201
|
Mokhtari P, Metos J, Anandh Babu PV. Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges. Gut Microbes 2021; 13:1-18. [PMID: 34101547 PMCID: PMC8205092 DOI: 10.1080/19490976.2021.1926841] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diabetes prevalence and incidence among youth have been increasing globally. Type 1 Diabetes (T1D) in children or adolescents accounts for 5-10% of all diagnosed cases of diabetes. Emerging evidence indicates that genetic factors, especially genes in the human leukocyte antigen region, are not the only factors involved in the predisposition of an individual to T1D. The pathogenesis and development of T1D is driven by both genetic predisposition and environmental factors. Studies indicate that gut microbiota is one of the potential environmental influencers involved in the pathophysiology of TID. Gut microbiota mediates the development of diabetes by altering intestinal permeability, modifying intestinal immunity, and molecular mimicry. The gut microbial diversity, taxonomic profile, and functional potential of gut microbes are significantly altered in individuals with T1D as compared to healthy individuals. However, studies are still needed to identify the specific microbes and microbial metabolites that are involved in the development and pathogenesis of T1D. This will help the development of microbiome-based therapeutic strategies for the prevention and treatment of T1D. The present review article highlights the following: (i) the current knowledge and knowledge gaps in understanding the association between T1D and gut microbiome specifically focusing on the composition and functional potential of gut microbiome in children and adolescents, (ii) the possible mechanisms involved in gut microbiome-mediated T1D pathogenesis, and (iii) challenges and future direction in this field.Abbreviations: B/F ratio: Bacteroidetes to Firmicutes ratio; F/B ratio: Firmicutes to Bacteroidetes ratio; FDR: First-degree relatives; GPR: G protein-coupled receptors; HLA: human leucocyte antigen; IL: interleukin; IFN- γ: interferon-γ; KEGG: Kyoto Encyclopedia of Genes and Genomes; LPS: lipopolysaccharide; mTOR: mammalian target of rapamycin; PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; SCFA: short chain fatty acids; T1D: Type 1 diabetes; T2D: Type 2 diabetes; TJ: tight junction; Tregs: regulatory T cells.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Julie Metos
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA,CONTACT Pon Velayutham Anandh Babu Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City
| |
Collapse
|
202
|
Zhou W, Wang X, Chang J, Cheng C, Miao C. The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Crit Rev Clin Lab Sci 2021; 59:203-218. [PMID: 34775884 DOI: 10.1080/10408363.2021.2002256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic vasculitis are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is complex. RNA methylation is known to play a key role in disease progression as it regulates almost all aspects of RNA processing, including RNA nuclear export, translation, splicing, and noncoding RNA processing. This review summarizes the mechanisms, molecular structures of RNA methylations and their roles in biological functions. Similar to the roles of RNA methylation in cancers, RNA methylation in RA and SLE involves "writers" that deposit methyl groups to form N6-methyladenosine (m6A) and 5-methylcytosine (m5C), "erasers" that remove these modifications, and "readers" that further affect mRNA splicing, export, translation, and degradation. Recent advances in detection methods have identified N1-methyladenosine (m1A), N6,2-O-dimethyladenosine (m6Am), and 7-methylguanosine (m7G) RNA modifications, and their roles in RA and SLE need to be further studied. The relationship between RNA methylation and other autoimmune diseases has not been reported, and the roles and mechanisms of RNA modifications in these diseases need to be explored in the future.
Collapse
Affiliation(s)
- Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun Chang
- Department of Orthopaedics, Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, Anhui Province, China
| |
Collapse
|
203
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
204
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
205
|
Mazzucca CB, Raineri D, Cappellano G, Chiocchetti A. How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients 2021; 13:nu13113956. [PMID: 34836210 PMCID: PMC8620243 DOI: 10.3390/nu13113956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Nutrition and immunity are closely related, and the immune system is composed of the most highly energy-consuming cells in the body. Much of the immune system is located within the GI tract, since it must deal with the huge antigenic load introduced with food. Moreover, the incidence of immune-mediated diseases is elevated in Westernized countries, where “transition nutrition” prevails, owing to the shift from traditional dietary patterns towards Westernized patterns. This ecological correlation has fostered increasing attempts to find evidence to support nutritional interventions aimed at managing and reducing the risk of immune-mediated diseases. Recent studies have described the impacts of single nutrients on markers of immune function, but the knowledge currently available is not sufficient to demonstrate the impact of specific dietary patterns on immune-mediated clinical disease endpoints. If nutritional scientists are to conduct quality research, one of many challenges facing them, in studying the complex interactions between the immune system and diet, is to develop improved tools for investigating eating habits in the context of immunomediated diseases.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (D.R.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (D.R.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (D.R.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (D.R.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| |
Collapse
|
206
|
Wang D, Nambu T, Tanimoto H, Iwata N, Yoshikawa K, Okinaga T, Yamamoto K. Interdental Plaque Microbial Community Changes under In Vitro Violet LED Irradiation. Antibiotics (Basel) 2021; 10:antibiotics10111348. [PMID: 34827286 PMCID: PMC8614803 DOI: 10.3390/antibiotics10111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Oral microbiome dysbiosis has important links to human health and disease. Although photodynamic therapy influences microbiome diversity, the specific effect of violet light irradiation remains largely unknown. In this study, we analyzed the effect of violet light-emitting diode (LED) irradiation on interdental plaque microbiota. Interdental plaque was collected from 12 human subjects, exposed to violet LED irradiation, and cultured in a specialized growth medium. Next-generation sequencing of the 16S ribosomal RNA genes revealed that α-diversity decreased, whereas β-diversity exhibited a continuous change with violet LED irradiation doses. In addition, we identified several operational taxonomic units that exhibited significant shifts during violet LED irradiation. Specifically, violet LED irradiation led to a significant reduction in the relative abundance of Fusobacterium species, but a significant increase in several species of oral bacteria, such as Veillonella and Campylobacter. Our study provides an overview of oral plaque microbiota changes under violet LED irradiation, and highlights the potential of this method for adjusting the balance of the oral microbiome without inducing antibiotic resistance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan;
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Hiroaki Tanimoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Naohiro Iwata
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| |
Collapse
|
207
|
Soullane S, Henderson M, Kang H, Luu TM, Lee GE, Auger N. Cesarean delivery and risk of hospitalization for autoimmune disorders before 14 years of age. Eur J Pediatr 2021; 180:3359-3366. [PMID: 34041591 DOI: 10.1007/s00431-021-04132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
It is supposed that cesarean birth is implicated in the development of autoimmunity. We evaluated the association between cesarean delivery and the risk of hospitalization for autoimmune disease in children up to 14 years of age. We performed a longitudinal cohort study of 934,873 children born between 2006 and 2019 in Quebec, Canada. The main exposure measure was cesarean delivery versus vaginal delivery (spontaneous or induced). Outcomes included hospitalization for type 1 diabetes, celiac disease, or other autoimmune disorders before 14 years of age. We used Cox regression models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between cesarean delivery and hospitalization for autoimmune disorders, adjusted for patient characteristics. A total of 248,963 children (27%) were delivered by cesarean. Median length of follow-up was 7.4 years. The hospitalization rate for autoimmune disorders was 69.1 per 100,000 person-years for cesarean and 65.9 per 100,000 person-years for vaginal delivery. Cesarean delivery was not associated with autoimmune disorders overall (HR 1.02, 95% CI 0.96-1.10). There was no association with type 1 diabetes (HR 1.00, 95% CI 0.85-1.17), celiac disease (HR 0.86, 95% CI 0.71-1.04), inflammatory bowel disease (HR 1.15, 95% CI 0.88-1.49), or idiopathic thrombocytopenic purpura (HR 1.01, 95% CI 0.82-1.25). Cesarean delivery was not associated with autoimmune disorders at different ages.Conclusion: This study suggests that cesarean delivery is not associated with the risk of hospitalization for autoimmune disorders before 14 years of age. Delivery mode does not seem to mediate the risk of autoimmunity in childhood. What is Known: • Children born by cesarean may be at risk of abnormal immune development. • The association between cesarean delivery and risk of pediatric autoimmune disorders is unclear. What is New: • In this cohort study of over 900,000 children, cesarean delivery was not associated with the risk of hospitalization for a range of autoimmune disorders before 14 years of age. • Cesarean delivery may not be related to the development of autoimmunity.
Collapse
Affiliation(s)
- Safiya Soullane
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mélanie Henderson
- Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada.,Division of Endocrinology, University of Montreal, Montreal, Quebec, Canada
| | - Harb Kang
- Division of Rheumatology, Cité de la Santé Hospital, Laval, Quebec, Canada
| | - Thuy Mai Luu
- Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Ga Eun Lee
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada
| | - Nathalie Auger
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada. .,Institut national de santé publique du Québec, Montreal, Quebec, Canada. .,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada. .,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
208
|
Parra-Torres V, Melgar-Rodríguez S, Muñoz-Manríquez C, Sanhueza B, Cafferata EA, Paula-Lima AC, Díaz-Zúñiga J. Periodontal bacteria in the brain-Implication for Alzheimer's disease: A systematic review. Oral Dis 2021; 29:21-28. [PMID: 34698406 DOI: 10.1111/odi.14054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Periodontitis is a chronic non-communicable disease caused by a dysbiotic microbiota. Pathogens can spread to the bloodstream, colonize other tissues or organs, and favor the onset of other pathologies, such as Alzheimer's disease (AD). Pathogens could permanently or transiently colonize the brain and induce an immune response. Thus, we analyzed the evidence combining oral bacteria's detection in the brain, both in animals and humans affected with AD. This systematic review was carried out following the PRISMA guideline. Studies that detected oral bacteria at the brain level were selected. The search was carried out in the Medline, Latindex, SciELO, and Cochrane Library databases. SYRCLE tool and Newcastle-Ottawa Scale were used for the risk of bias assessment. 23 studies were selected according to the eligibility criteria. Infection with oral pathogens in animals was related to developing neuropathological characteristics of AD and bacteria detection in the brain. In patients with AD, oral bacteria were detected in brain tissues, and increased levels of pro-inflammatory cytokines were also detected. There is evidence of a microbiological susceptibility to develop AD when the most dysbiosis-associated oral bacteria are present. The presence of bacteria in the brain is related to AD's pathological characteristics, suggesting an etiological oral-brain axis.
Collapse
Affiliation(s)
- Valeria Parra-Torres
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Benjamín Sanhueza
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Andrea C Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Medicine, Faculty of Medicine, Universidad de Atacama, Copiapo, Chile
| |
Collapse
|
209
|
Losanto J, Langjahr P, Barrios G, Paats A, Acosta de Hetter ME, de Guillén I, Duarte M, Acosta-Colman I, Cervera R. Relationship between serum lipopolysaccharide binding protein levels, disease activity, and clinical characteristics in Paraguayan patients with systemic lupus erythematosus. Lupus 2021; 30:2089-2094. [PMID: 34693812 DOI: 10.1177/09612033211050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Systemic exposure to bacterial components like lipopolysaccharide (LPS) is among the non-genetic factors that could be involved in the onset or progression of systemic lupus erythematosus (SLE). Lipopolysaccharide-binding protein (LBP) participates in the recognition of LPS and in the inflammatory response. Here, we investigated LBP in SLE patients and its relationship with disease activity and SLE phenotypes. METHODS Eighty-one adult patients with SLE from IMID-PY biobank (Paraguay) were included in the study. The clinical and laboratory variables were used to determine SLE activity. LBP levels were determined by ELISA in SLE patients and age- and sex-matched population-based controls. RESULTS Patients with SLE have lower levels of circulating LBP compared to healthy controls (p = 0.0007). No significant correlation was found between serum LBP levels and disease activity. A significant difference was observed in LBP levels with regard to the presence of arthritis (p = 0.026). No other relation was found with clinical parameters. CONCLUSIONS We found low levels of LBP in SLE patients compared to the control group. No correlation was detected between LBP levels and disease activity. It would be interesting for future studies to evaluate the impact of low levels of LBP on lupus immunopathogenesis.
Collapse
Affiliation(s)
- Jhonatan Losanto
- Department of Rheumatology, Hospital de Clínicas, Facultad de Ciencias Médicas, 332616Universidad Nacional de Asunción, Asuncion, Paraguay
| | - Patricia Langjahr
- Instituto de Investigaciones en Ciencias de la Salud, 187173Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Department of Biotechnology, Facultad de Ciencias Químicas, 187173Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Graciela Barrios
- Instituto de Investigaciones en Ciencias de la Salud, 187173Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Astrid Paats
- Department of Rheumatology, Hospital de Clínicas, Facultad de Ciencias Médicas, 332616Universidad Nacional de Asunción, Asuncion, Paraguay
| | - María E Acosta de Hetter
- Instituto de Investigaciones en Ciencias de la Salud, 187173Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Ivalena de Guillén
- Instituto de Investigaciones en Ciencias de la Salud, 187173Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Margarita Duarte
- Department of Rheumatology, Hospital de Clínicas, Facultad de Ciencias Médicas, 332616Universidad Nacional de Asunción, Asuncion, Paraguay
| | - Isabel Acosta-Colman
- Department of Rheumatology, Hospital de Clínicas, Facultad de Ciencias Médicas, 332616Universidad Nacional de Asunción, Asuncion, Paraguay
| | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
210
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
211
|
Oka A, Okano M. Relationship between Saliva and Sublingual Immunotherapy. Pathogens 2021; 10:pathogens10111358. [PMID: 34832517 PMCID: PMC8623708 DOI: 10.3390/pathogens10111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The demand for allergen specific immunotherapy (AIT), especially sublingual immunotherapy (SLIT), is increasing because of its efficacy in inducing clinical remission of allergic diseases and its low risk of side effects. Since not all patients that undergo SLIT demonstrate an improvement in allergic symptoms, the development of biomarkers to predict the outcome and adjuvants for SLIT is desired. Saliva is the first target with which tablets used in SLIT come into contact, and salivary pH, chemical properties or microbiome composition are reported to possibly be associated with the outcome of SLIT. Antibodies such as IgG4 and IgA not only in the serum but also in the saliva are increased after SLIT and may also be associated with the efficacy of SLIT. The development of the metagenomic sequencing technique makes it possible to determine the microbiome composition and ratio of each bacterium, and researchers can investigate the relationships between specific bacteria and the immune response. Some bacteria are reported to improve the SLIT outcome and have the potential to be used as biomarkers for the selection of patients and as adjuvants in SLIT. Here, we introduce biomarkers for SLIT and present recent findings regarding the relationship between saliva and SLIT.
Collapse
Affiliation(s)
- Aiko Oka
- Correspondence: (A.O.); (M.O.); Tel.: +81-476-35-5600 (A.O. & M.O.)
| | - Mitsuhiro Okano
- Correspondence: (A.O.); (M.O.); Tel.: +81-476-35-5600 (A.O. & M.O.)
| |
Collapse
|
212
|
Azpiroz MA, Orguilia L, Palacio MI, Malpartida A, Mayol S, Mor G, Gutiérrez G. Potential biomarkers of infertility associated with microbiome imbalances. Am J Reprod Immunol 2021; 86:e13438. [PMID: 33960055 PMCID: PMC8464490 DOI: 10.1111/aji.13438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The aim of this study was to investigate the possible relationship between vaginal/rectal microbiome disbalances and miRNA expression with infertility. METHOD OF STUDY Observational, exploratory, preliminary study. A total of 287 multiple IVF failure infertile patients were recruited. Twenty fertile women, not IVF failure, were recruited as the control group. Swab samples were collected from the vagina and rectum. Microbial composition by NGS and miRNA expression by real-time PCR of vaginal and rectal samples was measured. Immunometabolic markers from blood (insulin, vitamin D, LDL-cholesterol, ANA, TPO, Tg, and ASCA antibodies) and saliva (sIgA) were analyzed. RESULT(S) Infertile patients showed a lower bacterial richness and increased Firmicutes/Bacteroidetes ratio at rectal level and an increased Lactobacillus brevis/Lactobacillus iners ratio in vaginal samples regarding the fertile group. In the same rectal swab samples, we found that miR-21-5p, which is associated with tight junction disruption and yeast overgrowth, is upregulated and that miR-155-5p, which is associated with inflammation, is overexpressed in the unexplained infertile group (*p < .05). These deregulated miRNAs were also upregulated in the vaginal samples from the same patients (*p < .05). CONCLUSION miRNAs could be potential biomarkers of the inflammatory impact of microbiome disbalances in unexplained infertile women.
Collapse
Affiliation(s)
| | - Lucila Orguilia
- Inmunogenesis, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | | | | | | | - Gil Mor
- Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
213
|
Oldenburg M, Rüchel N, Janssen S, Borkhardt A, Gössling KL. The Microbiome in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13194947. [PMID: 34638430 PMCID: PMC8507905 DOI: 10.3390/cancers13194947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
For almost 30 years, the term "holobiont" has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.
Collapse
Affiliation(s)
- Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Stefan Janssen
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, 35390 Gießen, Germany;
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Katharina L. Gössling
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
- Correspondence:
| |
Collapse
|
214
|
Kindgren E, Ludvigsson J. Infections and antibiotics during fetal life and childhood and their relationship to juvenile idiopathic arthritis: a prospective cohort study. Pediatr Rheumatol Online J 2021; 19:145. [PMID: 34530851 PMCID: PMC8447683 DOI: 10.1186/s12969-021-00611-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aetiology of juvenile idiopathic arthritis (JIA) is poorly understood. It has been shown that use of antibiotics is associated with JIA. However, whether the association is due to increased occurrence of infection in these individuals is unknown. The purpose of this investigation was to measure the association between number of infections and use of antibiotics during childhood with development of JIA. METHODS In ABIS (All Babies in Southeast Sweden) a population-based prospective birth cohort of 17,055 children, data were collected on infections and antibiotic exposure during pregnancy and childhood. 102 individuals with JIA were identified. Multivariable logistic regression analyses were performed, adjusting for confounding factors. RESULTS Exposure to antibiotics during the periods 1-12 months, 1-3 years and 5-8 years was significantly associated with increased risk for JIA. The odds of developing JIA were three times higher in those exposed to antibiotics during the first 3 years of life compared with those not exposed (aOR 3.17; 95% CI 1.11-9.03, p = 0.031), and more than twice as high in those exposed to antibiotics during the first 5 years of life compared with those not exposed (aOR 2.18; 95% CI 1.36-3.50, p = 0.001). The odds of developing JIA were 78% higher in those exposed to antibiotics during the first 8 years of life compared with those not exposed (aOR 1.78; 95% CI 1.15-2.73, p = 0.009). Occurrence of infection during fetal life or childhood showed no significant association with the risk of developing JIA, after confounder adjustment. The cumulative number of courses of antibiotics was significantly higher during childhood for the individuals who developed JIA (p < 0.001). Penicillins were more frequently used than non-penicillins, but both had an equal effect on the risk of developing JIA. CONCLUSIONS Exposure to antibiotics early in life is associated with later onset of JIA in a large birth cohort from the general population. The relationship was dose dependent. These results suggest that further, more restrictive, antibiotic policies during the first years of life would be advisable.
Collapse
Affiliation(s)
- Erik Kindgren
- Department of Pediatrics, Skaraborg Hospital Skövde, SE-541 85, Skövde, Sweden. .,Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Johnny Ludvigsson
- grid.5640.70000 0001 2162 9922Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| |
Collapse
|
215
|
Tsai YW, Dong JL, Jian YJ, Fu SH, Chien MW, Liu YW, Hsu CY, Sytwu HK. Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms 2021; 9:microorganisms9091930. [PMID: 34576825 PMCID: PMC8466726 DOI: 10.3390/microorganisms9091930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity is a complex and multifaceted process that contributes to widespread functional decline that affects multiple organs and tissues. The pandemic of autoimmune diseases, which are a global health concern, augments in both the prevalence and incidence of autoimmune diseases, including type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. The development of autoimmune diseases is phenotypically associated with gut microbiota-modulated features at the molecular and cellular levels. The etiology and pathogenesis of autoimmune diseases comprise the alterations of immune systems with the innate and adaptive immune cell infiltration into specific organs and the augmented production of proinflammatory cytokines stimulated by commensal microbiota. However, the relative importance and mechanistic interrelationships between the gut microbial community and the immune system during progression of autoimmune diseases are still not well understood. In this review, we describe studies on the profiling of gut microbial signatures for the modulation of immunological homeostasis in multiple inflammatory diseases, elucidate their critical roles in the etiology and pathogenesis of autoimmune diseases, and discuss the implications of these findings for these disorders. Targeting intestinal microbiome and its metabolomic associations with the phenotype of autoimmunity will enable the progress of developing new therapeutic strategies to counteract microorganism-related immune dysfunction in these autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, No.222, Maijin Road, Keelung 204, Taiwan;
- College of Medicine, Chang-Gung University, No.259, Wenhua 1st Road, Guishan Dist., Taoyuan City 333, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
| | - Jia-Ling Dong
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Yun-Jie Jian
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
| | - Yu-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- Correspondence: (C.-Y.H.); (H.-K.S.); Tel.: +886-2-8792-3100 (ext. 18535 (C.-Y.H.)/18539 (H.-K.S.)); Fax: +886-2-8792-1774 (H.-K.S.)
| | - Huey-Kang Sytwu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (J.-L.D.); (Y.-J.J.); (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.); Tel.: +886-2-8792-3100 (ext. 18535 (C.-Y.H.)/18539 (H.-K.S.)); Fax: +886-2-8792-1774 (H.-K.S.)
| |
Collapse
|
216
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
217
|
Kalantar KL, Langelier CR. Host-Microbe Metagenomics: a Lens To Refocus Our Perspective on Infectious and Inflammatory Diseases. mSystems 2021; 6:e0040421. [PMID: 34402649 PMCID: PMC8409739 DOI: 10.1128/msystems.00404-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dynamic relationship involving pathogen, host immune response, and microbiome characterizes the biological framework of many infectious and inflammatory diseases. Combined host/microbe metagenomics (mNGS) enables simultaneous assessment of all three features, enabling the study and diagnosis of diverse infectious and inflammatory processes ranging from pneumonia to sepsis to inflammatory diseases such as rheumatoid arthritis. Host/microbe mNGS holds promise for new mechanistic insights, diagnostic approaches, and precision medicine interventions.
Collapse
Affiliation(s)
| | - Charles R. Langelier
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
218
|
Induri SNR, Kansara P, Thomas SC, Xu F, Saxena D, Li X. The Gut Microbiome, Metformin, and Aging. Annu Rev Pharmacol Toxicol 2021; 62:85-108. [PMID: 34449247 DOI: 10.1146/annurev-pharmtox-051920-093829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metformin has been extensively used for the treatment of type 2 diabetes, and it may also promote healthy aging. Despite its widespread use and versatility, metformin's mechanisms of action remain elusive. The gut typically harbors thousands of bacterial species, and as the concentration of metformin is much higher in the gut as compared to plasma, it is plausible that microbiome-drug-host interactions may influence the functions of metformin. Detrimental perturbations in the aging gut microbiome lead to the activation of the innate immune response concomitant with chronic low-grade inflammation. With the effectiveness of metformin in diabetes and antiaging varying among individuals, there is reason to believe that the gut microbiome plays a role in the efficacy of metformin. Metformin has been implicated in the promotion and maintenance of a healthy gut microbiome and reduces many age-related degenerative pathologies. Mechanistic understanding of metformin in the promotion of a healthy gut microbiome and aging will require a systems-level approach. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sri Nitya Reddy Induri
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Payalben Kansara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; .,Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| |
Collapse
|
219
|
Editorial for Special Issue: Microbial and Autoimmune Disease. Microorganisms 2021; 9:microorganisms9091800. [PMID: 34576696 PMCID: PMC8465632 DOI: 10.3390/microorganisms9091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
|
220
|
Hartmann AM, Dell'Oro M, Kessler CS, Schumann D, Steckhan N, Jeitler M, Fischer JM, Spoo M, Kriegel MA, Schneider JG, Häupl T, Kandil FI, Michalsen A, Koppold-Liebscher DA. Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open 2021; 11:e047758. [PMID: 34380725 PMCID: PMC8359474 DOI: 10.1136/bmjopen-2020-047758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown beneficial effects of therapeutic fasting and plant-based dietary interventions on disease activity in patients with rheumatoid arthritis (RA) for a duration of up to 1 year. To date, the effects of such interventions on the gut microbiome and on modern diagnostic markers in patients with RA have not been studied. This trial aims to investigate the clinical effects of therapeutic fasting and a plant-based diet in patients with RA, additionally considering current immunological diagnostic tools and microbiome analyses. METHODS/DESIGN This trial is an open-label, single-centre, randomised, controlled, parallel-group clinical trial. We will randomly assign 84 patients with RA under a stable standard therapy to either (1) therapeutic fasting followed by a plant-based dietary intervention or (2) to a conventional nutritional counselling focusing on an anti-inflammatory dietary pattern according to the recommendations of the Deutsche Gesellschaft für Ernährung (German society for nutrition). Primary outcome parameter is the group difference from baseline to 12 weeks on the Health Assessment Questionnaire (HAQ). Other secondary outcomes include established clinical criteria for disease activity and treatment response in RA (Disease Activity Score 28, Simple Disease Activity Index, ACR-Response Criteria), changes in self-reported health and physical functional ability, mood, stress, quality of life, dietary behaviour via 3-day food records and a modified Food Frequency Questionnaire, body composition, changes in the gut microbiome, metabolomics and cytometric parameters. Outcomes will be assessed at baseline and day 7, after 6 weeks, 12 weeks and after 6 months. ETHICS AND DISSEMINATION Ethical approval to process and analyse data, and to publish the results was obtained through the institutional review board of Charité-Universitätsmedizin Berlin. Results of this trial will be disseminated through peer-reviewed publications and scientific presentations. TRIAL REGISTRATION NUMBER NCT03856190.
Collapse
Affiliation(s)
- Anika M Hartmann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melanie Dell'Oro
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Christian S Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Dania Schumann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Jeitler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Jan Moritz Fischer
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michaela Spoo
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Martin A Kriegel
- Institute for Musculoskeletal Medicine, Department of Translational Rheumatology and Immunology, University of Münster, Münster, Germany
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jochen G Schneider
- Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Farid I Kandil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Daniela A Koppold-Liebscher
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
221
|
Karami Fath M, Jahangiri A, Ganji M, Sefid F, Payandeh Z, Hashemi ZS, Pourzardosht N, Hessami A, Mard-Soltani M, Zakeri A, Rahbar MR, Khalili S. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Front Immunol 2021; 12:705772. [PMID: 34447375 PMCID: PMC8383889 DOI: 10.3389/fimmu.2021.705772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
222
|
Listening in on the conversation between the human gut microbiome and its host. Curr Opin Microbiol 2021; 63:150-157. [PMID: 34352595 DOI: 10.1016/j.mib.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome is an ecosystem. Natural selection favored microbes fit for the gut, which can utilize and convert molecules produced by the host for their own benefit. But natural selection also favored the host's mechanisms to sense and respond to the microbial ecosystem for its own benefit. We can listen in on the host-microbiome 'conversation' in the simultaneous responses of the microbiome and the host to strong perturbations. In laboratory animals a perturbation can be done for research; in human patients a perturbation can be caused by disease or therapy. Advances in metagenomics, metabolomics and computation amplify our means to listen in on the conversation between the gut microbiome and its host.
Collapse
|
223
|
Lerner A, Freire de Carvalho J, Kotrova A, Shoenfeld Y. Gluten-free diet can ameliorate the symptoms of non-celiac autoimmune diseases. Nutr Rev 2021; 80:525-543. [PMID: 34338776 DOI: 10.1093/nutrit/nuab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/12/2022] Open
Abstract
CONTEXT A gluten-free diet (GFD) is the recommended treatment for gluten-dependent disease. In addition, gluten withdrawal is popular and occasionally is suggested as a treatment for other autoimmune diseases (ADs). OBJECTIVE The current systematic review summarizes those entities and discusses the logic behind using a GFD in classical non-gluten-dependentADs. DATA SOURCES A search for medical articles in PubMed/MEDLINE, Web of Sciences, LILACS, and Scielo published between 1960 and 2020 was conducted, using the key words for various ADs and GFDs. DATA EXXTRACTION Eight-three articles were included in the systematic review (using PRISMA guidelines). DATA ANALYSIS Reduction in symptoms of ADs after observance of a GFD was observed in 911 out of 1408 patients (64.7%) and in 66 out of the 83 selected studies (79.5%). The age of the patients ranged from 9 months to 69 years. The duration of the GFD varied from 1 month to 9 years. A GFD can suppress several harmful intraluminal intestinal events. Potential mechanisms and pathways for the action of GFD in the gut - remote organs' axis have been suggested. CONCLUSION A GFD might represent a novel nutritional therapeutic strategy for classical non-gluten-dependent autoimmune conditions.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jozélio Freire de Carvalho
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anna Kotrova
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yehuda Shoenfeld
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
224
|
Bisht V, Acharjee A, Gkoutos GV. NFnetFu: A novel workflow for microbiome data fusion. Comput Biol Med 2021; 135:104556. [PMID: 34216888 PMCID: PMC8404037 DOI: 10.1016/j.compbiomed.2021.104556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Microbiome data analysis and its interpretation into meaningful biological insights remain very challenging for numerous reasons, perhaps most prominently, due to the need to account for multiple factors, including collinearity, sparsity (excessive zeros) and effect size, that the complex experimental workflow and subsequent downstream data analysis require. Moreover, a meaningful microbiome data analysis necessitates the development of interpretable models that incorporate inferences across available data as well as background biomedical knowledge. We developed a multimodal framework that considers sparsity (excessive zeros), lower effect size, intrinsically microbial correlations, i.e., collinearity, as well as background biomedical knowledge in the form of a cluster-infused enriched network architecture. Finally, our framework also provides a candidate taxa/Operational Taxonomic Unit (OTU) that can be targeted for future validation experiments. We have developed a tool, the term NFnetFU (Neuro Fuzzy network Fusion), that encompasses our framework and have made it freely available at https://github.com/VartikaBisht6197/NFnetFu.
Collapse
Affiliation(s)
- Vartika Bisht
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB, UK; MRC Health Data Research UK HDR, UK.
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB, UK; MRC Health Data Research UK HDR, UK; NIHR Experimental Cancer Medicine Centre, B15 2TT, Birmingham, UK; NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
225
|
de Oliveira GLV, Cardoso CRDB, Taneja V, Fasano A. Editorial: Intestinal Dysbiosis in Inflammatory Diseases. Front Immunol 2021; 12:727485. [PMID: 34394133 PMCID: PMC8362080 DOI: 10.3389/fimmu.2021.727485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Gislane Lelis Vilela de Oliveira
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto, Brazil.,Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Veena Taneja
- Department of Immunology and Department of Medicine, Division of Rheumatology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Gastroenterology and Nutrition, Harvard Medical School, Boston, MA, United States.,European Biomedical Research Institute of Salerno, Salerno, Italy
| |
Collapse
|
226
|
Rastmanesh R. Aquaporin5-Targeted Treatment for Dry Eye Through Bioactive Compounds and Gut Microbiota. J Ocul Pharmacol Ther 2021; 37:464-471. [PMID: 34328795 DOI: 10.1089/jop.2021.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dry eye and dry mouth are the principal sources of morbidity for patients with Sjögren's syndrome (SS). There are few effective treatments, particularly systemic ones. Targeting aquaprin-5 (AQP5)-mediated tear secretion has been tested as a novel ancillary strategy and has proved promising. Patients have a great interest in using complementary medicine, including nutraceuticals and bioactive compounds to alleviate their symptoms. Potential mechanisms by which phytocompounds and bioactive compounds may benefit SS ocular and mouth symptoms through modulation of AQP5 activity are presented within this review. Supplementation with prebiotics (such as polyphenols with high bioavailability) in SS patients with lower Firmicutes/Bacteroides (F/B) community ratio phenotype, through administration of butyrate-producing diets, is proposed as ancillary strategy for dry eye and mouth. The potential use of natural bioactive compounds to treat dry eye could also apply to dry mouth occurring in the context of aging and SS. This novel hypothesis could have implications with respect to planning a successful dietary regimen for achieving and maintaining a normal gut microbiota in SS patients. This regimen would include augmenting butyrate-producing foodstuffs and/or polyphenol-rich syrups, and high amounts of some specific probiotic-rich foodstuffs such as yogurt, soy yogurt, or as probiotic supplements. There are applications for pharmaceutical and nutraceutical products aiming to relieve dry eye and mouth.
Collapse
|
227
|
Vieira JRP, Rezende ATDO, Fernandes MR, da Silva NA. Intestinal microbiota and active systemic lupus erythematosus: a systematic review. Adv Rheumatol 2021; 61:42. [PMID: 34215348 DOI: 10.1186/s42358-021-00201-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is an autoimmune disease, characterized by being multi-systemic and, therefore, reaching various organs and affecting mainly young women. Its pathogenesis comprehends many factors, including the interaction between microbiota and immune system. This systematic review assessed the relationship between intestinal microbiota and SLE in activity, highlighting microbiota representative patterns regarding quantity and diversity. METHODS This study considered researches carried out in patients with SLE, with no restriction of age or gender, which fulfilled the classification criteria of either Systemic Lupus International Collaborating Clinic (SLICC), American College of Rheumatology (ACR) or European League Against Rheumatism (EULAR) and used the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) to classify disease in activity or remission were included. The search was carried out from October, 2020 to January, 2021 using the following databases: Medline via Pubmed, Scopus, and Embase. Five papers were included with a total of 288 participants with SLE. RESULTS Regarding microbiota in patients with SLE in activity, there was significant increase in the following genera: Lactobacillus, Streptococcus, Megasphaera, Fusobacterium, Veillonella, Oribacterium, Odoribacter, Blautia, and Campylobacter. On the other hand, decrease in Faecalibacterium and Roseburia genera as well as Ruminococcus gnavus species was observed in remission cases, showing differences between the microbiota profile in SLE in activity and in remission. CONCLUSIONS Results suggest that dysbiosis may be involved in the disease activity process. TRIAL REGISTRATION CRD42021229322 .
Collapse
Affiliation(s)
- Juliana Rosa Pires Vieira
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | | | - Marcos Rassi Fernandes
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Department of Orthopedics/Traumatology, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Nilzio Antonio da Silva
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Rheumatology Service of Hospital das Clínicas, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| |
Collapse
|
228
|
Murdaca G, Greco M, Borro M, Gangemi S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun Rev 2021; 20:102845. [PMID: 33971339 DOI: 10.1016/j.autrev.2021.102845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Since the start of the "modern era", characterized by the increase in urbanization, a progressive attention to hygiene and autoimmune conditions has considerably grown. Although these diseases are often multifactorial, it was demonstrated that environment factors such as pollution, diet and lifestyles may play a crucial role together with genetic signature. Our research, based on the newest and most significant literature of this topic, highlights that the progressive depletion of microbes and parasites due to increased socioeconomic improvement, may lead to a derangement of immunoregulatory mechanisms. Moreover, special attention was given to the complex interplay between microbial agents, as gut microbiome, diet and vitamin D supplementation with the aim of identifying promising future therapeutic options. In conclusion, autoimmunity cannot be limited to hygiene-hypothesis, but from the point of view of precision medicine, this theory represents a fundamental element together with the study of genomics, the microbiome and proteomics, in order to understand the complex functioning of the immune system.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
229
|
Melchiorre D, Ceccherini MT, Romano E, Cometi L, El-Aoufy K, Bellando-Randone S, Roccotelli A, Bruni C, Moggi-Pignone A, Carboni D, Guiducci S, Lepri G, Tofani L, Pietramellara G, Matucci-Cerinic M. Oral Lactobacillus Species in Systemic Sclerosis. Microorganisms 2021; 9:1298. [PMID: 34203626 PMCID: PMC8232208 DOI: 10.3390/microorganisms9061298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
In systemic sclerosis (SSc), the gastrointestinal tract (GIT) plays a central role in the patient's quality of life. The microbiome populates the GIT, where a relationship between the Lactobacillus and gastrointestinal motility has been suggested. In this study, the analysis of oral Lactobacillus species in SSc patients and healthy subjects using culture-independent molecular techniques, together with a review of the literature on microbiota and lactobacilli in SSc, has been carried out. Twenty-nine SSc female patients (mean age 62) and twenty-three female healthy subjects (HS, mean age 57.6) were enrolled and underwent tongue and gum swab sampling. Quantitative PCR was conducted in triplicate using Lactobacillus specific primers rpoB1, rpoB1o and rpoB2 for the RNA-polymerase β subunit gene. Our data show significantly (p = 0.0211) lower LactobacillusspprpoB sequences on the tongue of patients with SSc compared to HS. The mean value of the amount of Lactobacillus ssprpoB gene on the gumsofSSc patients was minor compared to HS. A significant difference between tongue and gums (p = 0.0421) was found in HS but not in SSc patients. In conclusion, our results show a lower presence of Lactobacillus in the oral cavity of SSc patients. This strengthens the hypothesis that Lactobacillus may have both a protective and therapeutic role in SSc patients.
Collapse
Affiliation(s)
- Daniela Melchiorre
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Maria Teresa Ceccherini
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Laura Cometi
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Khadija El-Aoufy
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Angela Roccotelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Alberto Moggi-Pignone
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Davide Carboni
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Lorenzo Tofani
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| |
Collapse
|
230
|
Katz-Agranov N, Zandman-Goddard G. Autoimmunity and COVID-19 - The microbiotal connection. Autoimmun Rev 2021; 20:102865. [PMID: 34118455 PMCID: PMC8189735 DOI: 10.1016/j.autrev.2021.102865] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Background and aims The novel SARS-CoV-2 has been rattling the world since its outbreak in December 2019, leading to the COVID-19 pandemic. The learning curve of this new virus has been steep, with a global scientific community desperate to learn how the virus is transmitted, how it replicates, why it causes such a wide spectrum of disease manifestations, resulting in none or few symptoms in some. Others are burdened by an intense immune response that resembles the cytokine storm syndrome (CSS), which leads to severe disease manifestations, often complicated by fatal acute respiratory distress syndrome and death. Research efforts have been focusing on finding effective cures and vaccinations for this virus. The presence of SARS-CoV-2 in the gastrointestinal (GI) tract, represented by several GI manifestations, has led to its investigation as a target for the virus and as an indicator of disease severity. The response of the microbiome (which is heavily linked to immunity) to the novel SARS-CoV-2 virus, and its role in igniting the exaggerated immune response has therefore become a focus of interest. The objective of our study was to gather the data connecting between the microbiome, the GI tract and COVID-19 and to investigate whether these reported alterations in the gut microbiome bear any resemblance to those seen in lupus, the prototypical autoimmune disease. Confirming such changes may become the steppingstone to potential therapies that may prevent transmission, progression and immune related manifestations of COVID-19, via manipulation of the gut microbiota. Methods We performed an extensive literature review, utilizing the Pubmed search engine and Google Scholar for studies evaluating the microbiome in COVID-19 patients and compared results with studies evaluating the microbiome in lupus. We searched for the terms: microbiome, dysbiosis, COVID-19, SARS-CoV-2, gastrointestinal as well as lupus and autoimmune. While there were hundreds of articles which referred to gastrointestinal manifestations in COVID-19, to date only 4 studies investigated the gastrointestinal microbiome in this setting. We compared the similarities between microbiome of COVID-19 patients and lupus patients. Results We found that there are several similar processes of immune dysregulation in patients with COVID-19 and in those with lupus, with several other alterations seen in other pathological states. Some of these similarities include loss of microbiota biodiversity, increased representation of pathobionts, which are microbes associated with inflammation and disease (i.e Proteobacteria) and a relative decrease of symbionts, which are protective microbes, associated with anti-inflammatory properties (i.e Lactobacillus). Compromise to the intestinal barrier has also been reported in both. Conclusions We conclude that the gastrointestinal tract contributes to the disease manifestations in COVID-19. Whether gastrointestinal dysbiosis is the cause or effect of gastrointestinal manifestations and several severe systemic manifestations, which may be the response to an increased pro-inflammatory environment, is still debatable and warrants further investigation. Given the resemblance of the microbiome in COVID-19 patients to that seen in lupus patients, it becomes clearer why several therapies used in autoimmune conditions are currently under investigation for the treatment of COVID-19 patients. Moreover, these findings should promote further investigating the utility of manipulation of the microbiome, via nutritional supplementation or even fecal transplantations, interventions that may alter the course of the disease, and potentially prevent disease transmission at low cost and low risk.
Collapse
Affiliation(s)
- Nurit Katz-Agranov
- Department of Medicine, Saint Elizabeth's Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA.
| | - Gisele Zandman-Goddard
- Department of Medicine C, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
231
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
232
|
Wu J, Zhuo Y, Liu Y, Chen Y, Ning Y, Yao J. Association between premature ovarian insufficiency and gut microbiota. BMC Pregnancy Childbirth 2021; 21:418. [PMID: 34090383 PMCID: PMC8180047 DOI: 10.1186/s12884-021-03855-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is characterized by impairment of ovarian function on a continuum before the age of 40 years. POI is affected by multiple factors. Considering new insights from recent gut microbiome studies, this study aimed to investigate the relationship between gut microbial community structure and POI. Methods Subjects were recruited at the Shenzhen Maternity & Child Healthcare Hospital. Fecal microbial community profiles of healthy women (n = 18), women with POI (n = 35) were analyzed using 16S rRNA gene sequencing based on Illumina NovaSeq platform. Results Compared to the controls, the serum levels of FSH, LH, T and FSH/LH ratio significantly increased in women with POI, whereas E2 and AMH decreased significantly. Higher weighted UniFrac value was observed in POI women compared with healthy women. Phylum Firmicutes, genera Bulleidia and Faecalibacterium were more abundant in healthy women, while phylum Bacteroidetes, genera Butyricimonas, Dorea, Lachnobacterium and Sutterella enriched significantly in women with POI. Moreover, these alterations of the gut microbiome in women with POI were closely related to FSH, LH, E2, AMH level and FSH/LH ratio. Conclusions Women with POI had altered microbial profiles in their gut microbiome, which were associated with serum hormones levels. These results will shed a new light on the pathogenesis and treatment for POI.
Collapse
Affiliation(s)
- Jiaman Wu
- Affiliated Shenzhen Maternity&Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen City, 518000, Guangdong Province, China
| | - Yuanyuan Zhuo
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yulei Liu
- Affiliated Shenzhen Maternity&Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen City, 518000, Guangdong Province, China
| | - Yan Chen
- Affiliated Shenzhen Maternity&Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen City, 518000, Guangdong Province, China
| | - Yan Ning
- Affiliated Shenzhen Maternity&Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen City, 518000, Guangdong Province, China.
| | - Jilong Yao
- Affiliated Shenzhen Maternity&Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen City, 518000, Guangdong Province, China.
| |
Collapse
|
233
|
Li Q, Wang B, Qiu HY, Yan XJ, Cheng L, Wang QQ, Chen SL. Chronic Jet Lag Exacerbates Jejunal and Colonic Microenvironment in Mice. Front Cell Infect Microbiol 2021; 11:648175. [PMID: 34141627 PMCID: PMC8204051 DOI: 10.3389/fcimb.2021.648175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Evidence suggests that circadian rhythm disorder is associated with a variety of gastrointestinal diseases, and the circadian rhythm plays a key role in maintaining the homeostasis of intestinal flora. The underlying mechanisms are still not completely identified. This study was aimed to explore whether jet lag-caused circadian disruption influences gut microbiome and its metabolites. Methods Mice were synchronized with 12-h light/dark cycles (control group) or subjected to daily 8-h advance of the light/dark cycle for every 3 days (jet-lagged group). Four months later, fecal samples and jejunal contents were collected and analyzed by 16S rRNA gene sequencing. In addition, fecal samples were subjected to metabolome analysis with ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Results The results of 16s rRNA sequencing showed that chronic jet lag led to decreased microbial abundance, richness, and diversity in both feces and jejunal contents. ANOSIM analysis revealed significant difference between control and jet-lagged groups. As the colonic microbiome, the abundance of Bacteroidetes phylum was significantly decreased and that of Actinobacteria phylum was increased in jet-lagged mice. Jet lag increased the ratio of Firmicutes to Bacteroidetes, an indicator for the imbalance of gut microbiota. Metabolome analysis of fecal samples showed that the levels of tryptophan and its derivatives were decreased in jet-lagged mice. In addition, fecal levels of secondary bile acids changed under jet lag conditions. Correlation analysis identified associations between tryptophan (and its derivatives) levels and colonic microbiota. Conclusions This study presents a comprehensive landscape of gut microbiota and its metabolites in mice subjected to chronic jet lag. The results suggest that circadian disruption may lead to changes in fecal and jejunal microbiota and fecal metabolites. Moreover, our results demonstrate a novel interplay between the gut microbiome and metabolome.
Collapse
Affiliation(s)
- Qing Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Yi Qiu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiu-Juan Yan
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-Qian Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
234
|
Search for Promising Strains of Probiotic Microbiota Isolated from Different Biotopes of Healthy Cats for Use in the Control of Surgical Infections. Pathogens 2021; 10:pathogens10060667. [PMID: 34071725 PMCID: PMC8228694 DOI: 10.3390/pathogens10060667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the introduction of modern methods of treatment, the creation of new generations of antibacterial agents, and the constant improvement of aseptic and antiseptic methods, the treatment of purulent–inflammatory processes remains one of the most complex and urgent problems in veterinary practice. The article presents the results of the isolation of indigenous microbiota from various biotopes of healthy cats, as well as the study of their biological marker properties for the selection of the most optimal strains in probiotic medicines for the control of surgical infections. It was demonstrated that isolated cultures of bifidobacteria and lactobacilli, which we isolated, revealed high sensitivity to antibiotics of the β-lactam group (excepting L. acidophilus No. 24, L. plantarum “Victoria” No. 22, L. rhamnosus No. 5, L. rhamnosus No. 20, and L. rhamnosus No. 26, which showed a significant variability in sensitivity to antibacterial drugs of this group, indicating the great potential of these microorganisms) and resistance to aminoglycosides, lincosamides, and fluoroquinolones (with the exception of gatifloxacin, which showed high efficiency in relation to all lactic acid microorganisms). The adhesive properties of the isolated lactobacteria and bifidobacteria were variable, even within the same species. It was found that the B. adolescentis No. 23 strain of the Bifidobacterium genus, as well as the L. plantarum No. 8, L. plantarum “Victoria” No. 22, L. rhamnosus No. 6, L. rhamnosus No. 26, L. acidophilus No. 12, and L. acidophilus No. 24 strains of the Lactobacillus genus had the highest adhesive activity. Thus, when conducting a detailed analysis of the biological marker properties of candidate cultures (determining their sensitivity to antimicrobial agents, studying the adhesive properties, and antagonistic activity in relation to causative agents of surgical infection in cats), it was found that the most promising are L. plantarum “Victoria” No. 22, L. rhamnosus No. 26, and L. acidophilus No. 24.
Collapse
|
235
|
Wang H, Banerjee N, Liang Y, Wang G, Hoffman KL, Khan MF. Gut microbiome-host interactions in driving environmental pollutant trichloroethene-mediated autoimmunity. Toxicol Appl Pharmacol 2021; 424:115597. [PMID: 34051218 DOI: 10.1016/j.taap.2021.115597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Trichloroethene (TCE), a widely used industrial solvent, is associated with the development of autoimmune diseases (ADs), including systemic lupus erythematosus and autoimmune hepatitis. Increasing evidence support a linkage between altered gut microbiome composition and the onset of ADs. However, it is not clear how gut microbiome contributes to TCE-mediated autoimmunity, and initial triggers for microbiome-host interactions leading to systemic autoimmune responses remain unknown. To achieve this, female MRL+/+ mice were treated with 0.5 mg/ml TCE for 52 weeks and fecal samples were subjected to 16S rRNA sequencing to determine the microbiome composition. TCE exposure resulted in distinct bacterial community revealed by β-diversity analysis. Notably, we observed reduction in Lactobacillaceae, Rikenellaceae and Bifidobacteriaceae families, and enrichment of Akkermansiaceae and Lachnospiraceae families after TCE exposure. We also observed significantly increased colonic oxidative stress and inflammatory markers (CD14 and IL-1β), and decreased tight junction proteins (ZO-2, occludin and claudin-3). These changes were associated with increases in serum antinuclear and anti-smooth muscle antibodies and cytokines (IL-6 and IL-12), together with increased PD1 + CD4+ T cells in TCE-exposed spleen and liver tissues. Importantly, fecal microbiota transplantation (FMT) using feces from TCE-treated mice to antibiotics-treated mice induced increased anti-dsDNA antibodies and hepatic CD4+ T cell infiltration in the recipient mice. Our studies thus delineate how imbalance in gut microbiome and mucosal redox status together with gut inflammatory response and permeability changes could be the key factors in contributing to TCE-mediated ADs. Furthermore, FMT studies provide a solid support to a causal role of microbiome in TCE-mediated autoimmunity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, University of Texas Medical Branch, TX, United States of America
| | - Nivedita Banerjee
- Department of Pathology, University of Texas Medical Branch, TX, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, TX, United States of America
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, TX, United States of America
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, TX, United States of America.
| |
Collapse
|
236
|
Lehenaff R, Tamashiro R, Nascimento MM, Lee K, Jenkins R, Whitlock J, Li EC, Sidhu G, Anderson S, Progulske-Fox A, Bubb MR, Chan EKL, Wang GP. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health 2021; 21:248. [PMID: 33964928 PMCID: PMC8105973 DOI: 10.1186/s12903-021-01597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Subgingival microbiome in disease-associated subgingival sites is known to be dysbiotic and significantly altered. In patients with rheumatoid arthritis (RA), the extent of dysbiosis in disease- and health-associated subgingival sites is not clear. Methods 8 RA and 10 non-RA subjects were recruited for this pilot study. All subjects received full oral examination and underwent collection of subgingival plaque samples from both shallow (periodontal health-associated, probing depth ≤ 3mm) and deep subgingival sites (periodontal disease-associated, probing depth ≥ 4 mm). RA subjects also had rheumatological evaluation. Plaque community profiles were analyzed using 16 S rRNA sequencing. Results The phylogenetic diversity of microbial communities in both RA and non-RA controls was significantly higher in deep subgingival sites compared to shallow sites (p = 0.022), and the overall subgingival microbiome clustered primarily according to probing depth (i.e. shallow versus deep sites), and not separated by RA status. While a large number of differentially abundant taxa and gene functions was observed between deep and shallow sites as expected in non-RA controls, we found very few differentially abundant taxa and gene functions between deep and shallow sites in RA subjects. In addition, compared to non-RA controls, the UniFrac distances between deep and shallow sites in RA subjects were smaller, suggesting increased similarity between deep and shallow subgingival microbiome in RA. Streptococcus parasanguinis and Actinomyces meyeri were overabundant in RA subjects, while Gemella morbillorum, Kingella denitrificans, Prevotella melaninogenica and Leptotrichia spp. were more abundant in non-RA subjects. Conclusions The aggregate subgingival microbiome was not significantly different between individuals with and without rheumatoid arthritis. Although the differences in the overall subgingival microbiome was driven primarily by probing depth, in contrast to the substantial microbiome differences typically seen between deep and shallow sites in non-RA patients, the microbiome of deep and shallow sites in RA patients were more similar to each other. These results suggest that factors associated with RA may modulate the ecology of subgingival microbiome and its relationship to periodontal disease, the basis of which remains unknown but warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01597-x.
Collapse
Affiliation(s)
- Ryanne Lehenaff
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Ryan Tamashiro
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Marcelle M Nascimento
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Renita Jenkins
- Dental Clinical Research Unit, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Joan Whitlock
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Eric C Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Gurjit Sidhu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Susanne Anderson
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael R Bubb
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward K L Chan
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA. .,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
237
|
Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct 2021; 12:4284-4314. [PMID: 33955443 DOI: 10.1039/d0fo02855j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.
Collapse
Affiliation(s)
- Hasnain N Methiwala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
238
|
Perciaccante A, Donell ST. Microbiome: an old history of a new paradigm. Minerva Gastroenterol (Torino) 2021; 67:385-389. [PMID: 33908734 DOI: 10.23736/s2724-5985.21.02905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Perciaccante
- Department of Medicine, Azienda Sanitaria Universitaria Giuliano Isontina, San Giovanni di Dio Hospital, Gorizia, Italy - .,Laboratoire Anthropologie Archéologie Biologie (LAAB), Université Paris-Saclay, UVSQ, UFR des Sciences de la Santé, Montigny-le-Bretonneux, France -
| | - Simon T Donell
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
239
|
Feng D, Christensen JT, Yetman AT, Lindsey ML, Singh AB, Salomon JD. The microbiome’s relationship with congenital heart disease: more than a gut feeling. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractPatients with congenital heart disease (CHD) are at risk for developing intestinal dysbiosis and intestinal epithelial barrier dysfunction due to abnormal gut perfusion or hypoxemia in the context of low cardiac output or cyanosis. Intestinal dysbiosis may contribute to systemic inflammation thereby worsening clinical outcomes in this patient population. Despite significant advances in the management and survival of patients with CHD, morbidity remains significant and questions have arisen as to the role of the microbiome in the inflammatory process. Intestinal dysbiosis and barrier dysfunction experienced in this patient population are increasingly implicated in critical illness. This review highlights possible CHD-microbiome interactions, illustrates underlying signaling mechanisms, and discusses future directions and therapeutic translation of the basic research.
Collapse
|
240
|
Boeri L, Perottoni S, Izzo L, Giordano C, Albani D. Microbiota-Host Immunity Communication in Neurodegenerative Disorders: Bioengineering Challenges for In Vitro Modeling. Adv Healthc Mater 2021; 10:e2002043. [PMID: 33661580 PMCID: PMC11468246 DOI: 10.1002/adhm.202002043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Human microbiota communicates with its host by secreting signaling metabolites, enzymes, or structural components. Its homeostasis strongly influences the modulation of human tissue barriers and immune system. Dysbiosis-induced peripheral immunity response can propagate bacterial and pro-inflammatory signals to the whole body, including the brain. This immune-mediated communication may contribute to several neurodegenerative disorders, as Alzheimer's disease. In fact, neurodegeneration is associated with dysbiosis and neuroinflammation. The interplay between the microbial communities and the brain is complex and bidirectional, and a great deal of interest is emerging to define the exact mechanisms. This review focuses on microbiota-immunity-central nervous system (CNS) communication and shows how gut and oral microbiota populations trigger immune cells, propagating inflammation from the periphery to the cerebral parenchyma, thus contributing to the onset and progression of neurodegeneration. Moreover, an overview of the technological challenges with in vitro modeling of the microbiota-immunity-CNS axis, offering interesting technological hints about the most advanced solutions and current technologies is provided.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSvia Mario Negri 2Milan20156Italy
| |
Collapse
|
241
|
El-Shebiny EM, Zahran ES, Shoeib SA, Habib ES. Bridging autoinflammatory and autoimmune diseases. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autoimmunity is used to cause by impairment of adaptive immunity alone, whereas autoinflammatory was originally defined as a consequence of unregulated innate immunity. So, the pathogenetic mechanisms of autoimmune diseases were well-thought-out to be mediated by B and T lymphocytes. Whereas, autoinflammatory diseases were defined as unprovoked times of inflammation with the absence of a high titre of autoantibodies.
Main body of the abstract
Autoimmune and autoinflammatory diseases were split into two groups, but considering the similarities, it can be considered as only one group of diseases with a large immune pathological and clinical spectrum which involves at one end pure autoimmune diseases and the other pure autoinflammatory diseases.
Conclusions
We can safely conclude that there is bridging between autoinflammatory and autoimmune diseases.
Collapse
|
242
|
Yu G, Ji X, Huang J, Liao A, Pan L, Hou Y, Hui M, Guo W. Immunity improvement and gut microbiota remodeling of mice by wheat germ globulin. World J Microbiol Biotechnol 2021; 37:64. [PMID: 33733383 DOI: 10.1007/s11274-021-03034-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
The wheat germ protein (WG) and it's proteolytic peptide have a variety of biological activities. Our previous work showed that WG could improve immunity of the immunosuppressive mice established by cyclophosphamide. However, in the healthy condition and normal diet, as a supplementary food, the effects of immunity improvement and gut microbiota remodeling by the wheat germ globulin has not been studied yet. Here, we reported that WG could improve the immunity and remodel the gut microbiota of the mice, as a potentially safe functional supplementary food for the first time. The increase of interleukin-6 (IL-6) and the decrease of tumor necrosis factor α (TNF-α) and interleukin-10 (IL-10) indicated that WG could enhance the levels of activated T cells and monocytes and anti-inflammatory ability, meanwhile, the significant increase of immunoglobin G (lgG) and the notable decrease of the immunoglobin M (lgM) and immunoglobin A (lgA) illustrated that WG could improve immunity by promoting the differentiation and maturation process of B cells, compared with the NC group (normal control group). 16S rRNA sequencing showed WG could remodel the gut microbiota. At the phylum level, the Bacteroidetes were reduced and Firmicutes were increased in WG group, compared with NC group. At the genus level, the SCFA producing genera of unclassified_f_Lachnospiraceae, Blautia and especially the Roseburia (increased more than threefold) increased notably. Further, the level changes of cytokines and immunoglobulins were associated with the gut microbiota. This work showed that WG could improve immunity and has potential application value as an immune-enhancing functional food.
Collapse
Affiliation(s)
- Guanghai Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Xiaoguo Ji
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China.
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Long Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan University of Animal Husbandry Economy, Zhengzhou, 450046, P. R. China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, P. R. China
| | - Weiyun Guo
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, P. R. China
| |
Collapse
|
243
|
Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, Coulson T, Knowles SCL. Social networks strongly predict the gut microbiota of wild mice. ISME JOURNAL 2021; 15:2601-2613. [PMID: 33731838 PMCID: PMC8397773 DOI: 10.1038/s41396-021-00949-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The mammalian gut teems with microbes, yet how hosts acquire these symbionts remains poorly understood. Research in primates suggests that microbes can be picked up via social contact, but the role of social interactions in non-group-living species remains underexplored. Here, we use a passive tracking system to collect high resolution spatiotemporal activity data from wild mice (Apodemus sylvaticus). Social network analysis revealed social association strength to be the strongest predictor of microbiota similarity among individuals, controlling for factors including spatial proximity and kinship, which had far smaller or nonsignificant effects. This social effect was limited to interactions involving males (male-male and male-female), implicating sex-dependent behaviours as driving processes. Social network position also predicted microbiota richness, with well-connected individuals having the most diverse microbiotas. Overall, these findings suggest social contact provides a key transmission pathway for gut symbionts even in relatively asocial mammals, that strongly shapes the adult gut microbiota. This work underlines the potential for individuals to pick up beneficial symbionts as well as pathogens from social interactions.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Bryony E Allen
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Tanya Troitsky
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arild Husby
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK
| | - Tim Coulson
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
244
|
Differences in gut microbiota observed in premenopausal and postmenopausal women associate with HIV infection status. ACTA ACUST UNITED AC 2021; 28:480-481. [PMID: 33739314 DOI: 10.1097/gme.0000000000001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
245
|
Park HJ, Jeong OY, Chun SH, Cheon YH, Kim M, Kim S, Lee SI. Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models. Int J Mol Sci 2021; 22:ijms22052765. [PMID: 33803282 PMCID: PMC7967124 DOI: 10.3390/ijms22052765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by fibrosis of the skin and internal organs. Despite several studies on SSc treatments, effective treatments for SSc are still lacking. Since evidence suggests an association between intestinal microbiota and SSc, we focused on butyrate, which has beneficial effects in autoimmune diseases as a bacterial metabolite. Here, we investigated the therapeutic potential of sodium butyrate (SB) using a bleomycin-induced fibrosis mouse model of SSc and human dermal fibroblasts (HDFs). SB attenuated bleomycin-induced dermal and lung fibrosis in mice. SB influenced fecal microbiota composition (phyla Actinobacteria and Bacteroidetes, genera Bifidobacterium and Ruminococcus_g2). SB controlled macrophage differentiation in mesenteric lymph nodes, spleen, and bronchoalveolar lavage cells of mice with bleomycin-induced skin fibrosis. Profibrotic and proinflammatory gene expression was suppressed by SB administration in skin. Furthermore, SB inhibited transforming growth factor β1-responsive proinflammatory expression with increased acetylation of histone 3 in HDFs. Subcutaneous SB application had antifibrogenic effects on the skin. Butyrate ameliorated skin and lung fibrosis by improving anti-inflammatory activity in a mouse model of SSc. Butyrate may exhibit indirect and direct anti-fibrogenic action on fibroblasts by regulating macrophage differentiation and inhibition of histone deacetylase 3. These findings suggest butyrate as an SSc treatment.
Collapse
Affiliation(s)
- Hee Jin Park
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Ok-Yi Jeong
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Yun Hong Cheon
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Suhee Kim
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Correspondence: (S.K.); (S.-I.L.)
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (S.K.); (S.-I.L.)
| |
Collapse
|
246
|
Cayres LCDF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB, Brisotti JL, Gomes E, de Oliveira GLV. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front Immunol 2021; 12:579140. [PMID: 33746942 PMCID: PMC7973118 DOI: 10.3389/fimmu.2021.579140] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hashimoto thyroiditis (HT) is the most common autoimmune disease worldwide, characterized by chronic inflammation and circulating autoantibodies against thyroid peroxidase and thyroglobulin. Patients require hormone replacement with oral levothyroxine, and if untreated, they can develop serious adverse health effects and ultimately death. There is a lot of evidence that the intestinal dysbiosis, bacterial overgrowth, and increased intestinal permeability favor the HT development, and a thyroid–gut axis has been proposed, which seems to impact our entire metabolism. Here, we evaluated alterations in the gut microbiota in Brazilian patients with HT and correlated this data with dietary habits, clinical data, and systemic cytokines and zonulin concentrations. Stool samples from 40 patients with HT and 53 controls were analyzed using real-time PCR, the serum cytokine levels were evaluated by flow cytometry, zonulin concentrations by ELISA, and the dietary habits were recorded by a food frequency questionnaire. We observed a significant increase (p < 0.05) in the Bacteroides species and a decrease in Bifidobacterium in samples of patients with HT. In addition, Lactobacillus species were higher in patients without thyroid hormone replacement, compared with those who use oral levothyroxine. Regarding dietary habits, we demonstrated that there are significant differences in the consumption of vegetables, fruits, animal-derived proteins, dairy products, saturated fats, and carbohydrates between patients and control group, and an inverse correlation between animal-derived protein and Bacteroides genus was detected. The microbiota modulation by diet directly influences the inflammatory profile due to the generated microbiota metabolites and their direct or indirect action on immune cells in the gut mucosa. Although there are no differences in systemic cytokines in our patients with HT, we detected increased zonulin concentrations, suggesting a leaky gut in patients with HT. These findings could help understand the development and progression of HT, while further investigations to clarify the underlying mechanisms of the diet–microbiota–immune system axis are still needed.
Collapse
Affiliation(s)
| | - Larissa Vedovato Vilela de Salis
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | - João Luiz Brisotti
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, São Paulo, Brazil
| | - Eleni Gomes
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil
| | - Gislane Lelis Vilela de Oliveira
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, São Paulo, Brazil.,Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil.,Food Engineering and Technology Department, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| |
Collapse
|
247
|
Stanisic D, Jeremic N, Majumder S, Pushpakumar S, George A, Singh M, Tyagi SC. High Fat Diet Dysbiotic Mechanism of Decreased Gingival Blood Flow. Front Physiol 2021; 12:625780. [PMID: 33746772 PMCID: PMC7965981 DOI: 10.3389/fphys.2021.625780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The gut microbiome has a very important role in human health and its influence on the development of numerous diseases is well known. In this study, we investigated the effect of high fat diet (HFD) on the onset of dysbiosis, gingival blood flow decreases, and the periodontal matrix remodeling. We established a dysbiosis model (HFD group) and probiotic model by Lactobacillus rhamnosus GG (LGG) treatment for 12weeks. Fecal samples were collected 24h before mice sacrificing, while short chain fatty acids (SCFA) analysis, DNA extraction, and sequencing for metagenomic analysis were performed afterwards. After sacrificing the animals, we collected periodontal tissues and conducted comprehensive morphological and genetic analyses. While HFD reduced Bacteroidetes, SCFA, and gingival blood flow, this type of diet increased Firmicutes, lipopolysaccharide (LPS) binding protein, TLR4, pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), matrix metalloproteinases (MMP-2 and MMP-9) expression, and also altered markers of bone resorption (OPG and RANKL). However, LGG treatment mitigated these effects. Thus, it was observed that HFD increased molecular remodeling via inflammation, matrix degradation, and functional remodeling and consequently cause reduced gingival blood flow. All of these changes may lead to the alveolar bone loss and the development of periodontal disease.
Collapse
Affiliation(s)
- Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suravi Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Akash George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
248
|
Kiripolsky J, Kasperek EM, Zhu C, Li QZ, Wang J, Yu G, Kramer JM. Tissue-specific activation of Myd88-dependent pathways governs disease severity in primary Sjögren's syndrome. J Autoimmun 2021; 118:102608. [PMID: 33596533 PMCID: PMC8299268 DOI: 10.1016/j.jaut.2021.102608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
Myd88 activation is an important driver of autoimmunity. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by exocrine gland dysfunction in combination with serious systemic disease manifestations. Myd88-dependent signaling networks remain incompletely understood in the context of pSS. The objective of this study was to establish the contribution of tissue-specific Myd88 activation to local (exocrine) and systemic pSS manifestations. To this end, we generated two novel conditional knockout pSS mouse models; one lacking Myd88 in hematopoietic cells and a second strain in which Myd88 was deleted in the stromal compartment. Spontaneous production of inflammatory mediators was altered in salivary tissue, and nephritis was diminished in both conditional knockout strains. In contrast, pulmonary inflammation was increased in mice lacking Myd88 in hematopoietic cells and was reduced when Myd88 was ablated in stromal cells. Finally, anti-nuclear autoantibodies (ANAs) were attenuated in pSS mice lacking Myd88 in immune cells. Additionally, the ANA-specific B cell repertoire was skewed in the Myd88-deficient strains. Collectively, these data demonstrate that Myd88 activation in specific cell types is essential for distinct aspects of pSS pathology.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Eileen M Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, 3435 Main Street, 718 Kimball Tower, Buffalo, NY, 14214, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, 3435 Main Street, 718 Kimball Tower, Buffalo, NY, 14214, USA
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Department of Oral Diagnostics Sciences, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
249
|
Mangalam AK, Yadav M, Yadav R. The Emerging World of Microbiome in Autoimmune Disorders: Opportunities and Challenges. INDIAN JOURNAL OF RHEUMATOLOGY 2021; 16:57-72. [PMID: 34531642 PMCID: PMC8442979 DOI: 10.4103/injr.injr_210_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trillions of commensal bacteria colonizing humans (microbiome) have emerged as essential player(s) in human health. The alteration of the same has been linked with diseases including autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Gut bacteria are separated from the host through a physical barrier such as skin or gut epithelial lining. However, the perturbation in the healthy bacterial community (gut dysbiosis) can compromise gut barrier integrity, resulting in translocation of bacterial contents across the epithelial barrier (leaky gut). Bacterial contents such as lipopolysaccharide and bacterial antigens can induce a systemic inflammatory environment through activation and induction of immune cells. The biggest question in the field is whether inflammation causes gut dysbiosis or dysbiosis leads to disease induction or propagation, i.e., it is inside out or outside in or both. In this review, we first discuss the microbiome profiling studies in various autoimmune disorders, followed by a discussion of potential mechanisms through which microbiome is involved in the pathobiology of diseases. A better understanding of the role of the microbiome in health and disease will help us harness the power of commensal bacteria for the development of novel therapeutic agents to treat autoimmune disorders.
Collapse
Affiliation(s)
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa, IA,
USA
| | - Rajwardhan Yadav
- Department of Rheumatology, St Francis Hospital, Hartford,
CT, USA
| |
Collapse
|
250
|
Abstract
PURPOSE OF REVIEW To understand the pathogenesis of autoimmune hepatitis (AIH) and the accuracy of diagnosis and treatment options that have improved lately. We summarize the latest research. RECENT FINDINGS Concerning pathogenesis of AIH, different groups have identified pieces of the puzzle that fit together well: An altered microbiome in the gut results in a proinflammatory response in the liver. This response is built by type II natural killer cells and CD4 T cells with an inflammatory phenotype and marked tumor necrosis factor production. When looking specifically at autoantigenic CD4 T cells, these have a B-helper phenotype on transcriptomic analysis. This explains not only elevation of immunoglobulins in AIH, but also mechanistically the effect of anti-B-cell substances in treatment. Diagnosis is now facilitated by an improved diagnostic score for AIH also recognizing modern techniques for autoantibody detection. Treatment in the future will increasingly be focused on reducing dosage and duration of steroid exposition. In addition, B-cell-targeted treatments have been evaluated with considerable success. SUMMARY Research in the past 18 months has improved the understanding of pathogenesis and thereby opened a number of possible treatment options. In addition, steroid use is cautioned by the recent findings.
Collapse
|