201
|
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:155-167. [PMID: 28992266 DOI: 10.1093/jxb/erx223] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Collapse
Affiliation(s)
- Yujuan Du
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| | - Ben Scheres
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| |
Collapse
|
202
|
Qiao L, Zhang W, Li X, Zhang L, Zhang X, Li X, Guo H, Ren Y, Zheng J, Chang Z. Characterization and Expression Patterns of Auxin Response Factors in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1395. [PMID: 30283490 PMCID: PMC6157421 DOI: 10.3389/fpls.2018.01395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/03/2018] [Indexed: 05/22/2023]
Abstract
Auxin response factors (ARFs) are important transcription factors involved in both the auxin signaling pathway and the regulatory development of various plant organs. In this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their conserved domains, exon/intron structures, related microRNAs, and alternative splicing (AS) variants, were then characterized. Phylogenetic analysis revealed that members of the TaARF family share close homology with ARFs in other grass species. qRT-PCR analyses revealed that 20 TaARF members were expressed in different organs and tissues and that the expression of some members significantly differed in the roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment. Moreover, protein network analyses and co-expression results showed that TaTIR1-TaARF15/18/19-TaIAA13 may interact at both the protein and genetic levels. The results of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A subgenome of wheat exhibited high evolutionary rate and underwent positive selection. Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after auxin treatment. Our results will provide reference information for subsequent research and utilization of the TaARF gene family.
Collapse
Affiliation(s)
- Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Li
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Plant Protection, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Huijuan Guo
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuan Ren
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Jun Zheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| | - Zhijian Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| |
Collapse
|
203
|
Alarcón-Poblete E, Inostroza-Blancheteau C, Alberdi M, Rengel Z, Reyes-Díaz M. Molecular regulation of aluminum resistance and sulfur nutrition during root growth. PLANTA 2018; 247:27-39. [PMID: 29119269 DOI: 10.1007/s00425-017-2805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.
Collapse
Affiliation(s)
- Edith Alarcón-Poblete
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Escuela de Agronomía, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaría, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, 6009, Australia
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
204
|
Wójcik AM, Mosiolek M, Karcz J, Nodine MD, Gaj MD. Whole Mount in situ Localization of miRNAs and mRNAs During Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1277. [PMID: 30233621 PMCID: PMC6131960 DOI: 10.3389/fpls.2018.01277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/15/2018] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis (SE) results from the transition of differentiated plant somatic cells into embryogenic cells that requires the extensive reprogramming of the somatic cell transcriptome. Commonly, the SE-involved genes are identified by analyzing the heterogeneous population of explant cells and thus, it is necessary to validate the expression of the candidate genes in the cells that are competent for embryogenic transition. Here, we optimized and implemented the whole mount in situ hybridization (WISH) method (Bleckmann and Dresselhaus, 2016; Dastidar et al., 2016) in order to analyze the spatiotemporal localization of miRNAs (miR156, miR166, miR390, miR167) and mRNAs such as WOX5 and PHABULOSA-target of miR165/166 during the SE that is induced in Arabidopsis explants. This study presents a detailed step-by-step description of the WISH procedure in which DIG-labeled LNA and RNA probes were used to detect miRNAs and mRNAs, respectively. The usefulness of the WISH in the functional analysis of the SE-involved regulatory pathways is demonstrated and the advantages of this method are highlighted: (i) the ability to analyze intact non-sectioned plant tissue; (ii) the specificity of transcript detection; (iii) the detection of miRNA; and (iv) a semi-quantitative assessment of the RNA abundance.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Mosiolek
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- *Correspondence: Małgorzata D. Gaj,
| |
Collapse
|
205
|
Brant EJ, Budak H. Plant Small Non-coding RNAs and Their Roles in Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:1038. [PMID: 30079074 PMCID: PMC6062887 DOI: 10.3389/fpls.2018.01038] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/04/2023]
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical components of gene regulatory networks across a plethora of plant species. In particular, the 20-30 nucleotide small ncRNAs (sRNAs) play important roles in mediating both developmental processes and responses to biotic stresses. Based on variation in their biogenesis pathways, a number of different sRNA classes have been identified, and their specific functions have begun to be characterized. Here, we review the current knowledge of the biogenesis of the primary sRNA classes, microRNA (miRNA) and small nuclear RNA (snRNA), and their respective secondary classes, and discuss the roles of sRNAs in plant-pathogen interactions. sRNA mobility between species is also discussed along with potential applications of sRNA-plant-pathogen interactions in crop improvement technologies.
Collapse
|
206
|
Chen C, Zeng Z, Liu Z, Xia R. Small RNAs, emerging regulators critical for the development of horticultural traits. HORTICULTURE RESEARCH 2018; 5:63. [PMID: 30245834 PMCID: PMC6139297 DOI: 10.1038/s41438-018-0072-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 05/14/2023]
Abstract
Small RNAs (sRNAs) have been recently recognized as key genetic and epigenetic regulators in various organisms, ranging from the modification of DNA and histone methylations to the modulation of the abundance of coding or non-coding RNAs. In plants, major regulatory sRNAs are classified as respective microRNA (miRNA) and small interfering RNA (siRNA) species, with the former primarily engaging in posttranscriptional regulation while the latter in transcriptional one. Many of these characterized sRNAs are involved in regulation of diverse biological programs, processes, and pathways in response to developmental cues, environmental signals/stresses, pathogen infection, and pest attacks. Recently, sRNAs-mediated regulations have also been extensively investigated in horticultural plants, with many novel mechanisms unveiled, which display far more mechanistic complexity and unique regulatory features compared to those studied in model species. Here, we review the recent progress of sRNA research in horticultural plants, with emphasis on mechanistic aspects as well as their relevance to trait regulation. Given that major and pioneered sRNA research has been carried out in the model and other plants, we also discuss ongoing sRNA research on these plants. Because miRNAs and phased siRNAs (phasiRNAs) are the most studied sRNA regulators, this review focuses on their biogenesis, conservation, function, and targeted genes and traits as well as the mechanistic relation between them, aiming at providing readers comprehensive information instrumental for future sRNA research in horticulture crops.
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zongrang Liu
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV 25430 USA
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
207
|
|
208
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
209
|
Shi M, Hu X, Wei Y, Hou X, Yuan X, Liu J, Liu Y. Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches. Int J Mol Sci 2017; 18:E2599. [PMID: 29236054 PMCID: PMC5751202 DOI: 10.3390/ijms18122599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Auxin has long been known as a critical phytohormone that regulates fruit development in plants. However, due to the lack of an enlarged ovary wall in the model plants Arabidopsis and rice, the molecular regulatory mechanisms of fruit division and enlargement remain unclear. In this study, we performed small RNA sequencing and degradome sequencing analyses to systematically explore post-transcriptional regulation in the mesocarp at the hard core stage following treatment of the peach (Prunus persica L.) fruit with the synthetic auxin α-naphthylacetic acid (NAA). Our analyses identified 24 evolutionarily conserved miRNA genes as well as 16 predicted genes. Experimental verification showed that the expression levels of miR398 and miR408b were significantly upregulated after NAA treatment, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were significantly downregulated. Degradome sequencing coupled with miRNA target prediction analyses detected 119 significant cleavage sites on several mRNA targets, including SQUAMOSA promoter binding protein-like (SPL), ARF, (NAM, ATAF1/2 and CUC2) NAC, Arabidopsis thaliana homeobox protein (ATHB), the homeodomain-leucine zipper transcription factor revoluta(REV), (teosinte-like1, cycloidea and proliferating cell factor1) TCP and auxin signaling F-box protein (AFB) family genes. Our systematic profiling of miRNAs and the degradome in peach fruit suggests the existence of a post-transcriptional regulation network of miRNAs that target auxin pathway genes in fruit development.
Collapse
Affiliation(s)
- Mengya Shi
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
- National Agro-Tech Extension and Service Center, Beijing 100125, China.
| | - Xiao Hu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Yu Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xu Hou
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
| | - Xue Yuan
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
210
|
D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: Big Impact on Plant Development. TRENDS IN PLANT SCIENCE 2017; 22:1056-1068. [PMID: 29032035 DOI: 10.1016/j.tplants.2017.09.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
While the role of proteins in determining cell identity has been extensively studied, the contribution of small noncoding RNA molecules such as miRNAs and siRNAs has been also recognised. miRNAs bind to complementary sites in target mRNA molecules to trigger the degradation or translational inhibition of those targets. Recent studies have revealed that miRNAs play pivotal roles in key developmental processes such as patterning of the embryo, meristem, leaf, and flower. Furthermore, these miRNAs have been recruited throughout plant evolution into pathways that create diverse plant organ forms and shapes. This review focuses on the roles of miRNAs in establishing plant cell identity during key plant development processes and creating morphological diversity during plant evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Minsung Kim
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
211
|
Müller CJ, Larsson E, Spíchal L, Sundberg E. Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning. PLANT PHYSIOLOGY 2017; 175:1144-1157. [PMID: 28894023 PMCID: PMC5664465 DOI: 10.1104/pp.17.00805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/05/2017] [Indexed: 05/23/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) gynoecium consists of two congenitally fused carpels made up of two lateral valve domains and two medial domains, which retain meristematic properties and later fuse to produce the female reproductive structures vital for fertilization. Polar auxin transport (PAT) is important for setting up distinct apical auxin signaling domains in the early floral meristem remnants allowing for lateral domain identity and outgrowth. Crosstalk between auxin and cytokinin plays an important role in the development of other meristematic tissues, but hormone interaction studies to date have focused on more accessible later-stage gynoecia and the spatiotemporal interactions pivotal for patterning of early gynoecium primordia remain unknown. Focusing on the earliest stages, we propose a cytokinin-auxin feedback model during early gynoecium patterning and hormone homeostasis. Our results suggest that cytokinin positively regulates auxin signaling in the incipient gynoecial primordium and strengthen the concept that cytokinin regulates auxin homeostasis during gynoecium development. Specifically, medial cytokinin promotes auxin biosynthesis components [YUCCA1/4 (YUC1/4)] in, and PINFORMED7 (PIN7)-mediated auxin efflux from, the medial domain. The resulting laterally focused auxin signaling triggers ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN6 (AHP6), which then represses cytokinin signaling in a PAT-dependent feedback. Cytokinin also down-regulates PIN3, promoting auxin accumulation in the apex. The yuc1, yuc4, and ahp6 mutants are hypersensitive to exogenous cytokinin and 1-napthylphthalamic acid (NPA), highlighting their role in mediolateral gynoecium patterning. In summary, these mechanisms self-regulate cytokinin and auxin signaling domains, ensuring correct domain specification and gynoecium development.
Collapse
Affiliation(s)
- Christina Joy Müller
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - Emma Larsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| |
Collapse
|
212
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
213
|
Mei Y, Chen H, Shen W, Shen W, Huang L. Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC PLANT BIOLOGY 2017; 17:162. [PMID: 29029623 PMCID: PMC5640930 DOI: 10.1186/s12870-017-1110-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/09/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Both hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) are separately regarded as a highly reactive molecule involved in root morphogenesis. In this report, corresponding causal link governing lateral root formation was investigated. METHODS By using pharmacological, anatomic, and molecular approaches, evidence presented here revealed the molecular mechanism underlying tomato lateral root development triggered by H2S. RESULTS A H2S donor sodium hydrosulfide (NaHS) triggered the accumulation of H2O2, the up-regulation of RBOH1 transcript, and thereafter tomato lateral root formation. Above responses were sensitive to the H2O2 scavenger (dimethylthiourea; DMTU) and the inhibitor of NADPH oxidase (diphenylene idonium; DPI), showing that the accumulations of H2O2 and increased RBOH1 transcript were respectively prevented. Lateral root primordial and lateral root formation were also impaired. Further molecular evidence revealed that H2S-modulated gene expression of cell cycle regulatory genes, including up-regulation of SlCYCA2;1, SlCYCA3;1, and SlCDKA1, and the down-regulation of SlKRP2, were prevented by the co-treatment with DMTU or DPI. Above mentioned inducing phenotypes were consistent with the changes of lateral root formation-related microRNA transcripts: up-regulation of miR390a and miR160, and with the opposite tendencies of their target genes (encoding auxin response factors). Contrasting tendencies were observed when DMTU or DPI was added together. The occurrence of H2S-mediated S-sulfhydration during above responses was preliminarily discovered. CONCLUSIONS Overall, these results suggested an important role of RBOH1-mediated H2O2 in H2S-elicited tomato lateral root development, and corresponding H2S-target proteins regulated at transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Yudong Mei
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haotian Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Shen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
214
|
Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Sci Rep 2017; 7:10895. [PMID: 28883480 PMCID: PMC5589731 DOI: 10.1038/s41598-017-11327-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Auxin response factors (ARFs) are the transcription factors that regulate auxin responses in various aspects of plant growth and development. Although genome-wide analysis of ARF gene family has been done in some species, no information is available regarding ARF genes in chickpea. In this study, we identified 28 ARF genes (CaARF) in the chickpea genome. Phylogenetic analysis revealed that CaARFs can be divided into four different groups. Duplication analysis revealed that 50% of CaARF genes arose from duplication events. We analyzed expression pattern of CaARFs in various developmental stages. CaARF16.3, CaARF17.1 and CaARF17.2 showed highest expression at initial stages of flower bud development, while CaARF6.2 had higher expression at later stages of flower development. Further, CaARF4.2, CaARF9.2, CaARF16.2 and CaARF7.1 exhibited differential expression under different abiotic stress conditions, suggesting their role in abiotic stress responses. Co-expression network analysis among CaARF, CaIAA and CaGH3 genes enabled us to recognize components involved in the regulatory network associated with CaARFs. Further, we identified microRNAs that target CaARFs and TAS3 locus that trigger production of trans-acting siRNAs targeting CaARFs. The analyses presented here provide comprehensive information on ARF family members and will help in elucidating their exact function in chickpea.
Collapse
|
215
|
Hobecker KV, Reynoso MA, Bustos-Sanmamed P, Wen J, Mysore KS, Crespi M, Blanco FA, Zanetti ME. The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. PLANT PHYSIOLOGY 2017; 174:2469-2486. [PMID: 28663332 PMCID: PMC5543954 DOI: 10.1104/pp.17.00464] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/24/2017] [Indexed: 05/19/2023]
Abstract
Legume roots form two types of postembryonic organs, lateral roots and symbiotic nodules. Nodule formation is the result of the interaction of legumes with rhizobia and requires the mitotic activation and differentiation of root cells as well as an independent, but coordinated, program that allows infection by rhizobia. MicroRNA390 (miR390) is an evolutionarily conserved microRNA that targets the Trans-Acting Short Interference RNA3 (TAS3) transcript. Cleavage of TAS3 by ARGONAUTE7 results in the production of trans-acting small interference RNAs, which target mRNAs encoding AUXIN RESPONSE FACTOR2 (ARF2), ARF3, and ARF4. Here, we show that activation of the miR390/TAS3 regulatory module by overexpression of miR390 in Medicago truncatula promotes lateral root growth but prevents nodule organogenesis, rhizobial infection, and the induction of two key nodulation genes, Nodulation Signaling Pathway1 (NSP1) and NSP2 Accordingly, inactivation of the miR390/TAS3 module, either by expression of a miR390 target mimicry construct or mutations in ARGONAUTE7, enhances nodulation and rhizobial infection, alters the spatial distribution of the nodules, and increases the percentage of nodules with multiple meristems. Our results revealed a key role of the miR390/TAS3 pathway in legumes as a modulator of lateral root organs, playing opposite roles in lateral root and nodule development.
Collapse
Affiliation(s)
- Karen Vanesa Hobecker
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - Pilar Bustos-Sanmamed
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris-Sud, Evry, Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Kirankumar S Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris-Sud, Evry, Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| |
Collapse
|
216
|
Béziat C, Barbez E, Feraru MI, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. NATURE PLANTS 2017; 3:17105. [PMID: 28714973 PMCID: PMC5524181 DOI: 10.1038/nplants.2017.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/12/2017] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin induces or represses growth depending on its concentration and the underlying tissue type. However, it remains unknown how auxin signalling is modulated to allow tissues transiting between repression and promotion of growth. Here, we used apical hook development as a model for growth transitions in plants. A PIN-FORMED (PIN)-dependent intercellular auxin transport module defines an auxin maximum that is causal for growth repression during the formation of the apical hook. Our data illustrate that growth transition for apical hook opening is largely independent of this PIN module, but requires the PIN-LIKES (PILS) putative auxin carriers at the endoplasmic reticulum. PILS proteins reduce nuclear auxin signalling in the apical hook, leading to the de-repression of growth and the onset of hook opening. We also show that the phytochrome (phy) B-reliant light-signalling pathway directly regulates PILS gene activity, thereby enabling light perception to repress nuclear auxin signalling and to control growth. We propose a novel mechanism, in which PILS proteins allow external signals to alter tissue sensitivity to auxin, defining differential growth rates.
Collapse
Affiliation(s)
- Chloé Béziat
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Mugurel I. Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
- Correspondence should be addressed to Jürgen Kleine-Vehn ()
| |
Collapse
|
217
|
Piya S, Kihm C, Rice JH, Baum TJ, Hewezi T. Cooperative Regulatory Functions of miR858 and MYB83 during Cyst Nematode Parasitism. PLANT PHYSIOLOGY 2017; 174:1897-1912. [PMID: 28512179 PMCID: PMC5490899 DOI: 10.1104/pp.17.00273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/13/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) recently have been established as key regulators of transcriptome reprogramming that define cell function and identity. Nevertheless, the molecular functions of the greatest number of miRNA genes remain to be determined. Here, we report cooperative regulatory functions of miR858 and its MYB83 transcription factor target gene in transcriptome reprogramming during Heterodera cyst nematode parasitism of Arabidopsis (Arabidopsis thaliana). Gene expression analyses and promoter-GUS fusion assays documented a role of miR858 in posttranscriptional regulation of MYB83 in the Heterodera schachtii-induced feeding sites, the syncytia. Constitutive overexpression of miR858 interfered with H. schachtii parasitism of Arabidopsis, leading to reduced susceptibility, while reduced miR858 abundance enhanced plant susceptibility. Similarly, MYB83 expression increases were conducive to nematode infection because overexpression of a noncleavable coding sequence of MYB83 significantly increased plant susceptibility, whereas a myb83 mutation rendered the plants less susceptible. In addition, RNA-seq analysis revealed that genes involved in hormone signaling pathways, defense response, glucosinolate biosynthesis, cell wall modification, sugar transport, and transcriptional control are the key etiological factors by which MYB83 facilitates nematode parasitism of Arabidopsis. Furthermore, we discovered that miR858-mediated silencing of MYB83 is tightly regulated through a feedback loop that might contribute to fine-tuning the expression of more than a thousand of MYB83-regulated genes in the H. schachtii-induced syncytium. Together, our results suggest a role of the miR858-MYB83 regulatory system in finely balancing gene expression patterns during H. schachtii parasitism of Arabidopsis to ensure optimal cellular function.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Christina Kihm
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
218
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
219
|
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 2017; 30:2286-2296. [PMID: 27898393 PMCID: PMC5110995 DOI: 10.1101/gad.285361.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/18/2023]
Abstract
Tissue patterning in multicellular organisms is the output of precise spatio-temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joyita Deb
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Manoj Valluru
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Alejandra Freire-Rios
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Karim Sorefan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
220
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
221
|
Xia R, Xu J, Meyers BC. The Emergence, Evolution, and Diversification of the miR390- TAS3- ARF Pathway in Land Plants. THE PLANT CELL 2017; 29:1232-1247. [PMID: 28442597 PMCID: PMC5502456 DOI: 10.1105/tpc.17.00185] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
In plants, miR390 directs the production of tasiRNAs from TRANS-ACTING SIRNA3 (TAS3) transcripts to regulate AUXIN RESPONSIVE FACTOR (ARF) genes, critical for auxin signaling; these tasiRNAs are known as tasiARFs. To understand the evolution of this miR390-TAS3-ARF pathway, we characterized homologs of these three genes from thousands of plant species, from bryophytes to angiosperms. We found the lower-stem region of MIR390 genes, critical for accurate DICER-LIKE1 processing, is conserved in sequence in seed plants. We propose a model for the transition of functional tasiRNA sequences in TAS3 genes occurred at the emergence of vascular plants, in which the two miR390 target sites of TAS3 genes showed distinct pairing patterns. Based on the cleavability of miR390 target sites and the distance between target site and tasiARF, we inferred a potential bidirectional processing mechanism exists for some TAS3 genes. We also demonstrated a tight mutual selection between tasiARF and its target genes and that ARGONAUTE7, the partner of miR390, was specified later than other factors in the pathway. All these data illuminate the evolutionary path of the miR390-TAS3-ARF pathway in land plants and demonstrate the significant variation that occurs in this functionally important and archetypal regulatory circuit.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- University of Missouri-Columbia, Division of Plant Sciences, Columbia, Missouri 65211
| |
Collapse
|
222
|
MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Res 2017; 26:541-557. [DOI: 10.1007/s11248-017-0024-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
|
223
|
Su Z, Zhao L, Zhao Y, Li S, Won S, Cai H, Wang L, Li Z, Chen P, Qin Y, Chen X. The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module. Curr Biol 2017; 27:1597-1609.e2. [PMID: 28552357 DOI: 10.1016/j.cub.2017.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
Abstract
In most sexually reproducing plants, a single somatic, sub-epidermal cell in an ovule is selected to differentiate into a megaspore mother cell, which is committed to giving rise to the female germline. However, it remains unclear how intercellular signaling among somatic cells results in only one cell in the sub-epidermal layer differentiating into the megaspore mother cell. Here we uncovered a role of the THO complex in restricting the megaspore mother cell fate to a single cell. Mutations in TEX1, HPR1, and THO6, components of the THO/TREX complex, led to the formation of multiple megaspore mother cells, which were able to initiate gametogenesis. We demonstrated that TEX1 repressed the megaspore mother cell fate by promoting the biogenesis of TAS3-derived trans-acting small interfering RNA (ta-siRNA), which represses ARF3 expression. The TEX1 protein was present in epidermal cells, but not in the germline, and, through TAS3-derived ta-siRNA, restricted ARF3 expression to the medio domain of ovule primordia. Expansion of ARF3 expression into lateral epidermal cells in a TAS3 ta-siRNA-insensitive mutant led to the formation of supernumerary megaspore mother cells, suggesting that TEX1- and TAS3-mediated restriction of ARF3 expression limits excessive megaspore mother cell formation non-cell-autonomously. Our findings reveal the role of a small-RNA pathway in the regulation of female germline specification in Arabidopsis.
Collapse
Affiliation(s)
- Zhenxia Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Lihua Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - SoYoun Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Hanyang Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zhenfang Li
- Crop Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Piaojuan Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA; Howard Hughes Medical Institute, Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
224
|
Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, Wang H, Sang S, Tang M, Zhou R, Chu W, Fu L, Hu Q. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Int J Mol Sci 2017; 18:ijms18050887. [PMID: 28481299 PMCID: PMC5454811 DOI: 10.3390/ijms18050887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR)-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Shifei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Min Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rijin Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
225
|
Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo Transcriptome Profiling of Flowers, Flower Pedicels and Pods of Lupinus luteus (Yellow Lupine) Reveals Complex Expression Changes during Organ Abscission. FRONTIERS IN PLANT SCIENCE 2017; 8:641. [PMID: 28512462 PMCID: PMC5412092 DOI: 10.3389/fpls.2017.00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Waldemar Wojciechowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Milena Kulasek
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Wojciech Glinkowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Katarzyna Marciniak
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Natalia Klajn
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jacek Kesy
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jan Kopcewicz
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| |
Collapse
|
226
|
Li S, Castillo-González C, Yu B, Zhang X. The functions of plant small RNAs in development and in stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:654-670. [PMID: 27943457 DOI: 10.1111/tpj.13444] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 05/22/2023]
Abstract
Like metazoans, plants use small regulatory RNAs (sRNAs) to direct gene expression. Several classes of sRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) mainly inhibit gene expression at post-transcriptional levels. In the past decades, plant miRNAs and ta-siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta-siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta-siRNAs in plant physiology and development.
Collapse
Affiliation(s)
- Shengjun Li
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0660, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics & Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0660, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics & Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
227
|
Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10068-10082. [PMID: 28229383 DOI: 10.1007/s11356-017-8593-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 05/27/2023]
Abstract
Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, People's Republic of China.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
228
|
Ju Z, Cao D, Gao C, Zuo J, Zhai B, Li S, Zhu H, Fu D, Luo Y, Zhu B. A Viral Satellite DNA Vector (TYLCCNV) for Functional Analysis of miRNAs and siRNAs in Plants. PLANT PHYSIOLOGY 2017; 173:1940-1952. [PMID: 28228536 PMCID: PMC5373046 DOI: 10.1104/pp.16.01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/19/2017] [Indexed: 05/11/2023]
Abstract
With experimental and bioinformatical methods, numerous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), have been found in plants, and they play vital roles in various biological regulation processes. However, most of these small RNAs remain to be functionally characterized. Until now, only several viral vectors were developed to overexpress miRNAs with limited application in plants. In this study, we report a new small RNA overexpression system via viral satellite DNA associated with Tomato yellow leaf curl China virus (TYLCCNV) vector, which could highly overexpress not only artificial and endogenous miRNAs but also endogenous siRNAs in Nicotiana benthamiana First, we constructed basic TYLCCNV-amiRPDS(319L) vector with widely used AtMIR319a backbone, but the expected photobleaching phenotype was very weak. Second, through comparing the effect of backbones (AtMIR319a, AtMIR390a, and SlMIR159) on specificity and significance of generating small RNAs, the AtMIR390a backbone was optimally selected to construct the small RNA overexpression system. Third, through sRNA-Seq and Degradome-Seq, the small RNAs from AtMIR390a backbone in TYLCCNV-amiRPDS(390) vector were confirmed to highly overexpress amiRPDS and specifically silence targeted PDS gene. Using this system, rapid functional analysis of endogenous miRNAs and siRNAs was carried out, including miR156 and athTAS3a 5'D8(+). Meanwhile, through designing corresponding artificial miRNAs, this system could also significantly silence targeted endogenous genes and show specific phenotypes, including PDS, Su, and PCNA These results demonstrated that this small RNA overexpression system could contribute to investigating not only the function of endogenous small RNAs, but also the functional genes in plants.
Collapse
Affiliation(s)
- Zheng Ju
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Dongyan Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Chao Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Jinhua Zuo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Baiqiang Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Shan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.);
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| |
Collapse
|
229
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
230
|
Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. PLANT & CELL PHYSIOLOGY 2017; 58:426-439. [PMID: 28064248 DOI: 10.1093/pcp/pcw211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
High-throughput small RNA sequencing has identified several potential aluminum (Al)-responsive microRNAs (miRNAs); however, their regulatory role remains unknown. Here, we identified two miR393 family members in barley, and confirmed two target genes-HvTIR1 and HvAFB-through a modified form of 5'-RACE (rapid amplification of cDNA ends) as well as degradome data analysis. Furthermore, we investigated the biological function of the miR393/target module in root development and its Al stress response. The investigation showed that miR393 affected root growth and adventitious root number by altering auxin sensitivity. Al3+ exposure suppressed miR393 expression in root apex, while overexpression of miR393 counteracted Al-induced inhibition of root elongation and alleviated reactive oxygen species (ROS)-induced cell death. Target mimic (MIM393)-mediated inhibition of miR393's activity enhanced root sensitivity to Al toxicity. We also confirmed that auxin enhanced Al-induced root growth inhibition in barley via application of exogenous 1-naphthaleneacetic acid (NAA), and the expression of auxin-responsive genes in the root apex was induced upon Al treatment. Overexpression of miR393 attenuated the effect of exogenous NAA on Al-induced root growth inhibition, and down-regulated the expression of auxin-responsive genes under Al stress, implying that miR393 regulates root sensitivity to Al through the alteration of auxin signaling output in barley. Therefore, these data indicate that miR393 acts as an integrator of environmental cues in auxin signaling, and suggest a new strategy to improve plant resistance to Al toxicity.
Collapse
Affiliation(s)
- Bin Bai
- Laboratory of Plant-Animal Interactions, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China
- Yunnan Forestry Technological College, Kunming, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhanghui Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ning Hou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhui Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Muyuan Zhu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ning Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
231
|
Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska-Kulinska Z, Jarmolowski A, Gaj MD. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:18. [PMID: 28167951 PMCID: PMC5253390 DOI: 10.3389/fpls.2017.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 05/06/2023]
Abstract
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
Collapse
Affiliation(s)
- Katarzyna Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Małgorzata D. Gaj
| |
Collapse
|
232
|
Sun Y, Mui Z, Liu X, Yim AKY, Qin H, Wong FL, Chan TF, Yiu SM, Lam HM, Lim BL. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages. Int J Mol Sci 2016; 17:E2043. [PMID: 27929436 PMCID: PMC5187843 DOI: 10.3390/ijms17122043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023] Open
Abstract
Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Zeta Mui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xuan Liu
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Aldrin Kay-Yuen Yim
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Fuk-Ling Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Siu-Ming Yiu
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
233
|
Frerichs A, Thoma R, Abdallah AT, Frommolt P, Werr W, Chandler JW. The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem. BMC Genomics 2016; 17:855. [PMID: 27809788 PMCID: PMC5093967 DOI: 10.1186/s12864-016-3189-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/22/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. RESULTS Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. CONCLUSIONS The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.
Collapse
Affiliation(s)
- Anneke Frerichs
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany
| | - Rahere Thoma
- Present address: Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| | - Ali Taleb Abdallah
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Peter Frommolt
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Wolfgang Werr
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany
| | - John William Chandler
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany.
| |
Collapse
|
234
|
Kameoka H, Dun EA, Lopez-Obando M, Brewer PB, de Saint Germain A, Rameau C, Beveridge CA, Kyozuka J. Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. PLANT PHYSIOLOGY 2016; 172:1844-1852. [PMID: 27670819 PMCID: PMC5100793 DOI: 10.1104/pp.16.01212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/24/2016] [Indexed: 05/06/2023]
Abstract
The cell-to-cell transport of signaling molecules is essential for multicellular organisms to coordinate the action of their cells. Recent studies identified DWARF14 (D14) as a receptor of strigolactones (SLs), molecules that act as plant hormones and inhibit shoot branching. Here, we demonstrate that RAMOSUS3, a pea ortholog of D14, works as a graft-transmissible signal to suppress shoot branching. In addition, we show that D14 protein is contained in phloem sap and transported through the phloem to axillary buds in rice. SLs are not required for the transport of D14 protein. Disruption of D14 transport weakens the suppression of axillary bud outgrowth of rice. Taken together, we conclude that the D14 protein works as an intercellular signaling molecule to fine-tune SL function. Our findings provide evidence that the intercellular transport of a receptor can regulate the action of plant hormones.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Elizabeth A Dun
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Mauricio Lopez-Obando
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Philip B Brewer
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Alexandre de Saint Germain
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Catherine Rameau
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Christine A Beveridge
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Junko Kyozuka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| |
Collapse
|
235
|
Ghosh Dastidar M, Mosiolek M, Bleckmann A, Dresselhaus T, Nodine MD, Maizel A. Sensitive whole mount in situ localization of small RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:694-702. [PMID: 27411563 DOI: 10.1111/tpj.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 05/25/2023]
Abstract
Small RNAs, such as microRNAs (miRNAs), regulate gene expression and play important roles in many plant processes. Although our knowledge of their biogenesis and mode of action has significantly progressed, we still have comparatively little information about their biological functions. In particular, knowledge about their spatio-temporal expression patterns rely on either indirect detection by use of reporter constructs or labor-intensive direct detection by in situ hybridization on sectioned material. None of the current approaches allows a systematic investigation of small RNA expression patterns. Here, we present a sensitive method for in situ detection of miRNAs and siRNAs in intact plant tissues that utilizes both double-labeled probes and a specific cross-linker. We determined the expression patterns of several small RNAs in diverse plant tissues.
Collapse
Affiliation(s)
- Mouli Ghosh Dastidar
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Magdalena Mosiolek
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Andrea Bleckmann
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
236
|
Couzigou JM, Combier JP. Plant microRNAs: key regulators of root architecture and biotic interactions. THE NEW PHYTOLOGIST 2016; 212:22-35. [PMID: 27292927 DOI: 10.1111/nph.14058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 05/24/2023]
Abstract
Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Jean-Philippe Combier
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
237
|
Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, Sakakibara H, Kitomi Y, Yoshikawa T, Itoh JI, Nagato Y. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 2016; 143:3407-16. [PMID: 27578792 DOI: 10.1242/dev.138602] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Miyako Isono
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Manaki Mimura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sentoku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuka Kitomi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori Yoshikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Itoh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuo Nagato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
238
|
Plavskin Y, Nagashima A, Perroud PF, Hasebe M, Quatrano RS, Atwal GS, Timmermans MCP. Ancient trans-Acting siRNAs Confer Robustness and Sensitivity onto the Auxin Response. Dev Cell 2016; 36:276-89. [PMID: 26859352 DOI: 10.1016/j.devcel.2016.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Novel developmental programs often evolve via cooption of existing genetic networks. To understand this process, we explored cooption of the TAS3 tasiRNA pathway in the moss Physcomitrella patens. We find an ancestral function for this repeatedly redeployed pathway in the spatial regulation of a conserved set of Auxin Response Factors. In moss, this results in stochastic patterning of the filamentous protonemal tissue. Through modeling and experimentation, we demonstrate that tasiRNA regulation confers sensitivity and robustness onto the auxin response. Increased auxin sensitivity parallels increased developmental sensitivity to nitrogen, a key environmental signal. We propose that the properties lent to the auxin response network, along with the ability to stochastically modulate development in response to environmental cues, have contributed to repeated cooption of the tasiRNA-ARF module during evolution. The signaling properties of a genetic network, and not just its developmental output, are thus critical to understanding evolution of multicellular forms.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Akitomo Nagashima
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | | | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Okazaki 444-8585, Japan
| | - Ralph S Quatrano
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Gurinder S Atwal
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marja C P Timmermans
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
239
|
Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, Li S, Bai MY, Hu Y, Xiang F. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:391-402. [PMID: 27189514 DOI: 10.1111/tpj.13211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 05/06/2023]
Abstract
In tissue culture systems plant cells can be induced to regenerate to whole plants. A particularly striking example of cellular reprogramming is seen in this regeneration process, which typically begins with the induction of an intermediate cell mass referred to as callus. The identity of the key genetic cues associated with callus formation is still largely unknown. Here a microRNA-directed phytohormonal interaction is described which represses callus initiation and formation in Arabidopsis thaliana. miR160 and ARF10 (At2g28350), a gene encoding an auxin response factor, were shown to exhibit a contrasting pattern of transcription during callus initiation from pericycle-like cells. The callus initiation is faster and more prolific in a miR160-resistant form of ARF10 (mARF10), but slower and less prolific in the transgenic line over-expressing miR160c (At5g46845), arf10 and arf10 arf16 mutants than that in the wild type. ARF10 repressed the expression of Arabidopsis Response Regulator15 (ARR15, At1g74890) via its direct binding to the gene's promoter. The loss of function of ARR15 enhanced callus initiation and partly rescued the phenotype induced by the transgene Pro35S:miR160c. Overexpression of ARR15 partly rescues the callus initiation defect of mARF10 plants. Our findings define miR160 as a key repressor of callus formation and reveal that the initiation of callus is repressed by miR160-directed interaction between auxin and cytokinin.
Collapse
Affiliation(s)
- Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Juan Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Long Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Qiang Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Qing Lu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
240
|
Lin D, Xiang Y, Xian Z, Li Z. Ectopic expression of SlAGO7 alters leaf pattern and inflorescence architecture and increases fruit yield in tomato. PHYSIOLOGIA PLANTARUM 2016; 157:490-506. [PMID: 26847714 DOI: 10.1111/ppl.12425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
ARGONAUTE7 (AGO7), a key regulator of the trans-acting small interfering RNAs (ta-siRNA) pathway, plays a conserved role in controlling leaf pattern among species. However, little is known about the ta-siRNA pathway in regulating inflorescence architecture and fruit yield. In this study, we characterized the expression pattern, subcellular localization and developmental functions of SlAGO7 in tomato (Solanum lycopersicum). Overexpressing SlAGO7 in tomato exhibited pleiotropic phenotypes, including improved axillary bud formation, altered leaf morphology and inflorescence architecture, and increased fruit yield. Cross-sectioning of leaves showed that the number of vascular bundles was significantly increased in 35:SlAGO7 lines. Overexpression of SlAGO7 increased the production of ta-siRNA, and repressed the expression ta-siRNA-targeted genes (SlARF2a, SlARF2b, SlARF3 and SlARF4). Further analysis showed that overexpression of SlAGO7 alters the expression of key genes implicated in leaf morphology, inflorescence architecture, auxin transport and signaling. In addition, the altered auxin response of 35:SlAGO7 lines were also investigated. These results suggested that SlAGO7 plays a positive role in determining inflorescence architecture and fruit yield though the ta-siRNA pathway. Therefore, SlAGO7 represents a useful gene that can be incorporated in tomato breeding programs for developing cultivars with yield potential.
Collapse
Affiliation(s)
- Dongbo Lin
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
| | - Ya Xiang
- Botanic Garden, Chongqing University, Chongqing, 400030, China
| | - Zhiqiang Xian
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
| | - Zhengguo Li
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
241
|
Huang J, Li Z, Zhao D. Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice. Sci Rep 2016; 6:29938. [PMID: 27444058 PMCID: PMC4956771 DOI: 10.1038/srep29938] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) control gene expression as key negative regulators at the post-transcriptional level. MiR160 plays a pivotal role in Arabidopsis growth and development through repressing expression of its target AUXIN RESPONSE FACTOR (ARF) genes; however, the function of miR160 in monocots remains elusive. In this study, we found that the mature rice miR160 (OsmiR160) was mainly derived from OsMIR160a and OsMIR160b genes. Among four potential OsmiR160 target OsARF genes, the OsARF18 transcript was cleaved at the OsmiR160 target site. Rice transgenic plants (named mOsARF18) expressing an OsmiR160-resistant version of OsARF18 exhibited pleiotropic defects in growth and development, including dwarf stature, rolled leaves, and small seeds. mOsARF18 leaves were abnormal in bulliform cell differentiation and epidermal cell division. Starch accumulation in mOsARF18 seeds was also reduced. Moreover, auxin induced expression of OsMIR160a, OsMIR160b, and OsARF18, whereas expression of OsMIR160a and OsMIR160b as well as genes involved in auxin signaling was altered in mOsARF18 plants. Our results show that negative regulation of OsARF18 expression by OsmiR160 is critical for rice growth and development via affecting auxin signaling, which will advance future studies on the molecular mechanism by which miR160 fine-tunes auxin signaling in plants.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Zhiyong Li
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
242
|
Pashkovskiy PP, Kartashov AV, Zlobin IE, Pogosyan SI, Kuznetsov VV. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:146-54. [PMID: 27031426 DOI: 10.1016/j.plaphy.2016.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 05/01/2023]
Abstract
The effect of blue LED (450 nm) on the photomorphogenesis of Arabidopsis thaliana Col-0 plants and the transcript levels of several genes, including miRNAs, photoreceptors and auxin response factors (ARF) was investigated. It was observed that blue light accelerated the generative development, reduced the rosette leaf number, significantly reduced the leaf area, dry biomass and led to the disruption of conductive tissue formation. The blue LED differentially influenced the transcript levels of several phytochromes (PHY a, b, c, d, and e), cryptochromes (CRY 1 and 2) and phototropins (PHOT 1 and 2). At the same time, the blue LED significantly increased miR167 expression compared to a fluorescent lamp or white LEDs. This increase likely resulted in the enhanced transcription of the auxin response factor genes ARF4 and ARF8, which are regulated by this miRNA. These findings support the hypothesis that the effects of blue light on A. thaliana are mediated by auxin signalling pathway involving miRNA-dependent regulation of ARF gene expression.
Collapse
Affiliation(s)
| | | | - Ilya E Zlobin
- Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | | |
Collapse
|
243
|
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA Signatures of Drought Signaling in Rice Root. PLoS One 2016; 11:e0156814. [PMID: 27276090 PMCID: PMC4898717 DOI: 10.1371/journal.pone.0156814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.
Collapse
Affiliation(s)
- Behnam Bakhshi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Mohseni Fard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nava Nikpay
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
244
|
Sattar S, Addo-Quaye C, Thompson GA. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo. PLANT, CELL & ENVIRONMENT 2016; 39:1216-27. [PMID: 26437210 DOI: 10.1111/pce.12645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 05/06/2023]
Abstract
Resistance to Aphis gossypii in melon is attributed to the presence of the single dominant R gene virus aphid transmission (Vat), which is biologically expressed as antibiosis, antixenosis and tolerance. However, the mechanism of resistance is poorly understood at the molecular level. Aphid-induced transcriptional changes, including differentially expressed miRNA profiles that correspond to resistance interaction have been reported in melon. The potential regulatory roles of miRNAs in Vat-mediated aphid resistance were further revealed by identifying the specific miRNA degradation targets. A total of 70 miRNA:target pairs, including 28 novel miRNA:target pairs, for the differentially expressed miRNAs were identified: 11 were associated with phytohormone regulation, including six miRNAs that potentially regulate auxin interactions. A model for a redundant regulatory system of miRNA-mediated auxin insensitivity is proposed that incorporates auxin perception, auxin modification and auxin-regulated transcription. Chemically inhibiting the transport inhibitor response-1 (TIR-1) auxin receptor in susceptible melon tissues provides in vivo support for the model of auxin-mediated impacts on A. gossypii resistance.
Collapse
Affiliation(s)
- Sampurna Sattar
- College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Charles Addo-Quaye
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Gary A Thompson
- College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
245
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
246
|
Li C, Zhang B. MicroRNAs in Control of Plant Development. J Cell Physiol 2016; 231:303-13. [PMID: 26248304 DOI: 10.1002/jcp.25125] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
In the long evolutionary history, plant has evolved elaborate regulatory network to control functional gene expression for surviving and thriving, such as transcription factor-regulated transcriptional programming. However, plenty of evidences from the past decade studies demonstrate that the 21-24 nucleotides small RNA molecules, majorly microRNAs (miRNAs) play dominant roles in post-transcriptional gene regulation through base pairing with their complementary mRNA targets, especially prefer to target transcription factors in plants. Here, we review current progresses on miRNA-controlled plant development, from miRNA biogenesis dysregulation-caused pleiotropic developmental defects to specific developmental processes, such as SAM regulation, leaf and root system regulation, and plant floral transition. We also summarize some miRNAs that are experimentally proved to greatly affect crop plant productivity and quality. In addition, recent reports show that a single miRNA usually displays multiple regulatory roles, such as organ development, phase transition, and stresses responses. Thus, we infer that miRNA may act as a node molecule to coordinate the balance between plant development and environmental clues, which may shed the light on finding key regulator or regulatory pathway for uncovering the mysterious molecular network.
Collapse
Affiliation(s)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, North Carolina
| |
Collapse
|
247
|
Mermigka G, Verret F, Kalantidis K. RNA silencing movement in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:328-42. [PMID: 26297506 DOI: 10.1111/jipb.12423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant, respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Frédéric Verret
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
248
|
Chen H, Arsovski AA, Yu K, Wang A. Genome-Wide Investigation Using sRNA-Seq, Degradome-Seq and Transcriptome-Seq Reveals Regulatory Networks of microRNAs and Their Target Genes in Soybean during Soybean mosaic virus Infection. PLoS One 2016; 11:e0150582. [PMID: 26963095 PMCID: PMC4786119 DOI: 10.1371/journal.pone.0150582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play key roles in a variety of cellular processes through regulation of their target gene expression. Accumulated experimental evidence has demonstrated that infections by viruses are associated with the altered expression profile of miRNAs and their mRNA targets in the host. However, the regulatory network of miRNA-mRNA interactions during viral infection remains largely unknown. In this study, we performed small RNA (sRNA)-seq, degradome-seq and as well as a genome-wide transcriptome analysis to profile the global gene and miRNA expression in soybean following infections by three different Soybean mosaic virus (SMV) isolates, L (G2 strain), LRB (G2 strain) and G7 (G7 strain). sRNA-seq analyses revealed a total of 253 soybean miRNAs with a two-fold or greater change in abundance compared with the mock-inoculated control. 125 transcripts were identified as the potential cleavage targets of 105 miRNAs and validated by degradome-seq analyses. Genome-wide transcriptome analysis showed that total 2679 genes are differentially expressed in response to SMV infection including 71 genes predicted as involved in defense response. Finally, complex miRNA-mRNA regulatory networks were derived using the RNAseq, small RNAseq and degradome data. This work represents a comprehensive, global approach to examining virus-host interactions. Genes responsive to SMV infection are identified as are their potential miRNA regulators. Additionally, regulatory changes of the miRNAs themselves are described and the regulatory relationships were supported with degradome data. Taken together these data provide new insights into molecular SMV-soybean interactions and offer candidate miRNAs and their targets for further elucidation of the SMV infection process.
Collapse
Affiliation(s)
- Hui Chen
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| | - Andrej Adam Arsovski
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Rd. 20, Harrow, Ontario, N0R 1G0, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| |
Collapse
|
249
|
Cabrera J, Barcala M, García A, Rio-Machín A, Medina C, Jaubert-Possamai S, Favery B, Maizel A, Ruiz-Ferrer V, Fenoll C, Escobar C. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. THE NEW PHYTOLOGIST 2016; 209:1625-40. [PMID: 26542733 DOI: 10.1111/nph.13735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/25/2015] [Indexed: 05/20/2023]
Abstract
Root-knot nematodes (RKNs) induce inside the vascular cylinder the giant cells (GCs) embedded in the galls. The distinctive gene repression in early-developing GCs could be facilitated by small RNAs (sRNA) such as miRNAs, and/or epigenetic mechanisms mediated by 24nt-sRNAs, rasiRNAs and 21-22nt-sRNAs. Therefore, the sRNA-population together with the role of the miR390/TAS3/ARFs module were studied during early gall/GC formation. Three sRNA libraries from 3-d-post-inoculation (dpi) galls induced by Meloidogyne javanica in Arabidopsis and three from uninfected root segments were sequenced following Illumina-Solexa technology. pMIR390a::GUS and pTAS3::GUS lines were assayed for nematode-dependent promoter activation. A sensor line indicative of TAS3-derived tasiRNAs binding to the ARF3 sequence (pARF3:ARF3-GUS) together with a tasiRNA-resistant ARF3 line (pARF3:ARF3m-GUS) were used for functional analysis. The sRNA population showed significant differences between galls and controls, with high validation rate and correspondence with their target expression: 21-nt sRNAs corresponding mainly to miRNAs were downregulated, whilst 24-nt-sRNAs from the rasiRNA family were mostly upregulated in galls. The promoters of MIR390a and TAS3, active in galls, and the pARF3:ARF3-GUS line, indicated a role of TAS3-derived-tasiRNAs in galls. The regulatory module miR390/TAS3 is necessary for proper gall formation possibly through auxin-responsive factors, and the abundance of 24-nt sRNAs (mostly rasiRNAs) constitutes a gall hallmark.
Collapse
Affiliation(s)
- Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Marta Barcala
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Alejandra García
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Ana Rio-Machín
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncológicas (CNIO), C/Melchor Fernández Almagro, 3, 28029 , Madrid, Spain
| | - Clémence Medina
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Stephanie Jaubert-Possamai
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Bruno Favery
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Alexis Maizel
- Centre for Organismal Studies University of Heidelberg, Im Neuenheimer Feld, 230-69120, Heidelberg, Germany
| | - Virginia Ruiz-Ferrer
- Centro de Investigaciones Biológicas, CSIC, Av. Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carmen Fenoll
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| |
Collapse
|
250
|
Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LYD, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. PLANT & CELL PHYSIOLOGY 2016; 57:339-58. [PMID: 26861787 PMCID: PMC4788410 DOI: 10.1093/pcp/pcw020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/22/2015] [Indexed: 05/04/2023]
Abstract
Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem-loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes.
Collapse
Affiliation(s)
- Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Guan-Zong Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Mario A Arteaga-Vazquez
- Instituto de Biotecnologia y Ecologia Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa Veracruz, Mexico
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, 1 Sec. 4, Roosevelt Rd. Taipei, Taiwan 106
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan 701
| | - Gong-Min Su
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Sabine Zachgo
- University of Osnabrück, Botany Department, D-49076 Osnabrück, Germany
| | - Felix Althoff
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Mizuki Takenaka
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 115 Center of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|