201
|
Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. PLANT & CELL PHYSIOLOGY 2007; 48:763-74. [PMID: 17478547 DOI: 10.1093/pcp/pcm053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.
Collapse
Affiliation(s)
- Kazumasa Nito
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | | | | | | |
Collapse
|
202
|
Jonczyk M, Pathak KB, Sharma M, Nagy PD. Exploiting alternative subcellular location for replication: Tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 2007; 362:320-30. [PMID: 17292435 DOI: 10.1016/j.virol.2007.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/02/2006] [Accepted: 01/03/2007] [Indexed: 11/16/2022]
Abstract
Plus-strand RNA virus replication takes place on distinct membranous surfaces in infected cells via the assembly of viral replicase complexes involving multiple viral and host proteins. One group of tombusviruses, such as Tomato bushy stunt virus (TBSV), replicate on the surfaces of peroxisomal membranes in plant and yeast cells. Surprisingly, previous genome-wide screen performed in yeast demonstrated that a TBSV replicon RNA replicated as efficiently in yeast defective in peroxisome biogenesis as in the wt yeast (Panavas et al., Proc Natl Acad Sci U S A, 2005). To further test how the lack of peroxisomes could affect tombusvirus replication, we used yeast cells missing either PEX3 or PEX19 genes, which are absolutely essential for peroxisome biogenesis. Confocal microscopy-based approach revealed that the wild-type tombusvirus p33 replication protein accumulated in the endoplasmic reticulum (ER) in pex3Delta or pex19Delta yeast, suggesting that tombusvirus replication could take place on the surface of ER membrane. The activities of the isolated tombusvirus replicase preparations from wt, pex3Delta or pex19Delta yeasts were comparable, demonstrating that the assembly of the replicase was as efficient in the ER as in the authentic subcellular environments. The generation/accumulation of tombusvirus recombinants was similar in wt, pex3Delta and pex19Delta yeasts, suggesting that the rate of mistakes occurring during tombusvirus replication is comparable in the presence or absence of peroxisomes. Overall, this work demonstrates that a tombusvirus, relying on the wt replication proteins, can efficiently replicate on an alternative intracellular membrane. This suggests that RNA viruses might have remarkable flexibility for using various host membranes for their replication.
Collapse
Affiliation(s)
- Magdalena Jonczyk
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546-0312, USA
| | | | | | | |
Collapse
|
203
|
Tagami Y, Watanabe Y. Effects of brefeldin A on the localization of Tobamovirus movement protein and cell-to-cell movement of the virus. Virology 2007; 361:133-40. [PMID: 17174371 DOI: 10.1016/j.virol.2006.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/05/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
It has been demonstrated that the subcellular location of Tobamovirus movement protein (MP) which was fused with green fluorescent protein (MP:GFP) changed during the infection process. However, the intracellular route through which MP is transported and its biological meaning are still obscure. Treatment with brefeldin A (BFA), which disrupts ER-to-Golgi transport, inhibited the formation of irregularly shaped and filamentous structures of MP. In this condition, MP was still targeted to plasmodesmata in leaf cells. Furthermore, the viral cell-to-cell movement was not inhibited by BFA treatment. These data indicated that the targeting of viral replication complexes (VRCs) to plasmodesmata is mediated by a BFA-insensitive pathway and that the ER-to-Golgi transport pathway is not involved in viral intercellular movement.
Collapse
Affiliation(s)
- Yuko Tagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | | |
Collapse
|
204
|
Park NI, Muench DG. Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14. PLANTA 2007; 225:625-39. [PMID: 16953428 DOI: 10.1007/s00425-006-0385-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/14/2006] [Indexed: 05/05/2023]
Abstract
The exon junction complex (EJC) plays an important role in post-transcriptional control of gene expression. Mago nashi (Mago) and Y14 are core EJC proteins that operate as a functional unit in animal cells, and the Mago-Y14 heterodimer interacts with other EJC core and peripheral proteins. Little is known about the biochemical and cellular characteristics of the EJC and its orthologs in plants. Here, we demonstrate that Arabidopsis Mago and Y14 form a ternary complex with PYM, an RNA-binding protein that was previously shown to interact with the Mago-Y14 heterodimer in Drosophila. Fluorescence microscopy indicated that Arabidopsis Mago and Y14 are localized primarily in the nucleus, whereas PYM is mostly cytoplasmic. In vitro pull-down assays using recombinant proteins showed that the amino-terminal region of the Arabidopsis PYM interacts with the Mago-Y14 heterodimer, a similar observation to that previously reported for the animal versions of these proteins. However, we demonstrated also that Arabidopsis PYM has the ability to interact with monomeric Mago and monomeric Y14. Immunoprecipitation and tandem affinity purification from whole cell extracts detected a subtle interaction between the Arabidopsis Mago-Y14 heterodimer and PYM in flowers, indicating that the ternary complex is not abundant in plant cells. The regions of the polypeptide responsible for nuclear import and export were defined using protein truncations and site-directed mutagenesis. This study identifies unique characteristics of Arabidopsis Mago, Y14 and PYM compared to those observed in animal cells. These are predicted to have important functional implications associated with post-transcriptional regulation of gene expression in plant cells.
Collapse
Affiliation(s)
- Nam-il Park
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| | | |
Collapse
|
205
|
Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. THE PLANT CELL 2007; 19:333-50. [PMID: 17220199 PMCID: PMC1820951 DOI: 10.1105/tpc.106.045831] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 11/24/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.
Collapse
Affiliation(s)
- Travis Orth
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Zhou F, Wu G, Deng W, Pu Y, Wei C, Li Y. Interaction of rice dwarf virus outer capsid P8 protein with rice glycolate oxidase mediates relocalization of P8. FEBS Lett 2006; 581:34-40. [PMID: 17174956 DOI: 10.1016/j.febslet.2006.11.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 11/18/2022]
Abstract
Yeast two-hybrid and coimmunoprecipitation assays indicated that P8, an outer capsid protein of Rice dwarf phytoreovirus (RDV), interacts with rice glycolate oxidase (GOX), a typical enzyme of peroxisomes. Confocal immunofluorescence microscopy revealed that P8 was colocalized with GOX in peroxisomes. Time course analysis demonstrated that the localization of P8 in Spodoptera frugiperda cells changed from diffuse to discrete, punctuate inclusions during expression from 24 to 48 h post inoculation. Coexpression of GOX with P8 may target P8 into peroxisomes, which serve as replication sites for a number of viruses. Therefore, we conclude that the interaction of P8 with the GOX of host cells leads to translocation of P8 into peroxisomes and we further propose that the interaction between P8 and GOX may play important roles in RDV targeting into the replication site of host cells. Our findings have broad significance in studying the mechanisms whereby viruses target appropriate replication sites and begin their replication.
Collapse
Affiliation(s)
- Feng Zhou
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
207
|
Mullen RT, Trelease RN. The ER-peroxisome connection in plants: Development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1655-68. [PMID: 17049631 DOI: 10.1016/j.bbamcr.2006.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The perceived role of the ER in the biogenesis of plant peroxisomes has evolved significantly from the original "ER vesiculation" model, which portrayed co-translational import of proteins into peroxisomes originating from the ER, to the "ER semi-autonomous peroxisome" model wherein membrane lipids and post-translationally acquired peroxisomal membrane proteins (PMPs) were derived from the ER. Results from more recent studies of various plant PMPs including ascorbate peroxidase, PEX10 and PEX16, as well as a viral replication protein, have since led to the formulation of a more elaborate "ER semi-autonomous peroxisome maturation and replication" model. Herein we review these results in the context of this newly proposed model and its predecessor models. We discuss also key distinct features of the new model pertaining to its central premise that the ER defines the semi-autonomous maturation (maintenance/assembly/differentiation) and duplication (division) features of specialized classes of pre-existing plant peroxisomes. This model also includes a novel peroxisome-to-ER retrograde sorting pathway that may serve as a constitutive protein retrieval/regulatory system. In addition, new plant peroxisomes are envisaged to arise primarily by duplication of the pre-existing peroxisomes that receive essential membrane components from the ER.
Collapse
Affiliation(s)
- Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
208
|
Matheson LA, Hanton SL, Brandizzi F. Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:601-9. [PMID: 17010656 DOI: 10.1016/j.pbi.2006.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/20/2006] [Indexed: 05/12/2023]
Abstract
Significant advances have been made in recent years that have increased our understanding of the trafficking to and from membranes that are functionally linked to the Golgi apparatus in plants. New routes from the Golgi to organelles outside the secretory pathway are now being identified, revealing the importance of the Golgi apparatus as a major sorting station in the plant cell. This review discusses our current perception of Golgi structure and organization as well as the molecular mechanisms that direct traffic in and out of the Golgi.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | |
Collapse
|
209
|
Lay D, Gorgas K, Just WW. Peroxisome biogenesis: Where Arf and coatomer might be involved. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1678-87. [PMID: 17023067 DOI: 10.1016/j.bbamcr.2006.08.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/12/2006] [Accepted: 08/23/2006] [Indexed: 11/24/2022]
Abstract
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.
Collapse
Affiliation(s)
- Dorothee Lay
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
210
|
Van Ael E, Fransen M. Targeting signals in peroxisomal membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1629-38. [PMID: 17020786 DOI: 10.1016/j.bbamcr.2006.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Peroxisomal membrane proteins (PMPs) are encoded by the nuclear genome and translated on cytoplasmic ribosomes. Newly synthesized PMPs can be targeted directly from the cytoplasm to peroxisomes or travel to peroxisomes via the endoplasmic reticulum (ER). The mechanisms responsible for the targeting of these proteins to the peroxisomal membrane are still rather poorly understood. However, it is clear that the trafficking of PMPs to peroxisomes depends on the presence of cis-acting targeting signals, called mPTSs. These mPTSs show great variability both in the identity and number of requisite residues. An emerging view is that mPTSs consist of at least two functionally distinct domains: a targeting element, which directs the newly synthesized PMP from the cytoplasm to its target membrane, and a membrane-anchoring sequence, which is required for the permanent insertion of the protein into the peroxisomal membrane. In this review, we summarize our knowledge of the mPTSs currently identified.
Collapse
Affiliation(s)
- Elke Van Ael
- Katholieke Universiteit Leuven, Faculty of Medicine, Department of Molecular Cell Biology, Division of Pharmacology, Campus Gasthuisberg, Herestraat 49 bus 601, 3000 Leuven, Belgium
| | | |
Collapse
|
211
|
Jiang Y, Serviene E, Gal J, Panavas T, Nagy PD. Identification of essential host factors affecting tombusvirus RNA replication based on the yeast Tet promoters Hughes Collection. J Virol 2006; 80:7394-404. [PMID: 16840320 PMCID: PMC1563710 DOI: 10.1128/jvi.02686-05] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify essential host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model plant virus, we screened 800 yeast genes present in the yeast Tet promoters Hughes Collection. In total, we have identified 30 new host genes whose down-regulation either increased or decreased the accumulation of a TBSV replicon RNA. The identified essential yeast genes are involved in RNA transcription/metabolism, protein metabolism/transport, or other cellular processes. Detailed analysis of the effects of some of the identified yeast genes revealed that they might affect RNA replication by altering (i) the amounts/functions of p33 and p92(pol) viral replication proteins, (ii) the standard 10 to 20:1 ratio between p33 and p92(pol) in the viral replicase, (iii) the activity of the tombusvirus replicase, and (iv) the ratio of plus- versus minus-stranded RNA replication products. Altogether, this and previous genetic screening of yeast (Panavas et al., Proc. Natl. Acad. Sci. USA 102:7326-7331, 2005) led to the identification of 126 host genes (out of approximately 5,600 genes that represent approximately 95% of all the known and predicted yeast genes) that affected the accumulation of tombusvirus RNA.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
212
|
Panavas T, Stork J, Nagy PD. Use of double-stranded RNA templates by the tombusvirus replicase in vitro: Implications for the mechanism of plus-strand initiation. Virology 2006; 352:110-20. [PMID: 16765402 DOI: 10.1016/j.virol.2006.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Plus-stranded RNA viruses replicate efficiently in infected hosts producing numerous copies of the viral RNA. One of the long-standing mysteries in RNA virus replication is the occurrence and possible role of the double-stranded (ds)RNA formed between minus- and plus-strands. Using the partially purified Cucumber necrosis virus (CNV) replicase from plants and the recombinant RNA-dependent RNA polymerase (RdRp) of Turnip crinkle virus (TCV), in this paper, we demonstrate that both CNV replicase and the related TCV RdRp can utilize dsRNA templates to produce viral plus-stranded RNA in vitro. Sequence and structure of the dsRNA around the plus-strand initiation site had a significant effect on initiation, suggesting that initiation on dsRNA templates is a rate-limiting step. In contrast, the CNV replicase could efficiently synthesize plus-strand RNA on partial dsRNAs that had the plus-strand initiation promoter "exposed", suggesting that the polymerase activity of CNV replicase is strong enough to unwind extended dsRNA regions in the template during RNA synthesis. Based on the in vitro data, we propose that dsRNA forms might have functional roles during tombus- and carmovirus replication and the AU-rich nature of the terminus could be important for opening the dsRNA structure around the plus-strand initiation promoter for tombus- and carmoviruses and possibly many other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tadas Panavas
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
213
|
Fabian MR, White KA. Analysis of a 3'-translation enhancer in a tombusvirus: a dynamic model for RNA-RNA interactions of mRNA termini. RNA (NEW YORK, N.Y.) 2006; 12:1304-14. [PMID: 16682565 PMCID: PMC1484428 DOI: 10.1261/rna.69506] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/30/2006] [Indexed: 05/08/2023]
Abstract
Tomato bushy stunt virus is a (+)-strand RNA virus that is neither 5'-capped nor 3'-polyadenylated. Translation of viral proteins is instead mediated by an RNA element, the 3'-cap-independent translational enhancer (3'CITE), which is located in its 3' untranslated region (UTR). The 3'CITE is proposed to recruit the translational machinery to the viral message, while a long-distance RNA-RNA interaction between the 3'CITE and 5' UTR is thought to deliver the 43S ribosomal subunit to the 5' end of the viral mRNA. Here we provide the first evidence that the 5' UTR and 3'CITE interact physically. Mutational analysis showed that formation of this RNA-RNA interaction in vitro correlates well with efficient translation in vivo, thus supporting its functional relevance. Other analyses of the 3'CITE confirmed an overall Y-shaped RNA secondary structure and demonstrated the importance of numerous minor structural features for efficient translation of viral mRNAs. Functional studies on the role of the 5' UTR revealed that despite the absence of a cap structure, 43S subunits load at the very 5' end and scan in a 3' direction. These results indicate that the 5'-3' RNA-RNA interaction is likely disrupted by scanning ribosomal subunits and suggest a dynamic model for the interaction of mRNA termini during active translation.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
214
|
Titorenko VI, Mullen RT. Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER. ACTA ACUST UNITED AC 2006; 174:11-7. [PMID: 16801391 PMCID: PMC2064154 DOI: 10.1083/jcb.200604036] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes have long been viewed as semiautonomous, static, and homogenous organelles that exist outside the secretory and endocytic pathways of vesicular flow. However, growing evidence supports the view that peroxisomes actually constitute a dynamic endomembrane system that originates from the endoplasmic reticulum. This review highlights the various strategies used by evolutionarily diverse organisms for coordinating the flow of membrane-enclosed carriers through the peroxisomal endomembrane system and critically evaluates the dynamics and molecular mechanisms of this multistep process.
Collapse
|
215
|
Mullen RT, McCartney AW, Flynn CR, Smith GS. Peroxisome biogenesis and the formation of multivesicular peroxisomes during tombusvirus infection: a role for ESCRT?This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.
Collapse
Affiliation(s)
- Robert T. Mullen
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Andrew W. McCartney
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - C. Robb Flynn
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Graham S.T. Smith
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| |
Collapse
|