201
|
Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, Moore J, Montes D, Mosley T, Resendez J, Nguyen H, Wilson L, Campbell A, Sudarshan D, Lloyd A. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev Biol 2016; 419:54-63. [PMID: 27046632 DOI: 10.1016/j.ydbio.2016.03.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
The brown color of Arabidopsis seeds is caused by the deposition of proanthocyanidins (PAs or condensed tannins) in their inner testa layer. A transcription factor complex consisting of TT2, TT8 and TTG1 controls expression of PA biosynthetic genes, just as similar TTG1-dependent complexes have been shown to control flavonoid pigment pathway gene expression in general. However, PA synthesis is controlled by at least one other gene. TTG2 mutants lack the pigmentation found in wild-type seeds, but produce other flavonoid compounds, such as anthocyanins in the shoot, suggesting that TTG2 regulates genes in the PA biosynthetic branch of the flavonoid pathway. We analyzed the expression of PA biosynthetic genes within the developing seeds of ttg2-1 and wild-type plants for potential TTG2 regulatory targets. We found that expression of TT12, encoding a MATE type transporter, is dependent on TTG2 and that TTG2 can bind to the upstream regulatory region of TT12 suggesting that TTG2 directly regulates TT12. Ectopic expression of TT12 in ttg2-1 plants partially restores seed coat pigmentation. Moreover, we show that TTG2 regulation of TT12 is dependent on TTG1 and that TTG1 and TTG2 physically interact. The observation that TTG1 interacts with TTG2, a WRKY type transcription factor, proposes the existence of a novel TTG1-containing complex, and an addendum to the existing paradigm of flavonoid pathway regulation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Matthew Brown
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Greg Hatlestad
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Neda Akhavan
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Tyler Smith
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austin Hembd
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua Moore
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Montes
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Trenell Mosley
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Juan Resendez
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huy Nguyen
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Wilson
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Duncan Sudarshan
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| |
Collapse
|
202
|
Hu DG, Sun CH, Ma QJ, You CX, Cheng L, Hao YJ. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples. PLANT PHYSIOLOGY 2016; 170:1315-30. [PMID: 26637549 PMCID: PMC4775115 DOI: 10.1104/pp.15.01333] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/04/2015] [Indexed: 05/18/2023]
Abstract
Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| | - Cui-Hui Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| | - Lailiang Cheng
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China (D.-G.H., C.-H.S., Q.-J.M., C.-X.Y., Y.-J.H.); andDepartment of Horticulture, Cornell University, Ithaca, New York 14853 (L.C.)
| |
Collapse
|
203
|
Verweij W, Spelt CE, Bliek M, de Vries M, Wit N, Faraco M, Koes R, Quattrocchio FM. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis. THE PLANT CELL 2016; 28:786-803. [PMID: 26977085 PMCID: PMC4826004 DOI: 10.1105/tpc.15.00608] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/08/2016] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development.
Collapse
Affiliation(s)
- Walter Verweij
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands
| | - Cornelis E Spelt
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Mattijs Bliek
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Michel de Vries
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands
| | - Niek Wit
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands
| | - Marianna Faraco
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands
| | - Ronald Koes
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Francesca M Quattrocchio
- Department of Molecular and Cell Biology, VU University, 1071 HK Amsterdam, The Netherlands Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
204
|
Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants. Methods Mol Biol 2016. [PMID: 26843171 DOI: 10.1007/978-1-4939-3393-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The characterization of membrane transport of specialized metabolites is essential to understand their metabolic fluxes and to implement metabolic engineering strategies towards the production of increased levels of these valuable metabolites. Here, we describe a set of procedures to isolate tonoplast membranes, to check their purity and functionality, and to characterize their transport properties. Transport is assayed directly by HPLC analysis and quantification of the metabolites actively accumulated in the vesicles, and indirectly using the pH sensitive fluorescent probe ACMA (9-amino-6- chloro-2-methoxyacridine), when a proton antiport is involved.
Collapse
|
205
|
Gao JS, Wu N, Shen ZL, Lv K, Qian SH, Guo N, Sun X, Cai YP, Lin Y. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.). Gene 2016; 576:763-9. [DOI: 10.1016/j.gene.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
|
206
|
Pérez-Díaz R, Madrid-Espinoza J, Salinas-Cornejo J, González-Villanueva E, Ruiz-Lara S. Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera. FRONTIERS IN PLANT SCIENCE 2016; 7:1166. [PMID: 27536314 PMCID: PMC4971086 DOI: 10.3389/fpls.2016.01166] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 05/20/2023]
Abstract
In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different specificities for flavonoid ligands. In addition, our data provide evidence to suggest that GST-mediate flavonoid transport is glutathione-dependent.
Collapse
|
207
|
Paim Pinto DL, Brancadoro L, Dal Santo S, De Lorenzis G, Pezzotti M, Meyers BC, Pè ME, Mica E. The Influence of Genotype and Environment on Small RNA Profiles in Grapevine Berry. FRONTIERS IN PLANT SCIENCE 2016; 7:1459. [PMID: 27761135 PMCID: PMC5050227 DOI: 10.3389/fpls.2016.01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/13/2016] [Indexed: 05/21/2023]
Abstract
Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols.
Collapse
Affiliation(s)
| | - Lucio Brancadoro
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Silvia Dal Santo
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Mario Pezzotti
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
- Division of Plant Sciences, University of Missouri–ColumbiaColumbia, MO, USA
| | - Mario E. Pè
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
| | - Erica Mica
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
- Genomics Research Centre, Agricultural Research CouncilFiorenzuola d'Arda, Italy
- *Correspondence: Erica Mica
| |
Collapse
|
208
|
Li MW, Muñoz NB, Wong CF, Wong FL, Wong KS, Wong JWH, Qi X, Li KP, Ng MS, Lam HM. QTLs Regulating the Contents of Antioxidants, Phenolics, and Flavonoids in Soybean Seeds Share a Common Genomic Region. FRONTIERS IN PLANT SCIENCE 2016; 7:854. [PMID: 27379137 PMCID: PMC4906965 DOI: 10.3389/fpls.2016.00854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/31/2016] [Indexed: 05/21/2023]
Abstract
Soybean seeds are a rich source of phenolic compounds, especially isoflavonoids, which are important nutraceuticals. Our study using 14 wild- and 16 cultivated-soybean accessions shows that seeds from cultivated soybeans generally contain lower total antioxidants compared to their wild counterparts, likely an unintended consequence of domestication or human selection. Using a recombinant inbred population resulting from a wild and a cultivated soybean parent and a bin map approach, we have identified an overlapping genomic region containing major quantitative trait loci (QTLs) that regulate the seed contents of total antioxidants, phenolics, and flavonoids. The QTL for seed antioxidant content contains 14 annotated genes based on the Williams 82 reference genome (Gmax1.01). None of these genes encodes functions that are related to the phenylpropanoid pathway of soybean. However, we found three putative Multidrug And Toxic Compound Extrusion (MATE) transporter genes within this QTL and one adjacent to it (GmMATE1-4). Moreover, we have identified non-synonymous changes between GmMATE1 and GmMATE2, and that GmMATE3 encodes an antisense transcript that expresses in pods. Whether the polymorphisms in GmMATE proteins are major determinants of the antioxidant contents, or whether the antisense transcripts of GmMATE3 play important regulatory roles, awaits further functional investigations.
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Nacira B. Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias–INTACórdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Chi-Fai Wong
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Kwong-Sen Wong
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Johanna Wing-Hang Wong
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Xinpeng Qi
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Kwan-Pok Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|
209
|
Ogo Y, Mori T, Nakabayashi R, Saito K, Takaiwa F. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:95-106. [PMID: 26438413 PMCID: PMC4682426 DOI: 10.1093/jxb/erv429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20-40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances.
Collapse
Affiliation(s)
- Yuko Ogo
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-ku, Chiba 260-8675, Japan
| | - Fumio Takaiwa
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
210
|
Kitamura S, Oono Y, Narumi I. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT. PLANT MOLECULAR BIOLOGY 2016; 90:7-18. [PMID: 26608698 DOI: 10.1007/s11103-015-0389-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/06/2015] [Indexed: 05/28/2023]
Abstract
Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.
Collapse
Affiliation(s)
- Satoshi Kitamura
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Unit, Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, 370-1292, Japan.
| | - Yutaka Oono
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Unit, Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, 370-1292, Japan
| | - Issay Narumi
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Unit, Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, 370-1292, Japan
- Faculty of Life Sciences, Toyo University, Gunma, 374-0193, Japan
| |
Collapse
|
211
|
Bajaj D, Das S, Upadhyaya HD, Ranjan R, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:979. [PMID: 26635822 PMCID: PMC4647070 DOI: 10.3389/fpls.2015.00979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/26/2015] [Indexed: 05/29/2023]
Abstract
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Shouvik Das
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | - Rajeev Ranjan
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Saurabh Badoni
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | | | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | | | | |
Collapse
|
212
|
Wang R, Liu X, Liang S, Ge Q, Li Y, Shao J, Qi Y, An L, Yu F. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6327-43. [PMID: 26160579 DOI: 10.1093/jxb/erv344] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The growth of higher plants is under complex regulation to ensure the elaboration of developmental programmes under a changing environment. To dissect these regulatory circuits, we carried out genetic screens for Arabidopsis abnormal shoot (abs) mutants with altered shoot development. Here, we report the isolation of two dominant mutants, abs3-1D and abs4-1D, through activation tagging. Both mutants showed a 'bushy' loss of apical dominance phenotype. ABS3 and ABS4 code for two closely related putative Multidrug and Toxic Compound Extrusion (MATE) family of efflux transporters, respectively. ABS3 and ABS4, as well as two related MATE genes, ABS3-Like1 (ABS3L1) and ABS3L2, showed diverse tissue expression profiles but their gene products all localized to the late endosome/prevacuole (LE/PVC) compartment. The over-expression of these four genes individually led to the inhibition of hypocotyl cell elongation in the light. On the other hand, the quadruple knockout mutant (mateq) showed the opposite phenotype of an enhanced hypocotyl cell elongation in the light. Hypocotyl cell elongation and de-etiolation processes in the dark were also affected by the mutations of these genes. Exogenously applied sucrose attenuated the inhibition of hypocotyl elongation caused by abs3-1D and abs4-1D in the dark, and enhanced the hypocotyl elongation of mateq under prolonged dark treatment. We determined that ABS3 genetically interacts with the photoreceptor gene PHYTOCHROME B (PHYB). Our results demonstrate that ABS3 and related MATE family transporters are potential negative regulators of hypocotyl cell elongation and support a functional link between the endomembrane system, particularly the LE/PVC, and the regulation of plant cell elongation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Ge
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanfeng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
213
|
Abstract
Subcellular flavonoid transport and its underlying regulatory mechanisms are still poorly understood, but are fascinating research frontiers in plant science. Recent studies support and further extend previous hypotheses indicating that vacuolar sequestration of flavonoids involves vesicle trafficking, membrane transporters, and glutathione S-transferase (GST). However, the question remains to be addressed of how three distinct but nonexclusive mechanisms are functionally integrated into diverse but redundant transport routes for vacuolar sequestration or extracellular secretion of flavonoids. In this review, I highlight recent progress in understanding flavonoid-transporting vesicle behavior and properties, GST and membrane transporter functions and mechanisms, and flavonoid transport substrate specificity and preference.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
214
|
Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. THE PLANT CELL 2015; 27:2545-59. [PMID: 26342015 PMCID: PMC4815043 DOI: 10.1105/tpc.15.00589] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 05/18/2023]
Abstract
Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole.
Collapse
Affiliation(s)
- Alexandra Chanoca
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nik Kovinich
- Center for Applied Plant Sciences, Department of Molecular Genetics and Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Brian Burkel
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Samantha Stecha
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Andres Bohorquez-Restrepo
- Center for Applied Plant Sciences, Department of Molecular Genetics and Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Takashi Ueda
- Department of Biological Sciences, University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033, Japan
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Erich Grotewold
- Center for Applied Plant Sciences, Department of Molecular Genetics and Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706 Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
215
|
Parinthawong N, Cottier S, Buchala A, Nawrath C, Métraux JP. Localization and expression of EDS5H a homologue of the SA transporter EDS5. BMC PLANT BIOLOGY 2015; 15:135. [PMID: 26055508 PMCID: PMC4459457 DOI: 10.1186/s12870-015-0518-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/01/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND An important signal transduction pathway in plant defence depends on the accumulation of salicylic acid (SA). SA is produced in chloroplasts and the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5; At4g39030) is necessary for the accumulation of SA after pathogen and abiotic stress. EDS5 is localized at the chloroplast and functions in transporting SA from the chloroplast to the cytoplasm. EDS5 has a homologue called EDS5H (EDS5 HOMOLOGUE; At2g21340) but its relationship to EDS5 has not been described and its function is not known. RESULTS EDS5H exhibits about 72% similarity and 59% identity to EDS5. In contrast to EDS5 that is induced after pathogen inoculation, EDS5H was constitutively expressed in all green tissues, independently of pathogen infection. Both transporters are located at the envelope of the chloroplast, the compartment of SA biosynthesis. EDS5H is not involved with the accumulation of SA after inoculation with a pathogen or exposure to UV stress. A phylogenetic analysis supports the hypothesis that EDS5H may be an H(+)/organic acid antiporter like EDS5. CONCLUSIONS The data based on genetic and molecular studies indicate that EDS5H despite its homology to EDS5 does not contribute to pathogen-induced SA accumulation like EDS5. EDS5H most likely transports related substances such as for example phenolic acids, but unlikely SA.
Collapse
Affiliation(s)
- Nonglak Parinthawong
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
- Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, 10520, Bangkok, Thailand.
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Antony Buchala
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Christiane Nawrath
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| | | |
Collapse
|
216
|
Appelhagen I, Nordholt N, Seidel T, Spelt K, Koes R, Quattrochio F, Sagasser M, Weisshaar B. TRANSPARENT TESTA 13 is a tonoplast P3A -ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:840-9. [PMID: 25891958 DOI: 10.1111/tpj.12854] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/05/2015] [Accepted: 04/09/2015] [Indexed: 05/23/2023]
Abstract
Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P-type H(+) -ATPases in the plasma membrane, and multimeric vacuolar-type H(+) -ATPases (V-ATPases) and vacuolar H(+) -pyrophosphatases (H(+) -PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A -ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA-filled central vacuoles as observed in the wild-type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P-type H(+) -ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H(+) -PPase VHP1. Our findings indicate that the P3A -ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12-mediated transport of PA precursors to the vacuole.
Collapse
Affiliation(s)
- Ingo Appelhagen
- Genome Research, Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Niclas Nordholt
- Genome Research, Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Universitätsstraße 25, 33501, Bielefeld, Germany
| | - Kees Spelt
- Department for Molecular Cell Biology, VU University, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ronald Koes
- Department for Molecular Cell Biology, VU University, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Francesca Quattrochio
- Department for Molecular Cell Biology, VU University, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin Sagasser
- Genome Research, Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Genome Research, Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| |
Collapse
|
217
|
Ogawa W, Minato Y, Dodan H, Onishi M, Tsuchiya T, Kuroda T. Characterization of MATE-type multidrug efflux pumps from Klebsiella pneumoniae MGH78578. PLoS One 2015; 10:e0121619. [PMID: 25807080 PMCID: PMC4373734 DOI: 10.1371/journal.pone.0121619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
We previously described the cloning of genes related to drug resistance from Klebsiella pneumoniae MGH78578. Of these, we identified a putative gene encoding a MATE-type multidrug efflux pump, and named it ketM. Escherichia coli KAM32 possessing ketM on a plasmid showed increased minimum inhibitory concentrations for norfloxacin, ciprofloxacin, cefotaxime, acriflavine, Hoechst 33342, and 4',6-diamidino-2-phenyl indole (DAPI). The active efflux of DAPI was observed in E. coli KAM32 possessing ketM on a plasmid. The expression of mRNA for ketM was observed in K. pneumoniae cells, and we subsequently disrupted ketM in K. pneumoniae ATCC10031. However, no significant changes were observed in drug resistance levels between the parental strain ATCC10031 and ketM disruptant, SKYM. Therefore, we concluded that KetM was a multidrug efflux pump, that did not significantly contribute to intrinsic resistance to antimicrobial chemicals in K. pneumoniae. MATE-type transporters are considered to be secondary transporters; therefore, we investigated the coupling cations of KetM. DAPI efflux by KetM was observed when lactate was added to produce a proton motive force, indicating that KetM effluxed substrates using a proton motive force. However, the weak efflux of DAPI by KetM was also noted when NaCl was added to the assay mixture without lactate. This result suggests that KetM may utilize proton and sodium motive forces.
Collapse
Affiliation(s)
- Wakano Ogawa
- Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, Fukuoka, Japan
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| | - Yusuke Minato
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hayata Dodan
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoyasu Onishi
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomofusa Tsuchiya
- Department of Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
218
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|
219
|
Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, Ding Y, Sun H, Li Y. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS One 2015; 10:e0118578. [PMID: 25781331 PMCID: PMC4363705 DOI: 10.1371/journal.pone.0118578] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.
Collapse
Affiliation(s)
- Li Chen
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yushan Liu
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongdi Liu
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Limin Kang
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinman Geng
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuzhuo Gai
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yunlong Ding
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
220
|
Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 2014; 10:e1004856. [PMID: 25521508 PMCID: PMC4270456 DOI: 10.1371/journal.pgen.1004856] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. Plant secondary metabolites accumulate in seeds to protect the developing embryo. Using an RNA sequencing approach in conjunction with enrichment analyses we identified the homeotic MADS-domain gene SEEDSTICK (STK) as a regulator of metabolic processes during seed development. We analyzed the role of STK as a key regulator of the production of proanthocyanidins, compounds which are important for the pigmentation of the seed. STK directly regulates a network of metabolic genes, and is also implicated in changes occurring in the chromatin landscape. Our work demonstrates that a key homeotic transcription factor not only determines the identity of ovules but also controls metabolic processes that occur subsequent to the initial identity determination process, thus suggesting a link between identity determination and cell-specific (metabolic) processes.
Collapse
Affiliation(s)
- Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
| | - Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Paloma Rueda-Romero
- Centro de Biotecnología y Genómica de Plantas-UPM-INIA, ETSI Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | | | | | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Martin M. Kater
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
- * E-mail:
| |
Collapse
|
221
|
Feng H, Li Y, Wang S, Zhang L, Liu Y, Xue F, Sun Y, Wang Y, Sun J. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5759-5769. [PMID: 25086591 DOI: 10.1093/jxb/eru286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres.
Collapse
Affiliation(s)
- Hongjie Feng
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yanjun Li
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Liangliang Zhang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Yongchuang Liu
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Fei Xue
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yuqiang Sun
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang Province, China
| | - Yongmei Wang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| |
Collapse
|
222
|
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, Hara-Nishimura I. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:410-23. [PMID: 25116949 DOI: 10.1111/tpj.12637] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi-enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non-exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter-mediated pathway and the vesicle trafficking-mediated pathway. No molecules involved in the vesicle trafficking-mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan-colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis-sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome-like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9-mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.
Collapse
Affiliation(s)
- Takuji Ichino
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Lim FY, Keller NP. Spatial and temporal control of fungal natural product synthesis. Nat Prod Rep 2014; 31:1277-86. [PMID: 25142354 PMCID: PMC4162804 DOI: 10.1039/c4np00083h] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite their oftentimes-elusive ecological role, fungal natural products have, for better or worse, impacted our daily lives tremendously owing to their diverse and potent bioactive properties. This Janus-faced nature of fungal natural products inevitably ushered in a field of research dedicated towards understanding the ecology, organisms, genes, enzymes, and biosynthetic pathways that give rise to this arsenal of diverse and complex chemistry. Ongoing research in fungal secondary metabolism has not only increased our appreciation for fungal natural products as an asset but also sheds light on the pivotal role that these once-regarded "metabolic wastes" play in fungal biology, defense, and stress response in addition to their potential contributions towards human mycoses. Full orchestration of secondary metabolism requires not only the seamless coordination between temporal and spatial control of SM-associated machineries (e.g. enzymes, cofactors, intermediates, and end-products) but also integration of these machineries into primary metabolic processes and established cellular mechanisms. An intriguing, but little known aspect of microbial natural product synthesis lies in the spatial organization of both pathway intermediates and enzymes responsible for the production of these compounds. In this highlight, we summarize some major breakthroughs in understanding the genes and regulation of fungal natural product synthesis and introduce the current state of knowledge on the spatial and temporal control of fungal natural product synthesis.
Collapse
Affiliation(s)
- Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A.,Corresponding author Professor Nancy P. Keller, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI, U.S.A., Tel: (608)-262-9795; Fax: (608)-262-8418;
| |
Collapse
|
224
|
Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A, Moriyasu M, Yazaki K. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS One 2014; 9:e108789. [PMID: 25268729 PMCID: PMC4182609 DOI: 10.1371/journal.pone.0108789] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022] Open
Abstract
Alkaloids play a key role in higher plant defense against pathogens and herbivores. Following its biosynthesis in root tissues, nicotine, the major alkaloid of Nicotiana species, is translocated via xylem transport toward the accumulation sites, leaf vacuoles. Our transcriptome analysis of methyl jasmonate-treated tobacco BY-2 cells identified several multidrug and toxic compound extrusion (MATE) transporter genes. In this study, we characterized a MATE gene, Nicotiana tabacum jasmonate-inducible alkaloid transporter 2 (Nt-JAT2), which encodes a protein that has 32% amino acid identity with Nt-JAT1. Nt-JAT2 mRNA is expressed at a very low steady state level in whole plants, but is rapidly upregulated by methyl jasmonate treatment in a leaf-specific manner. To characterize the function of Nt-JAT2, yeast cells were used as the host organism in a cellular transport assay. Nt-JAT2 was localized at the plasma membrane in yeast cells. When incubated in nicotine-containing medium, the nicotine content in Nt-JAT2-expressing cells was significantly lower than in control yeast. Nt-JAT2-expressing cells also showed lower content of other alkaloids like anabasine and anatabine, but not of flavonoids, suggesting that Nt-JAT2 transports various alkaloids including nicotine. Fluorescence assays in BY-2 cells showed that Nt-JAT2-GFP was localized to the tonoplast. These findings indicate that Nt-JAT2 is involved in nicotine sequestration in leaf vacuoles following the translocation of nicotine from root tissues.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Department of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Shota Minami
- Department of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Masahiko Morita
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Minaho Hayashida
- Department of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Shingo Ito
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Kojiro Takanashi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Masataka Moriyasu
- Department of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| |
Collapse
|
225
|
Ferraro K, Jin AL, Nguyen TD, Reinecke DM, Ozga JA, Ro DK. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds. BMC PLANT BIOLOGY 2014; 14:238. [PMID: 25928382 PMCID: PMC4175280 DOI: 10.1186/s12870-014-0238-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/02/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. RESULTS PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. CONCLUSION Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in development to be used as substrates for polymerization into PAs. Biochemically competent recombinant PsANR and PsLAR activities were consistent with the pea seed coat PA profile composed of both cis- and trans-flavan-3-ols. Since the expression of PsLAR in Arabidopsis did not alter the PA subunit profile (which is only comprised of cis-flavan-3-ols), it necessitates further investigation of in planta metabolic flux through PsLAR.
Collapse
Affiliation(s)
- Kiva Ferraro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Alena L Jin
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Trinh-Don Nguyen
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| |
Collapse
|
226
|
Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. PLANT CELL REPORTS 2014; 33:1147-59. [PMID: 24700246 DOI: 10.1007/s00299-014-1604-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 05/18/2023]
Abstract
VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important quality components of many fruits. PAs biosynthesis is part of the flavonoid pathway that also produces anthocyanins and flavonols. In grape fruits, PAs are present in seeds and skin tissues. PAs are synthesized in the cytoplasm and accumulated into the vacuole and apoplast; however, little is known about the mechanisms involved in the transport of these compounds to such cellular compartments. A gene encoding a Multidrug And Toxic compound Extrusion (MATE) family protein suggested to transport anthocyanins-named VvMATE1-was used to identify a second gene of the MATE family, VvMATE2. Analysis of their deduced amino acid sequences and the phylogenetic relationship with other MATE-like proteins indicated that VvMATE1 and VvMATE2 encode putative PA transporters. Subcellular localization assays in Arabidopsis protoplasts transformed with VvMATE-GFP fusion constructs along with organelle-specific markers revealed that VvMATE1 is localized in the tonoplast whereas VvMATE2 is localized in the Golgi complex. Major expression of both genes occurs during the early stages of seed development concomitant with the accumulation of PAs. Both genes are poorly expressed in the skin of berries while VvMATE2 is also expressed in leaves. The presence of putative cis-acting elements in the promoters of VvMATE1 and VvMATE2 may explain the differential transcriptional regulation of these genes in grapevine. Altogether, these results suggest that these MATE proteins could mediate the transport and accumulation of PAs in grapevine through different routes and cellular compartments.
Collapse
Affiliation(s)
- Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
227
|
|
228
|
Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 2014; 46:714-21. [PMID: 24908251 DOI: 10.1038/ng.3007] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Plant metabolites are important to world food security in terms of maintaining sustainable yield and providing food with enriched phytonutrients. Here we report comprehensive profiling of 840 metabolites and a further metabolic genome-wide association study based on ∼6.4 million SNPs obtained from 529 diverse accessions of Oryza sativa. We identified hundreds of common variants influencing numerous secondary metabolites with large effects at high resolution. We observed substantial heterogeneity in the natural variation of metabolites and their underlying genetic architectures among different subspecies of rice. Data mining identified 36 candidate genes modulating levels of metabolites that are of potential physiological and nutritional importance. As a proof of concept, we functionally identified or annotated five candidate genes influencing metabolic traits. Our study provides insights into the genetic and biochemical bases of rice metabolome variation and can be used as a powerful complementary tool to classical phenotypic trait mapping for rice improvement.
Collapse
|
229
|
Remy E, Duque P. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 2014; 5:201. [PMID: 24910617 PMCID: PMC4038776 DOI: 10.3389/fphys.2014.00201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
230
|
Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. THE NEW PHYTOLOGIST 2014; 202:132-144. [PMID: 24299194 DOI: 10.1111/nph.12620] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/03/2013] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, proanthocyanidins (PAs) accumulate in the innermost cell layer of the seed coat (i.e. endothelium, chalaza and micropyle). The expression of the biosynthetic genes involved relies on the transcriptional activity of R2R3-MYB and basic helix-loop-helix (bHLH) proteins which form ternary complexes ('MBW') with TRANSPARENT TESTA GLABRA1 (TTG1) (WD repeat protein). The identification of the direct targets and the determination of the nature and spatio-temporal activity of these MBW complexes are essential steps towards a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. In this study, various molecular, genetic and biochemical approaches were used. Here, we have demonstrated that, of the 12 studied genes of the pathway, only dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), BANYULS (BAN), TRANSPARENT TESTA 19 (TT19), TT12 and H(+) -ATPase isoform 10 (AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex plays the major role in developing seeds, three additional MBW complexes (i.e. MYB5-TT8-TTG1, TT2-EGL3-TTG1 and TT2-GL3-TTG1) were also shown to be involved, in a tissue-specific manner. Finally, a minimal promoter was identified for each of the target genes of the MBW complexes. Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, this study provides a new and comprehensive view of the transcriptional regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Damaris Grain
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Sophie Bobet
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - José Le Gourrierec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Johanne Thévenin
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Zsolt Kelemen
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Loïc Lepiniec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Christian Dubos
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| |
Collapse
|
231
|
Khan D, Millar JL, Girard IJ, Belmonte MF. Transcriptional circuitry underlying seed coat development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:51-60. [PMID: 24576764 DOI: 10.1016/j.plantsci.2014.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/10/2023]
Abstract
We analyzed two sub-regions of the maternal seed coat, chalazal (CZSC) and distal (SC), using transcriptomic and histological analyses in the model plant Arabidopsis thaliana. Hierarchical clustering analysis showed that the CZSC and SC are transcriptionally distinct, though the two sub-regions are more similar during early stages of seed development. Robust statistical and network analysis revealed novel roles for both sub-regions during the course of the seed lifecycle and provides insight into the regulatory circuitry underlying these poorly studied sub-regions of the seed. Data show many of the processes that characterize the SC including starch deposition during the morphogenesis phase, and mucilage deposition and cell wall thickening during the maturation phase, are either absent or expressed to a much lesser extent in the CZSC. We further analyzed the CZSC in detail and show that this sub-region is likely involved in the control of information into the seed from the maternal plant and that some of these processes are predicted to operate through the activity of bZIP transcription factors through the G-box DNA sequence motif.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Jenna L Millar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2.
| |
Collapse
|
232
|
Tohge T, Fernie AR. Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions. FRONTIERS IN PLANT SCIENCE 2014; 5:75. [PMID: 24672529 PMCID: PMC3955873 DOI: 10.3389/fpls.2014.00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes.
Collapse
Affiliation(s)
- Takayuki Tohge
- *Correspondence: Takayuki Tohge, Department 1 (Willmitzer), Central Metabolism, Max Planck Institute for Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany e-mail:
| | | |
Collapse
|
233
|
David LC, Dechorgnat J, Berquin P, Routaboul JM, Debeaujon I, Daniel-Vedele F, Ferrario-Méry S. Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:885-93. [PMID: 24532452 PMCID: PMC3924729 DOI: 10.1093/jxb/ert481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
NRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a distinctive pale-brown seed coat that is usually associated with a defect in flavonoid oxidation. Indeed, this phenotype resembled those of tt10 mutant seeds defective in the laccase-like enzyme TT10/LAC15, which is involved in the oxidative polymerization of flavonoids such as the proantocyanidins (PAs) (i.e. epicatechin monomers and PA oligomers) and flavonol glycosides. nrt2.7-2 and tt10-2 mutant seeds displayed the same higher accumulation of PAs, but were partially distinct, since flavonol glycoside accumulation was not affected in the nrt2.7-2 seeds. Moreover, measurement of in situ laccase activity excluded a possibility of the nrt2.7-2 mutation affecting the TT10 enzymic activity at the early stage of seed development. Functional complementation of the nrt2.7-2 mutant by overexpression of a full-length NRT2.7 cDNA clearly demonstrated the link between the nrt2.7 mutation and the PA phenotype. However, the PA-related phenotype of nrt2.7-2 seeds was not strictly correlated to the nitrate content of seeds. No correlation was observed when nitrate was lowered in seeds due to limited nitrate nutrition of plants or to lower nitrate storage capacity in leaves of clca mutants deficient in the vacuolar anionic channel CLCa. All together, the results highlight a hitherto-unknown function of NRT2.7 in PA accumulation/oxidation.
Collapse
Affiliation(s)
- Laure C. David
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
- * These authors contributed equally to this manuscript
| | - Julie Dechorgnat
- University of Adelaide, School of Agriculture Food and Wine, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
- * These authors contributed equally to this manuscript
| | - Patrick Berquin
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Jean Marc Routaboul
- Genomic and Biotechnology of Fruit, UMR 990 INRA/INP-ENSAT, 24, Chemin de Borderouge-Auzeville CS 52627, F-31326 Castanet-Tolosan cedex, France
| | - Isabelle Debeaujon
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Françoise Daniel-Vedele
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Sylvie Ferrario-Méry
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
234
|
Prieto D, Corchete P. Transport of flavonolignans to the culture medium of elicited cell suspensions of Silybum marianum. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:63-8. [PMID: 24331420 DOI: 10.1016/j.jplph.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 06/03/2023]
Abstract
Cell suspension cultures of Silybum marianum are able to excrete silymarin compounds into the medium upon elicitation with methyl jasmonate or cyclodextrins. Knowledge of transport mechanism is important to understand Sm metabolism and to develop strategies aimed at increasing production by means of cell cultures. For these reasons, a pharmacological approach was undertaken in this work in order to elucidate the possible mechanism involved in the release of this class of secondary metabolites into the extracellular medium of suspensions. Treatment with an ionophore or NH4Cl displayed little effect in elicited cultures, thus indicating that secondary transport, which uses electrochemical gradients, is not involved in the release. Several inhibitors of ABC transporters showed differential effects. Sodium ortho-vanadate, a typical suppressor of ATPase activity, was highly toxic to cultures even at very low concentrations. The common Ca-channel blocker verapamil did not influence extracellular secondary metabolite accumulation. Glybenclamide and probenecid, both effective inhibitors of ABCC-type ABC transporters, strongly reduced silymarin secretion. A partial cDNA, SmABC1, which showed similarity to ABCC-type ABC transporters, was isolated by RT-PCR from silymarin-producing cultures. SmABC1 expression was enhanced by methyljasmonate and cyclodextrins. Brefeldin A, a fungal metabolite which affects vesicular trafficking by preventing GTP/GDP exchange, inhibited release in a dose dependent manner. These results suggest that excretion of silymarin and their precursors is a transporter-dependent active transport and that yet another mechanism involving a vesicle trafficking system seems to participate in driving this class of secondary metabolites to the extracellular compartment.
Collapse
Affiliation(s)
- Daniel Prieto
- Department of Plant Physiology, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain
| | - Purificación Corchete
- Department of Plant Physiology, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
235
|
Li R, Li J, Li S, Qin G, Novák O, Pěnčík A, Ljung K, Aoyama T, Liu J, Murphy A, Gu H, Tsuge T, Qu LJ. ADP1 affects plant architecture by regulating local auxin biosynthesis. PLoS Genet 2014; 10:e1003954. [PMID: 24391508 PMCID: PMC3879159 DOI: 10.1371/journal.pgen.1003954] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2013] [Indexed: 01/30/2023] Open
Abstract
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. Plant architecture is one of the key factors that affect plant survival and productivity. It is well established that the plant hormone auxin plays an essential role in organ initiation and pattern formation, thus affecting plant architecture. We found that a putative MATE (multidrug and toxic compound extrusion) transporter, ADP1, which was expressed in the meristematic regions, through regulating the level of auxin biosynthesis, controls lateral organ outgrowth so as to maintain normal architecture in Arabidopsis. The more ADP1 was expressed, the less levels of local auxin were detected in the meristematic regions of the plant, resulting in increased growth rate and a greater number of axillary branches and flowers. The reduction of auxin levels is probably due to decreased level of auxin biosynthesis in the local meristematic regions. Down-regulated expression of ADP1 and its three closely related genes caused plants to grow slower and to produce less lateral organs. Our results indicated that ADP1-mediated regulation of the local auxin levels in meristematic regions is an essential determinant for plant architecture by restraining the outgrowth of lateral organs.
Collapse
Affiliation(s)
- Ruixi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jieru Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shibai Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 21, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Angus Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
- * E-mail: (TT); (LJQ)
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
- * E-mail: (TT); (LJQ)
| |
Collapse
|
236
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 2014; 6:32-43. [PMID: 24388746 DOI: 10.1016/j.celrep.2013.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/14/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.
Collapse
Affiliation(s)
- Marianna Faraco
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Mattijs Bliek
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Atsushi Hoshino
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), 444-8585 Okazaki, Japan
| | - Luca Espen
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Bhakti Prinsi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Rinse Jaarsma
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Eray Tarhan
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Albertus H de Boer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
237
|
ATP-Binding Cassette and Multidrug and Toxic Compound Extrusion Transporters in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:303-46. [DOI: 10.1016/b978-0-12-800255-1.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
238
|
Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 2014; 8:47-60. [PMID: 24354533 PMCID: PMC4036305 DOI: 10.2174/1872208307666131218123538] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/24/2012] [Accepted: 11/06/2012] [Indexed: 11/22/2022]
Abstract
Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
239
|
Casañal A, Zander U, Muñoz C, Dupeux F, Luque I, Botella MA, Schwab W, Valpuesta V, Marquez JA. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates. J Biol Chem 2013; 288:35322-32. [PMID: 24133217 PMCID: PMC3853281 DOI: 10.1074/jbc.m113.501528] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates.
Collapse
Affiliation(s)
- Ana Casañal
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Ulrich Zander
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Cristina Muñoz
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Florine Dupeux
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Irene Luque
- the Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain, and
| | - Miguel Angel Botella
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Victoriano Valpuesta
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - José A. Marquez
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| |
Collapse
|
240
|
Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1446-58. [PMID: 24028845 PMCID: PMC3813663 DOI: 10.1104/pp.113.222547] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar β-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.
Collapse
|
241
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
242
|
Quattrocchio FM, Spelt C, Koes R. Transgenes and protein localization: myths and legends. TRENDS IN PLANT SCIENCE 2013; 18:473-6. [PMID: 23932488 DOI: 10.1016/j.tplants.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 05/08/2023]
Abstract
Fluorescent protein (FP) fusions are frequently used to localize and follow the movement of proteins in living cells. However, a consensus is missing about the experimental design and controls that guarantee the reliability of the results. Here, we discuss possible artifacts and try to navigate through the many methods, preferences, and assumptions that surround protein localization in plants that make it difficult to design a universal approach to achieve reliable results.
Collapse
Affiliation(s)
- Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU-University, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
243
|
Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:734-46. [PMID: 23551455 DOI: 10.1111/pbi.12064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/31/2013] [Accepted: 02/15/2013] [Indexed: 05/20/2023]
Abstract
Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes.
Collapse
Affiliation(s)
- Yuko Ogo
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences-NIAS, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
244
|
Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, Geisler M, Mauch F, Nawrath C, Métraux JP. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. PLANT PHYSIOLOGY 2013; 162:1815-21. [PMID: 23757404 PMCID: PMC3729763 DOI: 10.1104/pp.113.218156] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is central for the defense of plants to pathogens and abiotic stress. SA is synthesized in chloroplasts from chorismic acid by an isochorismate synthase (ICS1); SA biosynthesis is negatively regulated by autoinhibitory feedback at ICS1. Genetic studies indicated that the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) of Arabidopsis (Arabidopsis thaliana) is necessary for SA accumulation after biotic and abiotic stress, but so far it is not understood how EDS5 controls the biosynthesis of SA. Here, we show that EDS5 colocalizes with a marker of the chloroplast envelope and that EDS5 functions as a multidrug and toxin extrusion-like transporter in the export of SA from the chloroplast to the cytoplasm in Arabidopsis, where it controls the innate immune response. The location at the chloroplast envelope supports a model of the effect of EDS5 on SA biosynthesis: in the eds5 mutant, stress-induced SA is trapped in the chloroplast and inhibits its own accumulation by autoinhibitory feedback.
Collapse
|
245
|
Shitan N, Dalmas F, Dan K, Kato N, Ueda K, Sato F, Forestier C, Yazaki K. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. PHYTOCHEMISTRY 2013; 91:109-16. [PMID: 22410351 DOI: 10.1016/j.phytochem.2012.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 05/20/2023]
Abstract
Higher plants produce a large number of secondary metabolites. Among these are the alkaloids, a group of small nitrogen-containing molecules. Alkaloids often have strong biological activity that protects alkaloid-producing plants from herbivores, and often accumulate to high concentrations in a specific organelle of a particular organ in the producing plant. However, knowledge of the membrane transport mechanism of alkaloids is still limited. Coptis japonica, a perennial Ranunculaceous plant, produces the benzylisoquinoline alkaloid berberine. This alkaloid, though biosynthesized in root tissues, accumulates in the rhizome, suggesting translocation of the molecule via xylem. In this study, a gene encoding a ATP-binding cassette (ABC) protein of B-type, Cjabcb2, was isolated from C. japonica. Northern analysis showed that Cjabcb2 was preferentially expressed in the rhizome, which is the sink organ of berberine. Functional analysis of CjABCB2 using yeast suggested that CjABCB2 transports berberine in an inward direction. Membrane separation and in situ hybridization data indicated that CjABCB2 might be involved in translocation of berberine from the root to the rhizome by transporting berberine at the plasma membrane of cells around the xylem of the rhizome.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. PLANTA 2013; 238:139-54. [PMID: 23592226 DOI: 10.1007/s00425-013-1879-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/13/2023]
Abstract
In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.
Collapse
Affiliation(s)
- Yongzhen Pang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Carqueijeiro I, Noronha H, Duarte P, Gerós H, Sottomayor M. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. PLANT PHYSIOLOGY 2013; 162:1486-96. [PMID: 23686419 PMCID: PMC3707533 DOI: 10.1104/pp.113.220558] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters.
Collapse
|
248
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
249
|
Tsuyama T, Kawai R, Shitan N, Matoh T, Sugiyama J, Yoshinaga A, Takabe K, Fujita M, Yazaki K. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. PLANT PHYSIOLOGY 2013; 162:918-26. [PMID: 23585651 PMCID: PMC3668080 DOI: 10.1104/pp.113.214957] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 05/02/2023]
Abstract
Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Taku Tsuyama
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | - Ryo Kawai
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | | | - Toru Matoh
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | - Junji Sugiyama
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | | | - Minoru Fujita
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Tree Cell Biology (T.T., R.K., A.Y., K.T., M.F.) and Laboratory of Plant Nutrition (T.M.), Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan; and
- Laboratory of Plant Gene Expression (N.S., K.Y.) and Laboratory of Biomass Morphogenesis and Information (J.S.), Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611–0011, Japan
| |
Collapse
|
250
|
Di Matteo A, Ruggieri V, Sacco A, Rigano MM, Carriero F, Bolger A, Fernie AR, Frusciante L, Barone A. Identification of candidate genes for phenolics accumulation in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:87-96. [PMID: 23498866 DOI: 10.1016/j.plantsci.2013.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 05/02/2023]
Abstract
Phenolics are antioxidants present in tomato fruit that confer healthy benefits and exhibit crucial roles for plant metabolism and response to environmental stimuli. An approach based on two genomics platforms was undertaken to identify candidate genes associated to higher phenolics content in tomato fruit. A comparative transcriptomic analysis between the S. pennellii Introgression Line 7-3, which produced an average higher level of fruit phenolics, and the cultivated variety M82, revealed that their differences are attributed to genes involved in phenolics accumulation into the vacuole. The up-regulation of genes coding for one MATE-transporter, one vacuolar sorting protein and three GSTs supported this hypothesis. The observed balancing effect between two ethylene responsive factors (ERF1 and ERF4) was also hypothesized to drive the transcriptional regulation of these transport genes. In order to confirm such model a TILLING platform was explored. A mutant was isolated harbouring a point mutation in the ERF1 cds that affects the protein sequence and its expected function. Fruits of the mutant exhibited a significant reduced level of phenolics than the control variety. Changes in the expression of genes involved in sequestration of phenolics in vacuole also supported the hypothesized key-role of ERF1 in orchestrating these genes.
Collapse
Affiliation(s)
- Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|