201
|
Ji W, Guo X, Pan S, Long F, Ho TY, Schlichtmann U, Yao H. GNN-Based Concentration Prediction With Variable Input Flow Rates for Microfluidic Mixers. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:622-635. [PMID: 38393851 DOI: 10.1109/tbcas.2024.3366691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Recent years have witnessed significant advances brought by microfluidic biochips in automating biochemical protocols. Accurate preparation of fluid samples is an essential component of these protocols, where concentration prediction and generation are critical. Equipped with the advantages of convenient fabrication and control, microfluidic mixers demonstrate huge potential in sample preparation. Although finite element analysis (FEA) is the most commonly used simulation method for accurate concentration prediction of a given microfluidic mixer, it is time-consuming with poor scalability for large biochip sizes. Recently, machine learning models have been adopted in concentration prediction, with great potential in enhancing the efficiency over traditional FEA methods. However, the state-of-the-art machine learning-based method can only predict the concentration of mixers with fixed input flow rates and fixed sizes. In this paper, we propose a new concentration prediction method based on graph neural networks (GNNs), which can predict output concentrations for microfluidic mixters with variable input flow rates. Moreover, a transfer learning method is proposed to transfer the trained model to mixers of different sizes with reduced training data. Experimental results show that, for microfluidic mixers with fixed input flow rates, the proposed method obtains an average reduction of 88% in terms of prediction errors compared with the state-of-the-art method. For microfluidic mixers with variable input flow rates, the proposed method reduces the prediction error by 85% on average. Besides, the proposed transfer learning method reduces the training data by 84% for extending the pre-trained model for microfluidic mixers of different sizes with acceptable prediction error.
Collapse
|
202
|
Zheng Z, Wang X, Zheng N, Yang Y. Parameter-Efficient Person Re-Identification in the 3D Space. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7534-7547. [PMID: 36315532 DOI: 10.1109/tnnls.2022.3214834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
People live in a 3D world. However, existing works on person re-identification (re-id) mostly consider the semantic representation learning in a 2D space, intrinsically limiting the understanding of people. In this work, we address this limitation by exploring the prior knowledge of the 3D body structure. Specifically, we project 2D images to a 3D space and introduce a novel parameter-efficient omni-scale graph network (OG-Net) to learn the pedestrian representation directly from 3D point clouds. OG-Net effectively exploits the local information provided by sparse 3D points and takes advantage of the structure and appearance information in a coherent manner. With the help of 3D geometry information, we can learn a new type of deep re-id feature free from noisy variants, such as scale and viewpoint. To our knowledge, we are among the first attempts to conduct person re-id in the 3D space. We demonstrate through extensive experiments that the proposed method: (1) eases the matching difficulty in the traditional 2D space; 2) exploits the complementary information of 2D appearance and 3D structure; 3) achieves competitive results with limited parameters on four large-scale person re-id datasets; and 4) has good scalability to unseen datasets. Our code, models, and generated 3D human data are publicly available at https://github.com/layumi/person-reid-3d.
Collapse
|
203
|
Yuan S, Han X, Zhang J, Xie Z, Fan C, Xiao Y, Gao YQ, Yang YI. Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms Using Molecular Configuration Transformer. J Phys Chem A 2024; 128:4378-4390. [PMID: 38759697 DOI: 10.1021/acs.jpca.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.
Collapse
Affiliation(s)
- Sihao Yuan
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xu Han
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing 102200, China
| | - Zhaoxin Xie
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Cheng Fan
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yunlong Xiao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Changping Laboratory, Beijing 102200, China
| | - Yi Isaac Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
204
|
Pancino N, Gallegati C, Romagnoli F, Bongini P, Bianchini M. Protein-Protein Interfaces: A Graph Neural Network Approach. Int J Mol Sci 2024; 25:5870. [PMID: 38892057 PMCID: PMC11173158 DOI: 10.3390/ijms25115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental processes governing cellular functions, crucial for understanding biological systems at the molecular level. Compared to experimental methods for PPI prediction and site identification, computational deep learning approaches represent an affordable and efficient solution to tackle these problems. Since protein structure can be summarized as a graph, graph neural networks (GNNs) represent the ideal deep learning architecture for the task. In this work, PPI prediction is modeled as a node-focused binary classification task using a GNN to determine whether a generic residue is part of the interface. Biological data were obtained from the Protein Data Bank in Europe (PDBe), leveraging the Protein Interfaces, Surfaces, and Assemblies (PISA) service. To gain a deeper understanding of how proteins interact, the data obtained from PISA were assembled into three datasets: Whole, Interface, and Chain, consisting of data on the whole protein, couples of interacting chains, and single chains, respectively. These three datasets correspond to three different nuances of the problem: identifying interfaces between protein complexes, between chains of the same protein, and interface regions in general. The results indicate that GNNs are capable of solving each of the three tasks with very good performance levels.
Collapse
Affiliation(s)
- Niccolò Pancino
- Department of Information Engineering and Mathematics, University of Siena, Via Roma, 56, 53100 Siena, Italy; (C.G.); (P.B.); (M.B.)
| | | | | | | | | |
Collapse
|
205
|
Liang A, Wang Q, Wu X. Context-Enhanced Network with Spatial-Aware Graph for Smartphone Screen Defect Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:3430. [PMID: 38894220 PMCID: PMC11175082 DOI: 10.3390/s24113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Interactive devices such as touch screens have gained widespread usage in daily life; this has directed the attention of researchers to the quality of screen glass. Consequently, defect detection in screen glass is essential for improving the quality of smartphone screens. In recent years, defect detection methods based on deep learning have played a crucial role in improving detection accuracy and robustness. However, challenges have arisen in achieving high-performance detection due to the small size, irregular shapes and low contrast of defects. To address these challenges, this paper proposes CE-SGNet, a Context-Enhanced Network with a Spatial-aware Graph, for smartphone screen defect detection. It consists of two novel components: the Adaptive Receptive Field Attention Module (ARFAM) and the Spatial-aware Graph Reasoning Module (SGRM). The ARFAM enhances defect features by adaptively extracting contextual information to capture the most relevant contextual region of defect features. The SGRM constructs a region-to-region graph and encodes region features with spatial relationships. The connections among defect regions are enhanced during the propagation process through a graph attention network. By enriching the feature representations of defect regions, the CE-SGNet can accurately identify and locate defects of various shapes and scales. Experimental results demonstrate that the CE-SGNet achieves outstanding performance on two public datasets.
Collapse
Affiliation(s)
- Aili Liang
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| | - Qishan Wang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China;
| | - Xiaofeng Wu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| |
Collapse
|
206
|
Joubbi S, Micheli A, Milazzo P, Maccari G, Ciano G, Cardamone D, Medini D. Antibody design using deep learning: from sequence and structure design to affinity maturation. Brief Bioinform 2024; 25:bbae307. [PMID: 38960409 PMCID: PMC11221890 DOI: 10.1093/bib/bbae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.
Collapse
Affiliation(s)
- Sara Joubbi
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Giorgio Ciano
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Dario Cardamone
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| |
Collapse
|
207
|
Lin B, Luo X, Liu Y, Jin X. A comprehensive review and comparison of existing computational methods for protein function prediction. Brief Bioinform 2024; 25:bbae289. [PMID: 39003530 PMCID: PMC11246557 DOI: 10.1093/bib/bbae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 07/15/2024] Open
Abstract
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-based methods, PPI network-based methods and hybrid information-based methods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.
Collapse
Affiliation(s)
- Baohui Lin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaoling Luo
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen, Guangdong, China
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| |
Collapse
|
208
|
Tang X, Dai H, Knight E, Wu F, Li Y, Li T, Gerstein M. A survey of generative AI for de novo drug design: new frontiers in molecule and protein generation. Brief Bioinform 2024; 25:bbae338. [PMID: 39007594 PMCID: PMC11247410 DOI: 10.1093/bib/bbae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Artificial intelligence (AI)-driven methods can vastly improve the historically costly drug design process, with various generative models already in widespread use. Generative models for de novo drug design, in particular, focus on the creation of novel biological compounds entirely from scratch, representing a promising future direction. Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter. In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation. Within each theme, we identify a variety of subtasks and applications, highlighting important datasets, benchmarks, and model architectures and comparing the performance of top models. We take a broad approach to AI-driven drug design, allowing for both micro-level comparisons of various methods within each subtask and macro-level observations across different fields. We discuss parallel challenges and approaches between the two applications and highlight future directions for AI-driven de novo drug design as a whole. An organized repository of all covered sources is available at https://github.com/gersteinlab/GenAI4Drug.
Collapse
Affiliation(s)
- Xiangru Tang
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Howard Dai
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Elizabeth Knight
- School of Medicine, Yale University, New Haven, CT 06520, United States
| | - Fang Wu
- Computer Science Department, Stanford University, CA 94305, United States
| | - Yunyang Li
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Tianxiao Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
- Department of Statistics & Data Science, Yale University, New Haven, CT 06520, United States
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
209
|
Zheng M, Sun G, Li X, Fan Y. EGPDI: identifying protein-DNA binding sites based on multi-view graph embedding fusion. Brief Bioinform 2024; 25:bbae330. [PMID: 38975896 PMCID: PMC11229037 DOI: 10.1093/bib/bbae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view graph embedding fusion has been applied to the task of protein-DNA binding site prediction. The results of five-fold cross-validation and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case studies also verify the superiority and generalization ability of EGPDI.
Collapse
Affiliation(s)
- Mengxin Zheng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Guicong Sun
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xueping Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
210
|
Baul S, Tanvir Ahmed K, Jiang Q, Wang G, Li Q, Yong J, Zhang W. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks. Brief Bioinform 2024; 25:bbae316. [PMID: 38960406 PMCID: PMC11221891 DOI: 10.1093/bib/bbae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.
Collapse
Affiliation(s)
- Sudipto Baul
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| | - Khandakar Tanvir Ahmed
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| | - Qibing Jiang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| | - Guangyu Wang
- Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, United States
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
| |
Collapse
|
211
|
Lu XY, Wu HP, Ma H, Li H, Li J, Liu YT, Pan ZY, Xie Y, Wang L, Ren B, Liu GK. Deep Learning-Assisted Spectrum-Structure Correlation: State-of-the-Art and Perspectives. Anal Chem 2024; 96:7959-7975. [PMID: 38662943 DOI: 10.1021/acs.analchem.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.
Collapse
Affiliation(s)
- Xin-Yu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hao-Ping Wu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hui Li
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Li
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Ti Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Zheng-Yan Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Xie
- School of Informatics, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|
212
|
Jiang C, Dai Y, Ding Y, Chen X, Li Y, Tang Y. TSANN-TG: Temporal-Spatial Attention Neural Networks with Task-Specific Graph for EEG Emotion Recognition. Brain Sci 2024; 14:516. [PMID: 38790494 PMCID: PMC11119157 DOI: 10.3390/brainsci14050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Electroencephalography (EEG)-based emotion recognition is increasingly pivotal in the realm of affective brain-computer interfaces. In this paper, we propose TSANN-TG (temporal-spatial attention neural network with a task-specific graph), a novel neural network architecture tailored for enhancing feature extraction and effectively integrating temporal-spatial features. TSANN-TG comprises three primary components: a node-feature-encoding-and-adjacency-matrices-construction block, a graph-aggregation block, and a graph-feature-fusion-and-classification block. Leveraging the distinct temporal scales of features from EEG signals, TSANN-TG incorporates attention mechanisms for efficient feature extraction. By constructing task-specific adjacency matrices, the graph convolutional network with an attention mechanism captures the dynamic changes in dependency information between EEG channels. Additionally, TSANN-TG emphasizes feature integration at multiple levels, leading to improved performance in emotion-recognition tasks. Our proposed TSANN-TG is applied to both our FTEHD dataset and the publicly available DEAP dataset. Comparative experiments and ablation studies highlight the excellent recognition results achieved. Compared to the baseline algorithms, TSANN-TG demonstrates significant enhancements in accuracy and F1 score on the two benchmark datasets for four types of cognitive tasks. These results underscore the significant potential of the TSANN-TG method to advance EEG-based emotion recognition.
Collapse
Affiliation(s)
- Chao Jiang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China; (C.J.); (X.C.)
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (Y.D.); (Y.D.)
| | - Yingying Dai
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (Y.D.); (Y.D.)
| | - Yunheng Ding
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (Y.D.); (Y.D.)
| | - Xi Chen
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China; (C.J.); (X.C.)
| | - Yingjie Li
- College of International Education, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai 200030, China;
| |
Collapse
|
213
|
Tan D, Jiang H, Li H, Xie Y, Su Y. Prediction of drug-protein interaction based on dual channel neural networks with attention mechanism. Brief Funct Genomics 2024; 23:286-294. [PMID: 37642213 DOI: 10.1093/bfgp/elad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
The precise identification of drug-protein inter action (DPI) can significantly speed up the drug discovery process. Bioassay methods are time-consuming and expensive to screen for each pair of drug proteins. Machine-learning-based methods cannot accurately predict a large number of DPIs. Compared with traditional computing methods, deep learning methods need less domain knowledge and have strong data learning ability. In this study, we construct a DPI prediction model based on dual channel neural networks with an efficient path attention mechanism, called DCA-DPI. The drug molecular graph and protein sequence are used as the data input of the model, and the residual graph neural network and the residual convolution network are used to learn the feature representation of the drug and protein, respectively, to obtain the feature vector of the drug and the hidden vector of protein. To get a more accurate protein feature vector, the weighted sum of the hidden vector of protein is applied using the neural attention mechanism. In the end, drug and protein vectors are concatenated and input into the full connection layer for classification. In order to evaluate the performance of DCA-DPI, three widely used public data, Human, C.elegans and DUD-E, are used in the experiment. The evaluation metrics values in the experiment are superior to other relevant methods. Experiments show that our model is efficient for DPI prediction.
Collapse
Affiliation(s)
- Dayu Tan
- Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Hefei, China
| | - Haijun Jiang
- Key Laboratory of Intelligent Computing and Signal Processing, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Hefei, China
| | - Haitao Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Hefei, China
| | - Ying Xie
- School of Mechanical, Electrical and Information Engineering, Putian University, China
| | - Yansen Su
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Hefei, China
| |
Collapse
|
214
|
Green R, Qu X, Liu J, Yu T. BTR: a bioinformatics tool recommendation system. Bioinformatics 2024; 40:btae275. [PMID: 38662583 PMCID: PMC11091741 DOI: 10.1093/bioinformatics/btae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024] Open
Abstract
MOTIVATION The rapid expansion of Bioinformatics research has led to a proliferation of computational tools for scientific analysis pipelines. However, constructing these pipelines is a demanding task, requiring extensive domain knowledge and careful consideration. As the Bioinformatics landscape evolves, researchers, both novice and expert, may feel overwhelmed in unfamiliar fields, potentially leading to the selection of unsuitable tools during workflow development. RESULTS In this article, we introduce the Bioinformatics Tool Recommendation system (BTR), a deep learning model designed to recommend suitable tools for a given workflow-in-progress. BTR leverages recent advances in graph neural network technology, representing the workflow as a graph to capture essential context. Natural language processing techniques enhance tool recommendations by analyzing associated tool descriptions. Experiments demonstrate that BTR outperforms the existing Galaxy tool recommendation system, showcasing its potential to streamline scientific workflow construction. AVAILABILITY AND IMPLEMENTATION The Python source code is available at https://github.com/ryangreenj/bioinformatics_tool_recommendation.
Collapse
Affiliation(s)
- Ryan Green
- Department of Computer Science, University of Cincinnati, Cincinnati 45219, United States
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University, Richmond 23284, United States
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond 23284, United States
| | - Tingting Yu
- School of Computing, University of Connecticut, Storrs 06269, United States
| |
Collapse
|
215
|
Park JH, Cho YR. Computational drug repositioning with attention walking. Sci Rep 2024; 14:10072. [PMID: 38698208 PMCID: PMC11066070 DOI: 10.1038/s41598-024-60756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, the importance of computational drug repositioning has been highlighted because it can reduce the costs, development time, and risks compared to traditional drug discovery. Most approaches in this area use networks for systematic analysis. Inferring drug-disease associations is then defined as a link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, we present a novel method of computational drug repositioning, named drug repositioning with attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for prediction is extracted. Second, a graph convolutional network captures the structural features of the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention mechanisms and converted into random walk profiles. Finally, a multi-layer perceptron takes random walk profiles and predicts whether a target link exists. As an experiment, we constructed two heterogeneous networks with drug-drug similarities based on chemical structures and anatomical therapeutic chemical classification (ATC) codes. Using 10-fold cross-validation, DRAW achieved an area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state-of-the-art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to further confirm the capability of DRAW to predict drug-disease associations.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
| |
Collapse
|
216
|
Wang W, Xiao L, Qu G, Calhoun VD, Wang YP, Sun X. Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis. Med Image Anal 2024; 94:103144. [PMID: 38518530 DOI: 10.1016/j.media.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Recently, functional magnetic resonance imaging (fMRI) based functional connectivity network (FCN) analysis via graph convolutional networks (GCNs) has shown promise for automated diagnosis of brain diseases by regarding the FCNs as irregular graph-structured data. However, multiview information and site influences of the FCNs in a multisite, multiatlas fMRI scenario have been understudied. In this paper, we propose a Class-consistency and Site-independence Multiview Hyperedge-Aware HyperGraph Embedding Learning (CcSi-MHAHGEL) framework to integrate FCNs constructed on multiple brain atlases in a multisite fMRI study. Specifically, for each subject, we first model brain network as a hypergraph for every brain atlas to characterize high-order relations among multiple vertexes, and then introduce a multiview hyperedge-aware hypergraph convolutional network (HGCN) to extract a multiatlas-based FCN embedding where hyperedge weights are adaptively learned rather than employing the fixed weights precalculated in traditional HGCNs. In addition, we formulate two modules to jointly learn the multiatlas-based FCN embeddings by considering the between-subject associations across classes and sites, respectively, i.e., a class-consistency module to encourage both compactness within every class and separation between classes for promoting discrimination in the embedding space, and a site-independence module to minimize the site dependence of the embeddings for mitigating undesired site influences due to differences in scanning platforms and/or protocols at multiple sites. Finally, the multiatlas-based FCN embeddings are fed into a few fully connected layers followed by the soft-max classifier for diagnosis decision. Extensive experiments on the ABIDE demonstrate the effectiveness of our method for autism spectrum disorder (ASD) identification. Furthermore, our method is interpretable by revealing ASD-relevant brain regions that are biologically significant.
Collapse
Affiliation(s)
- Wei Wang
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei 230052, China
| | - Li Xiao
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei 230052, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30030, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Xiaoyan Sun
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei 230052, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
217
|
Wang K, Liang Y, Li X, Li G, Ghanem B, Zimmermann R, Zhou Z, Yi H, Zhang Y, Wang Y. Brave the Wind and the Waves: Discovering Robust and Generalizable Graph Lottery Tickets. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:3388-3405. [PMID: 38090829 DOI: 10.1109/tpami.2023.3342184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The training and inference of Graph Neural Networks (GNNs) are costly when scaling up to large-scale graphs. Graph Lottery Ticket (GLT) has presented the first attempt to accelerate GNN inference on large-scale graphs by jointly pruning the graph structure and the model weights. Though promising, GLT encounters robustness and generalization issues when deployed in real-world scenarios, which are also long-standing and critical problems in deep learning ideology. In real-world scenarios, the distribution of unseen test data is typically diverse. We attribute the failures on out-of-distribution (OOD) data to the incapability of discerning causal patterns, which remain stable amidst distribution shifts. In traditional spase graph learning, the model performance deteriorates dramatically as the graph/network sparsity exceeds a certain high level. Worse still, the pruned GNNs are hard to generalize to unseen graph data due to limited training set at hand. To tackle these issues, we propose the Resilient Graph Lottery Ticket (RGLT) to find more robust and generalizable GLT in GNNs. Concretely, we reactivate a fraction of weights/edges by instantaneous gradient information at each pruning point. After sufficient pruning, we conduct environmental interventions to extrapolate potential test distribution. Finally, we perform last several rounds of model averages to further improve generalization. We provide multiple examples and theoretical analyses that underpin the universality and reliability of our proposal. Further, RGLT has been experimentally verified across various independent identically distributed (IID) and out-of-distribution (OOD) graph benchmarks.
Collapse
|
218
|
Chen C, Zhang Z, Tang P, Liu X, Huang B. Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis. Comput Biol Med 2024; 174:108449. [PMID: 38626512 DOI: 10.1016/j.compbiomed.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
Spatial transcriptomics (ST), containing gene expression with fine-grained (i.e., different windows) spatial location within tissue samples, has become vital in developing innovative treatments. Traditional ST technology, however, rely on costly specialized commercial equipment. Addressing this, our article aims to creates a cost-effective, virtual ST approach using standard tissue images for gene expression prediction, eliminating the need for expensive equipment. Conventional approaches in this field often overlook the long-distance spatial dependencies between different sample windows or need prior gene expression data. To overcome these limitations, we propose the Edge-Relational Window-Attentional Network (ErwaNet), enhancing gene prediction by capturing both local interactions and global structural information from tissue images, without prior gene expression data. ErwaNet innovatively constructs heterogeneous graphs to model local window interactions and incorporates an attention mechanism for global information analysis. This dual framework not only provides a cost-effective solution for gene expression predictions but also obviates the necessity of prior knowledge gene expression information, a significant advantage in the field of cancer research where it enables a more efficient and accessible analytical paradigm. ErwaNet stands out as a prior-free and easy-to-implement Graph Convolution Network (GCN) method for predicting gene expression from tissue images. Evaluation of the two public breast cancer datasets shows that ErwaNet, without additional information, outperforms the state-of-the-art (SOTA) methods. Code is available at https://github.com/biyecc/ErwaNet.
Collapse
Affiliation(s)
- Cui Chen
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Zuping Zhang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Panrui Tang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Xin Liu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Bo Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
219
|
Beddar-Wiesing S, D'Inverno GA, Graziani C, Lachi V, Moallemy-Oureh A, Scarselli F, Thomas JM. Weisfeiler-Lehman goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed and dynamic graphs. Neural Netw 2024; 173:106213. [PMID: 38428377 DOI: 10.1016/j.neunet.2024.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-WL) in their ability to distinguish graphs. Moreover, it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand, GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding equivalence. However, these results only apply to Static Attributed Undirected Homogeneous Graphs (SAUHG) with node attributes. In contrast, real-life applications often involve a much larger variety of graph types. In this paper, we conduct a theoretical analysis of the expressive power of GNNs for two other graph domains that are particularly interesting in practical applications, namely dynamic graphs and SAUGHs with edge attributes. Dynamic graphs are widely used in modern applications; hence, the study of the expressive capability of GNNs in this domain is essential for practical reasons and, in addition, it requires a new analyzing approach due to the difference in the architecture of dynamic GNNs compared to static ones. On the other hand, the examination of SAUHGs is of particular relevance since they act as a standard form for all graph types: it has been shown that all graph types can be transformed without loss of information to SAUHGs with both attributes on nodes and edges. This paper considers generic GNN models and appropriate 1-WL tests for those domains. Then, the known results on the expressive power of GNNs are extended to the mentioned domains: it is proven that GNNs have the same capability as the 1-WL test, the 1-WL equivalence equals unfolding equivalence and that GNNs are universal approximators modulo 1-WL/unfolding equivalence. Moreover, the proof of the approximation capability is mostly constructive and allows us to deduce hints on the architecture of GNNs that can achieve the desired approximation.
Collapse
Affiliation(s)
- Silvia Beddar-Wiesing
- Graphs in Artificial Intelligence and Neural Networks (GAIN), University of Kassel, Germany.
| | | | - Caterina Graziani
- Siena Artificial Intelligence Lab (SAILab), University of Siena, Italy.
| | - Veronica Lachi
- Siena Artificial Intelligence Lab (SAILab), University of Siena, Italy.
| | - Alice Moallemy-Oureh
- Graphs in Artificial Intelligence and Neural Networks (GAIN), University of Kassel, Germany.
| | - Franco Scarselli
- Siena Artificial Intelligence Lab (SAILab), University of Siena, Italy.
| | - Josephine Maria Thomas
- Graphs in Artificial Intelligence and Neural Networks (GAIN), University of Kassel, Germany.
| |
Collapse
|
220
|
Ju W, Fang Z, Gu Y, Liu Z, Long Q, Qiao Z, Qin Y, Shen J, Sun F, Xiao Z, Yang J, Yuan J, Zhao Y, Wang Y, Luo X, Zhang M. A Comprehensive Survey on Deep Graph Representation Learning. Neural Netw 2024; 173:106207. [PMID: 38442651 DOI: 10.1016/j.neunet.2024.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future.
Collapse
Affiliation(s)
- Wei Ju
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Zheng Fang
- School of Intelligence Science and Technology, Peking University, Beijing, 100871, China
| | - Yiyang Gu
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Zequn Liu
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Qingqing Long
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100086, China
| | - Ziyue Qiao
- Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, 511453, China
| | - Yifang Qin
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Jianhao Shen
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Fang Sun
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Zhiping Xiao
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Junwei Yang
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Jingyang Yuan
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Yusheng Zhao
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China
| | - Yifan Wang
- School of Information Technology & Management, University of International Business and Economics, Beijing, 100029, China
| | - Xiao Luo
- Department of Computer Science, University of California, Los Angeles, 90095, USA.
| | - Ming Zhang
- School of Computer Science, National Key Laboratory for Multimedia Information Processing, Peking University, Beijing, 100871, China.
| |
Collapse
|
221
|
Behmanesh M, Adibi P, Ehsani SMS, Chanussot J. Geometric Multimodal Deep Learning With Multiscaled Graph Wavelet Convolutional Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:6991-7005. [PMID: 36279325 DOI: 10.1109/tnnls.2022.3213589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multimodal data provide complementary information of a natural phenomenon by integrating data from various domains with very different statistical properties. Capturing the intramodality and cross-modality information of multimodal data is the essential capability of multimodal learning methods. The geometry-aware data analysis approaches provide these capabilities by implicitly representing data in various modalities based on their geometric underlying structures. Also, in many applications, data are explicitly defined on an intrinsic geometric structure. Generalizing deep learning methods to the non-Euclidean domains is an emerging research field, which has recently been investigated in many studies. Most of those popular methods are developed for unimodal data. In this article, a multimodal graph wavelet convolutional network (M-GWCN) is proposed as an end-to-end network. M-GWCN simultaneously finds intramodality representation by applying the multiscale graph wavelet transform to provide helpful localization properties in the graph domain of each modality and cross-modality representation by learning permutations that encode correlations among various modalities. M-GWCN is not limited to either the homogeneous modalities with the same number of data or any prior knowledge indicating correspondences between modalities. Several semisupervised node classification experiments have been conducted on three popular unimodal explicit graph-based datasets and five multimodal implicit ones. The experimental results indicate the superiority and effectiveness of the proposed methods compared with both spectral graph domain convolutional neural networks and state-of-the-art multimodal methods.
Collapse
|
222
|
Saha SS, Sandha SS, Aggarwal M, Wang B, Han L, DE Gortari Briseno J, Srivastava M. TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS : TECS 2024; 23:43. [PMID: 38933471 PMCID: PMC11200268 DOI: 10.1145/3603171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/28/2023] [Indexed: 06/28/2024]
Abstract
Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduce TinyNS, the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators. TinyNS provides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models. TinyNS uses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability, TinyNS talks to the target hardware during the optimization process. We showcase the utility of TinyNS by deploying microcontroller-class neurosymbolic models through several case studies. In all use cases, TinyNS outperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware.
Collapse
Affiliation(s)
| | | | | | - Brian Wang
- University of California - Los Angeles, Los Angeles, CA, USA
| | - Liying Han
- University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Mani Srivastava
- University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
223
|
Yu X, Yi H, Tang Q, Huang K, Hu W, Zhang S, Wang X. Graph-based social relation inference with multi-level conditional attention. Neural Netw 2024; 173:106216. [PMID: 38442650 DOI: 10.1016/j.neunet.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Social relation inference intrinsically requires high-level semantic understanding. In order to accurately infer relations of persons in images, one needs not only to understand scenes and objects in images, but also to adaptively attend to important clues. Unlike prior works of classifying social relations using attention on detected objects, we propose a MUlti-level Conditional Attention (MUCA) mechanism for social relation inference, which attends to scenes, objects and human interactions based on each person pair. Then, we develop a transformer-style network to achieve the MUCA mechanism. The novel network named as Graph-based Relation Inference Transformer (i.e., GRIT) consists of two modules, i.e., a Conditional Query Module (CQM) and a Relation Attention Module (RAM). Specifically, we design a graph-based CQM to generate informative relation queries for all person pairs, which fuses local features and global context for each person pair. Moreover, we fully take advantage of transformer-style networks in RAM for multi-level attentions in classifying social relations. To our best knowledge, GRIT is the first for inferring social relations with multi-level conditional attention. GRIT is end-to-end trainable and significantly outperforms existing methods on two benchmark datasets, e.g., with performance improvement of 7.8% on PIPA and 9.6% on PISC.
Collapse
Affiliation(s)
- Xiaotian Yu
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China.
| | - Hanling Yi
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China
| | - Qie Tang
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China
| | - Kun Huang
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China
| | - Wenze Hu
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China
| | - Shiliang Zhang
- Department of Computer Science, Peking University, China
| | - Xiaoyu Wang
- Department of AI Technology Center, Shenzhen Intellifusion Ltd., China; The Chinese University of Hong Kong (Shenzhen), China
| |
Collapse
|
224
|
Lu C, Xu X, Zhang B. Modification and completion of geological structure knowledge graph based on pattern matching. Sci Rep 2024; 14:9825. [PMID: 38684846 PMCID: PMC11059341 DOI: 10.1038/s41598-024-60618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
As a knowledge representation method, knowledge graph is widely used in intelligent question answering systems and recommendation systems. At present, the research on knowledge graph mainly focuses on information query and retrieval based on knowledge graph. In some domain knowledge graphs, specific subgraph structures (patterns) have specific physical meanings. Aiming at this problem, this paper proposes a method and framework of knowledge graph pattern mining based on gat. Firstly, the patterns with specific physical meaning were transformed into subgraph structures containing topological structures and entity attributes. Secondly, the subgraph structure of the pattern is regarded as the query graph, and the knowledge graph is regarded as the data graph, so that the problem is transformed into an approximate subgraph matching problem. Then, the improved relational graph attention network is used to fuse the adaptive edge deletion mechanism to realize the approximate subgraph matching of subgraph structure and attribute, so as to obtain the best matching subgraph. The proposed method is trained in an end-to-end manner. The approximate subgraph matching is realized on the existing data set, and the research work of key pattern mining of complex geological structure knowledge graph is carried out.
Collapse
Affiliation(s)
- Cai Lu
- School of Information and Communication Engineering, University of Electronic and Science Technology of China, Chengdu, China
| | - Xinran Xu
- School of Information and Communication Engineering, University of Electronic and Science Technology of China, Chengdu, China.
| | - Bingbin Zhang
- School of Information and Communication Engineering, University of Electronic and Science Technology of China, Chengdu, China
| |
Collapse
|
225
|
Ran L, Cui Y, Zhao J, Yang H. TITAN: Combining a bidirectional forwarding graph and GCN to detect saturation attack targeted at SDN. PLoS One 2024; 19:e0299846. [PMID: 38669264 PMCID: PMC11051642 DOI: 10.1371/journal.pone.0299846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/18/2024] [Indexed: 04/28/2024] Open
Abstract
The decoupling of control and forwarding layers brings Software-Defined Networking (SDN) the network programmability and global control capability, but it also poses SDN security risks. The adversaries can use the forwarding and control decoupling character of SDN to forge legitimate traffic, launching saturation attacks targeted at SDN switches. These attacks can cause the overflow of switch flow tables, thus making the switch cannot forward benign network traffic. How to effectively detect saturation attack is a research hotspot. There are only a few graph-based saturation attack detection methods. Meanwhile, the current graph generation methods may take useless or misleading information to the attack detection, thus decreasing the attack detection accuracy. To solve the above problems, this paper proposes TITAN, a bidirecTional forwardIng graph-based saturaTion Attack detectioN method. TITAN defines flow forwarding rules and topology information, and designs flow statistical features. Based on these definitions, TITAN generates nodes of the bi-forwarding graph based on the flow statistics features and edges of the bi-forwarding graph based on the network traffic routing paths. In this way, each traffic flow in the network is transformed into a bi-directional forwarding graph. Then TITAN feeds the above bidirectional forwarding graph into a Graph Convolutional Network (GCN) to detect whether the flow is a saturation attack flow. The experimental results show that TITAN can effectively detect saturation attacks in SDNs with a detection accuracy of more than 97%.
Collapse
Affiliation(s)
- Longyan Ran
- Guizhou Xiangming Technology Co., Ltd, Guiyang, Guizhou, China
- State Key Laboratory of Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Yunhe Cui
- Guizhou Xiangming Technology Co., Ltd, Guiyang, Guizhou, China
- State Key Laboratory of Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Jianpeng Zhao
- State Grid Zhejiang Electric Power Co., Ltd, Information and Telecommunication Branch, Hangzhou, Zhejiang, China
| | - Hongzhen Yang
- State Grid Zhejiang Electric Power Co., Ltd, Information and Telecommunication Branch, Hangzhou, Zhejiang, China
| |
Collapse
|
226
|
Ding Y, Qiang B, Chen Q, Liu Y, Zhang L, Liu Z. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. J Chem Inf Model 2024; 64:2955-2970. [PMID: 38489239 DOI: 10.1021/acs.jcim.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Chemical reactions serve as foundational building blocks for organic chemistry and drug design. In the era of large AI models, data-driven approaches have emerged to innovate the design of novel reactions, optimize existing ones for higher yields, and discover new pathways for synthesizing chemical structures comprehensively. To effectively address these challenges with machine learning models, it is imperative to derive robust and informative representations or engage in feature engineering using extensive data sets of reactions. This work aims to provide a comprehensive review of established reaction featurization approaches, offering insights into the selection of representations and the design of features for a wide array of tasks. The advantages and limitations of employing SMILES, molecular fingerprints, molecular graphs, and physics-based properties are meticulously elaborated. Solutions to bridge the gap between different representations will also be critically evaluated. Additionally, we introduce a new frontier in chemical reaction pretraining, holding promise as an innovative yet unexplored avenue.
Collapse
Affiliation(s)
- Yuheng Ding
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Bo Qiang
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Qixuan Chen
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Yiqiao Liu
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Liangren Zhang
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Zhenming Liu
- Department of Pharmaceutical Science, Peking University, Beijing 100191, China
| |
Collapse
|
227
|
Yin R, Zhao H, Li L, Yang Q, Zeng M, Yang C, Bian J, Xie M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589599. [PMID: 38659732 PMCID: PMC11042274 DOI: 10.1101/2024.04.15.589599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Hongru Zhao
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Qiang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
228
|
Guo Z, Fan Y, Yu C, Lu H, Zhang Z. GCMSFormer: A Fully Automatic Method for the Resolution of Overlapping Peaks in Gas Chromatography-Mass Spectrometry. Anal Chem 2024; 96:5878-5886. [PMID: 38560891 DOI: 10.1021/acs.analchem.3c05772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gas chromatography-mass spectrometry (GC-MS) is one of the most important instruments for analyzing volatile organic compounds. However, the complexity of real samples and the limitations of chromatographic separation capabilities lead to coeluting compounds without ideal separation. In this study, a Transformer-based automatic resolution method (GCMSFormer) is proposed to resolve mass spectra from GC-MS peaks in an end-to-end manner, predicting the mass spectra of components directly from the raw overlapping peaks data. Furthermore, orthogonal projection resolution (OPR) was integrated into GCMSFormer to resolve minor components. The GCMSFormer model was trained, validated, and tested using 100,000 augmented data. It achieves 99.88% of the bilingual evaluation understudy (BLEU) value on the test set, significantly higher than the 97.68% BLEU value of the baseline sequence-to-sequence model long short-term memory (LSTM). GCMSFormer was also compared with two nondeep learning resolution tools (MZmine and AMDIS) and two deep learning resolution tools (PARAFAC2 with DL and MSHub/GNPS) on a real plant essential oil GC-MS data set. Their resolution results were compared on evaluation metrics, including the number of compounds resolved, mass spectral match score, correlation coefficient, explained variance, and resolution speed. The results demonstrate that GCMSFormer has better resolution performance, higher automation, and faster resolution speed. In summary, GCMSFormer is an end-to-end, fast, fully automatic, and accurate method for analyzing GC-MS data of complex samples.
Collapse
Affiliation(s)
- Zixuan Guo
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, China
| | - Yingjie Fan
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, China
| | - Chuanxiu Yu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, China
| |
Collapse
|
229
|
Liu Y, Ghosh TK, Lin G, Chen M. Unbiasing Enhanced Sampling on a High-Dimensional Free Energy Surface with a Deep Generative Model. J Phys Chem Lett 2024; 15:3938-3945. [PMID: 38568182 DOI: 10.1021/acs.jpclett.3c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Biased enhanced sampling methods that utilize collective variables (CVs) are powerful tools for sampling conformational ensembles. Due to their large intrinsic dimensions, efficiently generating conformational ensembles for complex systems requires enhanced sampling on high-dimensional free energy surfaces. While temperature-accelerated molecular dynamics (TAMD) can trivially adopt many CVs in a simulation, unbiasing the simulation to generate unbiased conformational ensembles requires accurate modeling of a high-dimensional CV probability distribution, which is challenging for traditional density estimation techniques. Here we propose an unbiasing method based on the score-based diffusion model, a deep generative learning method that excels in density estimation across complex data landscapes. We demonstrate that this unbiasing approach, tested on multiple TAMD simulations, significantly outperforms traditional unbiasing methods and can generate accurate unbiased conformational ensembles. With the proposed approach, TAMD can adopt CVs that focus on improving sampling efficiency and the proposed unbiasing method enables accurate evaluation of ensemble averages of important chemical features.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Tushar K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Guang Lin
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
230
|
Ye Z, Li Z, Li G, Zhao H. Dual-channel deep graph convolutional neural networks. Front Artif Intell 2024; 7:1290491. [PMID: 38638112 PMCID: PMC11025536 DOI: 10.3389/frai.2024.1290491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 04/20/2024] Open
Abstract
The dual-channel graph convolutional neural networks based on hybrid features jointly model the different features of networks, so that the features can learn each other and improve the performance of various subsequent machine learning tasks. However, current dual-channel graph convolutional neural networks are limited by the number of convolution layers, which hinders the performance improvement of the models. Graph convolutional neural networks superimpose multi-layer graph convolution operations, which would occur in smoothing phenomena, resulting in performance decreasing as the increasing number of graph convolutional layers. Inspired by the success of residual connections on convolutional neural networks, this paper applies residual connections to dual-channel graph convolutional neural networks, and increases the depth of dual-channel graph convolutional neural networks. Thus, a dual-channel deep graph convolutional neural network (D2GCN) is proposed, which can effectively avoid over-smoothing and improve model performance. D2GCN is verified on CiteSeer, DBLP, and SDBLP datasets, the results show that D2GCN performs better than the comparison algorithms used in node classification tasks.
Collapse
Affiliation(s)
- Zhonglin Ye
- College of Computer, Qinghai Normal University, Xining, Qinghai, China
- The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining, Qinghai, China
- Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Xining, Qinghai, China
- Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining, Qinghai, China
| | - Zhuoran Li
- College of Computer, Qinghai Normal University, Xining, Qinghai, China
- The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining, Qinghai, China
- Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Xining, Qinghai, China
- Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining, Qinghai, China
| | - Gege Li
- College of Computer, Qinghai Normal University, Xining, Qinghai, China
- The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining, Qinghai, China
- Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Xining, Qinghai, China
- Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining, Qinghai, China
| | - Haixing Zhao
- College of Computer, Qinghai Normal University, Xining, Qinghai, China
- The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining, Qinghai, China
- Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Xining, Qinghai, China
- Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining, Qinghai, China
| |
Collapse
|
231
|
Han S, Kang Y, Park H, Yi J, Park G, Kim J. Multimodal Transformer for Property Prediction in Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16853-16860. [PMID: 38501934 DOI: 10.1021/acsami.4c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this work, we designed a multimodal transformer that combines both the Simplified Molecular Input Line Entry System (SMILES) and molecular graph representations to enhance the prediction of polymer properties. Three models with different embeddings (SMILES, SMILES + monomer, and SMILES + dimer) were employed to assess the performance of incorporating multimodal features into transformer architectures. Fine-tuning results across five properties (i.e., density, glass-transition temperature (Tg), melting temperature (Tm), volume resistivity, and conductivity) demonstrated that the multimodal transformer with both the SMILES and the dimer configuration as inputs outperformed the transformer using only SMILES across all five properties. Furthermore, our model facilitates in-depth analysis by examining attention scores, providing deeper insights into the relationship between the deep learning model and the polymer attributes. We believe that our work, shedding light on the potential of multimodal transformers in predicting polymer properties, paves a new direction for understanding and refining polymer properties.
Collapse
Affiliation(s)
- Seunghee Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonghun Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyunsoo Park
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jeesung Yi
- KOLON One&Only TOWER, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Geunyeong Park
- KOLON One&Only TOWER, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
232
|
Li M, Chen S, Shen Y, Liu G, Tsang IW, Zhang Y. Online Multi-Agent Forecasting With Interpretable Collaborative Graph Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4768-4782. [PMID: 35245202 DOI: 10.1109/tnnls.2022.3152251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article considers predicting future statuses of multiple agents in an online fashion by exploiting dynamic interactions in the system. We propose a novel collaborative prediction unit (CoPU), which aggregates the predictions from multiple collaborative predictors according to a collaborative graph. Each collaborative predictor is trained to predict the agent status by integrating the impact of another agent. The edge weights of the collaborative graph reflect the importance of each predictor. The collaborative graph is adjusted online by multiplicative update, which can be motivated by minimizing an explicit objective. With this objective, we also conduct regret analysis to indicate that, along with training, our CoPU achieves similar performance with the best individual collaborative predictor in hindsight. This theoretical interpretability distinguishes our method from many other graph networks. To progressively refine predictions, multiple CoPUs are stacked to form a collaborative graph neural network. Extensive experiments are conducted on three tasks: online simulated trajectory prediction, online human motion prediction, and online traffic speed prediction, and our methods outperform state-of-the-art works on the three tasks by 28.6%, 17.4%, and 21.0% on average, respectively; in addition, the proposed CoGNNs have lower average time costs in one online training/testing iteration than most previous methods.
Collapse
|
233
|
Spinelli I, Scardapane S, Uncini A. A Meta-Learning Approach for Training Explainable Graph Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4647-4655. [PMID: 35544494 DOI: 10.1109/tnnls.2022.3171398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this article, we investigate the degree of explainability of graph neural networks (GNNs). The existing explainers work by finding global/local subgraphs to explain a prediction, but they are applied after a GNN has already been trained. Here, we propose a meta-explainer for improving the level of explainability of a GNN directly at training time, by steering the optimization procedure toward minima that allow post hoc explainers to achieve better results, without sacrificing the overall accuracy of GNN. Our framework (called MATE, MetA-Train to Explain) jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms that explain the model's decisions in a human-friendly way. In particular, we meta-train the model's parameters to quickly minimize the error of an instance-level GNNExplainer trained on-the-fly on randomly sampled nodes. The final internal representation relies on a set of features that can be "better" understood by an explanation algorithm, e.g., another instance of GNNExplainer. Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process. Experiments on synthetic and real-world datasets for node and graph classification show that we can produce models that are consistently easier to explain by different algorithms. Furthermore, this increase in explainability comes at no cost to the accuracy of the model.
Collapse
|
234
|
Carvajal Rico J, Alaeddini A, Faruqui SHA, Fisher-Hoch SP, Mccormick JB. A Laplacian regularized graph neural network for predictive modeling of multiple chronic conditions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108058. [PMID: 38382304 DOI: 10.1016/j.cmpb.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND GOALS One of the biggest difficulties facing healthcare systems today is the prevalence of multiple chronic diseases (MCC). Mortality and the development of new chronic illnesses are more likely in those with MCC. Pre-existing diseases and risk factors specific to the patient have an impact on the complex stochastic process that guides the evolution of MCC. This study's goal is to use a brand-new Graph Neural Network (GNN) model to examine the connections between specific chronic illnesses, patient-level risk factors, and pre-existing conditions. METHODS We propose a graph neural network model to analyze the relationship between five chronic conditions (diabetes, obesity, cognitive impairment, hyperlipidemia, and hypertension). The proposed model adds a graph Laplacian regularization term to the loss function, which aims to improve the parameter learning process and accuracy of the GNN based on the graph structure. For validation, we used historical data from the Cameron County Hispanic Cohort (CCHC). RESULTS Evaluating the Laplacian regularized GNN on data from 600 patients, we expanded our analysis from two chronic conditions to five chronic conditions. The proposed model consistently surpassed a baseline GNN model, achieving an average accuracy of ≥89% across all combinations. In contrast, the performance of the standard model declined more markedly with the addition of more chronic conditions. The Laplacian regularization provided consistent predictions for adjacent nodes, beneficial in cases with shared attributes among nodes. CONCLUSIONS The incorporation of Laplacian regularization in our GNN model is essential, resulting in enhanced node categorization and better predictive performance by harnessing the graph structure. This study underscores the significance of considering graph structure when designing neural networks for graph data. Future research might further explore and refine this regularization method for various tasks using graph-structured data.
Collapse
Affiliation(s)
- Julian Carvajal Rico
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, United States of America
| | - Adel Alaeddini
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, United States of America.
| | - Syed Hasib Akhter Faruqui
- Department of Engineering Technology, Sam Houston State University, Huntsville, Tx, 77341, United States of America
| | - Susan P Fisher-Hoch
- School of Public Health Brownsville, The University of Texas Health Science Center at Houston, Houston, TX, 78520, United States of America
| | - Joseph B Mccormick
- School of Public Health Brownsville, The University of Texas Health Science Center at Houston, Houston, TX, 78520, United States of America
| |
Collapse
|
235
|
Tiezzi M, Ciravegna G, Gori M. Graph Neural Networks for Graph Drawing. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4668-4681. [PMID: 35763484 DOI: 10.1109/tnnls.2022.3184967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graph drawing techniques have been developed in the last few years with the purpose of producing esthetically pleasing node-link layouts. Recently, the employment of differentiable loss functions has paved the road to the massive usage of gradient descent and related optimization algorithms. In this article, we propose a novel framework for the development of Graph Neural Drawers (GNDs), machines that rely on neural computation for constructing efficient and complex maps. GND is Graph Neural Networks (GNNs) whose learning process can be driven by any provided loss function, such as the ones commonly employed in Graph Drawing. Moreover, we prove that this mechanism can be guided by loss functions computed by means of feedforward neural networks, on the basis of supervision hints that express beauty properties, like the minimization of crossing edges. In this context, we show that GNNs can nicely be enriched by positional features to deal also with unlabeled vertexes. We provide a proof-of-concept by constructing a loss function for the edge crossing and provide quantitative and qualitative comparisons among different GNN models working under the proposed framework.
Collapse
|
236
|
Ai X, Sun C, Zhang Z, Hancock ER. Two-Level Graph Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4593-4606. [PMID: 35167481 DOI: 10.1109/tnnls.2022.3144343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graph neural networks (GNNs) are recently proposed neural network structures for the processing of graph-structured data. Due to their employed neighbor aggregation strategy, existing GNNs focus on capturing node-level information and neglect high-level information. Existing GNNs, therefore, suffer from representational limitations caused by the local permutation invariance (LPI) problem. To overcome these limitations and enrich the features captured by GNNs, we propose a novel GNN framework, referred to as the two-level GNN (TL-GNN). This merges subgraph-level information with node-level information. Moreover, we provide a mathematical analysis of the LPI problem, which demonstrates that subgraph-level information is beneficial to overcoming the problems associated with LPI. A subgraph counting method based on the dynamic programming algorithm is also proposed, and this has the time complexity of O(n3) , where n is the number of nodes of a graph. Experiments show that TL-GNN outperforms existing GNNs and achieves state-of-the-art performance.
Collapse
|
237
|
Chen S, Hong Z, Xie G, Peng Q, You X, Ding W, Shao L. GNDAN: Graph Navigated Dual Attention Network for Zero-Shot Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4516-4529. [PMID: 35507624 DOI: 10.1109/tnnls.2022.3155602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zero-shot learning (ZSL) tackles the unseen class recognition problem by transferring semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable knowledge transfer, a direct embedding is adopted for associating the visual and semantic domains in ZSL. However, most existing ZSL methods focus on learning the embedding from implicit global features or image regions to the semantic space. Thus, they fail to: 1) exploit the appearance relationship priors between various local regions in a single image, which corresponds to the semantic information and 2) learn cooperative global and local features jointly for discriminative feature representations. In this article, we propose the novel graph navigated dual attention network (GNDAN) for ZSL to address these drawbacks. GNDAN employs a region-guided attention network (RAN) and a region-guided graph attention network (RGAT) to jointly learn a discriminative local embedding and incorporate global context for exploiting explicit global embeddings under the guidance of a graph. Specifically, RAN uses soft spatial attention to discover discriminative regions for generating local embeddings. Meanwhile, RGAT employs an attribute-based attention to obtain attribute-based region features, where each attribute focuses on the most relevant image regions. Motivated by the graph neural network (GNN), which is beneficial for structural relationship representations, RGAT further leverages a graph attention network to exploit the relationships between the attribute-based region features for explicit global embedding representations. Based on the self-calibration mechanism, the joint visual embedding learned is matched with the semantic embedding to form the final prediction. Extensive experiments on three benchmark datasets demonstrate that the proposed GNDAN achieves superior performances to the state-of-the-art methods. Our code and trained models are available at https://github.com/shiming-chen/GNDAN.
Collapse
|
238
|
Pasa L, Navarin N, Erb W, Sperduti A. Empowering Simple Graph Convolutional Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4385-4399. [PMID: 37018277 DOI: 10.1109/tnnls.2022.3232291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many neural networks for graphs are based on the graph convolution (GC) operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, which tend to add complexity (and nonlinearity) to the model. Recently, however, a simplified GC operator, dubbed simple graph convolution (SGC), which aims to remove nonlinearities was proposed. Motivated by the good results reached by this simpler model, in this article we propose, analyze, and compare simple graph convolution operators of increasing complexity that rely on linear transformations or controlled nonlinearities, and that can be implemented in single-layer graph convolutional networks (GCNs). Their computational expressiveness is characterized as well. We show that the predictive performance of the proposed GC operators is competitive with the ones of other widely adopted models on the considered node classification benchmark datasets.
Collapse
|
239
|
Wang Z, Li Z, Li X, Chen W, Liu X. Graph-Based Contrastive Learning for Description and Detection of Local Features. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4839-4851. [PMID: 36178997 DOI: 10.1109/tnnls.2022.3208837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Confronted with the task environment full of repetitive textures, the state-of-art description and detection methods for local features greatly suffer from the "pseudo-negatives," bringing inconsistent optimization objectives during training. To address this problem, this article develops a self-supervised graph-based contrastive learning framework to train the model for local features, GCLFeat. The proposed approach learns to alleviate the pseudo-negatives specifically from three aspects: 1) designing a graph neural network (GNN), which focuses on mining the local transformational invariance across different views and global textual knowledge within individual images; 2) generating the dense correspondence annotations from a diverse natural dataset with a self-supervised paradigm; and 3) adopting a keypoints-aware sampling strategy to compute the loss across the whole dataset. The experimental results show that the unsupervised framework outperforms the state-of-the-art supervised baselines on diverse downstream benchmarks including image matching, 3-D reconstruction and visual localization. The code will be made public and available at https://github.com/RealZihaoWang/GCLFeat.
Collapse
|
240
|
Fan S, Wang X, Shi C, Kuang K, Liu N, Wang B. Debiased Graph Neural Networks With Agnostic Label Selection Bias. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4411-4422. [PMID: 35104228 DOI: 10.1109/tnnls.2022.3141260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most existing graph neural networks (GNNs) are proposed without considering the selection bias in data, i.e., the inconsistent distribution between the training set with the test set. In reality, the test data are not even available during the training process, making selection bias agnostic. Training GNNs with biased selected nodes leads to significant parameter estimation bias and greatly impacts the generalization ability on test nodes. In this article, we first present an experimental investigation, which clearly shows that the selection bias drastically hinders the generalization ability of GNNs, and theoretically proves that the selection bias will cause the biased estimation on GNN parameters. Then to remove the bias in GNN estimation, we propose a novel debiased GNNs (DGNN) with a differentiated decorrelation regularizer. The differentiated decorrelation regularizer estimates a sample weight for each labeled node such that the spurious correlation of learned embeddings could be eliminated. We analyze the regularizer in causal view and it motivates us to differentiate the weights of the variables based on their contribution to the confounding bias. Then, these sample weights are used for reweighting GNNs to eliminate the estimation bias, and thus, help to improve the stability of prediction on unknown test nodes. Comprehensive experiments are conducted on several challenging graph datasets with two kinds of label selection biases. The results well verify that our proposed model outperforms the state-of-the-art methods and DGNN is a flexible framework to enhance existing GNNs.
Collapse
|
241
|
Cui Z, Li Z, Wu S, Zhang X, Liu Q, Wang L, Ai M. DyGCN: Efficient Dynamic Graph Embedding With Graph Convolutional Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4635-4646. [PMID: 36264724 DOI: 10.1109/tnnls.2022.3185527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graph embedding, aiming to learn low-dimensional representations (aka. embeddings) of nodes in graphs, has received significant attention. In recent years, there has been a surge of efforts, among which graph convolutional networks (GCNs) have emerged as an effective class of models. However, these methods mainly focus on the static graph embedding. In the present work, an efficient dynamic graph embedding approach is proposed, called dynamic GCN (DyGCN), which is an extension of the GCN-based methods. The embedding propagation scheme of GCN is naturally generalized to a dynamic setting in an efficient manner, which propagates the change in topological structure and neighborhood embeddings along the graph to update the node embeddings. The most affected nodes are updated first, and then their changes are propagated to further nodes, which in turn are updated. Extensive experiments on various dynamic graphs showed that the proposed model can update the node embeddings in a time-saving and performance-preserving way.
Collapse
|
242
|
Wang MH, Onnela JP. Flexible Bayesian inference on partially observed epidemics. JOURNAL OF COMPLEX NETWORKS 2024; 12:cnae017. [PMID: 38533184 PMCID: PMC10962317 DOI: 10.1093/comnet/cnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
Individual-based models of contagious processes are useful for predicting epidemic trajectories and informing intervention strategies. In such models, the incorporation of contact network information can capture the non-randomness and heterogeneity of realistic contact dynamics. In this article, we consider Bayesian inference on the spreading parameters of an SIR contagion on a known, static network, where information regarding individual disease status is known only from a series of tests (positive or negative disease status). When the contagion model is complex or information such as infection and removal times is missing, the posterior distribution can be difficult to sample from. Previous work has considered the use of Approximate Bayesian Computation (ABC), which allows for simulation-based Bayesian inference on complex models. However, ABC methods usually require the user to select reasonable summary statistics. Here, we consider an inference scheme based on the Mixture Density Network compressed ABC, which minimizes the expected posterior entropy in order to learn informative summary statistics. This allows us to conduct Bayesian inference on the parameters of a partially observed contagious process while also circumventing the need for manual summary statistic selection. This methodology can be extended to incorporate additional simulation complexities, including behavioural change after positive tests or false test results.
Collapse
Affiliation(s)
- Maxwell H Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
243
|
Lin X, Li Z, Zhang P, Liu L, Zhou C, Wang B, Tian Z. Structure-Aware Prototypical Neural Process for Few-Shot Graph Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4607-4621. [PMID: 35594237 DOI: 10.1109/tnnls.2022.3173318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graph classification plays an important role in a wide range of applications from biological prediction to social analysis. Traditional graph classification models built on graph kernels are hampered by the challenge of poor generalization as they are heavily dependent on the dedicated design of handcrafted features. Recently, graph neural networks (GNNs) become a new class of tools for analyzing graph data and have achieved promising performance. However, it is necessary to collect a large number of labeled graph data for training an accurate GNN, which is often unaffordable in real-world applications. Therefore, it is an open question to build GNNs under the condition of few-shot learning where only a few labeled graphs are available. In this article, we introduce a new Structure-aware Prototypical Neural Process (SPNP for short) for a few-shot graph classification. Specifically, at the encoding stage, SPNP first employs GNNs to capture graph structure information. Then, SPNP incorporates such structural priors into the latent path and the deterministic path for representing stochastic processes. At the decoding stage, SPNP uses a new prototypical decoder to define a metric space where unseen graphs can be predicted effectively. The proposed decoder, which contains a self-attention mechanism to learn the intraclass dependence between graphs, can enhance the class-level representations, especially for new classes. Furthermore, benefited from such a flexible encoding-decoding architecture, SPNP can directly map the context samples to a predictive distribution without any complicated operations used in previous methods. Extensive experiments demonstrate that SPNP achieves consistent and significant improvements over state-of-the-art methods. Further discussions are provided toward model efficiency and more detailed analysis.
Collapse
|
244
|
D'Souza NS, Wang H, Giovannini A, Foncubierta-Rodriguez A, Beck KL, Boyko O, Syeda-Mahmood TF. Fusing modalities by multiplexed graph neural networks for outcome prediction from medical data and beyond. Med Image Anal 2024; 93:103064. [PMID: 38219500 DOI: 10.1016/j.media.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/09/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
With the emergence of multimodal electronic health records, the evidence for diseases, events, or findings may be present across multiple modalities ranging from clinical to imaging and genomic data. Developing effective patient-tailored therapeutic guidance and outcome prediction will require fusing evidence across these modalities. Developing general-purpose frameworks capable of modeling fine-grained and multi-faceted complex interactions, both within and across modalities is an important open problem in multimodal fusion. Generalized multimodal fusion is extremely challenging as evidence for outcomes may not be uniform across all modalities, not all modality features may be relevant, or not all modalities may be present for all patients, due to which simple methods of early, late, or intermediate fusion may be inadequate. In this paper, we present a novel approach that uses the machinery of multiplexed graphs for fusion. This allows for modalities to be represented through their targeted encodings. We model their relationship between explicitly via multiplexed graphs derived from salient features in a combined latent space. We then derive a new graph neural network for multiplex graphs for task-informed reasoning. We compare our framework against several state-of-the-art approaches for multi-graph reasoning and multimodal fusion. As a sanity check on the neural network design, we evaluate the multiplexed GNN on two popular benchmark datasets, namely the AIFB and the MUTAG dataset against several state-of-the-art multi-relational GNNs for reasoning. Second, we evaluate our multiplexed framework against several state-of-the-art multimodal fusion frameworks on two large clinical datasets for two separate applications. The first is the NIH-TB portals dataset for treatment outcome prediction in Tuberculosis, and the second is the ABIDE dataset for Autism Spectrum Disorder classification. Through rigorous experimental evaluation, we demonstrate that the multiplexed GNN provides robust performance improvements in all of these diverse applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Orest Boyko
- Department of Radiology, VA Southern Nevada Healthcare System, NV, USA
| | | |
Collapse
|
245
|
Li Y, Sun S, Dong Y. RETRACTED ARTICLE: Graph Neural Network on Psychological Prediction of College Students Special Education. J Autism Dev Disord 2024; 54:1622. [PMID: 37530918 DOI: 10.1007/s10803-023-06068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Yicong Li
- Student Affairs Office, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, Hebei, China.
| | - Shuo Sun
- Department of Electrical Engineering, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, Hebei, China
| | - Yu Dong
- Department of Economics and Management, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, Hebei, China
| |
Collapse
|
246
|
Du Z, Ye H, Cao F. A Novel Local-Global Graph Convolutional Method for Point Cloud Semantic Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4798-4812. [PMID: 35286267 DOI: 10.1109/tnnls.2022.3155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although convolutional neural networks (CNNs) have shown good performance on grid data, they are limited in the semantic segmentation of irregular point clouds. This article proposes a novel and effective graph CNN framework, referred to as the local-global graph convolutional method (LGGCM), which can achieve short- and long-range dependencies on point clouds. The key to this framework is the design of local spatial attention convolution (LSA-Conv). The design includes two parts: generating a weighted adjacency matrix of the local graph composed of neighborhood points, and updating and aggregating the features of nodes to obtain the spatial geometric features of the local point cloud. In addition, a smooth module for central points is incorporated into the process of LSA-Conv to enhance the robustness of the convolution against noise interference by adjusting the position coordinates of the points adaptively. The learned robust LSA-Conv features are then fed into a global spatial attention module with the gated unit to extract long-range contextual information and dynamically adjust the weights of features from different stages. The proposed framework, consisting of both encoding and decoding branches, is an end-to-end trainable network for semantic segmentation of 3-D point clouds. The theoretical analysis of the approximation capabilities of LSA-Conv is discussed to determine whether the features of the point cloud can be accurately represented. Experimental results on challenging benchmarks of the 3-D point cloud demonstrate that the proposed framework achieves excellent performance.
Collapse
|
247
|
Hou R, Zhang Z, Chen J, Yang W, Liu F. Unsupervised graph anomaly detection with discriminative embedding similarity for viscoelastic sandwich cylindrical structures. ISA TRANSACTIONS 2024; 147:36-54. [PMID: 38413310 DOI: 10.1016/j.isatra.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
In the detection of slipping anomalies in viscoelastic sandwich cylindrical structures (VSCS), conventional methods may encounter challenges due to the extremely rare and weak nature of slipping signals. This study focuses on normal signals and introduces unsupervised graph representation learning (UGRL) with discriminative embedding similarity for VSCS's detection. UGRL involves data preprocessing, model embedding, and matrix reconstructing. Association graphs are constructed based on sample similarities for yielding adjacency and attribute matrices. Subsequently, the matrices undergo embedding and reconstruction via various network modules to enhance graph data characterization. Detection indicators are derived by calculating embedding similarities and reconstruction errors, and thresholds are constructed using these indicators to enable efficient anomaly detection. The experiments in VSCS slipping dataset effectively indicate the superiority of the proposed method.
Collapse
Affiliation(s)
- Rujie Hou
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhousuo Zhang
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Jinglong Chen
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wenzhan Yang
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Liu
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
248
|
Ghandikota SK, Jegga AG. Application of artificial intelligence and machine learning in drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:171-211. [PMID: 38789178 DOI: 10.1016/bs.pmbts.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.
Collapse
Affiliation(s)
- Sudhir K Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
249
|
He X, Yan M. GraphKM: machine and deep learning for K M prediction of wildtype and mutant enzymes. BMC Bioinformatics 2024; 25:135. [PMID: 38549073 PMCID: PMC10979596 DOI: 10.1186/s12859-024-05746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.
Collapse
Affiliation(s)
- Xiao He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
250
|
Hussain S, Nadeem M, Baber J, Hamdi M, Rajab A, Al Reshan MS, Shaikh A. Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction. Sci Rep 2024; 14:7406. [PMID: 38548726 PMCID: PMC10978945 DOI: 10.1038/s41598-024-56871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Software vulnerabilities pose a significant threat to system security, necessitating effective automatic detection methods. Current techniques face challenges such as dependency issues, language bias, and coarse detection granularity. This study presents a novel deep learning-based vulnerability detection system for Java code. Leveraging hybrid feature extraction through graph and sequence-based techniques enhances semantic and syntactic understanding. The system utilizes control flow graphs (CFG), abstract syntax trees (AST), program dependencies (PD), and greedy longest-match first vectorization for graph representation. A hybrid neural network (GCN-RFEMLP) and the pre-trained CodeBERT model extract features, feeding them into a quantum convolutional neural network with self-attentive pooling. The system addresses issues like long-term information dependency and coarse detection granularity, employing intermediate code representation and inter-procedural slice code. To mitigate language bias, a benchmark software assurance reference dataset is employed. Evaluations demonstrate the system's superiority, achieving 99.2% accuracy in detecting vulnerabilities, outperforming benchmark methods. The proposed approach comprehensively addresses vulnerabilities, including improper input validation, missing authorizations, buffer overflow, cross-site scripting, and SQL injection attacks listed by common weakness enumeration (CWE).
Collapse
Affiliation(s)
- Shumaila Hussain
- Department of Computer Science, Sardar Bahadur Khan Women's University, Quetta, Pakistan.
- Department of Computer Science and IT, University of Balochistan, Quetta, Pakistan.
| | - Muhammad Nadeem
- Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Junaid Baber
- Department of Computer Science and IT, University of Balochistan, Quetta, Pakistan
- GIPSA-Lab, University Grenoble Alpes, 38000, Grenoble, France
| | - Mohammed Hamdi
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, 61441, Najran, Saudi Arabia
| | - Adel Rajab
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, 61441, Najran, Saudi Arabia
| | - Mana Saleh Al Reshan
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, 61441, Najran, Saudi Arabia
| | - Asadullah Shaikh
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, 61441, Najran, Saudi Arabia
| |
Collapse
|