201
|
Zhao N, Ferrer JL, Ross J, Guan J, Yang Y, Pichersky E, Noel JP, Chen F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. PLANT PHYSIOLOGY 2008; 146:455-67. [PMID: 18162595 PMCID: PMC2245846 DOI: 10.1104/pp.107.110049] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 12/11/2007] [Indexed: 05/15/2023]
Abstract
The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
An advanced method for the determination of carboxyl methyl esterase activity using gas chromatography–chemical ionization–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 863:80-7. [DOI: 10.1016/j.jchromb.2008.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/24/2007] [Accepted: 01/04/2008] [Indexed: 11/18/2022]
|
203
|
Li X, Qin G, Chen Z, Gu H, Qu LJ. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. PLANT MOLECULAR BIOLOGY 2008; 66:315-27. [PMID: 18080804 DOI: 10.1007/s11103-007-9272-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 12/04/2007] [Indexed: 05/09/2023]
Abstract
GT factors are plant-specific trihelix DNA-binding transcription factors, which are involved in light responses and other developmental processes in plant. We identified a gain-of-function mutant of a GT-2 factor gene, PETAL LOSS (PTL), which displayed pleiotropic phenotypes including dwarfism, curly leaves, retarded growth and male sterility. We found that constitutive and ectopic over-expression of PTL driven by the CaMV 35S promoter could not recapitulate the phenotypes of the 35S enhancer-driven mutant ptl-D, and was lethal in some of the transgenic plants at the cotyledon developmental stage, suggesting that accurate temporal and spatial expression of PTL is essential for its proper functional implementation during plant development. Further analysis showed that ptl-D was defective in auxin action and that the alteration of auxin distribution corresponded to the curly leaf phenotype. The fact that degeneration of septum cells and subsequent breakage along the stomium was not observed in ptl-D anthers suggests that defective anther dehiscence was the cause for male sterility. Identification and characterization of the gain-of-function mutant ptl-D will improve our understanding of the diverse functions of GT factors during plant development.
Collapse
Affiliation(s)
- Xin Li
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
204
|
Gao P, Xin Z, Zheng ZL. The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS One 2008; 3:e1387. [PMID: 18167546 PMCID: PMC2148111 DOI: 10.1371/journal.pone.0001387] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 12/11/2007] [Indexed: 02/06/2023] Open
Abstract
The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar 1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants.
Collapse
Affiliation(s)
- Peng Gao
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
| | - Zeyu Xin
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
- Plant Sciences PhD Subprogram, Graduate School and University Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
205
|
Li LC, Qin GJ, Tsuge T, Hou XH, Ding MY, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu LJ. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. THE NEW PHYTOLOGIST 2008; 179:751-764. [PMID: 18557819 DOI: 10.1111/j.1469-8137.2008.02514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
* Auxin is essential for many aspects of plant growth and development, including the determination of lateral organ shapes. * Here, the characterization of a dominant Arabidopsis thaliana mutant spl-D (SPOROCYTELESS dominant), and the roles of SPL in auxin homeostasis and plant development, are reported. * The spl-D mutant displayed a severe up-curling leaf phenotype caused by increased expression of SPOROCYTELESS/NOZZLE (SPL/NZZ), a putative transcription factor gene that was previously linked to sporocyte formation. The spl-D plants also displayed pleiotropic developmental defects including fewer lateral roots, simpler venation patterns, and reduced shoot apical dominance. The leaf and floral phenotypes of spl-D and SPL over-expression lines were reminiscent of yucca (yuc) triple and quadruple mutants, suggesting that SPL may regulate auxin homeostasis. Consistent with this hypothesis, it was found that over-expression of SPL led to down-regulation of the auxin reporter DR5-GUS, and that many auxin-responsive genes were down-regulated in spl-D leaves. Interestingly, the expression of YUC2 and YUC6, two key genes in auxin biosynthesis, was significantly repressed in spl-D plants. * Taken together with the genetic and phenotypic analysis of spl-D/yuc6-D double mutant, these data suggest that SPL may regulate auxin homeostasis by repressing the transcription of YUC2 and YUC6 and participate in lateral organ morphogenesis.
Collapse
Affiliation(s)
- Lin-Chuan Li
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gen-Ji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Xian-Hui Hou
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mao-Yu Ding
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsuhiro Oka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhangliang Chen
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
206
|
Kai K, Wakasa K, Miyagawa H. Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates. PHYTOCHEMISTRY 2007; 68:2512-22. [PMID: 17628621 DOI: 10.1016/j.phytochem.2007.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 04/27/2007] [Accepted: 05/12/2007] [Indexed: 05/16/2023]
Abstract
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants.
Collapse
Affiliation(s)
- Kenji Kai
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
207
|
Zhang X, Chen Y, Wang ZY, Chen Z, Gu H, Qu LJ. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:512-25. [PMID: 17587236 DOI: 10.1111/j.1365-313x.2007.03156.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Circadian clocks are endogenous auto-regulatory mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24 h environmental cycles. Here we report the identification and characterization of an MYB-related gene, designated Circadian 1 (CIR1), that is involved in circadian regulation in Arabidopsis. Expression of CIR1 is transiently induced by light and oscillates with a circadian rhythm. The rhythmic expression of CIR1 is controlled by the central oscillator. Constitutive expression of CIR1 resulted in a shorter period length for the rhythms of four central oscillator components, and much lower amplitude for the rhythms of central oscillator components CCA1 and LHY. Furthermore, CIR1 over-expression severely affected the circadian rhythms of its own RNA and those of the slave oscillator EPR1 and effector genes Lhcb and CAT3. Plants that constitutively expressed CIR1 displayed delayed flowering, longer hypocotyls and reduced seed germination in the dark. These results suggest that CIR1 is possibly part of a regulatory feedback loop that controls a subset of the circadian outputs and modulates the central oscillator.
Collapse
Affiliation(s)
- Xiangbo Zhang
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
208
|
Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Choi YD. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2007; 64:1-15. [PMID: 17364223 DOI: 10.1007/s11103-006-9123-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/07/2006] [Indexed: 05/14/2023]
Abstract
We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.
Collapse
Affiliation(s)
- Yeon Jong Koo
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 2007; 17:249-63. [PMID: 17339883 DOI: 10.1038/cr.2007.7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcl1 is male sterile as a result of the failure of pollen germination. We show that the bcl1 mutant allele cannot be transmitted by male gametophytes and no homozygous bcl1 mutants were obtained. Analysis of pollen developmental stages indicates that the bcl1 mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.
Collapse
Affiliation(s)
- Genji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. PLANT CELL REPORTS 2007; 26:219-28. [PMID: 16972096 DOI: 10.1007/s00299-006-0229-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 06/03/2006] [Accepted: 06/06/2006] [Indexed: 05/11/2023]
Abstract
In plants, MYB transcription factors play important roles in many developmental processes and various defense responses. AtMYB24, as a member of R2R3-MYB gene family in Arabidopsis, was found mainly expressed in flowers, especially in microspores and ovules using Northern blots and in situ hybridization. It was further found that the expression of AtMYB24 was tightly regulated during anther development. Over-expression of AtMYB24 in transgenic plants resulted in pleiotropic phenotypes, including dwarfism and flower development defects, in particular, producing abnormal pollen grains and non-dehiscence anthers. Further analysis showed that the anther development of the AtMYB24-ox lines was retarded starting from the anther developmental stages 10-11. At stages 12 and 13, the septum and stomium cells of anthers would not break, and fewer or no fibrous bands were found in the endothecium and connective cells in the AtMYB24-ox plants. Similar aberrant anther phenotype was also observed in the AtMYB24-GR-ox lines treated with dexamethasone (DEX). Quantitative real-time PCR showed expression of genes involved in phenylpropanoid biosynthetic pathway, such as CHS and DFR, and AtGTP2 were altered in AtMYB24-ox lines. These results suggest an important role of AtMYB24 in the normal development of anthers in Arabidopsis.
Collapse
Affiliation(s)
- X Y Yang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
211
|
|
212
|
Lin Z, Yin K, Wang X, Liu M, Chen Z, Gu H, Qu LJ. Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:87-94. [PMID: 17298883 DOI: 10.1016/j.plaphy.2006.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/19/2006] [Indexed: 05/14/2023]
Abstract
CDC5, a Myb-related protein, is reported to be essential for the G(2) phase of cell cycle in yeast and animals, but little is known about its function in plants. In this study, Arabidopsis thaliana CDC5 (AtCDC5) is found to be nuclear localized, and the C-terminus of this protein is of transcriptional activation activity in yeast. By taking advantage of the virus induced gene silencing (VIGS) technique, we analyzed the phenotypes of the plants in which AtCDC5 is specifically silenced. The AtCDC5 VIGS plants died before bolting, in which accelerated cell death was detected. Further analysis showed that the transcripts of AtSPT and SAG13, but not SAG12, accumulated in these AtCDC5 VIGS plants, suggesting that the accelerated cell death is different from that occurred during leaf senescence. Furthermore, silencing of AtCDC5 by VIGS in either wild-type, npr1 or nahG plants all induces cell death, suggesting that SA is not crucial for the AtCDC5-associated cell death.
Collapse
Affiliation(s)
- Zhiqiang Lin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
213
|
Fukaki H, Okushima Y, Tasaka M. Auxin‐Mediated Lateral Root Formation in Higher Plants. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:111-37. [PMID: 17241906 DOI: 10.1016/s0074-7696(07)56004-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lateral root (LR) formation is an important organogenetic process that contributes to the establishment of root architecture in higher plants. In the angiosperms, LRs are initiated from the pericycle, an inner cell layer of the parent roots. Auxin is a key plant hormone that promotes LR formation, but the molecular mechanisms of auxin-mediated LR formation remain unknown. Molecular genetic studies using Arabidopsis mutants have revealed that the auxin transport system with a balance of influx and efflux is important for LR initiation and subsequent LR primordium development. In addition, normal auxin signaling mediated by two families of transcriptional regulators, Aux/IAAs and ARFs, is necessary for LR formation. This article is an update on the mechanisms of auxin-mediated LR formation in higher plants, particularly in Arabidopsis.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
214
|
Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. THE PLANT CELL 2007; 19:32-45. [PMID: 17220201 PMCID: PMC1820973 DOI: 10.1105/tpc.106.044602] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/22/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA(1) in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds.
Collapse
Affiliation(s)
- Marina Varbanova
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Chen H, Karplus VJ, Ma H, Deng XW. Plant biology research comes of age in China. THE PLANT CELL 2006; 18:2855-64. [PMID: 17170389 PMCID: PMC1693935 DOI: 10.1105/tpc.106.045393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Haodong Chen
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
216
|
Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu LJ, Gu H. Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun 2006; 341:1155-63. [PMID: 16460676 DOI: 10.1016/j.bbrc.2006.01.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/24/2022]
Abstract
MYB transcription factors play important roles in many plant developmental processes and various defense responses. Two groups of MYB transcription factors were found to share a W/Y-MDDIW motif. This motif alone shows no trans-activation activity in yeast, however, it enhances the trans-activation activity of the neighbor regions greatly. We further show that all the genes in the group 1, including the previously reported genes AtMYB21, PsMYB26, AmMYB305, and AmMYB340, are predominantly expressed in flowers. Furthermore, we found that these two groups of MYB transcription factor genes might be regulated by light, and probably preferentially expressed in the darkness, suggesting that they may play roles in the light signaling pathway.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Methylation and Demethylation of Plant Signaling Molecules. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s0079-9920(06)80044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|