat shock transcription factor family using phylogenomic analysis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:321-9. [PMID: 23122336 DOI: 10.1016/j.jplph.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 05/04/2023]
Abstract
The heat shock transcription factor (Hsf) family includes key regulators of the physiological response to heat stress. Here, we present a systematic analysis of the Hsf family in rice using a phylogenomics-based approach that integrates multi-omics data into the context of a phylogenetic tree. For 25 previously identified Hsfs, we integrated anatomical meta-profiling data from 983 Affymetrix arrays into a phylogenetic tree, revealing a global view of the functional redundancy within this family. Interestingly, most of the Hsfs showed significant fluctuation in gene expression patterns, suggesting that they have condition- or stress-dependent roles. Therefore, we further analyzed the abiotic stress responses of the Hsfs using log(2-)fold change data in response to heat, cold, drought and salt stresses. Subsequently, we identified 19 Hsfs that are positively associated with heat stress, 11 with drought, 9 with salt, and 7 with cold stress, as indicated by at least a 2-fold change and coefficient of variation less than 1. The Hsf subfamily A2 was conserved in the heat stress response. The Hsf subfamily C showed a strong positive association with drought, salt and cold stresses. Downregulation of three members in the Hsf subfamily B in response to cold stress is characteristic. More interestingly, half of the Hsf subfamily B genes were upregulated by heat, drought and salt stresses, while one gene in the other half was downregulated by drought, salt, and cold stresses. Finally, we developed a hypothetical functional gene network mediated by OsHsfA2e/OsHsf-12 that is involved in thermotolerance as well as upregulated in response to heat. We expect that our data will help researchers design more efficient strategies to study the rice Hsf family with information about probable functional redundancy.
Collapse
Affiliation(s)
- Geun-Ho Jin
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | |
Collapse
|
202
|
Wei M, Song M, Fan S, Yu S. Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics 2013; 14:97. [PMID: 23402279 PMCID: PMC3599889 DOI: 10.1186/1471-2164-14-97] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/01/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cotton (Gossypium hirsutum) anther development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. However, only a small number of genes are known to be specifically involved in this developmental process and the molecular mechanism of the genetic male sterility (GMS) is still poorly understand. To fully explore the global gene expression during cotton anther development and identify genes related to male sterility, a digital gene expression (DGE) analysis was adopted. RESULTS Six DGE libraries were constructed from the cotton anthers of the wild type (WT) and GMS mutant (in the WT background) in three stages of anther development, resulting in 21,503 to 37,352 genes detected in WT and GMS mutant anthers. Compared with the fertile isogenic WT, 9,595 (30% of the expressed genes), 10,407 (25%), and 3,139 (10%) genes were differentially expressed at the meiosis, tetrad, and uninucleate microspore stages of GMS mutant anthers, respectively. Using both DGE experiments and real-time quantitative RT-PCR, the expression of many key genes required for anther development were suppressed in the meiosis stage and the uninucleate microspore stage in anthers of the mutant, but these genes were activated in the tetrad stage of anthers in the mutant. These genes were associated predominantly with hormone synthesis, sucrose and starch metabolism, the pentose phosphate pathway, glycolysis, flavonoid metabolism, and histone protein synthesis. In addition, several genes that participate in DNA methylation, cell wall loosening, programmed cell death, and reactive oxygen species generation/scavenging were activated during the three anther developmental stages in the mutant. CONCLUSIONS Compared to the same anther developmental stage of the WT, many key genes involved in various aspects of anther development show a reverse gene expression pattern in the GMS mutant, which indicates that diverse gene regulation pathways are involved in the GMS mutant anther development. These findings provide the first insights into the mechanism that leads to genetic male sterility in cotton and contributes to a better understanding of the regulatory network involved in anther development in cotton.
Collapse
Affiliation(s)
- Mingming Wei
- College of Agriculture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, P. R. Chinese Academy of Agriculture Sciences (CAAS), 455000, Anyang, Henan, P. R. China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, P. R. Chinese Academy of Agriculture Sciences (CAAS), 455000, Anyang, Henan, P. R. China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, P. R. Chinese Academy of Agriculture Sciences (CAAS), 455000, Anyang, Henan, P. R. China
| |
Collapse
|
203
|
Song JH, Cao JS, Wang CG. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. PLANT CELL REPORTS 2013; 32:21-30. [PMID: 23064614 DOI: 10.1007/s00299-012-1337-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/09/2012] [Accepted: 08/17/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : BcMF11 as a non-coding RNA gene has an essential role in pollen development, and might be useful for regulating the pollen fertility of crops by antisense RNA technology. We previously identified a 828-bp full-length cDNA of BcMF11, a novel pollen-specific non-coding mRNA-like gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). However, little information is known about the function of BcMF11 in pollen development. To investigate its exact biological roles in pollen development, the BcMF11 cDNA was antisense inhibited in transgenic Chinese cabbage under the control of a tapetum-specific promoter BcA9 and a constitutive promoter CaMV 35S. Antisense RNA transgenic plants displayed decreasing expression of BcMF11 and showed distinct morphological defects. Pollen germination test in vitro and in vivo of the transgenic plants suggested that inhibition of BcMF11 decreased pollen germination efficiency and delayed the pollen tubes' extension in the style. Under scanning electron microscopy, many shrunken and collapsed pollen grains were detected in the antisense BcMF11 transgenic Chinese cabbage. Further cytological observation revealed abnormal pollen development process in transgenic plants, including delayed degradation of tapetum, asynchronous separation of microspore, and aborted development of pollen grain. These results suggest that BcMF11, as a non-coding RNA, plays an essential role in pollen development and male fertility.
Collapse
Affiliation(s)
- Jiang-Hua Song
- College of Horticulture, Anhui Agricultural University, Hefei 230036, PR China
| | | | | |
Collapse
|
204
|
Chen Y, Li F, Ma Y, Chong K, Xu Y. Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:93-100. [PMID: 23083684 DOI: 10.1016/j.jplph.2012.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 05/02/2023]
Abstract
The basic helix-loop-helix family of proteins, which function as transcription factors, have been intensively studied in plants and animals. However, the molecular mechanism of these factors contributing to stress tolerance is unknown. Here, we report on the overexpression of OrbHLH001 from Dongxiang wild rice (Oryza rufipogon) conferring salt tolerance in transgenic rice plants. The expression of OrbHLH001 was tissue specific, mainly in phloem tissues throughout the plant. Ion assay with the scanning ion-selective electrode technique showed that NaCl stress has a greater influence on Na(+) efflux and K(+) influx in OrbHLH001-overexpressed plants than the wild type. OrbHLH001 protein can induce the expression of OsAKT1 to regulate the Na(+)/K(+) ratio in OrbHLH001-overexpressed plants by specifically binding to an E-box motif in the promoter region of OsAKT1. The mechanism may have potential use in rice molecular breeding.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
205
|
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. PLANT & CELL PHYSIOLOGY 2013; 54:138-54. [PMID: 23220695 DOI: 10.1093/pcp/pcs162] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components. Recently, progress has been made in understanding the biosynthesis of sporopollenin and cutin components in Arabidopsis and rice, but less is known about the mechanisms by which they are transported to the sites of deposition. Here, we report that the rice ATP-binding cassette (ABC) transporter, ABCG15, is essential for post-meiotic anther and pollen development, and is proposed to play a role in the transport of rice anther cuticle and sporopollenin precursors. ABCG15 is highly expressed in the tapetum at the young microspore stage, and the abcg15 mutant exhibits small, white anthers lacking mature pollen, lipidic cuticle, orbicules and pollen exine. Gas chromatography-mass spectrometry (GC-MS) analysis of the abcg15 anther cuticle revealed significant reductions in a number of wax components and aliphatic cutin monomers. The expression level of genes involved in lipid metabolism in the abcg15 mutant was significantly different from their levels in the wild type, possibly due to perturbations in the homeostasis of anther lipid metabolism. Our study provides new insights for understanding the molecular mechanism of the formation of the anther cuticle, orbicules and pollen wall, as well as the machinery for lipid metabolism in rice anthers.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Guo JX, Liu YG. Molecular control of male reproductive development and pollen fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:967-78, i. [PMID: 23025662 DOI: 10.1111/j.1744-7909.2012.01172.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility-related genes, by incompatible interactions between divergent allelic or non-allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility-sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Jing-Xin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
207
|
Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Cheng Z. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. THE NEW PHYTOLOGIST 2012; 196:402-413. [PMID: 22913653 DOI: 10.1111/j.1469-8137.2012.04270.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
The formation of diverse, appropriately patterned cell types is critical in the development of all complex multicellular organisms. In flowering plants, anther patterning is a complex process essential for successful sexual reproduction. However, few genes regulating this process have been characterized to date. We report here that the gene MICROSPORELESS2 (MIL2) regulates early anther cell differentiation in rice (Oryza sativa). The anthers of mil2 mutants were characterized using molecular markers and cytological examination. The MIL2 gene was cloned and its expression pattern was analyzed through RNA in situ hybridization. The localization of the MIL2 protein was observed by immunostaining. MIL2 encodes the rice homolog of the Arabidopsis TAPETUM DETERMINANT1 (TPD1) protein. However, mil2 anthers display phenotypes different from those of tpd1 mutants, with only two layers of anther wall cells formed. MIL2 has an expression pattern distinct from that of TPD1. Its transcripts and proteins predominate in inner parietal cells, but show little accumulation in reproductive cells. Our results demonstrate that MIL2 is responsible for the differentiation of primary parietal cells into secondary parietal cells in rice anthers, and suggest that rice and Arabidopsis anthers might share similar regulators in anther patterning, but divergent mechanisms are employed in these processes.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
208
|
Tan H, Liang W, Hu J, Zhang D. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell 2012; 22:1127-37. [PMID: 22698279 DOI: 10.1016/j.devcel.2012.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 12/31/2011] [Accepted: 04/11/2012] [Indexed: 01/14/2023]
Abstract
In flowering plants, formation of the haploid male gametophytes in anthers requires the interaction between reproductive cells and the neighboring somatic cells, yet the underlying mechanism remains poorly understood. Here, we reveal the crucial role of a fasciclin glycoprotein, MICROSPORE AND TAPETUM REGULATOR1 (MTR1), in controlling the development of sporophytic and reproductive cells in rice (Oryza sativa). MTR1 is specifically expressed in the male reproductive cells, yet its mutant exhibits defects in both tapetum and microspore development, causing complete male sterility. We also demonstrate that the fasciclin domains, N-glycolation, and N-terminal signal peptide-mediated plasma membrane localization of MTR1 are required for normal anther development and pollen fertility. Our findings show that rice male reproductive cells secrete the MTR1 protein to control the development of reproductive cells and their adjacent somatic cells, thus providing novel insights into the mechanism of plant male reproductive development.
Collapse
Affiliation(s)
- Hexin Tan
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
209
|
Yang DW, Lu LB, Chen CP, Zeng MJ, Zheng XH, Ye N, Liu CD, Ye XF. [Morphological characteristics and gene mapping of a palea degradation(pd2) mutant in rice]. YI CHUAN = HEREDITAS 2012; 34:1064-72. [PMID: 22917912 DOI: 10.3724/sp.j.1005.2012.01064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The yield and quality of rice are directly impacted by floral organ development in rice. Understanding of the floral development mechanism will be useful in genetic improvement of yield and quality. In this study, a rice mutant palea degradation 2 (pd2) in an indica cultivar '8PW33' was obtained after 60Co γ-ray treatment. Analysis of the mutant showed that, compared to the wild type, plant height, total grain number per panicle, and sword leaf width were significantly increased, but the seed setting rate were significantly decreased. The florets of the mutant exhibited degraded palea and sickle-shaped tortuous lemma. Detail examination using scanning electron microscopy revealed that when epidermis of the vane and lemma were normal, epidermis of the palea were arranged tightly, which might result from degraded palea. Genetic analysis supported that this mutation phenotype was controlled by a single recessive gene. Polymorphic analysis of simple sequence repeat markers demonstrated that PD2 gene is located on chromosome 9. With a larger mapping population and more indel markers, we further mapped PD2 gene between 2 indel markers with a physical region of about 82 kb. Within this region, there is a cloned gene REP1 known to control rice palea development. By comparing the DNA sequences of REP1 from pd2 and 8PW33, in combination with the results of phenotypic analysis, we concluded that PD2 is an allele of REP1.
Collapse
Affiliation(s)
- De-Wei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Zheng R, Sijun Yue, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One 2012; 7:e41861. [PMID: 22860020 PMCID: PMC3408462 DOI: 10.1371/journal.pone.0041861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023] Open
Abstract
Pollen development is disturbed in the early tetrad stage of the YX-1 male sterile mutant of wolfberry (Lycium barbarum L.). The present study aimed to identify differentially expressed anther proteins and to reveal their possible roles in pollen development and male sterility. To address this question, the proteomes of the wild-type (WT) and YX-1 mutant were compared. Approximately 1760 protein spots on two-dimensional differential gel electrophoresis (2D-DIGE) gels were detected. A number of proteins whose accumulation levels were altered in YX-1 compared with WT were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Proteins down-regulated in YX-1 anthers include ascorbate peroxidase (APX), putative glutamine synthetase (GS), ATP synthase subunits, chalcone synthase (CHS), CHS-like, putative callose synthase catalytic subunit, cysteine protease, 5B protein, enoyl-ACP reductase, 14-3-3 protein and basic transcription factor 3 (BTF3). Meanwhile, activities of APX and GS, RNA expression levels of apx and atp synthase beta subunit were low in YX-1 anthers which correlated with the expression of male sterility. In addition, several carbohydrate metabolism-related and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. In contrast, 26S proteasome regulatory subunits, cysteine protease inhibitor, putative S-phase Kinase association Protein 1(SKP1), and aspartic protease, were expressed at higher levels in YX-1 anthers relative to WT anthers. Regulation of wolfberry pollen development involves a complex network of differentially expressed genes. The present study lays the foundation for future investigations of gene function linked with wolfberry pollen development and male sterility.
Collapse
Affiliation(s)
- Rui Zheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Sijun Yue
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, China
| | - Jianyu Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Qing Xu
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaolin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Lu Han
- College of Life Science, Ningxia University, Yinchuan, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
211
|
Spatial and temporal activity of upstream regulatory regions of rice anther-specific genes in transgenic rice and Arabidopsis. Transgenic Res 2012; 22:31-46. [PMID: 22684614 DOI: 10.1007/s11248-012-9621-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Upstream regulatory regions (URRs) of rice anther-specific genes, namely OSbHLH (coding for basic helix-loop-helix-containing protein) and OSFbox (F-box protein encoding gene), selected from the microarray data have been cloned to control expression of GUS and GFP reporter genes in stably transformed rice. Quantitative real time PCR analysis shows maximum transcript accumulation of these two genes in the meiotic anthers. Analysis of OSbHLH and OSFbox URRs by PLACE database reveal the presence of known pollen-specific cis elements. The URRs of both OSbHLH and OSFbox genes have maximum activity in the meiotic anther stage in rice, but confer constitutive expression in the heterologous dicot system, Arabidopsis, indicative of monocot specificity. Another rice gene (OSIPK; with homology to genes encoding calcium-dependent protein kinases) URR already reported to have anther-specific activity in Arabidopsis and tobacco also confers anther-specific expression in rice and is active in the pollen tubes, suggesting it belongs to the category of late expressed genes. The spatial activity of three URRs has also been analysed by histochemical evaluation of GUS activity in different anther cells/tissues. The activity of OSIPK URR in rice is strongest among the three URRs.
Collapse
|
212
|
Gao X, Chen Z, Zhang J, Li X, Chen G, Li X, Wu C. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. PLANTA 2012; 235:713-27. [PMID: 22020753 DOI: 10.1007/s00425-011-1532-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/29/2011] [Indexed: 05/05/2023]
Abstract
Although a large number of genes encoding the WD40 motif have been identified as being involved in various developmental processes in Arabidopsis, little is known about the function of these genes in rice (Oryza sativa). Here, we report the cloning and functional characterization of a novel rice gene OsLIS-L1 (Lissencephaly type-1-like 1), which is required for normal fertility and the first internode elongation. OsLIS-L1 encodes a lissencephaly type-1-like protein containing the WD40 motif that is required for brain development in human. SMART algorithm analysis indicated that OsLIS-L1 contains a LIS1 homology (LisH) domain, a C terminus to LisH (CTLH) domain, a five WD40-repeat domain in the middle, and a domain with four WD40 repeats which is homologous to the β subunit of trimeric G-proteins (G(β)). OsLIS-L1 transcript is relatively highly abundant in stem and panicle and has a dynamic expression pattern at different panicle developmental stages. Two independent alleles, designated oslis-l1-1 and oslis-l1-2, exhibited similar abnormal developmental phenotypes, including semi-dwarf, shorter panicle length, and reduced male fertility. Cytological examination confirmed that OsLIS-L1 does not affect the meiosis in pollen mother cells. Compared with wild type, the oslis-l1 mutant had abnormal male gametophyte formation, but anther cell wall and pollen wall development were not affected. Histological analysis revealed that OsLIS-L1 regulates the cell proliferation in the first internode under the panicle. Our results indicate that OsLIS-L1 plays an important role in male gametophyte formation and the first internode elongation in rice.
Collapse
Affiliation(s)
- Xinqiang Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research-Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
213
|
Yi J, Kim SR, Lee DY, Moon S, Lee YS, Jung KH, Hwang I, An G. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:256-70. [PMID: 22111585 DOI: 10.1111/j.1365-313x.2011.04864.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tapetum development and meiosis play crucial roles in anther development. Here we identified a rice gene, DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1), which controls the early stages of that development. This gene encodes for an endoplasmic reticulum (ER) membrane protein that is present only in cereals. Our T-DNA insertion mutations gave rise to abnormal tapetal formation. Cellular organelles, especially the ER, were underdeveloped, which led to hampered differentiation and degeneration of the tapetum. In addition, the development of pollen mother cells was arrested at the early stages of meiotic prophase I. RNA in-situ hybridization analyses showed that DTM1 transcripts were most abundant in tapetal cells at stages 6 and 7, and moderately in the pollen mother cells and meiocytes. Transcripts of UDT1, which functions in tapetum development during early meiosis, were reduced in dtm1 anthers, as were those of PAIR1, which is involved in chromosome pairing and synapsis during meiosis. However, expression of MSP1 and MEL1, which function in anther wall specification and germ cell division, respectively, was not altered in the dtm1 mutant. Moreover, transcripts of DTM1 were reduced in msp1 mutant anthers, but not in udt1 and pair1 mutants. These results, together with their mutant phenotypes, suggest that DTM1 plays important roles in the ER membrane during early tapetum development, functioning after MSP1 and before UDT1, and also in meiocyte development, after MEL1 and before PAIR1.
Collapse
Affiliation(s)
- Jakyung Yi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu YG, Zhuang C. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 2012; 22:649-60. [PMID: 22349461 DOI: 10.1038/cr.2012.28] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Photoperiod- and thermo-sensitive genic male sterility (PGMS and TGMS) are the core components for hybrid breeding in crops. Hybrid rice based on the two-line system using PGMS and TGMS lines has been successfully developed and applied widely in agriculture. However, the molecular mechanism underlying the control of PGMS and TGMS remains obscure. In this study, we mapped and cloned a major locus, p/tms12-1 (photo- or thermo-sensitive genic male sterility locus on chromosome 12), which confers PGMS in the japonica rice line Nongken 58S (NK58S) and TGMS in the indica rice line Peiai 64S (PA64S, derived from NK58S). A 2.4-kb DNA fragment containing the wild-type allele P/TMS12-1 was able to restore the pollen fertility of NK58S and PA64S plants in genetic complementation. P/TMS12-1 encodes a unique noncoding RNA, which produces a 21-nucleotide small RNA that we named osa-smR5864w. A substitution of C-to-G in p/tms12-1, the only polymorphism relative to P/TMS12-1, is present in the mutant small RNA, namely osa-smR5864m. Furthermore, overexpression of a 375-bp sequence of P/TMS12-1 in transgenic NK58S and PA64S plants also produced osa-smR5864w and restored pollen fertility. The small RNA was expressed preferentially in young panicles, but its expression was not markedly affected by different day lengths or temperatures. Our results reveal that the point mutation in p/tms12-1, which probably leads to a loss-of-function for osa-smR5864m, constitutes a common cause for PGMS and TGMS in the japonica and indica lines, respectively. Our findings thus suggest that this noncoding small RNA gene is an important regulator of male development controlled by cross-talk between the genetic networks and environmental conditions.
Collapse
Affiliation(s)
- Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Control of Programmed Cell Death During Plant Reproductive Development. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
216
|
Phan HA, Li SF, Parish RW. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. PLANT MOLECULAR BIOLOGY 2012; 78:171-83. [PMID: 22086333 DOI: 10.1007/s11103-011-9855-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/09/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis AtMYB80 transcription factor (formerly AtMYB103) regulate genes essential for tapetal and pollen development. One of these genes, coding for an aspartic protease (UNDEAD), may control the timing of tapetal programmed cell death (PCD). In crop plants such as rice and wheat, abiotic stresses lead to abnormal tapetal development resulting in delayed PCD. Manipulation of AtMYB80 function has been used to develop a reversible male sterility system applicable to hybrid crop production. MYB80 homologs were cloned from wheat, rice, canola and cotton. The promoters of the homologs drove temporal and spatial expression patterns of the GUS reporter gene in the tapetum and microspores of Arabidopsis anthers identical to the AtMYB80 promoter. A short region is conserved in all five MYB80 promoters. The MYB80 homolog genes, driven by the AtMYB80 or their respective promoters, rescued the atmyb80 mutant, completely restoring male fertility. The canola MYB80 was fused to the EAR (ERF-associated amphiphilic repression) repressor and canola plants transgenic for the construct exhibited premature tapetal degradation and subsequent pollen abortion. The five MYB80 homologs all shared a 44 amino acid sequence immediately adjacent to the R2R3 domain which appears to be necessary for MYB80 function.
Collapse
Affiliation(s)
- Huy A Phan
- Botany Department, La Trobe University, Melbourne, Australia
| | | | | |
Collapse
|
217
|
Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 2011; 6:e26162. [PMID: 22046259 PMCID: PMC3202526 DOI: 10.1371/journal.pone.0026162] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events.
Collapse
|
218
|
Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics 2011; 38:379-90. [PMID: 21930097 DOI: 10.1016/j.jgg.2011.08.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022]
Abstract
Microsporogenesis and male gametogenesis are essential for the alternating life cycle of flowering plants between diploid sporophyte and haploid gametophyte generations. Rice (Oryza sativa) is the world's major staple food, and manipulation of pollen fertility is particularly important for the demands to increase rice grain yield. Towards a better understanding of the mechanisms controlling rice male reproductive development, we describe here the cytological changes of anther development through 14 stages, including cell division, differentiation and degeneration of somatic tissues consisting of four concentric cell layers surrounding and supporting reproductive cells as they form mature pollen grains through meiosis and mitosis. Furthermore, we compare the morphological difference of anthers and pollen grains in both monocot rice and eudicot Arabidopsis thaliana. Additionally, we describe the key genes identified to date critical for rice anther development and pollen formation.
Collapse
Affiliation(s)
- Dabing Zhang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
219
|
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. PLANT PHYSIOLOGY 2011; 156:615-30. [PMID: 21515697 PMCID: PMC3177263 DOI: 10.1104/pp.111.175760] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.
Collapse
|
220
|
Han MJ, Jung KH, Yi G, An G. Rice Importin β1 gene affects pollen tube elongation. Mol Cells 2011; 31:523-30. [PMID: 21499832 PMCID: PMC3887616 DOI: 10.1007/s10059-011-2321-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 11/26/2022] Open
Abstract
Importin β1 interacts with nuclear transport factors and mediates the import of nuclear proteins. We isolated a pollen-expressed gene, rice Importin β1 (OsImpβ1), from a T-DNA insertional population that was trapped by a promoterless β-glucuronidase (GUS) gene. The GUS reporter was expressed in the anthers and ovaries from early through mature developmental stages. Its expression was also observed in all floral organs. However, these patterns changed as the spikelet developed. T-DNA was inserted into the OsImpβ1 gene at 339 bp downstream from the translation initiation site. We obtained another T-DNA insertional allele by searching the flanking sequence tag database. In both lines, the wild-type and T-DNA-carrying progeny segregated at a ratio close to 1:1. The latter genotype was heterozygous (OsImpβ1/osimpβ1). Reciprocal crosses between WT and heterozygous plants demonstrated that the mutant alleles could not be transmitted through the male gametophyte. Close examination of the heterozygous anthers revealed that the mutant pollen matured normally. However, in vitro assays showed that tube elongation was hampered in the mutant grains. These results indicate that OsImpβ1 is specifically required for pollen tube elongation.
Collapse
Affiliation(s)
- Min-Jung Han
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
- Present address: POSTECH Biotechnology Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ki-Hong Jung
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Gihwan Yi
- International Technical Cooperation Center, Rural Development Administration, Suwon 441-707, Korea
| | - Gynheung An
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
221
|
Wang D, Skibbe DS, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. ACTA ACUST UNITED AC 2011; 24:297-306. [PMID: 21475967 DOI: 10.1007/s00497-011-0167-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/18/2011] [Indexed: 12/23/2022]
Abstract
Maize male reproductive development is complex and lengthy, and anther formation and pollen maturation are precisely and spatiotemporally regulated. Here, we document that callose, somatic, and microspore defect 1 (csmd1), a new male-sterile mutant, has both pre-meiotic somatic and post-meiotic gametophyte and somatic defects. Chromosome behavior and cell developmental events were monitored by nuclear staining viewed by bright field microscopy; cell dimensions were charted by Volocity analysis of confocal microscopy images. Aniline blue staining and quantitative assays were performed to record callose deposition, and expression of three callose synthase genes was measured by qRT-PCR. Despite numerous defects and unlike other maize male-sterile mutants that show growth arrest coincident with locular defects, csmd1 anther elongation is nearly normal. Pre-meiotically and during prophase I, there is excess callose surrounding the meiocytes. Post-meiotically csmd1 epidermal cells have impaired elongation but excess longitudinal divisions, and uninucleate microspores cease growth; the microspore nucleoli degrade followed by cytoplasmic vacuolization and haploid cell collapse. The single vascular bundle within csmd1 anthers senesces precociously, coordinate with microspore death. Although csmd1 anther locules contain only epidermal and endothecial cells at maturity, locules are oval rather than collapsed, indicating that these two cell types suffice to maintain an open channel within each locule. Our data indicate that csmd1 encodes a crucial factor important for normal anther development in both somatic and haploid cells, that excess callose deposition does not cause meiotic arrest, and that developing pollen is not required for continued maize anther growth.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
222
|
Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C. Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. THE PLANT CELL 2011; 23:1416-34. [PMID: 21467577 PMCID: PMC3101562 DOI: 10.1105/tpc.110.082636] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 02/28/2011] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) during tapetum degeneration in postmeiotic anthers is critical for the proper development of male gametophytes in flowering plants. Although several genes involved in this process have been identified recently, the molecular mechanism is still poorly understood. Here, we show that knockout of rice (Oryza sativa) APOPTOSIS INHIBITOR5 (API5), which encodes a putative homolog of antiapoptosis protein Api5 in animals, results in delayed degeneration of the tapetum due to inhibition of the tapetal PCD process leading to defects in formation of male gametophytes. Os API5 is a nuclear protein that interacts with two DEAD-box ATP-dependent RNA helicases, API5-INTERACTING PROTEIN1 (AIP1) and AIP2. AIP1 and AIP2 are homologs of yeast (Saccharomyces cerevisiae) Suppressor of Bad Response to Refrigeration1 protein 2 (SUB2p) that have critical roles in transcription elongation and pre-mRNA splicing. Os AIP1 and AIP2 can form dimers and interact directly with the promoter region of CP1, a rice cysteine protease gene. Suppression of Os AIP1/2 leads to down-regulation of CP1, resulting in sterility, which is highly similar to the effects of suppressed expression of Os CP1. Our results uncover a previously unknown pathway for regulating PCD during tapetum degeneration in rice, one that may be conserved among eukaryotic organisms.
Collapse
|
223
|
Tang Z, Zhang L, Yang D, Zhao C, Zheng Y. Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. PLANT, CELL & ENVIRONMENT 2011; 34:389-405. [PMID: 21062315 DOI: 10.1111/j.1365-3040.2010.02250.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The male sterility of a wheat thermosensitive genic male sterile (TGMS) line is strictly controlled by temperature. When the TGMS line BS366 was exposed to 10 °C from the pollen mother cell stage to the meiosis stage, a few pollen grains were formed and devoid of starch. We report here a large-scale transcriptomic study using the Affymetrix wheat GeneChip to follow gene expression in BS366 line anthers in response to cold stress. Notably, many cytoskeletal signaling components were gradually induced in response to cold stress in BS366 line anthers. However, the cytoskeleton-associated genes that play key roles in the dynamic organization of the cytoskeleton were dramatically repressed. Histological studies revealed that the separation of dyads occurred abnormally during male meiosis I, indicating defective male meiotic cytokinesis. Fluorescence labelling and subcellular histological observations revealed that the phragmoplast was defectively formed and the cell plate was abnormally assembled during meiosis I under cold stress. Based on the transcriptomic analysis and observations of characterized histological changes, our results suggest that cold stress repressed transcription of cytoskeleton dynamic factors and subsequently caused the defective cytokinesis during meiosis I. The results may explain the male sterility caused by low temperature in wheat TGMS lines.
Collapse
Affiliation(s)
- Zonghui Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
224
|
Chang F, Wang Y, Wang S, Ma H. Molecular control of microsporogenesis in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:66-73. [PMID: 21145279 DOI: 10.1016/j.pbi.2010.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/17/2010] [Accepted: 11/11/2010] [Indexed: 05/20/2023]
Abstract
Microsporogenesis is essential for male fertility and requires both the formation of somatic and reproductive cells in the anther and meiotic segregation of homologous chromosomes. Molecular genetic studies have uncovered signaling molecules and transcription factors that play crucial roles in determining the anther cell types and in controlling gene expression for microsporogenesis. At the same time, key components of in meiotic recombination pathways have been discovered, enriching our knowledge about plant reproductive development.
Collapse
Affiliation(s)
- Fang Chang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
225
|
Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. THE PLANT CELL 2011; 23:515-33. [PMID: 21297036 PMCID: PMC3077785 DOI: 10.1105/tpc.110.074369] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 05/17/2023]
Abstract
The rice (Oryza sativa) floral homeotic C-class gene, MADS3, was previously shown to be required for stamen identity determination during early flower development. Here, we describe a role for MADS3 in regulating late anther development and pollen formation. Consistent with this role, MADS3 is highly expressed in the tapetum and microspores during late anther development, and a newly identified MADS3 mutant allele, mads3-4, displays defective anther walls, aborted microspores, and complete male sterility. During late anther development, mads3-4 exhibits oxidative stress-related phenotypes. Microarray analysis revealed expression level changes in many genes in mads3-4 anthers. Some of these genes encode proteins involved in reactive oxygen species (ROS) homeostasis; among them is MT-1-4b, which encodes a type 1 small Cys-rich and metal binding protein. In vivo and in vitro assays showed that MADS3 is associated with the promoter of MT-1-4b, and recombinant MT-1-4b has superoxide anion and hydroxyl radical scavenging activity. Reducing the expression of MT-1-4b causes decreased pollen fertility and an increased level of superoxide anion in transgenic plants. Our findings suggest that MADS3 is a key transcriptional regulator that functions in rice male reproductive development, at least in part, by modulating ROS levels through MT-1-4b.
Collapse
Affiliation(s)
- Lifang Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changsong Yin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Cui
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
226
|
Hu F, Wang D, Zhao X, Zhang T, Sun H, Zhu L, Zhang F, Li L, Li Q, Tao D, Fu B, Li Z. Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC PLANT BIOLOGY 2011; 11:18. [PMID: 21261937 PMCID: PMC3036607 DOI: 10.1186/1471-2229-11-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 01/24/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. RESULTS A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. CONCLUSION The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.
Collapse
Affiliation(s)
- Fengyi Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Di Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- College of Life Sciences, Wuhan University, 430072, China
| | - Haixi Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Lijuan Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qiong Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, the Philippines
| |
Collapse
|
227
|
Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu L, Cheng Z, Lei C, Wang J, Guo X, Wu F, Ikehashi H, Wang H, Wan J. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. THE PLANT CELL 2011; 23:111-29. [PMID: 21282525 PMCID: PMC3051251 DOI: 10.1105/tpc.109.073692] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 05/20/2023]
Abstract
In flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence. Map-based molecular cloning revealed that PSS1 encodes a kinesin-1-like protein. PSS1 is broadly expressed in various organs, with highest expression in panicles. Furthermore, PSS1 expression is significantly upregulated during anther development and peaks during male meiosis. The PSS1-green fluorescent protein fusion is predominantly localized in the cytoplasm of rice protoplasts. Substitution of a conserved Arg (Arg-289) to His in the PSS1 motor domain nearly abolishes its microtubule-stimulated ATPase activity. Consistent with this, lagging chromosomes and chromosomal bridges were found at anaphase I and anaphase II of male meiosis in the pss1 mutant. Together, our results suggest that PSS1 defines a novel member of the kinesin-1 family essential for male meiotic chromosomal dynamics, male gametogenesis, and anther dehiscence in rice.
Collapse
Affiliation(s)
- Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchang Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhai Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Su
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hiroshi Ikehashi
- Department of Plant and Resources College of Bioresources, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
228
|
Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development. PLANT & CELL PHYSIOLOGY 2010; 51:2060-81. [PMID: 21062870 DOI: 10.1093/pcp/pcq165] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. A decrease in expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes which appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several cyclin-dependent kinases (CDKs), cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the most extensive and most comprehensive data set available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Collapse
Affiliation(s)
- Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Hedhili S, De Mattei MV, Coudert Y, Bourrié I, Bigot Y, Gantet P. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor. BMC Res Notes 2010; 3:301. [PMID: 21073696 PMCID: PMC2994886 DOI: 10.1186/1756-0500-3-301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 11/12/2010] [Indexed: 01/15/2023] Open
Abstract
Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor.
Collapse
Affiliation(s)
- Sabah Hedhili
- Université François Rabelais, UFR des Sciences et Techniques, Unité sous Contrat reconnue par l'Institut National de la Recherche Agronomique, Facteurs de Transcription et Ingénierie Métabolique Végétale, Biomolécules et Biotechnologies Végétales, EA 2106, Parc de Grandmont, 37200 Tours, France.
| | | | | | | | | | | |
Collapse
|
230
|
Zhang S, Fang Z, Zhu J, Gao J, Yang Z. OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4087-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
231
|
He Y, Wei Q, Ge J, Jiang A, Gan L, Song Z, Cai D. Genome duplication effects on pollen development and the interrelated physiological substances in tetraploid rice with polyploid meiosis stability. PLANTA 2010; 232:1219-28. [PMID: 20717831 DOI: 10.1007/s00425-010-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 05/07/2023]
Abstract
The breeding of polyploid rice made no breakthrough for a long time because of low seed set. The discovery and application of polyploid meiosis stability (PMeS) material played a pivotal role in solving this problem. Our results indicated that genome duplication led to different outcomes in different rice cultivars in terms of pollen fertility, viability, and the accumulation of important physiological substances such as free proline and endogenous hormones. Pollen from the PMeS HN2026-4X lines showed a high fertility and viability similar to those of HN2026-2X (4X indicates tetraploid while 2X indicates the diploid), whereas both rates decreased dramatically in Balilla-4X. The results of pollen microstructure and ultrastructure investigations suggested that the pollen development pattern in HN2026-4X appeared normal at all stages, but a lot of changes were discovered in Balilla-4X. Stable meiosis, timely tapetum degradation, and normal mitochondria development were critical factors insuring the high frequency pollen fertility of PMeS rice. The free proline content increased markedly in HN2026-4X as compared to HN2026-2X, but it was decreased for Balilla-4X. Genome duplication effects on regulating endogenous hormones accumulation in pollen were evident, resulting in the clear difference between PMeS HN2026-4X and Balilla-4X. The accumulation of IAA, ZR, and GA in mature pollen distinguished HN2026-4X from Balilla-4X, which was linked to normal pollen development. In particular, the excessive accumulation of ABA at the meiosis stage may be correlated to disorganized meiosis in Balilla-4X. All the results provided unequivocal evidence that genome duplication played specific roles in the normal pollen development of PMeS HN2026-4X.
Collapse
Affiliation(s)
- Yuchi He
- Faculty of Life Science, Hubei University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
232
|
The Post-meiotic Deficicent Anther1 (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics 2010; 37:37-46. [PMID: 20171576 DOI: 10.1016/s1673-8527(09)60023-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/26/2009] [Accepted: 12/02/2009] [Indexed: 11/24/2022]
Abstract
To understand the molecular mechanism of male reproductive development in the model crop rice, we isolated a complete male sterile mutant post-meiotic deficient anther1 (pda1) from a gamma-ray-treated rice mutant library. Genetic analysis revealed that the pda1 mutant was controlled by a recessive nucleus gene. The pda1 mutant anther seemed smaller with white appearance. Histological analysis demonstrated that the pda1 mutant anther undergoes normal early tapetum development without obvious altered meiosis. However, the pda1 mutant displayed obvious defects in postmeiotic tapetal development, abnormal degeneration occurred in the tapetal cells at stage 9 of anther development. Also we observed abnormal lipidic Ubisch bodies from the tapetal layer of the pda1 mutant, causing no obvious pollen exine formation. RT-PCR analysis indicated that the expression of genes involved in anther development including GAMYB, OsC4 and Wax-deficient anther1 (WDA1) was greatly reduced in the pda1 mutant anther. Using map-based cloning approach, the PDA1 gene was finely mapped between two markers HLF610 and HLF627 on chromosome 6 using 3,883 individuals of F(2) population. The physical distance between HLF610 and HLF627 was about 194 kb. This work suggests that PDA1 is required for post-meiotic tapetal development and pollen/microspore formation in rice.
Collapse
|
233
|
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:939-51. [PMID: 20626649 PMCID: PMC2974755 DOI: 10.1111/j.1365-313x.2010.04294.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - John F. Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| |
Collapse
|
234
|
Liu Z, Bao W, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:670-8. [PMID: 20590996 DOI: 10.1111/j.1744-7909.2010.00959.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In higher plants, male reproductive development is a complex biological process that includes cell division and differentiation, cell to cell communication etc., while the mechanism underlying plant male reproductive development remains less understood. GAMYB encodes a gibberellins acid (GA) inducible transcription factor that is required for the early anther development in rice (Oryza sativa L.). Here, we report the isolation and characterization of a new allele gamyb-4 with a C base deletion in the second exon (+2308), causing a frame shift and premature translational termination. Histological analysis showed that gamyb-4 developed abnormal enlarged tapetum and could not undergo normal meiosis. To understand the regulatory role of GAMYB, we carried out quantitative reverse transcription-polymerase chain reaction analysis and comparison of microarray data. These results revealed that the expression of TDR (TAPETUM DEGENERATION RETARDATION), a tapetal cell death regulator, was downregulated in gamyb-4 and udt1 (undeveloped tapetum1). While the GAMYB expression was not obviously changed in tdr and udt1-1, and no apparent expression fold change of UDT1 in tdr and gamyb-4, suggesting that TDR may act downstream of GAMYB and UDT1, and GAMYB and UDT1 work in parallel to regulate rice early anther development. This work is helpful in understanding the regulatory network in rice anther development.
Collapse
Affiliation(s)
- Zhenhua Liu
- School of Life Sciences, Shanghai University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
235
|
Abstract
Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use whole-genome sequences from nine species of land plants and algae to define the relationships between these proteins in plants. We show that few (less than 5) bHLH proteins are encoded in the genomes of chlorophytes and red algae. In contrast, many bHLH proteins (100-170) are encoded in the genomes of land plants (embryophytes). Phylogenetic analyses suggest that plant bHLH proteins are monophyletic and constitute 26 subfamilies. Twenty of these subfamilies existed in the common ancestors of extant mosses and vascular plants, whereas six further subfamilies evolved among the vascular plants. In addition to the conserved bHLH domains, most subfamilies are characterized by the presence of highly conserved short amino acid motifs. We conclude that much of the diversity of plant bHLH proteins was established in early land plants, over 440 million years ago.
Collapse
|
236
|
Abstract
Low-temperature stress during microspore development alters cellular organization in rice anthers. The major cellular damage includes unusual starch accumulation in the plastids of the endothecium in postmeiotic anthers, abnormal vacuolation and hypertrophy of the tapetum, premature callose (1,3-beta-glucan) breakdown and lack of normal pollen wall formation. These cellular lesions arise from damage to critical biochemical processes that include sugar metabolism in the anthers and its use by the microspores. Failure of utilization of the callose breakdown product and other microspore wall components like sporopollenin can also be considered as critical. In recent years, considerable progress has been made in the understanding of major biochemical processes including the expression of critical genes that are sensitive to low temperature in rice and cause male sterility. This paper combines a discussion of cellular organization and associated biochemical processes that are sensitive to low temperatures and provides an overview of the potential mechanisms of low-temperature-induced male sterility in rice.
Collapse
|
237
|
Li T, Gong C, Wang T. RA68 is required for postmeiotic pollen development in Oryza sativa. PLANT MOLECULAR BIOLOGY 2010; 72:265-277. [PMID: 19888555 DOI: 10.1007/s11103-009-9566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/25/2009] [Indexed: 05/27/2023]
Abstract
Postmeiotic development is a unique characteristic of flowering plants. During the development, microspores undergo two cycles of mitosis (PMI and PMII) and a subsequent maturation process to finally produce the mature pollen, but the mechanism underlying the development is still largely unknown. Here, we report on the roles of a novel gene, RA68, in postmeiotic pollen development in Oryza sativa. RA68 was expressed preferentially in shoots and flowers. In flowers, the transcript persisted from the floral organ differentiation to the mature pollen stages and showed preferential accumulation in male meiocytes, developing pollen and tapetal cells. RA68-deficient RNAi lines showed reduced seed setting and pollen viability but not an aberrant phenotype in vegetative organs. Knockdown of RA68 led to arrested PMI, smaller pollen grains with little or no starch, and aborted pollen but not severely distruped male meiosis. Additionally, no abnormality of anther wall development was observed in RA68-RNAi lines. RA68 may be required for postmeiotic pollen development by affecting PMI and starch accumulation.
Collapse
Affiliation(s)
- Tang Li
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, 100093, China
| | | | | |
Collapse
|
238
|
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D. Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. THE PLANT CELL 2010; 22:173-90. [PMID: 20086189 PMCID: PMC2828706 DOI: 10.1105/tpc.109.070326] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/24/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, aborted pollen grains without detectable exine, and undeveloped anther cuticle. In addition, chemical composition analysis indicated that cutin monomers were hardly detectable in the cyp704B2 anthers. These defects are caused by a mutation in a cytochrome P450 family gene, CYP704B2. The CYP704B2 transcript is specifically detected in the tapetum and the microspore from stage 8 of anther development to stage 10. Heterologous expression of CYP704B2 in yeast demonstrated that CYP704B2 catalyzes the production of omega -hydroxylated fatty acids with 16 and 18 carbon chains. Our results provide insights into the biosynthesis of the two biopolymers sporopollenin and cutin. Specifically, our study indicates that the omega -hydroxylation pathway of fatty acids relying on this ancient CYP704B family, conserved from moss to angiosperms, is essential for the formation of both cuticle and exine during plant male reproductive and spore development.
Collapse
Affiliation(s)
- Hui Li
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Vincent Sauveplane
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Patrik Diehl
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Rochus Franke
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Ping Zhang
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Liang Chen
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yawei Gao
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Dabing Zhang
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiaotong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
239
|
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. THE PLANT CELL 2010; 22:91-107. [PMID: 20118226 PMCID: PMC2828693 DOI: 10.1105/tpc.109.071803] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/01/2009] [Accepted: 12/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana ABORTED MICROSPORES (AMS) gene encodes a basic helix-loop-helix (bHLH) transcription factor that is required for tapetal cell development and postmeiotic microspore formation. However, the regulatory role of AMS in anther and pollen development has not been fully defined. Here, we show by microarray analysis that the expression of 549 anther-expressed genes was altered in ams buds and that these genes are associated with tapetal function and pollen wall formation. We demonstrate that AMS has the ability to bind in vitro to DNA containing a 6-bp consensus motif, CANNTG. Moreover, 13 genes involved in transportation of lipids, oligopeptides, and ions, fatty acid synthesis and metabolism, flavonol accumulation, substrate oxidation, methyl-modification, and pectin dynamics were identified as direct targets of AMS by chromatin immunoprecipitation. The functional importance of the AMS regulatory pathway was further demonstrated by analysis of an insertional mutant of one of these downstream AMS targets, an ABC transporter, White-Brown Complex homolog, which fails to undergo pollen development and is male sterile. Yeast two-hybrid screens and pull-down assays revealed that AMS has the ability to interact with two bHLH proteins (AtbHLH089 and AtbHLH091) and the ATA20 protein. These results provide insight into the regulatory role of the AMS network during anther development.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caiyun Yang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zheng Yuan
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Dasheng Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martha Y. Gondwe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zhiwen Ding
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
240
|
Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, Cha YS, Yun DW, Ahn BO, Lee MC, Lee GS, Yoon UH, Lee JS, Lee YH, Suh SC, Jiang W, Yang JI, Jin P, McCouch SR, An G, Koh HJ. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:96-106. [PMID: 19807881 DOI: 10.1111/j.1365-313x.2009.04039.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h, from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F(2) plants and five F(3) lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3' splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 (OsCPL1). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development.
Collapse
Affiliation(s)
- Hyeonso Ji
- Department of Agricultural Bio-resources, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Lee TH, Kim YK, Pham TTM, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, Yoon UH, Nahm BH. RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. PLANT PHYSIOLOGY 2009; 151:16-33. [PMID: 19605550 PMCID: PMC2735985 DOI: 10.1104/pp.109.139030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 07/06/2009] [Indexed: 05/18/2023]
Abstract
Microarray data can be used to derive understanding of the relationships between the genes involved in various biological systems of an organism, given the availability of databases of gene expression measurements from the complete spectrum of experimental conditions and materials. However, there have been no reports, to date, of such a database being constructed for rice (Oryza sativa). Here, we describe the construction of such a database, called RiceArrayNet (RAN; http://www.ggbio.com/arraynet/), which provides information on coexpression between genes in terms of correlation coefficients (r values). The average number of coexpressed genes is 214, with sd of 440 at r >or= 0.5. Given the correlation between genes in a gene pair, the degrees of closeness between genes can be visualized in a relational tree and a relational network. The distribution of correlated genes according to degree of stringency shows how each gene is related to other genes. As an application of RAN, the 16-member L7Ae ribosomal protein family was explored for coexpressed genes and gene expression values within and between rice and Arabidopsis (Arabidopsis thaliana), and common and unique features in coexpression partners and expression patterns were observed for these family members. We observed a correlation pattern between Os01g0968800, a drought-responsive element-binding transcription factor, Os02g0790500, a trehalose-6-phosphate synthase, and Os06g0219500, a small heat shock factor, reflecting the fact that genes responding to the same biological stresses are regulated together. The RAN database can be used as a tool to gain insight into a particular gene by examining its coexpression partners.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Division of Bioscience and Bioinformatics, Myong Ji University, Yongin, Kyonggido 449-728, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
|
243
|
Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0371-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
244
|
Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:303-15. [PMID: 19392701 DOI: 10.1111/j.1365-313x.2009.03870.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Although a number of genes regulating homologous chromosome pairing and synapsis have been identified in the plant kingdom, their molecular basis remains poorly understood. In this study, we identified a novel gene, PAIR3 (HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS 3), required for homologous chromosome pairing and synapsis in rice. Two independent alleles, designated pair3-1 and pair3-2, were identified in our T-DNA insertional mutant library which could not form bivalents due to failure of homologous chromosome pairing and synapsis at diakinesis, resulting in sterility in both male and female gametes. Suppression of PAIR3 by RNAi produced similar results to the T-DNA insertion lines. PAIR3 encodes a protein that contains putative coiled-coil motifs, but does not have any close homologs in other organisms. PAIR3 is preferentially expressed in reproductive organs, especially in pollen mother cells and the ovule tissues during meiosis. Our results suggest that PAIR3 plays a crucial role in homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Wenya Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
245
|
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. PLANT PHYSIOLOGY 2009; 150:786-800. [PMID: 19376836 PMCID: PMC2689993 DOI: 10.1104/pp.109.135418] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 05/18/2023]
Abstract
Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe(3+); these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to beta-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green fluorescent protein fusion was localized to the plasma membrane. OsYSL15 functionally complemented yeast strains defective in Fe uptake on media containing Fe(3+)-deoxymugineic acid and Fe(2+)-nicotianamine. Two insertional osysl15 mutants exhibited chlorotic phenotypes under Fe deficiency and had reduced Fe concentrations in their shoots, roots, and seeds. Nitric oxide treatment reversed this chlorosis under Fe-limiting conditions. Overexpression of OsYSL15 increased the Fe concentration in leaves and seeds from transgenic plants. Altogether, these results demonstrate roles for OsYSL15 in Fe uptake and distribution in rice plants.
Collapse
Affiliation(s)
- Sichul Lee
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
246
|
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. PLANT PHYSIOLOGY 2009. [PMID: 19376836 DOI: 10.1104/pp.109.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe(3+); these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to beta-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green fluorescent protein fusion was localized to the plasma membrane. OsYSL15 functionally complemented yeast strains defective in Fe uptake on media containing Fe(3+)-deoxymugineic acid and Fe(2+)-nicotianamine. Two insertional osysl15 mutants exhibited chlorotic phenotypes under Fe deficiency and had reduced Fe concentrations in their shoots, roots, and seeds. Nitric oxide treatment reversed this chlorosis under Fe-limiting conditions. Overexpression of OsYSL15 increased the Fe concentration in leaves and seeds from transgenic plants. Altogether, these results demonstrate roles for OsYSL15 in Fe uptake and distribution in rice plants.
Collapse
Affiliation(s)
- Sichul Lee
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
247
|
Zhang XM, Wang Y, Lv XM, Li H, Sun P, Lu H, Li FL. NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1569-77. [PMID: 19246592 PMCID: PMC2671612 DOI: 10.1093/jxb/erp022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/02/2009] [Accepted: 01/20/2009] [Indexed: 05/22/2023]
Abstract
Proteinases play a critical role in developmental homeostasis and in response to environ-mental stimuli. Our present research reports that a new cysteine protease, NtCP56, is involved in the development of pollen grains in Nicotiana tabacum L. The NtCP56 gene, which encodes a protein of 361 amino acid residues with a calculated molecular mass of 40 kDa, is strongly expressed in anthers. The recombinant NtCP56 showed a high activity towards casein. Kinetic analysis revealed a K(m) of 2.20 mg ml(-1) and V(max) of 11.07 microg ml(-1) min(-1). The recombinant NtCP56 retained more than 50% of its maximum enzymatic activity from 20 degrees C to 60 degrees C with an optimum Tm range of 30-50 degrees C. The enzyme had a maximum activity at approximately pH 6.5. Suppression of the NtCP56 gene in anti-sense transgenic tobaccos resulted in the sterility of pollen grains. Our data indicated that, as a cysteine protease, NtCP56 might play an important role in pollen development.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | | |
Collapse
|
248
|
Wang D, Li C, Zhao Q, Zhao L, Wang M, Zhu D, Ao G, Yu J. Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:73-85. [PMID: 32688629 DOI: 10.1071/fp08154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/05/2008] [Indexed: 06/11/2023]
Abstract
In flowering plants, the tapetum is proposed to play a vital role in the early stages of pollen development. Disruptions to tapetum development and degeneration typically result in male sterility. The present study characterised a maize (Zea mays L.) anther-specific gene, Zm401, which only contains short open reading frames (sORFs). The longest ORF of the Zm401 gene encodes a small protein designated Zm401p10 that accumulates in the nucleus. Overexpression of Zm401p10 in maize retarded tapetal degeneration and caused microspore abnormalities. A microarray analysis identified 278 downregulated and 150 upregulated genes in anthers overexpressing Zm401p10. These results indicate that the Zm401 gene is one of the major components of the molecular network regulating maize anther development and male fertility, and that Zm401p10 is expressed from the longest ORF of the gene.
Collapse
Affiliation(s)
- Dongxue Wang
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Chengxia Li
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Qian Zhao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Linna Zhao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Meizhen Wang
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Dengyun Zhu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Guangming Ao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Jingjuan Yu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| |
Collapse
|
249
|
Wilson ZA, Zhang DB. From Arabidopsis to rice: pathways in pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1479-92. [PMID: 19321648 DOI: 10.1093/jxb/erp095] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The control of male fertility is of vital importance for crop breeding, hybrid generation, and the control of pollen release. Recent development in the analysis of Arabidopsis male sterile mutants has meant that there is a greater understanding of the gene regulatory networks controlling maternal development of the anther and the resultant sporophytes. With the advent of the genome sequence and tools to allow the analysis of gene function, this knowledge base is now extending into the monocot crop rice. This has shown high levels of similarity between the networks of pollen development in Arabidopsis and rice, which will serve as valuable tools to understand and manipulate this developmental pathway further in plants.
Collapse
Affiliation(s)
- Zoe A Wilson
- University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.
| | | |
Collapse
|
250
|
Sheoran IS, Ross ARS, Olson DJH, Sawhney VK. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteomics 2008; 71:624-36. [PMID: 19032992 DOI: 10.1016/j.jprot.2008.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/08/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022]
Abstract
In the 7B-1 male-sterile mutant of tomato, pollen development breaks down prior to meiosis in microspore mother cells (MMCs). We have used the proteomic approach to identify differentially expressed proteins in the wild type (WT) and mutant anthers with the objective of analyzing their roles in normal pollen development and in male sterility. By using 2-DE and DIGE technologies, over 1800 spots were detected and of these 215 spots showed 1.5-fold or higher volume ratio in either WT or 7B-1 anthers. Seventy spots, either up-regulated in WT, or in 7B-1, were subjected to mass spectrometry and 59 spots representing 48 distinct proteins were identified. The proteins up-regulated in WT anthers included proteases, e.g., subtilase, proteasome subunits, and 5B-protein with potential roles in tapetum degeneration, FtsZ protein, leucine-rich repeat proteins, translational and transcription factors. In 7B-1 anthers, aspartic protease, superoxide dismutase, ACP reductase, ribonucleoprotein and diphosphate kinase were up-regulated. Also, cystatin inhibitory activity was high in the mutant and correlated with the expression of male sterility. Other proteins including calreticulin, Heat shock protein 70, glucoside hydrolase, and ATPase, were present in both genotypes. The function of identified proteins in tapetum and normal pollen development, and in male sterility is discussed.
Collapse
Affiliation(s)
- Inder S Sheoran
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
| | | | | | | |
Collapse
|