201
|
De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. PLANT, CELL & ENVIRONMENT 2013; 36:1992-2007. [PMID: 23534608 DOI: 10.1111/pce.12106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/20/2013] [Indexed: 05/23/2023]
Abstract
The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
202
|
Le Hénanff G, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4877-93. [PMID: 24043850 DOI: 10.1093/jxb/ert277] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors of the NAC family are known to be involved in various developmental processes and in response to environmental stresses. Whereas NAC genes have been widely studied in response to abiotic stresses, little is known about their role in response to biotic stresses, especially in crops. Here, the first characterization of a Vitis vinifera L. NAC member, named VvNAC1, and involved in organ development and defence towards pathogens is reported. Expression profile analysis of VvNAC1 showed that its expression is closely associated with later stages of leaf, flower, and berry development, suggesting a role in plant senescence. Moreover, VvNAC1 expression is stimulated in Botrytis cinerea- or microbe-associated molecular pattern (MAMP)-infected berries or leaves. Furthermore, cold, wounding, and defence-related hormones such as salicylic acid, methyl jasmonate, ethylene, and abscisic acid are all able to induce VvNAC1 expression in grapevine leaves. VvNAC1-overexpressing Arabidopsis plants exhibit enhanced tolerance to osmotic, salt, and cold stresses and to B. cinerea and Hyaloperonospora arabidopsidis pathogens. These plants present a modified pattern of defence gene markers (AtPR-1, AtPDF1.2, and AtVSP1) after stress application, suggesting that VvNAC1 is an important regulatory component of the plant signalling defence cascade. Collectively, these results provide evidence that VvNAC1 could represent a node of convergence regulating grapevine development and stress responses, including defence against necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Gaëlle Le Hénanff
- Université de Reims Champagne-Ardenne, URVVC-EA 4707, Laboratoire Stress, Défenses et Reproduction des Plantes, BP 1039, F-51687 Reims cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Sun LJ, Pan ZQ, Xie J, Liu XJ, Sun FT, Song FM, Bao N, Gu HY. Electrocatalytic activity of salicylic acid on Au@Fe3O4 nanocomposites modified electrode and its detection in tomato leaves infected with Botrytis cinerea. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
204
|
Lai Z, Mengiste T. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:505-12. [PMID: 23859758 DOI: 10.1016/j.pbi.2013.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/14/2013] [Indexed: 05/04/2023]
Abstract
Necrotrophs are plant pathogens that kill host cells and proliferate on nutrients from dead or dying tissues causing devastating diseases of horticultural and agronomic crops. Their interactions with plants involve a complex network of pathogen disease factors and corresponding plant immune response regulators. Mechanisms of quantitative resistance and the major regulators intersect regardless of pathogen life style. By contrast, some plant immune responses, such as effector-triggered immunity (ETI), a major source of qualitative resistance to biotrophs, are co-opted by necrotrophs to promote disease, which highlights the disparate plant immunity systems. Advances towards understanding mechanisms and processes underlying host responses to necrotrophs are summarized.
Collapse
Affiliation(s)
- Zhibing Lai
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907, United States
| | | |
Collapse
|
205
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
206
|
Zhang L, Li Z, Li J, Wang A. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis. PLoS One 2013; 8:e61810. [PMID: 23755095 PMCID: PMC3670921 DOI: 10.1371/journal.pone.0061810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/11/2013] [Indexed: 01/01/2023] Open
Abstract
The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions.
Collapse
Affiliation(s)
- Lili Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhenjun Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, China
- * E-mail: (AW); (JL)
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- College of Horticulture, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key University Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
- * E-mail: (AW); (JL)
| |
Collapse
|
207
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-1058. [PMID: 23558912 DOI: 10.1093/aob/mct06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
208
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1536] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
209
|
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:79-87. [PMID: 23602102 DOI: 10.1016/j.plantsci.2013.03.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/21/2023]
Abstract
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops.
Collapse
Affiliation(s)
- Holly Derksen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
210
|
Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:72. [PMID: 23577014 PMCID: PMC3617366 DOI: 10.3389/fpls.2013.00072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Collapse
Affiliation(s)
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
211
|
de León IP, Montesano M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int J Mol Sci 2013; 14:3178-200. [PMID: 23380962 PMCID: PMC3588038 DOI: 10.3390/ijms14023178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023] Open
Abstract
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +598-24872605; Fax: +598-24875548
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Mataojo 2055, CP 11400, Montevideo, Uruguay; E-Mail:
| |
Collapse
|
212
|
Ponzio C, Gols R, Pieterse CMJ, Dicke M. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12035] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Rieta Gols
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe Interactions Department of Biology Faculty of Science Utrecht University P.O. Box 800.563508 TB UtrechtThe Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| |
Collapse
|
213
|
Li Z, Zhang L, Wang A, Xu X, Li J. Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 2013; 8:e54880. [PMID: 23349984 PMCID: PMC3551807 DOI: 10.1371/journal.pone.0054880] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/17/2012] [Indexed: 01/19/2023] Open
Abstract
Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions.
Collapse
Affiliation(s)
- Zhenjun Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lili Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of life science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, Heilongjiang, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, Heilongjiang, China
| |
Collapse
|
214
|
Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 2013; 8:e53901. [PMID: 23342034 PMCID: PMC3544710 DOI: 10.1371/journal.pone.0053901] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/04/2012] [Indexed: 01/08/2023] Open
Abstract
SSITL (SS1G_14133) of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin α4-subunit and a fungal integrin-like protein. When S. sclerotiorum was inoculated to its host, high expression of SSITL was detected during the initial stages of infection (1.5-3.0 hpi). Targeted silencing of SSITL resulted in a significant reduction in virulence; on the other hand, inoculation of SSITL silenced transformant A10 initiated strong and rapid defense response in Arabidopsis, the highest expressions of defense genes PDF1.2 and PR-1 appeared at 3 hpi which was 9 hr earlier than that time when plants were inoculated with the wild-type strain of S. sclerotiorum. Systemic resistance induced by A10 was detected by analysis of the expression of PDF1.2 and PR-1, and confirmed following inoculation with Botrytis cinerea. A10 induced much larger lesions on Arabidopsis mutant ein2 and jar1, and slightly larger lesions on mutant pad4 and NahG in comparison with the wild-type plants. Furthermore, both transient and constitutive expression of SSITL in Arabidopsis suppressed the expression of PDF1.2 and led to be more susceptible to A10 and the wild-type strain of S. sclerotiorum and B. cinerea. Our results suggested that SSITL is an effector possibly and plays significant role in the suppression of jasmonic/ethylene (JA/ET) signal pathway mediated resistance at the early stage of infection.
Collapse
Affiliation(s)
- Wenjun Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Xianhong Yi
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
215
|
Blanco-Ulate B, Vincenti E, Powell ALT, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2013; 4:142. [PMID: 23717322 PMCID: PMC3653111 DOI: 10.3389/fpls.2013.00142] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET), salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | - Estefania Vincenti
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA. e-mail:
| |
Collapse
|
216
|
Prusky D, Alkan N, Mengiste T, Fluhr R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:155-76. [PMID: 23682917 DOI: 10.1146/annurev-phyto-082712-102349] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insidious fungal infections by postharvest pathogens remain quiescent during fruit growth until, at a particular phase during fruit ripening and senescence, the pathogens switch to the necrotrophic lifestyle and cause decay. During ripening, fruits undergo physiological processes, such as activation of ethylene biosynthesis, cuticular changes, and cell-wall loosening-changes that are accompanied by a decline of antifungal compounds, both those that are preformed and those that are inducible secondary metabolites. Pathogen infection of the unripe host fruit initiates defensive signal-transduction cascades, culminating in accumulation of antifungal proteins that limit fungal growth and development. In contrast, development of the same pathogens during fruit ripening and storage activates a substantially different signaling network, one that facilitates aggressive fungal colonization. This review focuses on responses induced by the quiescent pathogens of postharvest diseases in unripe host fruits. New genome-scale experimental approaches have begun to delineate the complex and multiple networks of host and pathogen responses activated to maintain or to facilitate the transition from the quiescent to the necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, Volcani Center, Bet Dagan, 50250 Israel.
| | | | | | | |
Collapse
|
217
|
Rivas-San Vicente M, Larios-Zarate G, Plasencia J. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. PLANTA 2013; 237:121-36. [PMID: 22990908 DOI: 10.1007/s00425-012-1758-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 05/08/2023]
Abstract
Sphingolipids play an important role in signal transduction pathways that regulate physiological functions and stress responses in eukaryotes. In plants, recent evidence suggests that their metabolic precursors, the long-chain bases (LCBs) act as bioactive molecules in the immune response. Interestingly, the virulence of two unrelated necrotrophic fungi, Fusarium verticillioides and Alternaria alternata, which are pathogens of maize and tomato plants, respectively, depends on the production of sphinganine-analog mycotoxins (SAMs). These metabolites inhibit de novo synthesis of sphingolipids in their hosts causing accumulation of LCBs, which are key regulators of programmed cell death. Therefore, to gain more insight into the role of sphingolipids in plant immunity against SAM-producing necrotrophic fungi, we disrupted sphingolipid metabolism in Nicotiana benthamiana through virus-induced gene silencing (VIGS) of the serine palmitoyltransfersase (SPT). This enzyme catalyzes the first reaction in LCB synthesis. VIGS of SPT profoundly affected N. benthamiana development as well as LCB composition of sphingolipids. While total levels of phytosphingosine decreased, sphinganine and sphingosine levels increased in SPT-silenced plants, compared with control plants. Plant immunity was also affected as silenced plants accumulated salicylic acid (SA), constitutively expressed the SA-inducible NbPR-1 gene and showed increased susceptibility to the necrotroph A. alternata f. sp. lycopersici. In contrast, expression of NbPR-2 and NbPR-3 genes was delayed in silenced plants upon fungal infection. Our results strongly suggest that LCBs modulate the SA-dependent responses and provide a working model of the potential role of SAMs from necrotrophic fungi to disrupt the plant host response to foster colonization.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | |
Collapse
|
218
|
Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. PLANTA 2013; 237:337-49. [PMID: 23070523 DOI: 10.1007/s00425-012-1779-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/30/2012] [Indexed: 05/24/2023]
Abstract
The role of defence gene expression triggered by Cd toxicity in the plant's response to Botrytis cinerea was investigated in Arabidopsis thaliana Columbia 0. Silicon (0 or 1.5 mM) and Cd (0, 1 or 10 μM) were supplied to 3-month-old solution-cultured plants. After 3 days, half of the plants of each treatment were inoculated with Botrytis. Supplied Cd concentrations were below the toxicity threshold and did not cause shoot growth inhibition or evidence of oxidative stress, while Botrytis infection severely decreased plant growth in all treatments. The expression of marker genes PR1 and BGL2 for the salicylic acid (SA) and the PDF1.2 for the jasmonic acid-ethylene (JA-ET) signalling pathways was enhanced in 10 μM Cd-treated non-infected plants. Twenty hours after inoculation, PDF1.2 expression showed a strong increase in all treatments, while enhanced PR1, BGL2, and CHIB expression was only found 7 days after infection. A great synergistic effect of Cd and Botrytis on PDF1.2 expression was found in 10 μM Cd-treated plants. Silicon decreased PR1, BGL2, and CHIB, while increasing PDF1.2 expression, which indicates its role as a modulator of the signalling pathways involved in the plant's response to fungal infection. Botrytis growth decreased in 10 μM Cd-treated plants, which could be due to the combined effects of Cd and Botrytis activating the SA and JA-ET-mediated signalling pathways. Taken together, our results provide support for the view that Cd concentrations close to the toxicity threshold induce defence signalling pathways which potentiate the plant's response against fungal infection.
Collapse
|
219
|
Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:637-50. [PMID: 23264518 PMCID: PMC3542053 DOI: 10.1093/jxb/ers360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). Both the ET and JASMONIC ACID INSENSITIVE1 (JAI1) receptor-dependent JA signalling pathways are necessary for susceptibility, while SA response promotes resistance to AAL infection. In addition, the role of JA in susceptibility to AAL is partly dependent on ET biosynthesis and perception, while the SA pathway enhances resistance to AAL and antagonizes the ET response. Based on these results, it is proposed that ET, JA, and SA each on their own can influence the susceptibility of tomato to AAL. Furthermore, the functions of JA and SA in susceptibility to the pathogen are correlated with the enhanced or decreased action of ET, respectively. This study has revealed the functional relationship among the three key hormone pathways in tomato defence against AAL.
Collapse
Affiliation(s)
- Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jiansheng Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
220
|
Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. FRONTIERS IN PLANT SCIENCE 2013; 4:206. [PMID: 23805146 PMCID: PMC3690380 DOI: 10.3389/fpls.2013.00206] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/31/2013] [Indexed: 05/18/2023]
Abstract
Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Ainhoa Martínez-Medina, Plant-Microbe Interactions, Utrecht University, H.R. Kruyt Building, Padualaan 8, W303, 3584 CH Utrecht, Netherlands e-mail: ; María J. Pozo, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| | - Iván Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J. Sánchez-Guzmán
- Estación Experimental La Mayora, Consejo Superior de Investigaciones Científicas, MálagaSpain
| | - Sabine C. Jung
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Jose A. Pascual
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Ainhoa Martínez-Medina, Plant-Microbe Interactions, Utrecht University, H.R. Kruyt Building, Padualaan 8, W303, 3584 CH Utrecht, Netherlands e-mail: ; María J. Pozo, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| |
Collapse
|
221
|
Rahman TAE, Oirdi ME, Gonzalez-Lamothe R, Bouarab K. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1584-93. [PMID: 22950753 DOI: 10.1094/mpmi-07-12-0187-r] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.
Collapse
Affiliation(s)
- Taha Abd El Rahman
- Departement de Biologie, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
222
|
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal Modulation of Plant Immunity. Annu Rev Cell Dev Biol 2012; 28:489-521. [DOI: 10.1146/annurev-cellbio-092910-154055] [Citation(s) in RCA: 1753] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Corné M.J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Christos Zamioudis
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Universidad San Francisco de Quito, Quito, Ecuador;
| | - Saskia C.M. Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| |
Collapse
|
223
|
Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D. Beneficial 'unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2012; 12:198. [PMID: 23116303 PMCID: PMC3534561 DOI: 10.1186/1471-2229-12-198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Karine Coenen
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Line Cantin
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Charles Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
- Current address: Horticulture Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Louis-Philippe Vaillancourt
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Russell Tweddell
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| |
Collapse
|
224
|
Henriquez MA, Wolski EA, Molina OI, Adam LR, Andreu AB, Daayf F. Effects of glucans and eicosapentaenoic acid on differential regulation of phenylpropanoid and mevalonic pathways during potato response to Phytophthora infestans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:119-128. [PMID: 22922112 DOI: 10.1016/j.plaphy.2012.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/30/2012] [Indexed: 05/29/2023]
Abstract
The effects of Phytophthora infestans glucans, eicosapentaenoic acid (EPA) and isolates of this pathogen, on the differential expression of eight genes from the phenylpropanoid and the mevalonate (Ac-MVA) pathways were analyzed in potato by semi-quantitative RT-PCR and qRT-PCR. The application of EPA had an elicitor effect in Russet Burbank (RB) and Defender (DF) in response to inoculation with a US8 isolate of P. infestans, thereby reducing symptoms of late blight. Such effect was associated with the expression of PAL-1 and PAL-2, since the latter occurred only when EPA was followed by inoculation, whereas these genes were down-regulated in individual treatments RB + EPA, RB + US8, DF + EPA, and DF + US8. The glucan fraction did not by itself suppress phenylpropanoid genes, but its combination with the pathogen resulted in a down-regulation of PAL-1, PAL-2 and CHS. The addition of the glucan fraction to the elicitor EPA, had a negative effect (RB + EPA + GL + US8) since plants showed higher disease symptoms than the ones pretreated with water then infected with US8, and in comparison with RB + EPA + US8 and RB + GL + US8. Exclusive up-regulation of 4CL in DF + US11 and of CHS in DF + EPA + GL + US8, DF + EPA + US11, DF + GL + US11 and DF + EPA + GL + US11, where late blight lesions were not detected, could be associated with potato protection against late blight. Along with previous findings in this pathosystem, these data suggest that genetic resistance in potato against P. infestans is not the result of isolated reactions against the pathogen, but rather the combination of many factors in-line with a polygenic/horizontal resistance.
Collapse
Affiliation(s)
- Maria A Henriquez
- Department of Plant Science, Agriculture Building, University of Manitoba, Winnipeg, Canada R3T 2N2
| | | | | | | | | | | |
Collapse
|
225
|
Ponce De León I, Schmelz EA, Gaggero C, Castro A, Álvarez A, Montesano M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. MOLECULAR PLANT PATHOLOGY 2012. [PMID: 22551417 DOI: 10.1111/j.1364-703.2012.00806.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.
Collapse
Affiliation(s)
- Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
226
|
Ponce De León I, Schmelz EA, Gaggero C, Castro A, Álvarez A, Montesano M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. MOLECULAR PLANT PATHOLOGY 2012; 13:960-74. [PMID: 22551417 PMCID: PMC6638766 DOI: 10.1111/j.1364-3703.2012.00806.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.
Collapse
Affiliation(s)
- Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
227
|
El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era. Int J Mol Sci 2012; 13:7237-7259. [PMID: 22837691 PMCID: PMC3397523 DOI: 10.3390/ijms13067237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/17/2022] Open
Abstract
Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.
Collapse
Affiliation(s)
- Abdelbasset El Hadrami
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- OMEX Agriculture Inc., P.O. Box 301, 290 Agri Park Road, Oak Bluff, Manitoba, R0G 1N0, Canada
| | - Ahmed F. El-Bebany
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Zhen Yao
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Lorne R. Adam
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Ismailx El Hadrami
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales (Biotec-VRV), Faculté des Sciences Semlalia, B.P. 2390, Marrakech, 40 000, Morocco; E-Mail:
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| |
Collapse
|
228
|
Dihazi A, Jaiti F, Kilani-Feki O, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini MA. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:7-15. [PMID: 22480991 DOI: 10.1016/j.plaphy.2012.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/02/2012] [Indexed: 05/31/2023]
Abstract
The Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most destructive disease of date palm (Phoenix dactylifera L) in Morocco and Algeria, with no effective control strategy yet available. In this work, two bacteria, Bacillus amyloliquefaciens strain Ag1 (Ag) and Burkholderia cepacia strain Cs5 (Cs), were examined for their potential to control this disease. Both bacterial strains inhibited both growth and sporulation of Foa. They released compounds into the culture medium, which resulted into cytological changes in Foa's mycelial structure. When Jihel-date palm plantlets, a susceptible cultivar, were induced with these bacteria, the size of the necrosis zone, which reflected the spreading of the pathogen, was reduced by more than 70%, as compared with uninduced controls. To further investigate the mechanisms of such disease reduction, phenolic compounds and peroxidase activity were assessed. One month after inoculation, date palm defense reactions against Foa were different depending on the bacterium used, B. cepacia led to higher accumulation of constitutive caffeoylshikimic acid isomers while B. amyloliquefaciens triggered the induction of new phenolic compounds identified as hydroxycinnamic acid derivatives. Peroxidase activity has also been stimulated significantly and varied with the bacterial strain used and with Foa inoculation. These results add to the promising field of investigation in controlling Bayoud disease.
Collapse
Affiliation(s)
- Abdelhi Dihazi
- Laboratoire de Biotechnologie, Biochimies, Valorisation et Protection des Plantes, Université Cadi Ayyad, Faculté des Sciences Semlalia, B.P. 2390, 40000 Marrakech, Morocco.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. TRENDS IN PLANT SCIENCE 2012; 17:260-70. [PMID: 22498450 DOI: 10.1016/j.tplants.2012.02.010] [Citation(s) in RCA: 706] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/25/2012] [Accepted: 02/28/2012] [Indexed: 05/18/2023]
Abstract
The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Current thinking is that SA induces resistance against biotrophic pathogens and some phloem feeding insects and JA induces resistance against necrotrophic pathogens, some phloem feeding insects and chewing herbivores. Signaling crosstalk between SA and JA commonly manifests as a reciprocal antagonism and may be adaptive, but this remains speculative. We examine evidence for and against adaptive explanations for antagonistic crosstalk, trace its phylogenetic origins and provide a hypothesis-testing framework for future research on the adaptive significance of SA-JA crosstalk.
Collapse
|
230
|
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. PLANT PHYSIOLOGY 2012; 159:266-85. [PMID: 22392279 PMCID: PMC3375964 DOI: 10.1104/pp.111.192641] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.
Collapse
Affiliation(s)
| | | | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (R.P.B., I.E.S.); Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany (C.D.)
| |
Collapse
|
231
|
Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R, Pieterse CM, Ballaré CL. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. PLANT PHYSIOLOGY 2012; 158:2042-52. [PMID: 22371506 PMCID: PMC3320205 DOI: 10.1104/pp.112.193359] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/24/2012] [Indexed: 05/17/2023]
Abstract
Light is an important modulator of plant immune responses. Here, we show that inactivation of the photoreceptor phytochrome B (phyB) by a low red/far-red ratio (R:FR), which is a signal of competition in plant canopies, down-regulates the expression of defense markers induced by the necrotrophic fungus Botrytis cinerea, including the genes that encode the transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) and the plant defensin PLANT DEFENSIN1.2 (PDF1.2). This effect of low R:FR correlated with a reduced sensitivity to jasmonate (JA), thus resembling the antagonistic effects of salicylic acid (SA) on JA responses. Low R:FR failed to depress PDF1.2 mRNA levels in a transgenic line in which PDF1.2 transcription was up-regulated by constitutive expression of ERF1 in a coronatine insensitive1 (coi1) mutant background (35S::ERF1/coi1). These results suggest that the low R:FR effect, in contrast to the SA effect, requires a functional SCFCOI1-JASMONATE ZIM-DOMAIN (JAZ) JA receptor module. Furthermore, the effect of low R:FR depressing the JA response was conserved in mutants impaired in SA signaling (sid2-1 and npr1-1). Plant exposure to low R:FR ratios and the phyB mutation markedly increased plant susceptibility to B. cinerea; the effect of low R:FR was (1) independent of the activation of the shade-avoidance syndrome, (2) conserved in the sid2-1 and npr1-1 mutants, and (3) absent in two RNA interference lines disrupted for the expression of the JAZ10 gene. Collectively, our results suggest that low R:FR ratios depress Arabidopsis (Arabidopsis thaliana) immune responses against necrotrophic microorganisms via a SA-independent mechanism that requires the JAZ10 transcriptional repressor and that this effect may increase plant susceptibility to fungal infection in dense canopies.
Collapse
|
232
|
Wang Z, Tan X, Zhang Z, Gu S, Li G, Shi H. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:75-82. [PMID: 22284712 DOI: 10.1016/j.plantsci.2011.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 05/26/2023]
Abstract
Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | | | | | | | | | | |
Collapse
|
233
|
van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. THE PLANT CELL 2012; 24:1285-300. [PMID: 22454455 PMCID: PMC3336116 DOI: 10.1105/tpc.111.093732] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)-induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis.
Collapse
Affiliation(s)
| | | | - Christine Kastner
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Plant Reproductive Biology, D-06466 Gatersleben, Germany
| | - Farnusch Kaschani
- Plant Chemetics Lab, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Plant Reproductive Biology, D-06466 Gatersleben, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Address correspondence to
| |
Collapse
|
234
|
González-Lamothe R, El Oirdi M, Brisson N, Bouarab K. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. THE PLANT CELL 2012; 24:762-77. [PMID: 22374398 PMCID: PMC3315245 DOI: 10.1105/tpc.111.095190] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 05/19/2023]
Abstract
Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation.
Collapse
Affiliation(s)
- Rocío González-Lamothe
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Mohamed El Oirdi
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Normand Brisson
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Kamal Bouarab
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
| |
Collapse
|
235
|
Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. PLANT PHYSIOLOGY 2012; 158:1034-45. [PMID: 22128140 PMCID: PMC3271740 DOI: 10.1104/pp.111.188698] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/21/2011] [Indexed: 05/02/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) lines overexpressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild-type plants and were examined for responses to the fungal necrotrophs Botrytis cinerea and Alternaria solani, bacterial pathogen Pseudomonas syringae pv tomato DC3000, and larvae of the chewing insect tobacco hornworm (Manduca sexta). The Spd-accumulating transgenic tomato lines were more susceptible to B. cinerea than the wild-type plants; however, responses to A. solani, P. syringae, or M. sexta were similar to the wild-type plants. Exogenous application of ethylene precursors, S-adenosyl-Met and 1-aminocyclopropane-1-carboxylic acid, or PA biosynthesis inhibitors reversed the response of the transgenic plants to B. cinerea. The increased susceptibility of the ySpdSyn transgenic tomato to B. cinerea was associated with down-regulation of gene transcripts involved in ethylene biosynthesis and signaling. These data suggest that PA-mediated susceptibility to B. cinerea is linked to interference with the functions of ethylene in plant defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Avtar K. Handa
- Department of Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology (S.N., M.V.M., A.K.H.), Department of Botany and Plant Pathology (K.L., T.M.), and Department of Food Science (M.G.F.), Purdue University, West Lafayette, Indiana 47907; Department of Biology, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates (S.A.); and Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture, Agricultural Research Service, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, Maryland 20705 (A.K.M.)
| |
Collapse
|
236
|
Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. THE NEW PHYTOLOGIST 2012; 193:770-778. [PMID: 22142268 DOI: 10.1111/j.1469-8137.2011.03987.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. • We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β-aminobutryric acid (BABA). • Plants grown from JA-treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long-lasting, with significant increases in resistance sustained in plants grown from treated seed for at least 8 wk, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. • Long-term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation.
Collapse
Affiliation(s)
- Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Geoff H Holroyd
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jason P Moore
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Marcin Glowacz
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Patricia Croft
- Stockbridge Technology Centre Ltd, Cawood, Selby, North Yorkshire YO8 3TZ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
237
|
Abstract
Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.
Collapse
Affiliation(s)
- Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
238
|
Dihazi A, Serghini MA, Jaiti F, Daayf F, Driouich A, Dihazi H, El Hadrami I. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis. J Pathog 2011; 2011:280481. [PMID: 22567327 PMCID: PMC3335505 DOI: 10.4061/2011/280481] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/20/2022] Open
Abstract
Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants.
Collapse
Affiliation(s)
- Abdelhi Dihazi
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakech 40 001, Morocco
- Laboratoire de Biotechnologie et de Valorisation des Ressources Naturelles, Faculté des Sciences, Université Ibn Zohr, Agadir 80060, Morocco
| | - Mohammed Amine Serghini
- Laboratoire de Biotechnologie et de Valorisation des Ressources Naturelles, Faculté des Sciences, Université Ibn Zohr, Agadir 80060, Morocco
| | - Fatima Jaiti
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakech 40 001, Morocco
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | - Hassan Dihazi
- Clinical Proteomics Laboratories, University of Göettingen, 37075 Göttingen, Germany
| | - Ismail El Hadrami
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakech 40 001, Morocco
| |
Collapse
|
239
|
Birkenbihl RP, Somssich IE. Transcriptional plant responses critical for resistance towards necrotrophic pathogens. FRONTIERS IN PLANT SCIENCE 2011; 2:76. [PMID: 22639610 PMCID: PMC3355618 DOI: 10.3389/fpls.2011.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/22/2011] [Indexed: 05/21/2023]
Abstract
Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense toward necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility toward these phytopathogens.
Collapse
Affiliation(s)
- Rainer P. Birkenbihl
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Imre E. Somssich, Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany. e-mail:
| |
Collapse
|