201
|
Gottwald LM, Peper ES, Zhang Q, Coolen BF, Strijkers GJ, Nederveen AJ, van Ooij P. Pseudo-spiral sampling and compressed sensing reconstruction provides flexibility of temporal resolution in accelerated aortic 4D flow MRI: A comparison with k-t principal component analysis. NMR IN BIOMEDICINE 2020; 33:e4255. [PMID: 31957927 PMCID: PMC7079056 DOI: 10.1002/nbm.4255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Time-resolved three-dimensional phase contrast MRI (4D flow) of aortic blood flow requires acceleration to reduce scan time. Two established techniques for highly accelerated 4D flow MRI are k-t principal component analysis (k-t PCA) and compressed sensing (CS), which employ either regular or random k-space undersampling. The goal of this study was to gain insights into the quantitative differences between k-t PCA- and CS-derived aortic blood flow, especially for high temporal resolution CS 4D flow MRI. METHODS The scan protocol consisted of both k-t PCA and CS accelerated 4D flow MRI, as well as a 2D flow reference scan through the ascending aorta acquired in 15 subjects. 4D flow scans were accelerated with factor R = 8. For CS accelerated scans, we used a pseudo-spiral Cartesian sampling scheme, which could additionally be reconstructed at higher temporal resolution, resulting in R = 13. 4D flow data were compared with the 2D flow scan in terms of flow, peak flow and stroke volume. A 3D peak systolic voxel-wise velocity and wall shear stress (WSS) comparison between k-t PCA and CS 4D flow was also performed. RESULTS The mean difference in flow/peak flow/stroke volume between the 2D flow scan and the 4D flow CS with R = 8 and R = 13 was 4.2%/9.1%/3.0% and 5.3%/7.1%/1.9%, respectively, whereas for k-t PCA with R = 8 the difference was 9.7%/25.8%/10.4%. In the voxel-by-voxel 4D flow comparison we found 13.6% and 3.5% lower velocity and WSS values of k-t PCA compared with CS with R = 8, and 15.9% and 5.5% lower velocity and WSS values of k-t PCA compared with CS with R = 13. CONCLUSION Pseudo-spiral accelerated 4D flow acquisitions in combination with CS reconstruction provides a flexible choice of temporal resolution. We showed that our proposed strategy achieves better agreement in flow values with 2D reference scans compared with using k-t PCA accelerated acquisitions.
Collapse
Affiliation(s)
- Lukas M. Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Eva S. Peper
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Qinwei Zhang
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| |
Collapse
|
202
|
Winkel DJ, Breit HC, Shi B, Boll DT, Seifert HH, Wetterauer C. Predicting clinically significant prostate cancer from quantitative image features including compressed sensing radial MRI of prostate perfusion using machine learning: comparison with PI-RADS v2 assessment scores. Quant Imaging Med Surg 2020; 10:808-823. [PMID: 32355645 DOI: 10.21037/qims.2020.03.08] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background To investigate if supervised machine learning (ML) classifiers would be able to predict clinically significant cancer (sPC) from a set of quantitative image-features and to compare these results with established PI-RADS v2 assessment scores. Methods We retrospectively included 201, histopathologically-proven, peripheral zone (PZ) prostate cancer lesions. Gleason scores ≤3+3 were considered as clinically insignificant (inPC) and Gleason scores ≥3+4 as sPC and were encoded in a binary fashion, serving as ground-truth. MRI was performed at 3T with high spatiotemporal resolution DCE using Golden-angle RAdial SParse (GRASP) MRI. Perfusion maps (Ktrans, Kep, Ve), apparent diffusion coefficient (ADC), and absolute T2-signal intensities (SI) were determined in all lesions and served as input parameters for four supervised ML models: Gradient Boosting Machines (GBM), Neural Networks (NNet), Random Forest (RF) and Support Vector Machines (SVM). ML results and PI-RADS scores were compared with the ground-truth. Next ROC-curves and AUC values were calculated. Results All ML models outperformed PI-RADS v2 assessment scores in the prediction of sPC (RF, GBM, NNet and SVM vs. PI-RADS: AUC 0.899, 0.864, 0.884 and 0.874 vs. 0.595, all P<0.001). Conclusions Using quantitative imaging parameters as input, supervised ML models outperformed PI-RADS v2 assessment scores in the prediction of sPC. These results indicate that quantitative imagining parameters contain relevant information for the prediction of sPC from image features.
Collapse
Affiliation(s)
- David Jean Winkel
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Bibo Shi
- Siemens Medical Imaging Technologies, Princeton, NJ, USA
| | - Daniel T Boll
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
203
|
Bustin A, Milotta G, Ismail TF, Neji R, Botnar RM, Prieto C. Accelerated free-breathing whole-heart 3D T 2 mapping with high isotropic resolution. Magn Reson Med 2020; 83:988-1002. [PMID: 31535729 PMCID: PMC6899588 DOI: 10.1002/mrm.27989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To enable free-breathing whole-heart 3D T2 mapping with high isotropic resolution in a clinically feasible and predictable scan time. This 3D motion-corrected undersampled signal matched (MUST) T2 map is achieved by combining an undersampled motion-compensated T2 -prepared Cartesian acquisition with a high-order patch-based reconstruction. METHODS The 3D MUST-T2 mapping acquisition consists of an electrocardiogram-triggered, T2 -prepared, balanced SSFP sequence with nonselective saturation pulses. Three undersampled T2 -weighted volumes are acquired using a 3D Cartesian variable-density sampling with increasing T2 preparation times. A 2D image-based navigator is used to correct for respiratory motion of the heart and allow 100% scan efficiency. Multicontrast high-dimensionality undersampled patch-based reconstruction is used in concert with dictionary matching to generate 3D T2 maps. The proposed framework was evaluated in simulations, phantom experiments, and in vivo (10 healthy subjects, 2 patients) with 1.5-mm3 isotropic resolution. Three-dimensional MUST-T2 was compared against standard multi-echo spin-echo sequence (phantom) and conventional breath-held single-shot 2D SSFP T2 mapping (in vivo). RESULTS Three-dimensional MUST-T2 showed high accuracy in phantom experiments (R2 > 0.99). The precision of T2 values was similar for 3D MUST-T2 and 2D balanced SSFP T2 mapping in vivo (5 ± 1 ms versus 4 ± 2 ms, P = .52). Slightly longer T2 values were observed with 3D MUST-T2 in comparison to 2D balanced SSFP T2 mapping (50.7 ± 2 ms versus 48.2 ± 1 ms, P < .05). Preliminary results in patients demonstrated T2 values in agreement with literature values. CONCLUSION The proposed approach enables free-breathing whole-heart 3D T2 mapping with high isotropic resolution in about 8 minutes, achieving accurate and precise T2 quantification of myocardial tissue in a clinically feasible scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Giorgia Milotta
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Tevfik F. Ismail
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Radhouene Neji
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens HealthcareFrimleyUnited Kingdom
| | - René M. Botnar
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
204
|
Real-time 3T MRI-guided cardiovascular catheterization in a porcine model using a glass-fiber epoxy-based guidewire. PLoS One 2020; 15:e0229711. [PMID: 32102092 PMCID: PMC7043930 DOI: 10.1371/journal.pone.0229711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Real-time magnetic resonance imaging (MRI) is a promising alternative to X-ray fluoroscopy for guiding cardiovascular catheterization procedures. Major challenges, however, include the lack of guidewires that are compatible with the MRI environment, not susceptible to radiofrequency-induced heating, and reliably visualized. Preclinical evaluation of new guidewire designs has been conducted at 1.5T. Here we further evaluate the safety (device heating), device visualization, and procedural feasibility of 3T MRI-guided cardiovascular catheterization using a novel MRI-visible glass-fiber epoxy-based guidewire in phantoms and porcine models. METHODS To evaluate device safety, guidewire tip heating (GTH) was measured in phantom experiments with different combinations of catheters and guidewires. In vivo cardiovascular catheterization procedures were performed in both healthy (N = 5) and infarcted (N = 5) porcine models under real-time 3T MRI guidance using a glass-fiber epoxy-based guidewire. The times for each procedural step were recorded separately. Guidewire visualization was assessed by measuring the dimensions of the guidewire-induced signal void and contrast-to-noise ratio (CNR) between the guidewire tip signal void and the blood signal in real-time gradient-echo MRI (specific absorption rate [SAR] = 0.04 W/kg). RESULTS In the phantom experiments, GTH did not exceed 0.35°C when using the real-time gradient-echo sequence (SAR = 0.04 W/kg), demonstrating the safety of the glass-fiber epoxy-based guidewire at 3T. The catheter was successfully placed in the left ventricle (LV) under real-time MRI for all five healthy subjects and three out of five infarcted subjects. Signal void dimensions and CNR values showed consistent visualization of the glass-fiber epoxy-based guidewire in real-time MRI. The average time (minutes:seconds) for the catheterization procedure in all subjects was 4:32, although the procedure time varied depending on the subject's specific anatomy (standard deviation = 4:41). CONCLUSIONS Real-time 3T MRI-guided cardiovascular catheterization using a new MRI-visible glass-fiber epoxy-based guidewire is feasible in terms of visualization and guidewire navigation, and safe in terms of radiofrequency-induced guidewire tip heating.
Collapse
|
205
|
Feng L, Tyagi N, Otazo R. MRSIGMA: Magnetic Resonance SIGnature MAtching for real-time volumetric imaging. Magn Reson Med 2020; 84:1280-1292. [PMID: 32086858 DOI: 10.1002/mrm.28200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To propose a real-time 3D MRI technique called MR SIGnature MAtching (MRSIGMA) for high-resolution volumetric imaging and motion tracking with very low imaging latency. METHODS MRSIGMA consists of two steps: (1) offline learning of a database of possible 3D motion states and corresponding motion signature ranges and (2) online matching of new motion signatures acquired in real time with prelearned motion states. Specifically, the offline learning step (non-real-time) reconstructs motion-resolved 4D images representing different motion states and assigns a unique motion range to each state. The online matching step (real-time) acquires motion signatures only and selects one of the prelearned 3D motion states for each newly acquired signature, which generates 3D images efficiently in real time. The MRSIGMA technique was evaluated on 15 golden-angle stack-of-stars liver data sets, and the performance of respiratory motion tracking with the online-generated real-time 3D MRI was compared with the corresponding 2D projections acquired in real time. RESULTS The total latency of generating each 3D image during online matching was about 300 ms, including acquisition of the motion signature data (~138 ms) and corresponding matching process (~150 ms). Linear correlation assessment suggested excellent correlation (R2 = 0.948) between motion displacement measured from the online-generated real-time 3D images and the 2D real-time projections. CONCLUSION This proof-of-concept study demonstrates the feasibility of MRSIGMA for high-resolution real-time volumetric imaging, which shifts the acquisition and reconstruction burden to an offline learning step and leaves fast online matching for online imaging with very low imaging latency. The MRSIGMA technique can potentially be used for real-time motion tracking in MRI-guided radiation therapy.
Collapse
Affiliation(s)
- Li Feng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
206
|
Jaubert O, Cruz G, Bustin A, Schneider T, Koken P, Doneva M, Rueckert D, Botnar RM, Prieto C. Free-running cardiac magnetic resonance fingerprinting: Joint T1/T2 map and Cine imaging. Magn Reson Imaging 2020; 68:173-182. [PMID: 32061964 PMCID: PMC7677167 DOI: 10.1016/j.mri.2020.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/21/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and evaluate a novel non-ECG triggered 2D magnetic resonance fingerprinting (MRF) sequence allowing for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging. METHODS Cardiac MRF (cMRF) has been recently proposed to provide joint T1/T2 myocardial mapping by triggering the acquisition to mid-diastole and relying on a subject-dependent dictionary of MR signal evolutions to generate the maps. In this work, we propose a novel "free-running" (non-ECG triggered) cMRF framework for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging in a single scan. Free-running cMRF is based on a transient state bSSFP acquisition with tiny golden angle radial readouts, varying flip angle and multiple adiabatic inversion pulses. The acquired data is retrospectively gated into several cardiac phases, which are reconstructed with an approach that combines parallel imaging, low rank modelling and patch-based high-order tensor regularization. Free-running cMRF was evaluated in a standardized phantom and ten healthy subjects. Comparison with reference spin-echo, MOLLI, SASHA, T2-GRASE and Cine was performed. RESULTS T1 and T2 values obtained with the proposed approach were in good agreement with reference phantom values (ICC(A,1) > 0.99). Reported values for myocardium septum T1 were 1043 ± 48 ms, 1150 ± 100 ms and 1160 ± 79 ms for MOLLI, SASHA and free-running cMRF respectively and for T2 of 51.7 ± 4.1 ms and 44.6 ± 4.1 ms for T2-GRASE and free-running cMRF respectively. Good agreement was observed between free-running cMRF and conventional Cine 2D ejection fraction (bias = -0.83%). CONCLUSION The proposed free-running cardiac MRF approach allows for simultaneous assessment of myocardial T1 and T2 and Cine imaging in a single scan.
Collapse
Affiliation(s)
- O Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - G Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - A Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - T Schneider
- Philips Healthcare, Guilford, United Kingdom
| | - P Koken
- Philips Research Europe, Hamburg, Germany
| | - M Doneva
- Philips Research Europe, Hamburg, Germany
| | - D Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - R M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - C Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
207
|
Nakamura Y, Higaki T, Nishihara T, Harada K, Takizawa M, Bito Y, Narita K, Akagi M, Matsubara Y, Kamioka S, Akiyama Y, Iida M, Awai K. Pseudo-random Trajectory Scanning Suppresses Motion Artifacts on Gadoxetic Acid-enhanced Hepatobiliary-phase Magnetic Resonance Images. Magn Reson Med Sci 2020; 19:21-28. [PMID: 30880292 PMCID: PMC7067909 DOI: 10.2463/mrms.mp.2018-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose: Hepatobiliary-phase (HBP) MRI with gadoxetic acid facilitates the differentiation between lesions with and without functional hepatocytes. Thus, high-quality HBP images are required for the detection and evaluation of hepatic lesions. However, the long scan time may increase artifacts due to intestinal peristalsis, resulting in the loss of diagnostic information. Pseudo-random acquisition order disperses artifacts into the background. The aim of this study was to investigate the clinical applicability of pseudo-random trajectory scanning for the suppression of motion artifacts on T1-weighted images including HBP. Methods: Our investigation included computer simulation, phantom experiments, and a clinical study. For computer simulation and phantom experiments a region of interest (ROI) was placed on the area with motion artifact and the standard deviation inside the ROI was measured as image noise. For clinical study we subjected 62 patients to gadoxetic acid-enhanced hepatobiliary-phase imaging with a circular- and a pseudo-random trajectory (c-HBP and p-HBP); two radiologists graded the motion artifacts, sharpness of the liver edge, visibility of intrahepatic vessels, and overall image quality using a five-point scale where 1 = unacceptable and 5 = excellent. Differences in the qualitative scores were determined using the two-sided Wilcoxon signed-rank test. Results: The image noise was higher on the circular image compared with pseudo-random image (101.0 vs 60.9 on computer simulation image, 91.2 vs 67.7 on axial, 95.5 vs 86.9 on reformatted sagittal image for phantom experiments). For clinical study the score for motion artifacts was significantly higher with p-HBP than c-HBP imaging (left lobe: mean 3.4 vs 3.2, P < 0.01; right lobe: mean 3.6 vs 3.4, P < 0.01) as was the qualitative score for the overall image quality (mean 3.6 vs 3.3, P < 0.01). Conclusion: At gadoxetic acid-enhanced hepatobiliary-phase imaging, p-HBP scanning suppressed motion artifacts and yielded better image quality than c-HBP scanning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shogo Kamioka
- Department of Radiology, Hiroshima University Hospital
| | - Yuji Akiyama
- Department of Radiology, Hiroshima University Hospital
| | | | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University
| |
Collapse
|
208
|
Chen L, Zeng X, Ji B, Liu D, Wang J, Zhang J, Feng L. Improving dynamic contrast-enhanced MRI of the lung using motion-weighted sparse reconstruction: Initial experiences in patients. Magn Reson Imaging 2020; 68:36-44. [PMID: 32001328 DOI: 10.1016/j.mri.2020.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the performance of motion-weighted Golden-angle RAdial Sparse Parallel MRI (motion-weighted GRASP) for free-breathing dynamic contrast-enhanced MRI (DCE-MRI) of the lung. METHODS Motion-weighted GRASP incorporates a soft-gating motion compensation algorithm into standard GRASP reconstruction, so that motion-corrupted motion k-space (e.g., k-space acquired in inspiratory phases) contributes less to the final reconstructed images. Lung MR data from 20 patients (mean age = 57.9 ± 13.5) with known pulmonary lesions were retrospectively collected for this study. Each subject underwent a free-breathing DCE-MR scan using a fat-statured T1-weighted stack-of-stars golden-angle radial sequence and a post-contrast breath-hold MR scan using a Cartesian volumetric-interpolated imaging sequence (BH-VIBE). Each radial dataset was reconstructed using GRASP without motion compensation and motion-weighted GRASP. All MR images were visually evaluated by two experienced radiologists blinded to reconstruction and acquisition schemes independently. In addition, the influence of motion-weighted reconstruction on dynamic contrast-enhancement patterns was also investigated. RESULTS For image quality assessment, motion-weighted GRASP received significantly higher visual scores than GRASP (P < 0.05) for overall image quality (3.68 vs. 3.39), lesion conspicuity (3.54 vs. 3.18) and overall artifact level (3.53 vs. 3.15). There was no significant difference (P > 0.05) between the breath-hold BH-VIBE and motion-weighted GRASP images. For assessment of temporal fidelity, motion-weighted GRASP maintained a good agreement with respect to GRASP. CONCLUSION Motion-weighted GRASP achieved better reconstruction performance in free-breathing DCE-MRI of the lung compared to standard GRASP, and it may enable improved assessment of pulmonary lesions.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, PLA 904 Hospital, Wuxi, Jiangsu, China
| | - Xianchun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Bing Ji
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| | - Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
209
|
Jacobs KG, Chan FP, Cheng JY, Vasanawala SS, Maskatia SA. 4D flow vs. 2D cardiac MRI for the evaluation of pulmonary regurgitation and ventricular volume in repaired tetralogy of Fallot: a retrospective case control study. Int J Cardiovasc Imaging 2020; 36:657-669. [PMID: 31894524 DOI: 10.1007/s10554-019-01751-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/14/2019] [Indexed: 11/26/2022]
Abstract
Lengthy exams and breath-holding limit the use of pediatric cardiac MRI (CMR). 3D time-resolved flow MRI (4DF) is a free-breathing, single-sequence exam that obtains magnitude (anatomic) and phase contrast (PC) data. We compare the accuracy of gadobenate dimeglumine-enhanced 4DF on a 1.5 T magnet to 2D CMR in children with repaired tetralogy of Fallot (rTOF) to measure pulmonary net flow (PNF) as a reflection of pulmonary regurgitation, forward flow (FF) and ventricular volumetry. Thirty-four consecutive cases were included. 2D PCs were obtained at the valve level. Using 4DF, we measured PNF at the valve and at the main and branch pulmonary arteries. PNF measured at the valve by 4DF demonstrated the strongest correlation (r = 0.87, p < 0.001) and lowest mean difference (3.5 ± 9.4 mL/beat) to aortic net flow (ANF). Semilunar FF and stroke volume of the respective ventricle demonstrated moderate-strong correlation by 4DF (r = 0.66-0.81, p < 0.001) and strong correlation by 2D (r = 0.81-0.84, p < 0.001) with similar correlations and mean differences between techniques (p > 0.05). Ventricular volumes correlated strongly between 2D and 4DF (r = 0.75-0.96, p < 0.001), though 4DF overestimated right ventricle volumes by 11.8-19.2 mL/beat. Inter-rater reliability was excellent for 2D and 4DF volumetry (ICC = 0.91-0.99). Ejection fraction moderately correlated (r = 0.60-0.75, p < 0.001) with better reliability by 4DF (ICC: 0.80-0.85) than 2D (ICC: 0.69-0.89). 4DF exams were shorter than 2D (9 vs. 71 min, p < 0.001). 4DF provides highly reproducible and accurate measurements of flow with slight overestimation of RV volumes compared to 2D in pediatric rTOF. 4DF offers important advantages in this population with long-term monitoring needs.
Collapse
Affiliation(s)
- Kimberley G Jacobs
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
- Lucile Packard Children's Hospital, 725 Welch Rd, Room G71, MC 5906, Palo Alto, CA, 94304, USA.
| | - Frandics P Chan
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joseph Y Cheng
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shreyas S Vasanawala
- Divisions of Pediatric Radiology and Cardiovascular Imaging, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shiraz A Maskatia
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
- Divisions of Pediatric Cardiology and Cardiovascular Imaging, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
210
|
Hamilton JI, Seiberlich N. Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue Property Quantification. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:69-85. [PMID: 33132408 PMCID: PMC7595247 DOI: 10.1109/jproc.2019.2936998] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Magnetic Resonance Fingerprinting (MRF) is an MRI-based method that can provide quantitative maps of multiple tissue properties simultaneously from a single rapid acquisition. Tissue property maps are generated by matching the complex signal evolutions collected at the scanner to a dictionary of signals derived using Bloch equation simulations. However, in some circumstances, the process of dictionary generation and signal matching can be time-consuming, reducing the utility of this technique. Recently, several groups have proposed using machine learning to accelerate the extraction of quantitative maps from MRF data. This article will provide an overview of current research that combines MRF and machine learning, as well as present original research demonstrating how machine learning can speed up dictionary generation for cardiac MRF.
Collapse
Affiliation(s)
- Jesse I Hamilton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA, and the Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Nicole Seiberlich
- Department of Biomedical Engineering and the Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106 USA, the Department of Radiology and Cardiology, University Hospitals, Cleveland, OH 44106 USA, and the Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
211
|
Staniszewski M, Klose U. Improvement of Fast Model-Based Acceleration of Parameter Look-Locker T 1 Mapping. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19245371. [PMID: 31817483 PMCID: PMC6960582 DOI: 10.3390/s19245371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Quantitative mapping is desirable in many scientific and clinical magneric resonance imaging (MRI) applications. Recent inverse recovery-look locker sequence enables single-shot T1 mapping with a time of a few seconds but the main computational load is directed into offline reconstruction, which can take from several minutes up to few hours. In this study we proposed improvement of model-based approach for T1-mapping by introduction of two steps fitting procedure. We provided analysis of further reduction of k-space data, which lead us to decrease of computational time and perform simulation of multi-slice development. The region of interest (ROI) analysis of human brain measurements with two different initial models shows that the differences between mean values with respect to a reference approach are in white matter-0.3% and 1.1%, grey matter-0.4% and 1.78% and cerebrospinal fluid-2.8% and 11.1% respectively. With further improvements we were able to decrease the time of computational of single slice to 6.5 min and 23.5 min for different initial models, which has been already not achieved by any other algorithm. In result we obtained an accelerated novel method of model-based image reconstruction in which single iteration can be performed within few seconds on home computer.
Collapse
Affiliation(s)
- Michał Staniszewski
- Institute of Informatics, Silesian University of Technology, Gliwice 44-100, Poland
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, Tübingen 72076, Germany;
| |
Collapse
|
212
|
Baboli M, Zhang J, Kim SG. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging. CURRENT PATHOBIOLOGY REPORTS 2019; 7:129-141. [PMID: 33344067 PMCID: PMC7747414 DOI: 10.1007/s40139-019-00204-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article is to review recent technical developments and their clinical applications in cancer imaging quantitative measurement of cellular and vascular properties of the tumors. RECENT FINDINGS Rapid development of fast Magnetic Resonance Imaging (MRI) technologies over last decade brought new opportunities in quantitative MRI methods to measure both cellular and vascular properties of tumors simultaneously. SUMMARY Diffusion MRI (dMRI) and dynamic contrast enhanced (DCE)-MRI have become widely used to assess the tissue structural and vascular properties, respectively. However, the ultimate potential of these advanced imaging modalities has not been fully exploited. The dependency of dMRI on the diffusion weighting gradient strength and diffusion time can be utilized to measure tumor perfusion, cellular structure, and cellular membrane permeability. Similarly, DCE-MRI can be used to measure vascular and cellular membrane permeability along with cellular compartment volume fractions. To facilitate the understanding of these potentially important methods for quantitative cancer imaging, we discuss the basic concepts and recent developments, as well as future directions for further development.
Collapse
Affiliation(s)
- Mehran Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
213
|
Suzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations. Magn Reson Med Sci 2019; 19:294-309. [PMID: 31761840 PMCID: PMC7809141 DOI: 10.2463/mrms.rev.2019-0096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the 1980’s some of the earliest studies of arterial spin labeling (ASL) MRI have demonstrated its ability to generate MR angiography (MRA) images. Thanks to many technical improvements, ASL has been successfully moving its position from the realm of research into the clinical area, albeit more known as perfusion imaging than as MRA. For MRA imaging, other techniques such as time-of-flight, phase contrast MRA and contrast-enhanced (CE) MRA are more popular choices for clinical applications. In the last decade, however, ASL-MRA has been experiencing a remarkable revival, especially because of its non-invasive nature, i.e. the fact that it does not rely on the use of contrast agent. Very importantly, there are additional benefits of using ASL for MRA. For example, its higher flexibility to achieve both high spatial and temporal resolution than CE dynamic MRA, and the capability of vessel specific visualization, in which the vascular tree arising from a selected artery can be exclusively visualized. In this article, the implementation and recent developments of ASL-based MRA are discussed; not only focusing on the basic sequences based upon pulsed ASL or pseudo-continuous ASL, but also including more recent labeling approaches, such as vessel-selective labeling, velocity-selective ASL, vessel-encoded ASL and time-encoded ASL. Although these ASL techniques have been already utilized in perfusion imaging and their usefulness has been suggested by many studies, some additional considerations should be made when employing them for MRA, since there is something more than the difference of the spatial resolution of the readout sequence. Moreover, extensive discussion is included on what readout sequence to use, especially by highlighting how to achieve high spatial resolution while keeping scan-time reasonable such that the ASL-MRA sequence can easily be included into a clinical examination.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | | |
Collapse
|
214
|
Bruijnen T, Stemkens B, van den Berg CAT, Tijssen RHN. Prospective GIRF-based RF phase cycling to reduce eddy current-induced steady-state disruption in bSSFP imaging. Magn Reson Med 2019; 84:115-127. [PMID: 31755580 PMCID: PMC7154723 DOI: 10.1002/mrm.28097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/07/2022]
Abstract
Purpose To propose an explicit Balanced steady‐state free precession (bSSFP) signal model that predicts eddy current‐induced steady‐state disruptions and to provide a prospective, practical, and general eddy current compensation method. Theory and Methods Gradient impulse response functions (GIRF) were used to simulate trajectory‐specific eddy current‐induced phase errors at the end of a repetition block. These phase errors were included in bloch simulations to establish a bSSFP signal model to predict steady‐state disruptions and their corresponding image artifacts. The signal model was embedded in the MR system and used to compensate the phase errors by prospectively modifying the phase cycling scheme of the RF pulse. The signal model and eddy current compensation method were validated in phantom and in vivo experiments. In addition, the signal model was used to analyze pre‐existing eddy current mitigation methods, such as 2D tiny golden angle radial and 3D paired phase encoded Cartesian acquisitions. Results The signal model predicted eddy current‐induced image artifacts, with the zeroth‐order GIRF being the primary factor to predict the steady‐state disruption. Prospective RF phase cycling schemes were automatically computed online and considerably reduced eddy current‐induced image artifacts. The signal model provides a direct relationship for the smoothness of k‐space trajectories, which explains the effectiveness of phase encode pairing and tiny golden angle trajectory. Conclusions The proposed signal model can accurately predict eddy current‐induced steady‐state disruptions for bSSFP imaging. The signal model can be used to derive the eddy current‐induced phase errors required for trajectory‐specific RF phase cycling schemes, which considerably reduce eddy current‐induced image artifacts.
Collapse
Affiliation(s)
- Tom Bruijnen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bjorn Stemkens
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cornelis Antonius Theodorus van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
215
|
Glessgen CG, Moor M, Stieltjes B, Winkel DJ, Block TK, Merkle EM, Heye TJ, Boll DT. Gadoxetate Disodium versus Gadoterate Meglumine: Quantitative Respiratory and Hemodynamic Metrics by Using Compressed-Sensing MRI. Radiology 2019; 293:317-326. [DOI: 10.1148/radiol.2019190187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carl G. Glessgen
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Manuela Moor
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Bram Stieltjes
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - David J. Winkel
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias K. Block
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Elmar M. Merkle
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias J. Heye
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Daniel T. Boll
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| |
Collapse
|
216
|
Fyrdahl A, Ramos JG, Eriksson MJ, Caidahl K, Ugander M, Sigfridsson A. Sector-wise golden-angle phase contrast with high temporal resolution for evaluation of left ventricular diastolic dysfunction. Magn Reson Med 2019; 83:1310-1321. [PMID: 31631403 PMCID: PMC6972568 DOI: 10.1002/mrm.28018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a high temporal resolution phase-contrast pulse sequence for evaluation of diastolic filling patterns, and to evaluate it in comparison to transthoracic echocardiography. METHODS A phase-contrast velocity-encoded gradient-echo pulse sequence was implemented with a sector-wise golden-angle radial ordering. Acquisitions were optimized for myocardial tissue (TE/TR: 4.4/6.8 ms, flip angle: 8º, velocity encoding: 30 cm/s) and transmitral flow (TE/TR: 4.0/6.6 ms, flip angle: 20º, velocity encoding: 150 cm/s). Shared velocity encoding was combined with a sliding-window reconstruction that enabled up to 250 frames per cardiac cycle. Transmitral and myocardial velocities were measured in 35 patients. Echocardiographic velocities were obtained with pulsed-wave Doppler using standard methods. RESULTS Myocardial velocity showed a low difference and good correlation between MRI and Doppler (mean ± 95% limits of agreement 0.9 ± 3.7 cm/s, R2 = 0.63). Transmitral velocity was underestimated by MRI (P < .05) with a difference of -11 ± 28 cm/s (R2 = 0.45). The early-to-late ratio correlated well (R2 = 0.66) with a minimal difference (0.03 ± 0.6). Analysis of interobserver and intra-observer variability showed excellent agreement for all measurements. CONCLUSIONS The proposed method enables the acquisition of phase-contrast images during a single breath-hold with a sufficiently high temporal resolution to match transthoracic echocardiography, which opens the possibility for many clinically relevant variables to be assessed by MRI.
Collapse
Affiliation(s)
- Alexander Fyrdahl
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Joao G Ramos
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden.,The Kolling Institute, Royal North Shore Hospital, and Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
217
|
Menchón-Lara RM, Simmross-Wattenberg F, Casaseca-de-la-Higuera P, Martín-Fernández M, Alberola-López C. Reconstruction techniques for cardiac cine MRI. Insights Imaging 2019; 10:100. [PMID: 31549235 PMCID: PMC6757088 DOI: 10.1186/s13244-019-0754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
The present survey describes the state-of-the-art techniques for dynamic cardiac magnetic resonance image reconstruction. Additionally, clinical relevance, main challenges, and future trends of this image modality are outlined. Thus, this paper aims to provide a general vision about cine MRI as the standard procedure in functional evaluation of the heart, focusing on technical methodologies.
Collapse
Affiliation(s)
- Rosa-María Menchón-Lara
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain.
| | - Federico Simmross-Wattenberg
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Pablo Casaseca-de-la-Higuera
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| | - Carlos Alberola-López
- Laboratorio de Procesado de Imagen. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid, 47011, Spain
| |
Collapse
|
218
|
Schauman SS, Chiew M, Okell TW. Highly accelerated vessel-selective arterial spin labeling angiography using sparsity and smoothness constraints. Magn Reson Med 2019; 83:892-905. [PMID: 31538357 PMCID: PMC6899790 DOI: 10.1002/mrm.27979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
Abstract
Purpose To demonstrate that vessel selectivity in dynamic arterial spin labeling angiography can be achieved without any scan‐time penalty or noticeable loss of image quality compared with conventional arterial spin labeling angiography. Methods Simulations on a numerical phantom were used to assess whether the increased sparsity of vessel‐encoded angiograms compared with non‐vessel‐encoded angiograms alone can improve reconstruction results in a compressed‐sensing framework. Further simulations were performed to study whether the difference in relative sparsity between nonselective and vessel‐selective dynamic angiograms was sufficient to achieve similar image quality at matched scan times in the presence of noise. Finally, data were acquired from 5 healthy volunteers to validate the technique in vivo. All data, both simulated and in vivo, were sampled in 2D using a golden‐angle radial trajectory and reconstructed by enforcing image domain sparsity and temporal smoothness on the angiograms in a parallel imaging and compressed‐sensing framework. Results Relative sparsity was established as a primary factor governing the reconstruction fidelity. Using the proposed reconstruction scheme, differences between vessel‐selective and nonselective angiography were negligible compared with the dominant factor of total scan time in both simulations and in vivo experiments at acceleration factors up to R = 34. The reconstruction quality was not heavily dependent on hand‐tuning the parameters of the reconstruction. Conclusion The increase in relative sparsity of vessel‐selective angiograms compared with nonselective angiograms can be leveraged to achieve higher acceleration without loss of image quality, resulting in the acquisition of vessel‐selective information at no scan‐time cost.
Collapse
Affiliation(s)
- S Sophie Schauman
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
219
|
Borman PTS, Raaymakers BW, Glitzner M. ReconSocket: a low-latency raw data streaming interface for real-time MRI-guided radiotherapy. Phys Med Biol 2019; 64:185008. [PMID: 31461412 DOI: 10.1088/1361-6560/ab3e99] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the recent advent of hybrid MRI-guided radiotherapy systems, continuous intra-fraction MR imaging for motion monitoring has become feasible. The ability to perform real-time custom image reconstructions is however often lacking. In this work we present a low-latency streaming solution, ReconSocket, which provides a real-time stream of k-space data from the magnetic resonance imaging (MRI) to custom reconstruction servers. We determined the performance of the data streaming by measuring the streaming latency (i.e. non-zero time delay due to data transfer and processing) and jitter (i.e. deviations from periodicity) using an ultra-fast 1D MRI acquisition of a moving phantom. Simultaneously, its position was recorded with near-zero time delay. The feasibility of low-latency custom reconstructions was tested by measuring the imaging latency (i.e. time delay between physical change and appearance of that change on the image) for several non-Cartesian 2D and 3D acquisitions using an in-house implemented reconstruction server. The measured streaming latency of the ReconSocket interface was [Formula: see text] ms. 98% of the incoming data packets arrived within a jitter range of 367 [Formula: see text]s. This shows that the ReconSocket interface can provide reliable real-time access to MRI data, acquired during the course of a MRI-guided radiotherapy fraction. The total imaging latency was measured to be 221 ms (2D) and 3889 ms (3D) for exemplary acquisitions, using the custom image reconstruction server. These imaging latencies are approximately equal to half of the temporal footprint (T acq /2) of the respective 2D and 3D golden-angle radial sequences. For radial sequences, it was previously showed that T acq /2 is the expected contribution of only the data acquisition to the total imaging latency. Indeed, the contribution of the non-Cartesian reconstruction to the total imaging latency was minor (<10%): 21 ms for 2D, 300 ms for 3D, indicating that the acquisition, i.e. the physical encoding of the image itself is the major contributor to the total imaging latency.
Collapse
Affiliation(s)
- P T S Borman
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
220
|
Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 2019; 83:621-634. [PMID: 31502715 DOI: 10.1002/mrm.27960] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a fast MR fingerprinting (MRF) sequence for simultaneous estimation of water T1 (T1H2O ) and fat fraction (FF) in fat infiltrated skeletal muscles. METHODS The MRF sequence for T1H2O and FF quantification (MRF T1-FF) comprises a 1400 radial spokes echo train, following nonselective inversion, with varying echo and repetition time, as well as prescribed flip angle. Undersampled frames were reconstructed at different acquisition time-points by nonuniform Fourier transform, and a bi-component model based on Bloch simulations applied to adjust the signal evolution and extract T1H2O and FF. The sequence was validated on a multi-vial phantom, in three healthy volunteers and five patients with neuromuscular diseases. We evaluated the agreement between MRF T1-FF parameters and reference values and confounding effects due to B0 and B1 inhomogeneities. RESULTS In phantom, T1H2O and FF were highly correlated with references values measured with multi-inversion time inversion recovery-stimulated echo acquisition mode and Dixon, respectively (R2 > 0.99). In vivo, T1H2O and FF determined by the MRF T1-FF sequence were also correlated with reference values (R2 = 0.98 and 0.97, respectively). The precision on T1H2O was better than 5% for muscles where FF was less than 0.4. Both T1H2O and FF values were not confounded by B0 nor B1 inhomogeneities. CONCLUSION The MRF T1-FF sequence derived T1H2O and FF values in voxels containing a mixture of water and fat protons. This method can be used to comprehend and characterize the effects of tissue water compartmentation and distribution on muscle T1 values in patients affected by chronic fat infiltration.
Collapse
Affiliation(s)
- Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
221
|
Shan S, Li M, Tang F, Ma H, Liu F, Crozier S. Gradient Field Deviation (GFD) Correction Using a Hybrid-Norm Approach With Wavelet Sub-Band Dependent Regularization: Implementation for Radial MRI at 9.4 T. IEEE Trans Biomed Eng 2019; 66:2693-2701. [DOI: 10.1109/tbme.2019.2895091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
222
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
223
|
Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, Lattanzi R. Rapid Radial T 1 and T 2 Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting. J Magn Reson Imaging 2019; 50:810-815. [PMID: 30584691 PMCID: PMC6591100 DOI: 10.1002/jmri.26615] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Quantitative MRI can detect early changes in cartilage biochemical components, but its routine clinical implementation is challenging. PURPOSE To introduce a novel technique to measure T1 and T2 along radial sections of the hip for accurate and reproducible multiparametric quantitative cartilage assessment in a clinically feasible scan time. STUDY TYPE Reproducibility, technical validation. SUBJECTS/PHANTOM A seven-compartment phantom and three healthy volunteers. FIELD STRENGTH/SEQUENCE A novel MR pulse sequence that simultaneously measures proton density (PD), T1 , and T2 at 3 T was developed. Automatic positioning and semiautomatic cartilage segmentation were implemented to improve consistency and simplify workflow. ASSESSMENT Intra- and interscanner variability of our technique was assessed over multiple scans on three different MR scanners. STATISTICAL TESTS For each scan, the median of cartilage T1 and T2 over six radial slices was calculated. Restricted maximum likelihood estimation of variance components was used to estimate intrasubject variances reflecting variation between results from the two scans using the same scanner (intrascanner variance) and variation among results from the three scanners (interscanner variance). RESULTS The estimation error for T1 and T2 with respect to reference standard measurements was less than 3% on average for the phantom. The average interscanner coefficient of variation was 1.5% (1.2-1.9%) and 0.9% (0.0-3.7%) for T1 and T2 , respectively, in the seven compartments of the phantom. Total scan time in vivo was 7:13 minutes to obtain PD, T1 , and T2 maps along six radial hip sections at 0.6 × 0.6 × 4.0 mm3 voxel resolution. Interscanner variability for the in vivo study was 1.99% and 5.46% for T1 and T2 , respectively. in vivo intrascanner variability was 1.15% for T1 and 3.24% for T2 . DATA CONCLUSION Our method, which includes slice positioning, model-based parameter estimation, and cartilage segmentation, is highly reproducible. It could enable employing quantitative hip cartilage evaluation for longitudinal and multicenter studies. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:810-815.
Collapse
Affiliation(s)
- Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine550 First Avenue, New York, NY 10016 USA
| | - Jakob Assländer
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Batool Abbas
- Visualization, Imaging and Data Analysis (VIDA), New York University Tandon School of Engineering, 2 Metro Tech Center, Brooklyn, NY 11201 USA
| | - James Fishbaugh
- Visualization, Imaging and Data Analysis (VIDA), New York University Tandon School of Engineering, 2 Metro Tech Center, Brooklyn, NY 11201 USA
| | - James S. Babb
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Guido Gerig
- Visualization, Imaging and Data Analysis (VIDA), New York University Tandon School of Engineering, 2 Metro Tech Center, Brooklyn, NY 11201 USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine550 First Avenue, New York, NY 10016 USA
| |
Collapse
|
224
|
Kolbitsch C, Bastkowski R, Schäffter T, Prieto Vasquez C, Weiss K, Maintz D, Giese D. Respiratory motion corrected 4D flow using golden radial phase encoding. Magn Reson Med 2019; 83:635-644. [DOI: 10.1002/mrm.27918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Christoph Kolbitsch
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Rene Bastkowski
- Department of Radiology University Hospital of Cologne Cologne Germany
| | - Tobias Schäffter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Claudia Prieto Vasquez
- King's College London School of Biomedical Engineering and Imaging Sciences London United Kingdom
| | - Kilian Weiss
- Department of Radiology University Hospital of Cologne Cologne Germany
- Philips GmbH Healthcare Hamburg Germany
| | - David Maintz
- Department of Radiology University Hospital of Cologne Cologne Germany
| | - Daniel Giese
- Department of Radiology University Hospital of Cologne Cologne Germany
| |
Collapse
|
225
|
The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:643-653. [PMID: 31422519 PMCID: PMC6825642 DOI: 10.1007/s10334-019-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire. MATERIALS AND METHODS Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested. RESULTS The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13). CONCLUSION Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.
Collapse
|
226
|
Becker KM, Blaszczyk E, Funk S, Nuesslein A, Schulz‐Menger J, Schaeffter T, Kolbitsch C. Fast myocardial T
1
mapping using cardiac motion correction. Magn Reson Med 2019; 83:438-451. [DOI: 10.1002/mrm.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kirsten M. Becker
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Edyta Blaszczyk
- Charité Medical Faculty University Medicine Berlin Germany
- Working Group on Cardiovascular Magnetic Resonance Experimental and Clinical Research Center (ECRC) Charité Humboldt University Berlin, DZHK partner site Berlin Berlin Germany
- Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - Stephanie Funk
- Charité Medical Faculty University Medicine Berlin Germany
- Working Group on Cardiovascular Magnetic Resonance Experimental and Clinical Research Center (ECRC) Charité Humboldt University Berlin, DZHK partner site Berlin Berlin Germany
- Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - André Nuesslein
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Jeanette Schulz‐Menger
- Charité Medical Faculty University Medicine Berlin Germany
- Working Group on Cardiovascular Magnetic Resonance Experimental and Clinical Research Center (ECRC) Charité Humboldt University Berlin, DZHK partner site Berlin Berlin Germany
- Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - Tobias Schaeffter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- School of Biomedical Engineering and Imaging Sciences King's College London London United Kingdom
| | - Christoph Kolbitsch
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- School of Biomedical Engineering and Imaging Sciences King's College London London United Kingdom
| |
Collapse
|
227
|
Feng L, Wen Q, Huang C, Tong A, Liu F, Chandarana H. GRASP-Pro: imProving GRASP DCE-MRI through self-calibrating subspace-modeling and contrast phase automation. Magn Reson Med 2019; 83:94-108. [PMID: 31400028 DOI: 10.1002/mrm.27903] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To propose a highly accelerated, high-resolution dynamic contrast-enhanced MRI (DCE-MRI) technique called GRASP-Pro (golden-angle radial sparse parallel imaging with imProved performance) through a joint sparsity and self-calibrating subspace constraint with automated selection of contrast phases. METHODS GRASP-Pro reconstruction enforces a combination of an explicit low-rank subspace-constraint and a temporal sparsity constraint. The temporal basis used to construct the subspace is learned from an intermediate reconstruction step using the low-resolution portion of radial k-space, which eliminates the need for generating the basis using auxiliary data or a physical signal model. A convolutional neural network was trained to generate the contrast enhancement curve in the artery, from which clinically relevant contrast phases are automatically selected for evaluation. The performance of GRASP-Pro was demonstrated for high spatiotemporal resolution DCE-MRI of the prostate and was compared against standard GRASP in terms of overall image quality, image sharpness, and residual streaks and/or noise level. RESULTS Compared to GRASP, GRASP-Pro reconstructed dynamic images with enhanced sharpness, less residual streaks and/or noise, and finer delineation of the prostate without prolonging reconstruction time. The image quality improvement reached statistical significance (P < 0.05) in all the assessment categories. The neural network successfully generated contrast enhancement curves in the artery, and corresponding peak enhancement indexes correlated well with that from the manual selection. CONCLUSION GRASP-Pro is a promising method for rapid and continuous DCE-MRI. It enables superior reconstruction performance over standard GRASP and allows reliable generation of artery enhancement curve to guide the selection of desired contrast phases for improving the efficiency of GRASP MRI workflow.
Collapse
Affiliation(s)
- Li Feng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chenchan Huang
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Angela Tong
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Fang Liu
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hersh Chandarana
- Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York
| |
Collapse
|
228
|
Glitzner M, Woodhead PL, Borman PTS, Lagendijk JJW, Raaymakers BW. Technical note: MLC-tracking performance on the Elekta unity MRI-linac. ACTA ACUST UNITED AC 2019; 64:15NT02. [DOI: 10.1088/1361-6560/ab2667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
229
|
Cruz G, Jaubert O, Botnar RM, Prieto C. Cardiac Magnetic Resonance Fingerprinting: Technical Developments and Initial Clinical Validation. Curr Cardiol Rep 2019; 21:91. [PMID: 31352620 PMCID: PMC6661029 DOI: 10.1007/s11886-019-1181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Magnetic resonance imaging (MRI) has enabled non-invasive myocardial tissue characterization in a wide range of cardiovascular diseases by quantifying several tissue specific parameters such as T1, T2, and T2* relaxation times. Simultaneous assessment of these parameters has recently gained interest to potentially improve diagnostic accuracy and enable further understanding of the underlying disease. However, these quantitative maps are usually acquired sequentially and are not necessarily co-registered, making multi-parametric analysis challenging. Magnetic resonance fingerprinting (MRF) has been recently introduced to unify and streamline parametric mapping into a single simultaneous, multi-parametric, fully co-registered, and efficient scan. Feasibility of cardiac MRF has been demonstrated and initial clinical validation studies are ongoing. Provide an overview of the cardiac MRF framework, recent technical developments and initial undergoing clinical validation. RECENT FINDINGS Cardiac MRF has enabled the acquisition of co-registered T1 and T2 maps in a single, efficient scan. Initial results demonstrate feasibility of cardiac MRF in healthy subjects and small patient cohorts. Current in vivo results show a small bias and comparable precision in T1 and T2 with respect to conventional clinical parametric mapping approaches. This bias may be explained by several confounding factors such as magnetization transfer and field inhomogeneities, which are currently not included in the cardiac MRF model. Initial clinical validation for cardiac MRF has demonstrated good reproducibility in healthy subjects and heart transplant patients, reduced artifacts in inflammatory cardiomyopathy patients and good differentiation between hypertrophic cardiomyopathy and healthy controls. Cardiac MRF has emerged as a novel technique for simultaneous, multi-parametric, and co-registered mapping of different tissue parameters. Initial efforts have focused on enabling T1, T2, and fat quantification; however this approach has the potential of enabling quantification of several other parameters (such as T2*, diffusion, perfusion, and flow) from a single scan. Initial results in healthy subjects and patients are promising, thus further clinical validation is now warranted.
Collapse
Affiliation(s)
- G. Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - O. Jaubert
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - R. M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
- Pontificia Universidad Católica de Chile Escuela de Ingeniería, Santiago, Chile
| | - C. Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
- Pontificia Universidad Católica de Chile Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
230
|
Walheim J, Dillinger H, Kozerke S. Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities. J Cardiovasc Magn Reson 2019; 21:42. [PMID: 31331353 PMCID: PMC6647085 DOI: 10.1186/s12968-019-0549-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/05/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times. METHODS Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min. 5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed. RESULTS While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%). CONCLUSIONS Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.
Collapse
Affiliation(s)
- Jonas Walheim
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| | - Hannes Dillinger
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| |
Collapse
|
231
|
Wech T, Kunze KP, Rischpler C, Stäb D, Speier P, Köstler H, Nekolla SG. A compressed sensing accelerated radial MS-CAIPIRINHA technique for extended anatomical coverage in myocardial perfusion studies on PET/MR systems. Phys Med 2019; 64:157-165. [PMID: 31515014 DOI: 10.1016/j.ejmp.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Simultaneous acquisition of myocardial first-pass perfusion MRI and 18F-FDG PET viability imaging on integrated whole-body PET/MR hybrid systems synergistically delivers both functional and metabolic information on the tissue state. While PET viability scans are inherently three-dimensional, conventional MR myocardial perfusion imaging is typically performed using only three short-axis slices with a temporal resolution of one RR-interval. To improve the integrated diagnostics, an acquisition and image reconstruction method based on "Multi-Slice Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration (MS-CAIPIRINHA)" was developed extending anatomical coverage for MR perfusion imaging to six short-axis slices per RR-interval. METHODS An ECG-gated radial TurboFLASH MR pulse sequence with dual band excitation was implemented on an integrated whole-body PET/MR system and a model-based reconstruction technique was developed to fully reconstruct the undersampled CAIPIRINHA acquisitions. An 18F-FDG viability PET scan was performed simultaneously to the MR protocol, additionally complemented by a late enhancement MRI acquisition (LGE). RESULTS AND CONCLUSION The developed imaging technique was tested in five patients with known collateralized coronary total occlusions, resulting in improved characterization of perfusion across areas of decreased tissue viability as indicated by the simultaneously determined 18F-FDG uptake. While conventional MR perfusion with only three slice positions was occasionally missing substantial parts of the viable area, the new approach achieved LV coverage only slightly inferior to LGE imaging and therefore better comparable to PET results. The quality of first-pass enhancement curves was comparable between conventional and radial MS-CAIPIRINHA-based acquisitions.
Collapse
Affiliation(s)
- Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany; Comprehensive Heart Failure Centre, University Hospital Würzburg, Germany.
| | - Karl P Kunze
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany
| | - Christoph Rischpler
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich Heart Alliance, Munich, Germany; Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Stäb
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Peter Speier
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany; Comprehensive Heart Failure Centre, University Hospital Würzburg, Germany
| | - Stephan G Nekolla
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
232
|
Arif O, Afzal H, Abbas H, Amjad MF, Wan J, Nawaz R. Accelerated Dynamic MRI Using Kernel-Based Low Rank Constraint. J Med Syst 2019; 43:271. [DOI: 10.1007/s10916-019-1399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022]
|
233
|
|
234
|
Niedbalski PJ, Willmering MM, Robertson SH, Freeman MS, Loew W, Giaquinto RO, Ireland C, Pratt RG, Dumoulin CL, Woods JC, Cleveland ZI. Mapping and correcting hyperpolarized magnetization decay with radial keyhole imaging. Magn Reson Med 2019; 82:367-376. [PMID: 30847967 PMCID: PMC6491256 DOI: 10.1002/mrm.27721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Hyperpolarized (HP) media enable biomedical imaging applications that cannot be achieved with conventional MRI contrast agents. Unfortunately, quantifying HP images is challenging, because relaxation and radio-frequency pulsing generate spatially varying signal decay during acquisition. We demonstrate that, by combining center-out k-space sampling with postacquisition keyhole reconstruction, voxel-by-voxel maps of regional HP magnetization decay can be generated with no additional data collection. THEORY AND METHODS Digital phantom, HP 129 Xe phantom, and in vivo 129 Xe human (N = 4 healthy; N = 2 with cystic fibrosis) imaging was performed using radial sampling. Datasets were reconstructed using a postacquisition keyhole approach in which 2 temporally resolved images were created and used to generate maps of regional magnetization decay following a simple analytical model. RESULTS Mean, keyhole-derived decay terms showed excellent agreement with the decay used in simulations (R2 = 0.996) and with global attenuation terms in HP 129 Xe phantom imaging (R2 > 0.97). Mean regional decay from in vivo imaging agreed well with global decay values and displayed spatial heterogeneity that matched expected variations in flip angle and oxygen partial pressure. Moreover, these maps could be used to correct variable signal decay across the image volume. CONCLUSIONS We have demonstrated that center-out trajectories combined with keyhole reconstruction can be used to map regional HP signal decay and to quantitatively correct images. This approach may be used to improve the accuracy of quantitative measures obtained from hyperpolarized media. Although validated with gaseous HP 129 Xe in this work, this technique can be generalized to any hyperpolarized agent.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew M. Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott H. Robertson
- Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew S. Freeman
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wolfgang Loew
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Randy O. Giaquinto
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher Ireland
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles L. Dumoulin
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
235
|
Keerthivasan MB, Saranathan M, Johnson K, Fu Z, Weinkauf CC, Martin DR, Bilgin A, Altbach MI. An efficient 3D stack-of-stars turbo spin echo pulse sequence for simultaneous T2-weighted imaging and T2 mapping. Magn Reson Med 2019; 82:326-341. [PMID: 30883879 DOI: 10.1002/mrm.27737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE To design a pulse sequence for efficient 3D T2-weighted imaging and T2 mapping. METHODS A stack-of-stars turbo spin echo pulse sequence with variable refocusing flip angles and a flexible pseudorandom view ordering is proposed for simultaneous T2-weighted imaging and T2 mapping. An analytical framework is introduced for the selection of refocusing flip angles to maximize relative tissue contrast while minimizing T2 estimation errors and maintaining low specific absorption rate. Images at different echo times are generated using a subspace constrained iterative reconstruction algorithm. T2 maps are obtained by modeling the signal evolution using the extended phase graph model. The technique is evaluated using phantoms and demonstrated in vivo for brain, knee, and carotid imaging. RESULTS Numerical simulations demonstrate an improved point spread function with the proposed pseudorandom view ordering compared to golden angle view ordering. Phantom experiments show that T2 values estimated from the stack-of-stars turbo spin echo pulse sequence with variable refocusing flip angles have good concordance with spin echo reference values. In vivo results show the proposed pulse sequence can generate qualitatively comparable T2-weighted images as conventional Cartesian 3D SPACE in addition to simultaneously generating 3D T2 maps. CONCLUSION The proposed stack-of-stars turbo spin echo pulse sequence with pseudorandom view ordering and variable refocusing flip angles allows high resolution isotropic T2 mapping in clinically acceptable scan times. The optimization framework for the selection of refocusing flip angles improves T2 estimation accuracy while generating T2-weighted contrast comparable to conventional Cartesian imaging.
Collapse
Affiliation(s)
- Mahesh Bharath Keerthivasan
- Medical Imaging, University of Arizona, Tucson, Arizona.,Electrical and Computer Engineering, University of Arizona, Tucson, Arizona
| | - Manojkumar Saranathan
- Medical Imaging, University of Arizona, Tucson, Arizona.,Electrical and Computer Engineering, University of Arizona, Tucson, Arizona.,Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Kevin Johnson
- Medical Imaging, University of Arizona, Tucson, Arizona
| | - Zhiyang Fu
- Medical Imaging, University of Arizona, Tucson, Arizona.,Electrical and Computer Engineering, University of Arizona, Tucson, Arizona
| | | | | | - Ali Bilgin
- Medical Imaging, University of Arizona, Tucson, Arizona.,Electrical and Computer Engineering, University of Arizona, Tucson, Arizona.,Biomedical Engineering, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
236
|
Kaggie JD, Deen S, Kessler DA, McLean MA, Buonincontri G, Schulte RF, Addley H, Sala E, Brenton J, Graves MJ, Gallagher FA. Feasibility of Quantitative Magnetic Resonance Fingerprinting in Ovarian Tumors for T 1 and T 2 Mapping in a PET/MR Setting. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:509-515. [PMID: 32066996 PMCID: PMC7025887 DOI: 10.1109/trpms.2019.2905366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiparametric magnetic resonance imaging (MRI) can be used to characterize many cancer subtypes including ovarian cancer. Quantitative mapping of MRI relaxation values, such as T 1 and T 2 mapping, is promising for improving tumor assessment beyond conventional qualitative T 1- and T 2-weighted images. However, quantitative MRI relaxation mapping methods often involve long scan times due to sequentially measuring many parameters. Magnetic resonance fingerprinting (MRF) is a new method that enables fast quantitative MRI by exploiting the transient signals caused by the variation of pseudorandom sequence parameters. These transient signals are then matched to a simulated dictionary of T 1 and T 2 values to create quantitative maps. The ability of MRF to simultaneously measure multiple parameters, could represent a new approach to characterizing cancer and assessing treatment response. This feasibility study investigates MRF for simultaneous T 1, T 2, and relative proton density (rPD) mapping using ovarian cancer as a model system.
Collapse
Affiliation(s)
- Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Dimitri A. Kessler
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Mary A. McLean
- Cancer Research U.K. Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | | | | | - Helen Addley
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K.; Cancer Research U.K. Cambridge Institute, Cambridge CB2 0RE, U.K
| | - James Brenton
- Cancer Research U.K. Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Martin J. Graves
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, U.K.; Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, U.K
| |
Collapse
|
237
|
Golden-angle radial sparse parallel (GRASP) MRI in clinical routine detection of pituitary microadenomas: First experience and feasibility. Magn Reson Imaging 2019; 60:38-43. [DOI: 10.1016/j.mri.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 01/05/2023]
|
238
|
Zhang L, Armstrong T, Li X, Wu HH. A variable flip angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonant frequency shift and T 1 -based thermometry. Magn Reson Med 2019; 82:2062-2076. [PMID: 31257639 DOI: 10.1002/mrm.27883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively. METHODS The proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. RESULTS The proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. CONCLUSION The proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.
Collapse
Affiliation(s)
- Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tess Armstrong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California
| | - Xinzhou Li
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
239
|
Assländer J, Novikov DS, Lattanzi R, Sodickson DK, Cloos MA. Hybrid-state free precession in nuclear magnetic resonance. COMMUNICATIONS PHYSICS 2019; 2:73. [PMID: 31328174 PMCID: PMC6641569 DOI: 10.1038/s42005-019-0174-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/30/2019] [Indexed: 05/27/2023]
Abstract
The dynamics of large spin-1/2 ensembles are commonly described by the Bloch equation, which is characterized by the magnetization's non-linear response to the driving magnetic field. Consequently, most magnetic field variations result in non-intuitive spin dynamics, which are sensitive to small calibration errors. Although simplistic field variations result in robust spin dynamics, they do not explore the richness of the system's phase space. Here, we identify adiabaticity conditions that span a large experiment design space with tractable dynamics. All dynamics are trapped in a one-dimensional subspace, namely in the magnetization's absolute value, which is in a transient state, while its direction adiabatically follows the steady state. In this hybrid state, the polar angle is the effective drive of the spin dynamics. As an example, we optimize this drive for robust and efficient quantification of spin relaxation times and utilize it for magnetic resonance imaging of the human brain.
Collapse
Affiliation(s)
- Jakob Assländer
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Daniel K Sodickson
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Martijn A Cloos
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
240
|
Haris K, Hedström E, Kording F, Bidhult S, Steding-Ehrenborg K, Ruprecht C, Heiberg E, Arheden H, Aletras AH. Free-breathing fetal cardiac MRI with doppler ultrasound gating, compressed sensing, and motion compensation. J Magn Reson Imaging 2019; 51:260-272. [PMID: 31228302 PMCID: PMC6916642 DOI: 10.1002/jmri.26842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Fetal cardiovascular MRI complements ultrasound to assess fetal cardiovascular pathophysiology. Purpose To develop a free‐breathing method for retrospective fetal cine MRI using Doppler ultrasound (DUS) cardiac gating and tiny golden angle radial sampling (tyGRASP) for accelerated acquisition capable of detecting fetal movements for motion compensation. Study Type Feasibility study. Subjects Nine volunteers (gestational week 34–40). Short‐axis and four‐chamber views were acquired during maternal free‐breathing and breath‐hold. Field Strength/Sequence 1.5T cine balanced steady‐state free precession. Assessment A self‐gated reconstruction method was improved for clinical application by using 1) retrospective DUS gating, and 2) motion detection and rejection/correction algorithms for compensating for fetal motion. The free‐breathing reconstructions were qualitatively and quantitatively assessed, and DUS‐gating was compared with self‐gating in breath‐hold reconstructions. A scoring of 1–4 for overall image quality, cardiac, and extracardiac diagnostic quality was used. Statistical Tests Friedman's test was used to assess differences in qualitative scoring between observers. A Wilcoxon matched‐pairs signed rank test was used to assess differences between breath‐hold and free‐breathing acquisitions and between observers' quantitative measurements. Results In all cases, 111 free‐breathing and 145 breath‐hold acquisitions, the automatically calculated DUS‐based cardiac gating signal provided reconstructions of diagnostic quality (median score 4, range 1–4). Free‐breathing did not affect the DUS‐based cardiac gated retrospective radial reconstruction with respect to image or diagnostic quality (all P > 0.06). Motion detection with rejection/correction in k‐space produced high‐quality free‐breathing DUS‐based reconstructions [median 3, range (2–4)], whereas free‐breathing self‐gated methods failed in 80 out of 88 cases to produce a stable gating signal. Data Conclusion Free‐breathing fetal cine cardiac MRI based on DUS gating and tyGRASP with motion compensation yields diagnostic images. This simplifies acquisition for the pregnant woman and thus could help increase fetal cardiac MRI acceptance in the clinic. Level of Evidence: 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:260–272.
Collapse
Affiliation(s)
- Kostas Haris
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Bidhult
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Health Sciences, Physiotherapy, Lund University, Lund, Sweden
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Einar Heiberg
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
241
|
Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Optimized quantification of spin relaxation times in the hybrid state. Magn Reson Med 2019; 82:1385-1397. [PMID: 31189025 DOI: 10.1002/mrm.27819] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE The optimization and analysis of spin ensemble trajectories in the hybrid state-a state in which the direction of the magnetization adiabatically follows the steady state while the magnitude remains in a transient state. METHODS Numerical optimizations were performed to find spin ensemble trajectories that minimize the Cramér-Rao bound for T 1 -encoding, T 2 -encoding, and their weighted sum, respectively, followed by a comparison between the Cramér-Rao bounds obtained with our optimized spin-trajectories, Look-Locker sequences, and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. RESULTS After a nonrecurring inversion segment on the southern half of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern hemisphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T 1 - and T 2 -encoding still result in near optimal signal-to-noise efficiency for each relaxation time. Thus, the second parameter can be encoded at virtually no extra cost. CONCLUSIONS We provided new insights into the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We found that joint acquisitions of T 1 and T 2 in the hybrid state are substantially more efficient than sequential encoding techniques.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York
| | - Riccardo Lattanzi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Daniel K Sodickson
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Martijn A Cloos
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| |
Collapse
|
242
|
Free-breathing Magnetic Resonance Imaging Assessment of Body Composition in Healthy and Overweight Children: An Observational Study. J Pediatr Gastroenterol Nutr 2019; 68:782-787. [PMID: 30789865 PMCID: PMC6752952 DOI: 10.1097/mpg.0000000000002309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Conventional, breath-holding magnetic resonance imaging (MRI) assesses body composition by measuring fat volumes and proton density fat fraction (PDFF). However, breath-holding MRI is not always feasible in children. This study's objective was to use free-breathing MRI to quantify visceral and subcutaneous fat volumes and PDFFs and correlate these measurements with hepatic PDFF. METHODS This was an observational, hypothesis-forming study that enrolled 2 groups of children (ages 6-17 years), healthy children and overweight children with presumed nonalcoholic fatty liver disease. Free-breathing MRI was used to measure visceral and subcutaneous fat volumes and PDFFs, and hepatic PDFF. Imaging biomarkers were compared between groups, and correlations coefficients (r) and coefficients of determination (R) were calculated. RESULTS When compared with the control group (n = 10), the overweight group (n = 9) had greater mean visceral (1843 vs 329 cm, P < 0.001) and subcutaneous fat volumes (7663 vs 893 cm, P < 0.001), as well as greater visceral (80% vs 45%, p < 0.001) and subcutaneous fat PDFFs (89% vs 75%, P = 0.003). Visceral fat volume (r = 0.79, P < 0.001) and PDFF (r = 0.92, P < 0.001) correlated with hepatic PDFF. In overweight subjects, for each unit increase in visceral fat PDFF, hepatic PDFF increased by 2.64%; visceral fat PDFF explained 54% of hepatic PDFF variation (R = 0.54, P = 0.02). CONCLUSIONS In this study, we used free-breathing MRI to measure body composition in children. Future studies are needed to investigate the possible value of subcutaneous and visceral fat PDFFs, and validate free-breathing MRI body composition biomarkers.
Collapse
|
243
|
Armstrong T, Ly KV, Ghahremani S, Calkins KL, Wu HH. Free-breathing 3-D quantification of infant body composition and hepatic fat using a stack-of-radial magnetic resonance imaging technique. Pediatr Radiol 2019; 49:876-888. [PMID: 31001664 DOI: 10.1007/s00247-019-04384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Body composition and hepatic fat correlate with future risk for metabolic syndrome. In children, many conventional techniques for quantifying body composition and hepatic fat have limitations. MRI is a noninvasive research tool to study body composition and hepatic fat in infants; however, conventional Cartesian MRI is sensitive to motion, particularly in the abdomen because of respiration. Therefore we developed a free-breathing MRI technique to quantify body composition and hepatic fat in infants. OBJECTIVE In infants, we aimed to (1) compare the image quality between free-breathing 3-D stack-of-radial MRI (free-breathing radial) and 3-D Cartesian MRI in the liver and (2) determine the feasibility of using free-breathing radial MRI to quantify body composition and hepatic proton-density fat fraction (PDFF). MATERIALS AND METHODS Ten infants ages 2-7 months were scanned with free-breathing radial (two abdominal; one head and chest) and Cartesian (one abdominal) MRI sequences. The median preparation and scan times were reported. To assess feasibility for hepatic PDFF quantification, a radiologist masked to the MRI technique scored abdominal scans for motion artifacts in the liver using a 3-point scale (1, or non-diagnostic, to 3, or no artifacts). Median visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and brown adipose tissue (BAT) volume and PDFF, and hepatic PDFF were measured using free-breathing radial MRI. We assessed repeatability of free-breathing radial hepatic PDFF (coefficient of repeatability) between back-to-back scans. We determined differences in the distribution of image-quality scores using McNemar-Bowker tests. P<0.05 was considered significant. RESULTS Nine infants completed the entire study (90% completion). For ten infants, the median preparation time was 32 min and scan time was 24 min. Free-breathing radial MRI demonstrated significantly higher image-quality scores compared to Cartesian MRI in the liver (radial scan 1 median = 2 and radial scan 2 median = 3 vs. Cartesian median = 1; P=0.01). Median measurements using free-breathing radial were VAT=52.0 cm3, VAT-PDFF=42.2%, SAT=267.7 cm3, SAT-PDFF=87.1%, BAT=1.4 cm3, BAT-PDFF=26.1% and hepatic PDFF=3.4% (coefficient of repeatability <2.0%). CONCLUSION In this study, free-breathing radial MRI in infants achieved significantly improved liver image quality compared to Cartesian MRI. It is feasible to use free-breathing radial MRI to quantify body composition and hepatic fat in infants.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA.,Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Karrie V Ly
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital, Los Angeles, CA, USA.,Physician Assistant Program, Midwestern University, Glendale, AZ, USA
| | - Shahnaz Ghahremani
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA. .,Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
244
|
Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 2019; 81:3530-3543. [PMID: 30720209 PMCID: PMC6492150 DOI: 10.1002/mrm.27665] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/03/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Develop a sparse and locally low rank (LLR) regularized reconstruction to accelerate MR fingerprinting (MRF). METHODS Recent works have introduced low rank reconstructions to MRF, based on temporal compression operators learned from the MRF dictionary. In other MR applications, LLR regularization has been introduced to exploit temporal redundancy in local regions of the image. Here, we propose to include spatial sparsity and LLR regularization terms in the MRF reconstruction. This approach, so called SLLR-MRF, further reduces aliasing in the time-point images and enables higher acceleration factors. The proposed approach was evaluated in simulations, T1 /T2 phantom acquisition, and in vivo brain acquisitions in 5 healthy subjects with different undersampling factors. Acceleration was also used in vivo to enable acquisitions with higher in-plane spatial resolution in comparable scan time. RESULTS Simulations, phantom, and in vivo results show that low rank MRF reconstructions with high acceleration factors (<875 time-point images, 1 radial spoke per time-point) have residual aliasing artifacts that propagate into the parametric maps. The artifacts are reduced with the proposed SLLR-MRF resulting in considerable improvements in precision, without changes in accuracy. In vivo results show improved parametric maps for the proposed SLLR-MRF, potentially enabling MRF acquisitions with 1 radial spoke per time-point in approximately 2.6 s (~600 time-point images) for 2 × 2 mm and 9.6 s (1750 time-point images) for 1 × 1 mm in-plane resolution. CONCLUSION The proposed SLLR-MRF reconstruction further improves parametric map quality compared with low rank MRF, enabling shorter scan times and/or increased spatial resolution.
Collapse
Affiliation(s)
- Gastão Lima da Cruz
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Aurélien Bustin
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Oliver Jaubert
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | | | - René M. Botnar
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de ChileEscuela de IngenieríaSantiagoChile
| | - Claudia Prieto
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| |
Collapse
|
245
|
Li Q, Cao X, Ye H, Liao C, He H, Zhong J. Ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) for simultaneous quantification of long and ultrashort T 2 tissues. Magn Reson Med 2019; 82:1359-1372. [PMID: 31131911 DOI: 10.1002/mrm.27812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that allows quantifying relaxation times for muscle and bone in the musculoskeletal system and generating bone enhanced images that mimic CT scans. METHODS A fast imaging steady-state free precession MRF sequence with half pulse excitation and half projection readout was designed to sample fast T2 decay signals. Varying echo time (TE) of a sinusoidal pattern was applied to enhance sensitivity for tissues with short and ultrashort T2 values. The performance of UTE-MRF was evaluated via simulations, phantom, and in vivo experiments. RESULTS A minimal TE of 0.05 ms was achieved. Simulations indicated the sinusoidal TE sampling increased T2 quantification accuracy in the cortical bone and tendon but had little impact on long T2 muscle quantifications. For the rubber phantom, the averaged relaxometries from UTE-MRF (T1 = 162 ms and T2 = 1.07 ms) compared well with the gold standard (T1 = 190 ms and T 2 ∗ = 1.03 ms). For the long T2 agarose phantom, the linear regression slope between UTE-MRF and gold standard was 1.07 (R2 = 0.991) for T1 and 1.04 (R2 = 0.994) for T2 . In vivo experiments showed the detection of the cortical bone (averaged T2 = 1.0 ms) and Achilles tendon (averaged T2 = 15 ms). Scalp structures from the bone enhanced image show high similarity with CT. CONCLUSION The UTE-MRF with sinusoidal TEs can simultaneously quantify T1 , T2 , proton density, and B0 in long, short, even ultrashort T2 musculoskeletal structures. Bone enhanced images can be achieved in the brain with UTE-MRF.
Collapse
Affiliation(s)
- Qing Li
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhi Cao
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huihui Ye
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Congyu Liao
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, New York
| |
Collapse
|
246
|
Tan Z, Voit D, Kollmeier JM, Uecker M, Frahm J. Dynamic water/fat separation and B 0 inhomogeneity mapping-joint estimation using undersampled triple-echo multi-spoke radial FLASH. Magn Reson Med 2019; 82:1000-1011. [PMID: 31033051 DOI: 10.1002/mrm.27795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/05/2022]
Abstract
PURPOSE To achieve dynamic water/fat separation and B 0 field inhomogeneity mapping via model-based reconstructions of undersampled triple-echo multi-spoke radial FLASH acquisitions. METHODS This work introduces an undersampled triple-echo multi-spoke radial FLASH sequence, which uses (i) complementary radial spokes per echo train for faster spatial encoding, (ii) asymmetric echoes for flexible and nonuniform echo spacing, and (iii) a golden angle increment across frames for optimal k-space coverage. Joint estimation of water, fat, B 0 inhomogeneity, and coil sensitivity maps from undersampled triple-echo data poses a nonlinear and non-convex inverse problem which is solved by a model-based reconstruction with suitable regularization. The developed methods are validated using phantom experiments with different degrees of undersampling. Real-time MRI studies of the knee, liver, and heart are conducted without prospective gating or retrospective data sorting at temporal resolutions of 70, 158, and 40 ms, respectively. RESULTS Up to 18-fold undersampling is achieved in this work. Even in the presence of rapid physiological motion, large B 0 field inhomogeneities, and phase wrapping, the model-based reconstruction yields reliably separated water/fat maps in conjunction with spatially smooth inhomogeneity maps. CONCLUSIONS The combination of a triple-echo acquisition and joint reconstruction technique provides a practical solution to time-resolved and motion robust water/fat separation at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Zhengguo Tan
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
247
|
Guo L, Herzka DA. Sorted Golden-step phase encoding: an improved Golden-step imaging technique for cardiac and respiratory self-gated cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2019; 21:23. [PMID: 30999911 PMCID: PMC6472023 DOI: 10.1186/s12968-019-0533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Numerous self-gated cardiac imaging techniques have been reported in the literature. Most can track either cardiac or respiratory motion, and many incur some overhead to imaging data acquisition. We previously described a Cartesian cine imaging technique, pseudo-projection motion tracking with golden-step phase encoding, capable of tracking both cardiac and respiratory motion at no cost to imaging data acquisition. In this work, we describe improvements to the technique by dramatically reducing its vulnerability to eddy current and flow artifacts and demonstrating its effectiveness in expanded cardiovascular applications. METHODS As with our previous golden-step technique, the Cartesian phase encodes over time were arranged based on the integer golden step, and readouts near ky = 0 (pseudo-projections) were used to derive motion. In this work, however, the readouts were divided into equal and consecutive temporal segments, within which the readouts were sorted according to ky. The sorting reduces the phase encode jump between consecutive readouts while maintaining the pseudo-randomness of ky to sample both cardiac and respiratory motion without comprising the ability to retrospectively set the temporal resolution of the original technique. On human volunteers, free-breathing, electrocardiographic (ECG)-free cine scans were acquired for all slices of the short axis stack and the 4-chamber view of the long axis. Retrospectively, cardiac motion and respiratory motion were automatically extracted from the pseudo-projections to guide cine reconstruction. The resultant image quality in terms of sharpness and cardiac functional metrics was compared against breath-hold ECG-gated reference cines. RESULTS With sorting, motion tracking of both cardiac and respiratory motion was effective for all slices orientations imaged, and artifact occurrence due to eddy current and flow was efficiently eliminated. The image sharpness derived from the self-gated cines was found to be comparable to the reference cines (mean difference less than 0.05 mm- 1 for short-axis images and 0.075 mm- 1 for long-axis images), and the functional metrics (mean difference < 4 ml) were found not to be statistically different from those from the reference. CONCLUSIONS This technique dramatically reduced the eddy current and flow artifacts while preserving the ability of cost-free motion tracking and the flexibility of choosing arbitrary navigator zone width, number of cardiac phases, and duration of scanning. With the restriction of the artifacts removed, the Cartesian golden-step cine imaging can now be applied to cardiac imaging slices of more diverse orientation and anatomy at greater reliability.
Collapse
Affiliation(s)
- Liheng Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave, Suite 726 Ross Building, Baltimore, MD 21205 USA
| | - Daniel A. Herzka
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave, Suite 726 Ross Building, Baltimore, MD 21205 USA
| |
Collapse
|
248
|
Reduction of Motion Artifacts in the Recovery of Undersampled DCE MR Images Using Data Binning and L+S Decomposition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6139785. [PMID: 31119178 PMCID: PMC6500698 DOI: 10.1155/2019/6139785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/14/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
Background Motion is a major source of blurring and ghosting in recovered MR images. It is more challenging in Dynamic Contrast Enhancement (DCE) MRI because motion effects and rapid intensity changes in contrast agent are difficult to distinguish from each other. Material and Methods In this study, we have introduced a new technique to reduce the motion artifacts, based on data binning and low rank plus sparse (L+S) reconstruction method for DCE MRI. For Data binning, radial k-space data is acquired continuously using the golden-angle radial sampling pattern and grouped into various motion states or bins. The respiratory signal for binning is extracted directly from radially acquired k-space data. A compressed sensing- (CS-) based L+S matrix decomposition model is then used to reconstruct motion sorted DCE MR images. Undersampled free breathing 3D liver and abdominal DCE MR data sets are used to validate the proposed technique. Results The performance of the technique is compared with conventional L+S decomposition qualitatively along with the image sharpness and structural similarity index. Recovered images are visually sharper and have better similarity with reference images. Conclusion L+S decomposition provides improved MR images with data binning as preprocessing step in free breathing scenario. Data binning resolves the respiratory motion by dividing different respiratory positions in multiple bins. It also differentiates the respiratory motion and contrast agent (CA) variations. MR images recovered for each bin are better as compared to the method without data binning.
Collapse
|
249
|
Stemkens B, Prins FM, Bruijnen T, Kerkmeijer LGW, Lagendijk JJW, van den Berg CAT, Tijssen RHN. A dual-purpose MRI acquisition to combine 4D-MRI and dynamic contrast-enhanced imaging for abdominal radiotherapy planning. Phys Med Biol 2019; 64:06NT02. [PMID: 30695759 DOI: 10.1088/1361-6560/ab0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For successful abdominal radiotherapy it is crucial to have a clear tumor definition and an accurate characterization of the motion. While dynamic contrast-enhanced (DCE) MRI aids tumor visualization, it is often hampered by motion artifacts. 4D-MRI characterizes this motion, but often lacks the contrast to clearly visualize the tumor. This dual requirement is challenging due to time constraints. Here, we propose combining both into a single acquisition by reconstructing the data in various ways in order to achieve both high spatio-temporal resolution DCE-MRI and accurate 4D-MRI motion estimates. A 5 min T1-weigthed DCE acquisition was collected in five renal-cell carcinoma patients and simulated in a digital phantom. Data were acquired continuously using a 3D golden angle radial stack-of-stars acquisition. This enabled three types of reconstruction; (1) a high spatio-temporal resolution DCE time series, (2) a 5D reconstruction and (3) a contrast-enhanced 4D-MRI for motion characterization. Motion extracted from the 4D- and 5D-MRI was compared with a separately acquired 4D-MRI and additional 2D cine MR imaging. Simulations on XCAT showed that 5D reconstructions severely underestimated motion ([Formula: see text]), whereas contrast-enhanced 4D-MRI only underestimated motion by [Formula: see text]. This was confirmed in the in vivo data where motion of the contrast-enhanced 4D-MRI was approximately [Formula: see text] smaller than the motion in the 2D cine MRI (5.8 mm versus 6.5 mm), but equal to a separately acquired 4D-MRI (5.8 mm versus 5.9 mm). 5D reconstructions underestimated the motion by more than [Formula: see text], but minimized respiratory-induced blurring in the contrast enhanced images. DCE time-series demonstrated clear tumor visualization and contrast enhancement throughout the entire field-of-view. DCE- and 4D-MRI can be integrated into a single acquisition that enables different reconstructions with complementary information for abdominal radiotherapy planning and, in an MRI-guided treatment, precise motion information, input for motion models, and rapid feedback on the contrast enhancement.
Collapse
Affiliation(s)
- Bjorn Stemkens
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. MR Code B.V., Zaltbommel, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
250
|
Deng Z, Pang J, Lao Y, Bi X, Wang G, Chen Y, Fenchel M, Tuli R, Li D, Yang W, Fan Z. A post-processing method based on interphase motion correction and averaging to improve image quality of 4D magnetic resonance imaging: a clinical feasibility study. Br J Radiol 2019; 92:20180424. [PMID: 30604622 PMCID: PMC6541178 DOI: 10.1259/bjr.20180424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 11/05/2022] Open
Abstract
METHODS: Nine patients (seven pancreas, one liver, and one lung) were recruited. 4D-MRI was performed using two prototype k-space sorted techniques, stack-of-stars (SOS) and koosh-ball (KB) acquisitions. Post-processing using MoCoAve was implemented for both methods. Image quality score, apparent SNR (aSNR), sharpness, motion trajectory and standard deviation (σ_GTV) of the gross tumor volumes were compared between original and MoCoAve image sets. RESULTS: All subjects successfully underwent 4D-MRI scans and MoCoAve was performed on all data sets. Significantly higher image quality scores (2.64 ± 0.39 vs 1.18 ± 0.34, p = 0.001) and aSNR (37.6 ± 15.3 vs 18.1 ± 5.7, p = 0.001) was observed in the MoCoAve images when compared to the original images. High correlation in tumor motion trajectories in the superoinferior direction (SI: 0.91 ± 0.08) and weaker in the anteroposterior (AP: 0.51 ± 0.44) and mediolateral (ML: 0.37 ± 0.23) directions, similar image sharpness (0.367 ± 0.068 vs 0.369 ± 0.072, p = 0.805), and minimal average absolute difference (0.47 ± 0.34 mm) of the motion trajectory profiles was found between the two image sets. The σ_GTV in pancreas patients was significantly (p = 0.039) lower in MoCoAve images (1.48 ± 1.35 cm3) than in the original images (2.17 ± 1.31 cm3). CONCLUSION: MoCoAve using interphase motion correction and averaging has shown promise as a post-processing method for improving k-space sorted (SOS and KB) 4D-MRI image quality in thoracic and abdominal cancer patients. ADVANCES IN KNOWLEDGE: The proposed method is an image based post-processing method that could be applied to many k-space sorted 4D-MRI methods for improved image quality and signal-to-noise ratio while preserving image sharpness and respiratory motion fidelity. It is a useful technique for the radiotherapy planning community who are interested in using 4D-MRI but aren't satisfied with their current MR image quality.
Collapse
Affiliation(s)
- Zixin Deng
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Yi Lao
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaoming Bi
- MR R&D, Siemens Healthineers, Los Angeles, CA, USA
| | - Guan Wang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Yuhua Chen
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Richard Tuli
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|