201
|
Abstract
The true frequency range of the EEG is much broader than it has been assumed and taught for decades. The EEG apparatuses with inkwriting pens recording on paper are incapable of giving us trustworthy tracings beyond 80/sec. With the introduction of digital EEG machines, the exploration of the 60 to 1000 Hz range has already begun in the past few years (but, strangely enough, had been in use during the pioneer age when short photographic EEG recordings were made). The new wave of ultrafast recording began in the domain of somatosensory evoked potentials (SSEP). In the field of EEG (strictly speaking), research work started very recently. Ultrafast EEG activity promises new insights into the electrophysiological basis of epileptic phenomena. Activities from 150- to 500/sec have been noted in recent studies (including personal work). Faster frequencies (500-1000/sec) are likely to play a major role in the electrophysiology of neurocognition and motor initiation. Such EEG-based neurocognitive studies will provide us with in-real-time data and thus outperform PET scanning and functional MRI. Even ultrafast EEG activity has its limitation, which appears to lie around 1000/sec. Faster frequencies (1000-3000 Hz)--recorded mainly with cathode ray oscillography--are probably incompatible with the shortest duration of true field potentials and might be nothing but "neuronal chatter."
Collapse
|
202
|
Abstract
Hippocampal fast ripples (FRs) have been associated with seizure onset in both human and experimental epilepsy. To characterize the mechanisms underlying FR oscillations (200-600 Hz), we studied activity of single neurons and neuronal networks in rat hippocampal slices in vitro. The correlation between the action potentials of bursting pyramidal cells and local field potential oscillations suggests that synchronous onset of action potential bursts and similar intrinsic firing patterns among local neurons are both necessary conditions for FR oscillations. Increasing the fidelity of individual pyramidal cell spike train timing by blocking accommodation dramatically increased FR amplitude, whereas blockade of potassium conductances decreased the fidelity of action potential timing in individual pyramidal cell action potential bursts and decreased FR amplitude. Blockade of ionotropic glutamate receptors desynchronized onset of action potential bursts in individual pyramidal cells and abolished fast ripples. Thus, synchronous burst onset mediated by recurrent excitatory synaptic transmission and similar intrinsic spike timing mechanisms in neighboring pyramidal cells are necessary conditions for FR oscillations within the hippocampal network.
Collapse
Affiliation(s)
- Volodymyr I Dzhala
- Department of Neurology and Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
203
|
Derchansky M, Shahar E, Wennberg RA, Samoilova M, Jahromi SS, Abdelmalik PA, Zhang L, Carlen PL. Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus. Hippocampus 2005; 14:935-47. [PMID: 15390177 DOI: 10.1002/hipo.20007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study presents a model of chronic, recurrent, spontaneous seizures in the intact isolated hippocampal preparation from mice aged P8-P25. Field activity from the CA1 pyramidal cell layer was recorded and recurrent, spontaneous seizure-like events (SLEs) were observed in the presence of low Mg2+ (0.25 mM) artificial cerebrospinal fluid (ACSF). Hippocampi also showed interictal epileptiform discharges (IEDs) of 0.9-4.2 Hz occurring between seizures. No age-specific differences were found in SLE occurrence (2 SLEs per 10 min, on average), duration, and corresponding frequencies. After long exposure to low Mg2+ ACSF (>3 h), SLEs were completely reversible within minutes with the application of normal (2 mM Mg2+) ACSF. The AMPA antagonist, CNQX, blocked all epileptiform activity, whereas the NMDA antagonist, APV, did not. The gamma-aminobutyric acid (GABA)A antagonist, bicuculline, attenuated and fragmented SLEs, implicating interneurons in SLE generation. The L-type Ca2+ blocker, nifedipine, enhanced epileptiform activity. Analysis of dual site recordings along the septotemporal hippocampus demonstrated that epileptiform activity began first in the temporal pole of the hippocampus, as illustrated by disconnection experiments. Once an SLE had been established, however, the septal hippocampus was sometimes seen to lead the epileptiform activity. The whole hippocampus with intact local circuitry, treated with low Mg2+, provides a realistic model of recurrent spontaneous seizures, which may be used, in normal and genetically modified mice, to study the dynamics of seizures and seizure evolution, as well as the mechanisms of action of anti-epileptic drugs and other therapeutic modalities.
Collapse
Affiliation(s)
- M Derchansky
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Bragin A, Wilson CL, Almajano J, Mody I, Engel J. High-frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis. Epilepsia 2004; 45:1017-23. [PMID: 15329064 DOI: 10.1111/j.0013-9580.2004.17004.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the temporal relation between high-frequency oscillations (HFOs) in the dentate gyrus and recurrent spontaneous seizures after intrahippocampal kainite-induced status epilepticus. METHODS Recording microelectrodes were implanted bilaterally in different regions of hippocampus and entorhinal cortex. A guide cannula for microinjection of kainic acid (KA) was implanted above the right posterior CA3 area of hippocampus. After recording baseline electrical activity, KA (0.4 microg/0.2 microl) was injected. Beginning on the next day, electrographic activity was recorded with video monitoring for seizures every day for 8 h/day for > or = 30 days. RESULTS Of the 26 rats studied, 19 revealed the appearance of sharp-wave activity and HFOs in the frequency range of 80 to 500 Hz in the dentate gyrus ipsilateral to the KA injection. In the remaining seven rats, no appreciable activity was noted in this frequency range. In some rats with recurrent seizures, HFOs were in the ripple frequency range (100-200 Hz); in others, HFOs were in the fast ripple frequency range (200-500 Hz), or a mixture of both oscillation frequencies was found. The time of detection of the first HFOs after status epilepticus varied between 1 and 30 days, with a mean of 6.3 +/- 2.0 (SEM). Of the 19 rats in which HFO activity appeared, all later developed recurrent spontaneous seizures, whereas none of the rats without HFOs developed seizures. The sooner HFO activity was detected after status epilepticus, the sooner the first spontaneous seizure occurred. A significant inverse relation was found between the time to the first HFO detection and the subsequent rate of spontaneous seizures. CONCLUSIONS A strong correlation was found between a decreased time to detection of HFOs and an increased rate of spontaneous seizures, as well as with a decrease in the duration of the latent period between KA injection and the detection of spontaneous seizures. Two types of HFOs were found after KA injection, one in the frequency range of 100 to 200 Hz, and the other, in the frequency range of 200 to 500 Hz, and both should be considered pathological, suggesting that both are epileptogenic.
Collapse
Affiliation(s)
- Anatol Bragin
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
205
|
Abstract
Different forms of electrical paroxysms in experimental animals mimic the patterns of absence seizures associated with spike-wave complexes at approximately 3 Hz and of Lennox-Gastaut seizures with spike-wave or polyspike-wave complexes at approximately 1.5-2.5 Hz, intermingled with fast runs at 10-20 Hz. Both these types of electrical seizures are preferentially generated during slow-wave sleep. Here, we challenge the hypothesis of a subcortical pacemaker that would account for suddenly generalized spike-wave seizures as well as the idea of an exclusive role of synaptic excitation in the generation of paroxysmal depolarizing components, and we focus on three points, based on multiple intracellular and field potential recordings in vivo that are corroborated by some clinical studies: (a) the role of neocortical bursting neurons, especially fast-rhythmic-bursting neurons, and of very fast oscillations (ripples, 80-200 Hz) in seizure initiation; (b) the cortical origin of both these types of electrical paroxysms, the synaptic propagation of seizures from one to other, local and distant, cortical sites, finally reaching the thalamus, where the synchronous cortical firing excites thalamic reticular inhibitory neurons and thus leads to steady hyperpolarization and phasic inhibitory postsynaptic potentials in a majority of thalamocortical neurons, which might explain the obliteration of signals from the external world and the unconsciousness during absence seizures; and (c) the cessation of seizures, whose cellular mechanisms have only begun to be investigated and remain an open avenue for research.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| | | |
Collapse
|
206
|
Lasztóczi B, Antal K, Nyikos L, Emri Z, Kardos J. High-frequency synaptic input contributes to seizure initiation in the low-[Mg2+] model of epilepsy. Eur J Neurosci 2004; 19:1361-72. [PMID: 15016094 DOI: 10.1111/j.1460-9568.2004.03231.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High-frequency field potential activity between 50 and 400 Hz occurs throughout seizure-like events recorded from the CA3 region of juvenile rat hippocampal slices under low-[Mg(2+)] condition. Another (400-800 Hz) component occurred mainly during preictal paroxysmal spiking and the onsets of seizure-like events (97%) and less frequently during tonic and clonic phases (38% and 70%, respectively). Short epochs of oscillations in this range were associated with fast negative field potential deflections at the start of field potential transients. Voltage-clamp recordings from putative CA3 pyramidal cells showed the occurrence of synaptic inputs in the same frequency range at the onset of seizure-like events and the beginning of preictal or clonic paroxysmal spikes, while the frequency of action potentials never reached that range. The amplitude of fast negative field potential deflection, the rise time of membrane potential or voltage-clamp current changes and the mean phase coherence were consistent with an increase of synchronization towards the onset of a seizure-like event. Their parallel changes indicate the involvement of both synaptic and nonsynaptic mechanisms in the synchronization of neuronal activity and the development of seizure-like events in the low-[Mg(2+)] model of epilepsy.
Collapse
Affiliation(s)
- Bálint Lasztóczi
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences, 1525 Budapest, POB 17, Hungary.
| | | | | | | | | |
Collapse
|
207
|
Engel J, Wilson C, Bragin A. Advances in understanding the process of epileptogenesis based on patient material: what can the patient tell us? Epilepsia 2004; 44 Suppl 12:60-71. [PMID: 14641562 DOI: 10.1111/j.0013-9580.2003.12002.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many different types of epileptic seizures and epileptic syndromes exist. The process of epileptogenesis and the progressive nature of epilepsy, however, can most easily be investigated in the acquired epilepsies, in which a brain insult presumably gives rise to changes in neuronal systems that ultimately become capable of generating spontaneous ictal events. Invasive in vivo and in vitro research can be carried out in patients with acquired epileptogenic lesions in the course of epilepsy surgery; however, such studies are possible only for those epileptic conditions that can be treated surgically, and can be used only to examine an end stage of the epileptogenic process. Consequently, experimental animal models of human epileptic conditions are still required to study mechanisms by which specific cerebral insults initiate the epileptogenic process and the progression of an epileptic disturbance. Most current parallel human/animal invasive research has been focused on temporal lobe epilepsy, and particularly that form associated with hippocampal sclerosis, the most common human epileptogenic lesion. Studies indicate that epileptogenesis in this condition is initiated by specific types of cell loss and neuronal reorganization, which results not only in enhanced excitation, but also in enhanced inhibition, predisposing to hypersynchronization. Even within this single, well-studied epileptic disorder, evidence is found for more than one type of ictal onset, and individual seizures can demonstrate a transition from one ictal mechanism to another. Recent in vivo and in vitro parallel, reiterative investigations in patients with mesial temporal lobe epilepsy, and in rats with intrahippocampal kainate-induced hippocampal seizures, have revealed the presence of interictal epileptiform events, termed "fast ripples," which appear to be unique in tissue capable of generating spontaneous seizures. Pursuit of the fundamental mechanisms underlying these abnormalities should elucidate the neurobiologic basis of epileptogenicity in this disorder. Furthermore, if these events are markers for epileptogenicity, they may have clinical value for diagnosis and pharmacologic, as well as surgical, treatment. Further research is needed to determine if these observations are relevant to other types of epilepsies.
Collapse
Affiliation(s)
- Jerome Engel
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, U.S.A.
| | | | | |
Collapse
|
208
|
Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J. High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 2004; 56:108-15. [PMID: 15236407 DOI: 10.1002/ana.20164] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The presence of fast ripple oscillations (FRs, 200-500 Hz) has been confirmed in rodent epilepsy models but has not been observed in nonepileptic rodents, suggesting that FRs are associated with epileptogenesis. Although studies in human epileptic patients have reported that both FRs and ripples (80-200 Hz) chiefly occur during non-rapid eye movement sleep (NREM), and that ripple oscillations in human hippocampus resemble those found in nonprimate slow wave sleep, quantitative studies of these oscillations previously have not been conducted during polysomnographically defined sleep and waking states. Spontaneous FRs and ripples were detected using automated computer techniques in patients with medial temporal lobe epilepsy during sleep and waking, and results showed that the incidence of ripples, which are thought to represent normal activity in animal and human hippocampus, was similar between epileptogenic and nonepileptogenic temporal lobe, whereas rates of FR occurrence were significantly associated with epileptogenic areas. The generation of both FRs and ripples showed the highest rates of occurrence during NREM sleep. During REM sleep, ripple rates were lowest, whereas FR rates remained elevated and were equivalent to rates observed during waking. The predominance of FRs within the epileptogenic zone not only during NREM sleep, but also during epileptiform-suppressing desynchronized episodes of waking and REM sleep supports the view that FRs are the product of pathological neuronal hypersynchronization associated with seizure-generating areas.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
209
|
Engel J. Chapter 40 Models of focal epilepsy. ADVANCES IN CLINICAL NEUROPHYSIOLOGY, PROCEEDINGS OF THE 27TH INTERNATIONAL CONGRESS OF CLINICAL NEUROPHYSIOLOGY, AAEM 50TH ANNIVERSARY AND 57TH ANNUAL MEETING OF THE ACNS JOINT MEETING 2004; 57:392-9. [PMID: 16106638 DOI: 10.1016/s1567-424x(09)70376-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Focal symptomatic epilepsy is the most common and most refractory form of human epilepsy and is an important subject of basic research. Although advanced diagnostic technologies and epilepsy surgery facilities are providing increasing opportunities to carry out investigations directly on patients with focal epilepsy, inherent limitations make research with animal models essential to elucidate basic mechanisms, improve diagnosis, and test potential therapies. Numerous animal models are available, but proper use requires that they be validated for specific investigative purposes and, preferably, studied along with patients, employing reiterative parellel experimental paradigms. Clinical research establishes the critical questions that cannot be completely answered with human investigation, while results of animal research carried out to resolve these questions must be reexamined clinically to confirm their relevance to the human condition. Better and cheaper animal models are necessary for optimum cost-effective parallel research activities, which includes not only models of specific types of acute epileptic seizures, and chronic epilepsy, but models of component parts of seizures and epilepsy that can be used as surrogate, or biological, markers of epileptogenesis and epileptogenicity. Appropriate use of markers such as FR could greatly reduce the expense, and time required, to produce the necessary research results.
Collapse
Affiliation(s)
- Jerome Engel
- Department of Neurology, Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
210
|
Abstract
The transition from brief bursts of synchronous population activity characteristic of interictal epileptiform discharges (IEDs) to more prolonged epochs of population activity characteristic of seizures (ictal-like activity) was recorded in juvenile rat hippocampal-entorhinal cortex slices and hippocampal slices using multiple-site extracellular electrodes. Epileptiform activity was elicited by either increased extracellular potassium or 4-AP. IEDs originated in the CA3 a-b region and spread bidirectionally into CA1 and CA3c dentate gyrus. The transition from IEDs to ictal-like sustained epileptiform activity was reliably preceded by (1) increase in IED propagation velocity, (2) increase in IED secondary afterdischarges and their reverberation between CA3a and CA3c, and (3) shift in the IED initiation area from CA3 a-b to CA3c. Ictal-like sustained network oscillations (10-20 Hz) originated in CA3c and spread to CA1. The pattern of hippocampal ictal-like activity was unaffected by removal of the entorhinal cortex. These findings indicate that interictal and ictal activity can originate in the same neural network, and that the transition from interictal to ictal-like-sustained activity is preceded by predictable alterations in the origin and spread of IEDs. These findings elucidate new targets for investigating the proximate causes, prediction, and treatment of seizures.
Collapse
|
211
|
Bragin A, Wilson CL, Engel J. Spatial stability over time of brain areas generating fast ripples in the epileptic rat. Epilepsia 2003; 44:1233-7. [PMID: 12919396 DOI: 10.1046/j.1528-1157.2003.18503.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Fast ripples (FRs) are interictal, pathological, high-frequency oscillations in the 200- to 600-Hz range, which can be recorded from limbic regions capable of generating spontaneous seizures in rodent models of epilepsy and in human mesial temporal lobe epilepsy. To evaluate the spatial stability of FR-generating brain areas over long periods, we monitored interictal FR oscillations in rats with chronic recurrent spontaneous seizures. METHODS After unilateral intrahippocampal injection of kainic acid, 22 rats were video monitored until spontaneous behavioral seizures occurred, and then implanted with multiple hippocampal, dentate gyrus, and entorhinal cortex microelectrodes. Electrophysiological monitoring of microelectrode sites was carried out during daily 8-h recordings for periods ranging from 6 to 98 days. RESULTS Interictal FRs were recorded from discretely localized areas, adjacent to non-FR-generating areas in dentate gyrus and entorhinal cortex. The location of interictal FR oscillations remained fixed, and the electrophysiological pattern of FRs remained the same over the time of our study. For the duration of monitoring, sites initially recording interictal FRs continued to display FR oscillations, and sites that initially did not record FRs never demonstrated FR activity. A direct relation was seen between the total number of electrode contacts recording interictal FRs and the frequency of spontaneous seizure generation (p < 0.0001). CONCLUSIONS These results suggest that interictal FRs reflect abnormal discharges from a fixed pathologic substrate imbedded within less-epileptogenic tissue, and that spontaneous seizure frequency is dependent on the extent and distribution of this pathologic substrate.
Collapse
Affiliation(s)
- Anatol Bragin
- Neurology Neurobiology Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
212
|
Synchronization of kainate-induced epileptic activity via GABAergic inhibition in the superfused rat hippocampus in vivo. J Neurosci 2003. [PMID: 12832559 DOI: 10.1523/jneurosci.23-12-05337.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied cellular mechanisms of synchronization of epileptiform activity induced by kainic acid in a novel preparation of superfused rat hippocampus in vivo. Under urethane anesthesia, kainate induced epileptic population spikes occurring at 30-40 Hz. Pyramidal cells fired exclusively during population spikes with an average probability of 0.34 on rebound of rhythmic GABA(A)-mediated inhibitory postsynaptic events. Excitatory synaptic events contributed little to seizure activity. Rhythmic epileptiform activity was suppressed by blocking GABA(A) receptors and was slowed by barbiturates. Thus, GABAergic inhibition is instrumental in synchronizing kainate-induced epileptiform rhythmic activity in the gamma frequency band in the intact hippocampus in vivo.
Collapse
|
213
|
Grenier F, Timofeev I, Crochet S, Steriade M. Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo. Neuroscience 2003; 119:277-91. [PMID: 12763088 DOI: 10.1016/s0306-4522(03)00101-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Field-potential recordings with macroelectrodes, and extra- and intracellular potentials with micropipettes were used to determine the influence of spontaneous field potentials on the activity of neocortical neurons during seizures. In vivo experiments were carried out in cats under anesthesia. Strong negative field fluctuations of up to 20 mV were associated with electroencephalogram "spikes" during spontaneously occurring paroxysmal activities. During paroxysmal events, action potentials displayed an unexpected behavior: a more hyperpolarized firing threshold and smaller amplitude than during normal activity, as determined with intracellular recordings referenced to a distant ground. Considering the transmembrane potential (the difference between extra- and intracellular potential) qualified this observation: firing threshold determined from the transmembrane potential did not decrease, and smaller action-potential amplitude was associated with depolarized firing threshold. The hyperpolarization of intracellular firing threshold was thus related to the field potentials. Similar field-potential effects on neuronal activities were observed when the paroxysmal events included very fast oscillations or ripples (80-200 Hz) that represent rapid fluctuations of field potentials (up to 5 mV in <5 ms). Neuronal firing was phase-locked to those oscillations. These results demonstrate that: (a) strong spontaneous field potentials influence neuronal behavior, and thus play an active role during paroxysmal activities; and (b) transmembrane potentials have to be used to accurately describe the behavior of neurons in conditions in which field potentials fluctuate strongly. Since neuronal activity is presumably the main generator of field potentials, and in return these potentials may increase neuronal excitability, we propose that this constitutes a positive feedback loop that is involved in the development and spread of paroxysmal activities, and that a similar feedback loop is involved in the generation of neocortical ripples. We propose a mechanism for seizure initiation involving these phenomena.
Collapse
Affiliation(s)
- F Grenier
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | | | | | | |
Collapse
|
214
|
Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J Neurosci 2003. [PMID: 12629188 DOI: 10.1523/jneurosci.23-05-01840.2003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing rat hippocampus, ictal epileptiform activity can be elicited easily in vitro during the first three postnatal weeks. Changes in neuronal ion transport during this time cause the effects of GABA(A) receptor (GABA(A)-R) activation to shift gradually from strongly depolarizing to hyperpolarizing. It is not known whether the depolarizing effects of GABA and the propensity for ictal activity are causally linked. A key question is whether the GABA-mediated depolarization is excitatory, which we defined operationally as being sufficient to trigger action potentials. We assessed the effect of endogenous GABA on ictal activity and neuronal firing rate in hippocampal slices from postnatal day 1 (P1) to P30. In extracellular recordings, there was a strong correlation between the postnatal age at which GABA(A)-R antagonists decreased action potential frequency (P23) and the age at which ictal activity could be induced by elevated potassium (P23). In addition, there was a strong correlation between the fraction of slices in which ictal activity was induced by elevated potassium concentrations and the fractional decrease in action potential firing when GABA(A)-Rs were blocked in the presence of ionotropic glutamate receptor antagonists. Finally, ictal activity induced by elevated potassium was blocked by the GABA(A)-R antagonists bicuculline and SR-95531 (gabazine) and increased in frequency and duration by GABA(A)-R agonists isoguvacine and muscimol. Thus, the propensity of the developing hippocampus for ictal activity is highly correlated with the effect of GABA on action potential probability and reversed by GABA(A) antagonists, indicating that GABA-mediated excitation is causally linked to ictal activity in this developmental window.
Collapse
|
215
|
Grenier F, Timofeev I, Steriade M. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. J Neurophysiol 2003; 89:841-52. [PMID: 12574462 DOI: 10.1152/jn.00420.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multi-site field potential and intracellular recordings from various neocortical areas were used to study very fast oscillations or ripples (80-200 Hz) during electrographic seizures in cats under ketamine-xylazine anesthesia. The animals displayed spontaneously occurring and electrically induced seizures comprising spike-wave complexes (2-3 Hz) and fast runs (10-20 Hz). Neocortical ripples had much higher amplitudes during seizures than during the slow oscillation preceding the onset of seizures. A series of experimental data from the present study supports the hypothesis that ripples are implicated in seizure initiation. Ripples were particularly strong at the onset of seizures and halothane, which antagonizes the occurrence of ripples, also blocked seizures. The firing of electrophysiologically defined cellular types was phase-locked with ripples in simultaneously recorded field potentials. This indicates that ripples during paroxysmal events are associated with a coordination of firing in a majority of neocortical neurons. This was confirmed with dual intracellular recordings. Based on the amplitude that neocortical ripples reach during paroxysmal events, we propose a mechanism by which neocortical ripples during normal network activity could actively participate in the initiation of seizures on reaching a certain threshold amplitude. This mechanism involves a vicious feedback loop in which very fast oscillations in field potentials are a reflection of synchronous action potentials, and in turn these oscillations help generate and synchronize action potentials in adjacent neurons through electrical interactions.
Collapse
Affiliation(s)
- François Grenier
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | | | |
Collapse
|
216
|
Amassian VE, Stewart M. Motor cortical and other cortical interneuronal networks that generate very high frequency waves. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2003; 56:119-42. [PMID: 14677387 DOI: 10.1016/s1567-424x(09)70214-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A remarkable feature of motor cortical organization in higher mammals is that a brief electrical stimulus elicits in the pyramidal tract and corticospinal tract an unrelayed direct (D) wave followed by multiple indirect (I) waves at frequencies as high as 500-700 Hz. This review presents some conclusions regarding very high frequency synchronous activity in mammalian cortex: (1) Synchrony in repetitive I discharges is extraordinary in humans and monkeys, less in cats and still less in rats, being there represented by a delayed broad wave; such phylogenetic trends have important implications for the suitability of lower mammalian species for studies of high frequency cortical networks in the human brain; (2) The evidence from microstimulation at different cortical depths and pial cooling favors a vertically oriented chain of interneurons that centripetally excite corticospinal neurons as the basis for inter-I wave periodicity and synchrony; (3) Significantly, the I wave periodicity is conserved despite wide changes in stimulus parameters; (4) Synchronous high frequency activity similar to that of I waves can be recorded from other neocortical areas such as visual and somatosensory cortex; however, evidence is still lacking that the output neurons of these cortical regions have synchronized discharges comparable to I waves; (5) In limbic cortices, the frequency of synchronous neural activity is lower than that in motor cortex or related cortices and periodicity is not conserved with changes in stimulus parameters, indicating a lack of the neocortical interneuronal substrate in limbic cortex; (6) We propose that the very high frequency synchronous activity of motor cortical output reflects a computational function such as a "clock," quantizing times at which inputs would interact preferentially yielding synchronous output discharges. Such circuitry, if a general feature of neocortex, would facilitate rapid communication of significant computations between cortical regions.
Collapse
Affiliation(s)
- Vahe E Amassian
- Departments of Physiology and Pharmacology and Neurology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203, USA
| | | |
Collapse
|
217
|
Narayanan JT, Watts R, Haddad N, Labar DR, Li PM, Filippi CG. Cerebral activation during vagus nerve stimulation: a functional MR study. Epilepsia 2002; 43:1509-14. [PMID: 12460253 DOI: 10.1046/j.1528-1157.2002.16102.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To study the short-term effects of vagus nerve stimulation (VNS) on brain activation and cerebral blood flow by using functional magnetic resonance imaging (fMRI). METHODS Five patients (three women, two men; mean age, 35.4 years) who were treated for medically refractory epilepsy with VNS, underwent fMRI. All patients had a nonfocal brain MRI. The VNS was set at 30 Hz, 0.5-2.0 mA for intervals of activation of 30 s on and 30 s off, during which the fMRI was performed. Statistical parametric mapping (SPM) was used to determine significant areas of activation or inhibition during vagal nerve stimulation (p < 0.05). RESULTS VNS-induced activation was detected in the thalami bilaterally (left more than right), insular cortices bilaterally, ipsilateral basal ganglia and postcentral gyri, right posterior superior temporal gyrus, and inferomedial occipital gyri (left more than right). The most robust activation was seen in the thalami (left more than right) and insular cortices. CONCLUSIONS VNS-induced thalamic and insular cortical activation during fMRI suggests that these areas may play a role in modulating cerebral cortical activity, and the observed decrease in seizure frequency in patients who are given VNS may be a consequence of this increased activation.
Collapse
Affiliation(s)
- Jaishree T Narayanan
- Department of Neurology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
218
|
Staba RJ, Wilson CL, Bragin A, Fried I, Engel J. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 2002; 88:1743-52. [PMID: 12364503 DOI: 10.1152/jn.2002.88.4.1743] [Citation(s) in RCA: 454] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-frequency oscillations (100-200 Hz), termed ripples, have been identified in hippocampal (Hip) and entorhinal cortical (EC) areas of rodents and humans. In contrast, higher-frequency oscillations (250-500 Hz), termed fast ripples (FR), have been described in seizure-generating limbic areas of rodents made epileptic by intrahippocampal injection of kainic acid and observed in humans ipsilateral to areas of seizure initiation. However, quantitative studies supporting the existence of two spectrally distinct oscillatory events have not been carried out in humans nor has the preferential appearance of FR within seizure generating areas received statistical evaluation based on analysis of a large sample of oscillatory events. Interictal oscillations within the bandwidth of 80-500 Hz were detected in Hip and EC areas of patients with mesial temporal lobe epilepsy using wideband EEG recorded during non-rapid eye-movement sleep from chronically implanted depth electrodes. Power spectral analysis showed that oscillations detected from Hip and EC areas were composed of two spectrally distinct groups. The lower-frequency ripple group was defined by a frequency of 96 +/- 14 Hz (median +/- width), while the higher-frequency FR group had a frequency of 262 +/- 59 Hz. FR oscillations were significantly shorter in duration compared with ripple oscillations (P < 0.0001). In regard to the occurrence of FR and ripples in epileptic Hip and EC, the mean ratio of the number of FR to ripples generated in areas ipsilateral to seizure onset was significantly higher compared with the mean ratio of FR to ripple generation from contralateral areas (P = 0.008). Furthermore, sites ipsilateral to seizure onset with hippocampal atrophy had significantly higher ratios compared with sites contralateral to both seizure onset and hippocampal atrophy (P = 0.001). These data provide compelling quantitative and statistical evidence for the existence of two spectrally distinct groups of limbic oscillations that have frequency and duration characteristics similar to those previously described in epileptic rat and human Hip and EC. The strong association between FR and regions of seizure initiation supports the view that FR reflects pathological hypersynchronous events crucially associated with seizure genesis.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
219
|
Mazarati A, Bragin A, Baldwin R, Shin D, Wilson C, Sankar R, Naylor D, Engel J, Wasterlain CG. Epileptogenesis after self-sustaining status epilepticus. Epilepsia 2002; 43 Suppl 5:74-80. [PMID: 12121299 DOI: 10.1046/j.1528-1157.43.s.5.25.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To describe the natural history of chronic epilepsy after experimental self-sustaining status epilepticus (SSSE) and to correlate patterns of SSSE with ictal, interictal, and plastic changes that characterize chronic epilepsy. METHODS SSSE was induced in adult Wistar rats by 30-min intermittent electrical stimulation of the perforant path. In some animals, SSSE was treated by short-term administration of antiepileptic drugs (AEDs). After SSSE, EEG and animal behavior were monitored for </=1 year. Some animals were killed to study mossy fiber sprouting in the dentate gyrus. RESULTS Despite the high reproducibility of the electrographic and behavioral manifestations of SSSE, patterns of chronic epilepsy varied considerably among animals in terms of seizure frequency, initial seizure pattern at the onset of chronic epilepsy, and frequency of interictal spikes. Statistically significant correlations were found between spike frequency during SSSE and interictal spike frequency, as well as between the frequency of spontaneous seizures and degree of mossy fiber sprouting. Early treatment of SSSE prevented the occurrence of spontaneous seizures and significantly decreased frequency of interictal spikes. Late treatment of SSSE did not prevent spontaneous seizures, but significantly decreased their frequency, and eventually may lead to remission of epilepsy. CONCLUSIONS SSSE leads after a "silent" period to chronic epilepsy, which is maintained for > or =1 year in the rat. The silence is only behavioral, because EEG paroxysmal activity is seen in every animal. In this model of SSSE, the timing of treatment is a major determinant of outcome. Early treatment reduces the incidence of chronic epilepsy, whereas late treatment only reduces its severity. The possibility that this reduction of the severity of epilepsy may led to spontaneous remissions merits further study.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Neurology, UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Riban V, Bouilleret V, Pham-Lê BT, Fritschy JM, Marescaux C, Depaulis A. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 2002; 112:101-11. [PMID: 12044475 DOI: 10.1016/s0306-4522(02)00064-7] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unilateral intrahippocampal injection of kainic acid in adult mice reproduces most of the morphological characteristics of hippocampal sclerosis (neuronal loss, gliosis, reorganization of neurotransmitter receptors, mossy fiber sprouting, granule cell dispersion) observed in patients with temporal lobe epilepsy. Whereas some neuronal loss is observed immediately after the initial status epilepticus induced by kainate treatment, most reorganization processes develop progressively over a period of several weeks. The aim of this study was to characterize the evolution of seizure activity in this model and to assess its pharmacological reactivity to classical antiepileptic drugs. Intrahippocampal electroencephalographic recordings showed three distinct phases of paroxystic activity following unilateral injection of kainic acid (1 nmol in 50 nl) into the dorsal hippocampus of adult mice: (i) a non-convulsive status epilepticus, (ii) a latent phase lasting approximately 2 weeks, during which no organized activity was recorded, and (iii) a phase of chronic seizure activity with recurrent hippocampal paroxysmal discharges characterized by high amplitude sharp wave onset. These recurrent seizures were first seen about 2 weeks post-injection. They were limited to the injected area and were not observed in the cerebral cortex, contralateral hippocampus or ipsilateral amygdala. Secondary propagation to the contralateral hippocampus and to the cerebral cortex was rare. In addition hippocampal paroxysmal discharges were not responsive to acute carbamazepine, phenytoin, or valproate treatment, but could be suppressed by diazepam. Our data further validate intrahippocampal injection of kainate in mice as a model of temporal lobe epilepsy and suggest that synaptic reorganization in the lesioned hippocampus is necessary for the development of organized recurrent seizures.
Collapse
Affiliation(s)
- V Riban
- Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, INSERM U. 398, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
221
|
Naylor D. Changes in nonlinear signal processing in rat hippocampus associated with loss of paired-pulse inhibition or epileptogenesis. Epilepsia 2002; 43 Suppl 5:188-93. [PMID: 12121319 DOI: 10.1046/j.1528-1157.43.s.5.37.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To study acute and chronic physiological effects of perforant path stimulation using paired-pulse and nonlinear signal analysis techniques (Wiener kernel analysis). METHODS Two to 3-month-old Wistar rats were implanted with stimulating electrodes in the perforant path and recording electrodes in the granule cell layer. Loss of paired-pulse inhibition was produced with 2 Hz continuous and 20 Hz (10 s/min) intermittent stimulation for periods of 1-15 min (0.1 ms, 20 v pulses). Some animals received 30-60 min of stimulation, a model for status epilepticus/epileptogenesis. Responses to paired-pulse or white noise inputs were recorded sequentially. RESULTS Loss of inhibition with brief 1-3 min of stimulation, measured by increase paired-pulse ratio (P2/P1 ISI 40 ms) from 0.25 (+/-0.27) pre- to 1.02 (+/-0.18) post-stimulation (p < 0.001), lasted 43 (+/-15) min. For 30-60 min of stimulation, the paired-pulse ratios were 0.088 (+/-0.11), 1.59 (+/-0.036), 0.06 (+/-0.11), 0.82 (+/-0.22) for pre-, immediate post-, 1 week post-, and 1 month poststimulation, respectively (p < 0.025). Compared to prestimulation values, Wiener kernel amplitudes for immediate, 1 week, and 1 month poststimulation were 24% (+/-13%), 72% (+/-17%), and 31% (+/-21%), respectively (p < 0.05). Wiener kernels 1 month poststimulation showed response prolongation with increased opportunity for excitatory interactions of inputs (particularly those separated by 4 ms). CONCLUSIONS Brief perforant path stimulation causes sustained loss of inhibition in the dentate, possibly an early event in the transition to status epilepticus. Stimulation for 30-60 min causes chronic changes in paired-pulse and white noise (Wiener kernel) responses. Transient recovery occurs by 1 week, but later new features appear (including delayed/late inhibition and potential excitatory cross-talk) that might favor epileptic seizures.
Collapse
Affiliation(s)
- David Naylor
- VA Greater Los Angeles Healthcare System/UCLA School of Medicine, 11301 Wilshire Boulevard, Bldg 500, Rm 3256, Los Angeles, CA 90073, USA.
| |
Collapse
|
222
|
Jones MS, Barth DS. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 2002; 88:1016-25. [PMID: 12163550 DOI: 10.1152/jn.2002.88.2.1016] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast oscillatory activity (more than approximately 200 Hz) has been attracting increasing attention regarding its possible role in both normal brain function and epileptogenesis. Yet, its underlying cellular mechanism remains poorly understood. Our prior investigation of the phenomenon in rat somatosensory cortex indicated that fast oscillations result from repetitive synaptic activation of cortical pyramidal cells originating from GABAergic interneurons (). To test this hypothesis, the effects of topical application of the gamma-aminobutyric acid-A (GABA(A)) antagonist bicuculline methiodide (BMI) on fast oscillations were examined. At subconvulsive concentrations (approximately 10 microM), BMI application resulted in a pronounced enhancement of fast activity, in some trials doubling the number of oscillatory cycles evoked by whisker stimulation. The amplitude and frequency of fast activity were not affected by BMI in a statistically significant fashion. At higher concentrations, BMI application resulted in the emergence of recurring spontaneous slow-wave discharges resembling interictal spikes (IIS) and the eventual onset of seizure. High-pass filtering of the IIS revealed that a burst of fast oscillations accompanied the spontaneous discharge. This activity was present in both the pre- and the postictal regimes, in which its morphology and spatial distribution were largely indistinguishable. These data indicate that fast cortical oscillations do not reflect GABAergic postsynaptic currents. An alternate account consistent with results observed to date is that this activity may instead arise from population spiking in pyramidal cells, possibly mediated by electrotonic coupling in a manner analogous to that underlying 200-Hz ripple in the hippocampus. Additionally, fast oscillations occur within spontaneous epileptiform discharges. However, at least under the present experimental conditions, they do not appear to be a reliable predictor of seizure onset nor an indicator of the seizure focus.
Collapse
Affiliation(s)
- Michael S Jones
- Department of Psychology, University of Colorado, Boulder 80309-0345, USA
| | | |
Collapse
|
223
|
Abstract
Mesial temporal lobe epilepsy is the most common form of human epilepsy, and its pathophysiological substrate is usually hippocampal sclerosis, the most common epileptogenic lesion encountered in patients with epilepsy. The disabling seizures associated with mesial temporal lobe epilepsy are typically resistant to antiepileptic drugs but can be abolished in most patients by surgical treatment. Anteromesial temporal resection, therefore, is the most common surgical procedure performed to treat epilepsy, and stereotactically implanted intracerebral electrodes are required in some patients to localize the epileptogenic region. This clinical setting provides a large number of patients for invasive in vivo research with microelectrode and microdialysis techniques and in vitro research following surgical resection on a single epileptic disorder. Consequently, much has now been learned about the fundamental neuronal mechanisms underlying the epileptogenic properties of the human hippocampus in mesial temporal lobe epilepsy. Parallel reiterative studies in patients and animal models of this disorder indicate that enhanced inhibition, in addition to enhanced excitation, underlies the appearance of hypersynchronous neuronal discharges responsible for generating spontaneous seizures. Recent studies have elucidated what may be unique electrophysiological markers of epileptogenicity, which could have valuable diagnostic utility. Although basic research on mesial temporal lobe epilepsy may ultimately suggest novel approaches to treatment and prevention, attention must also be given to maximizing the application of available effective treatments. In particular, the safety and efficacy of surgical therapy has greatly improved in recent years, yet this alternative treatment remains seriously underutilized worldwide. An appropriate increase in referral of patients with this surgically remediable syndrome to epilepsy centers will not only relieve a great many patients of their disabling seizures and reduce the burden of epilepsy but will also provide increased opportunities for invasive research that could ultimately result in even more effective therapies or cures.
Collapse
Affiliation(s)
- J Engel
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA.
| |
Collapse
|
224
|
Winer S, Astsaturov I, Cheung R, Gunaratnam L, Kubiak V, Cortez MA, Moscarello M, O'Connor PW, McKerlie C, Becker DJ, Dosch HM. Type I diabetes and multiple sclerosis patients target islet plus central nervous system autoantigens; nonimmunized nonobese diabetic mice can develop autoimmune encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2831-41. [PMID: 11160351 DOI: 10.4049/jimmunol.166.4.2831] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type I diabetes and multiple sclerosis (MS) are distinct autoimmune diseases where T cells target either islet or CNS self-proteins. Unexpectedly, we found that autoreactive T cells in diabetic patients, relatives with high diabetes risk, nonobese diabetic (NOD) mice, and MS patients routinely target classical islet as well as CNS autoantigens. The pathogenic potential of CNS autoreactivity was testable in NOD mice. Pertussis holotoxin, without additional Ags or adjuvants, allowed development of an NOD mouse-specific, autoimmune encephalitis with variable primary-progressive, monophasic, and relapsing-remitting courses. T cells from diabetic donors transferred CNS disease to pertussis toxin-pretreated NOD.scid mice, with accumulation of CD3/IFN-gamma transcripts in the brain. Diabetes and MS appear more closely related than previously perceived. NOD mouse-specific, autoimmune encephalitis provides a new MS model to identify factors that determine alternative disease outcomes in hosts with similar autoreactive T cell repertoires.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Adult
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Cell Division/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Follow-Up Studies
- Humans
- Islets of Langerhans/immunology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Inbred NZB
- Mice, SCID
- Molecular Sequence Data
- Multiple Sclerosis/immunology
- Myelin Basic Protein/immunology
- Organ Specificity/immunology
- Prospective Studies
- Recurrence
- Species Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- S Winer
- The Hospital For Sick Children, St. Michael's Hospital, University of Toronto, Sunnybrook and Women's College Health Sciences Center, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 2000; 41 Suppl 6:S144-52. [PMID: 10999536 DOI: 10.1111/j.1528-1157.2000.tb01573.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The "silent period" is a characteristic of human localization-related symptomatic epilepsy. In mesial temporal lobe epilepsy (MTLE), it follows an initial precipitating injury, and in animal models of MTLE in which brain damage is artificially created, there is also a prolonged interval between injury and the onset of spontaneous seizures. The neuronal reorganization responsible for epileptogenesis presumably takes place during this silent interval; however, the functional correlates of this process are poorly understood. We have previously described high-frequency (250 to 500 Hz) oscillations, called fast ripples (FR), in the hippocampus and entorhinal cortex (EC) of intrahippocampal kainic acid (KA)-injected rats and patients with MTLE that are confined to the region of spontaneous seizure generation. We have proposed, therefore, that FR reflect the mechanisms responsible for epileptogenesis. If this is the case, they should appear during the process of epileptogenesis, before the appearance of spontaneous seizures. The purpose of the present study was to record continuously from rats after KA injection to compare the temporal development of FR with spontaneous seizures. Additional goals were to determine in these rats after spontaneous seizures begin (a) the volume of tissue in which FR can be recorded in hippocampus and EC, (b) the multiple-unit and field potential correlates of FR oscillations, and (c) whether there is an association of FR with mossy fiber sprouting. METHODS After unilateral KA injection in the posterior hippocampus, interictal field epileptic activity and single-unit activity were recorded from freely moving animals using multiple-contact microelectrodes in dentate gyrus (DG) and EC. One group of animals underwent continuous recording to determine the time of onset of both FR oscillations and spontaneous seizures. A second group was implanted after behavioral seizures began to measure the area within which FR could be recorded as well as their unit and field potential correlates. The neo-Timm method was used to reveal mossy fiber sprouting, and gray value analysis was used to measure the intensity of sprouting in the inner molecular layer of DG. RESULTS In KA-injected rats, FR were observed in hippocampal areas adjacent to the lesion and in the ipsilateral EC 11 to 14 days after injection, whereas spontaneous behavioral seizures occurred 2 to 4 months after injection. Analysis of depth profiles of interictal FR in the DG and EC showed that they were generated in local areas with a volume of about 1.0 mm3, and unit recordings indicated that they reflected fields of hypersynchronous action potentials. FR were found in areas of DG with more intensive mossy fiber sprouting. However, the correspondence was not absolute. CONCLUSIONS The electrophysiological and anatomical data are consistent with the participation of FR oscillations, within small neuronal assemblies, in the development of chronic epileptogenesis. It is hypothesized that small clusters of pathologically interconnected neurons develop after focal hippocampal injury and that these clusters are capable of generating powerful hypersynchronous bursts of action potentials, which initiate epileptogenesis via a kindling effect. As the silent period progresses, a network of such clusters is formed that allows the development of discharges that spread throughout the limbic system. When this network engages brain areas that control motor activity, clinical seizures occur and the silent period ends.
Collapse
Affiliation(s)
- A Bragin
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA.
| | | | | |
Collapse
|
226
|
Abstract
The "disinhibition" hypothesis contends that (1) seizures begin when granule cells in the dentate gyrus of the dorsal hippocampus are disinhibited and (2) disinhibition occurs because GABAergic interneurons are excessively inhibited by other GABAergic interneurons. We tested the disinhibition hypothesis using the experimental model that inspired it-naturally epileptic Mongolian gerbils. To determine whether there is an excess of GABAergic interneurons in the dentate gyrus of epileptic gerbils, as had been reported previously, GABA immunocytochemistry, in situ hybridization of GAD67 mRNA, and the optical fractionator method were used. There were no significant differences in the numbers of GABAergic interneurons. To determine whether granule cells in epileptic gerbils were disinhibited during the interictal period, IPSPs were recorded in vivo with hippocampal circuits intact in urethane-anesthetized gerbils. The reversal potentials and conductances of IPSPs in granule cells in epileptic versus control gerbils were similar. To determine whether the level of inhibitory control in the dentate gyrus transiently decreases before seizure onset, field potential responses to paired-pulse perforant path stimulation were obtained from the dorsal hippocampus while epileptic gerbils experienced spontaneous seizures. Evidence of reduced inhibition was found after, but not before, seizure onset, indicating that seizures are not triggered by disinhibition in this region. However, seizure-induced depression of inhibition may amplify and promote the spread of seizure activity to other brain regions. These findings do not support the disinhibition hypothesis and suggest that in this model of epilepsy seizures initiate by another mechanism or at a different site.
Collapse
|
227
|
Curio G. Linking 600-Hz "spikelike" EEG/MEG wavelets ("sigma-bursts") to cellular substrates: concepts and caveats. J Clin Neurophysiol 2000; 17:377-96. [PMID: 11012041 DOI: 10.1097/00004691-200007000-00004] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Somatosensory evoked human EEG and magnetoencephalographic (MEG) responses comprise a brief burst of low-amplitude, high-frequency (approximately 600 Hz) spikelike wavelets ("sigma-bursts") superimposed on the primary cortical response (e.g., the N20 to electrical median nerve stimulation). The recent surge of interest in these macroscopic sigma-burst responses is energized by the prospect of monitoring noninvasively, highly synchronized and rapidly repeating population spikes generated in the human thalamic and cortical somatosensory system. Thus, analyses of spike-related sigma-bursts could uniquely complement conventional low-frequency EEG/MEG, reflecting mass excitatory and inhibitory postsynaptic potentials that potentially also incorporate subthreshold activities of undetermined functional relevance. Recent studies using spatiotemporal source analysis of multichannel recordings identified regional burst sources subcortically (near-thalamic) as well as cortically. At the primary somatosensory cortex, sigma-burst generators showed the well-established homuncular somatotopic ordering. Functionally, the 600-Hz burst appears to comprise multiple subcomponents with differential sensitivity to stimulus rate, intensity, sleep-wake cycle, tactile interference, subject age, and certain movement disorders. A plenitude of cellular candidates contributing to burst generation at different levels can already now be envisaged, including cuneothalamic and thalamocortical relay cells, as well as cortical bursting pyramidal cells and fast-spiking inhibitory interneurons. Although cellular burst coding might serve to relay information with high efficiency, concepts to link macroscopic sigma-bursts and cellular substrates call for additional study.
Collapse
Affiliation(s)
- G Curio
- Department of Neurology, Klinikum Benjamin Franklin, Freie Universität, Berlin, Germany
| |
Collapse
|
228
|
Draguhn A, Traub RD, Bibbig A, Schmitz D. Ripple (approximately 200-Hz) oscillations in temporal structures. J Clin Neurophysiol 2000; 17:361-76. [PMID: 11012040 DOI: 10.1097/00004691-200007000-00003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Spontaneous network oscillations near 200 Hz have been described in the hippocampus and parahippocampal regions of rodents and humans. During the last decade the characteristics and the mechanisms behind these field "ripples" have been studied extensively, mainly in rodents. They occur during rest or slow-wave sleep and provide a very fast, short-lasting (approximately 50 msec) rhythmic and synchronous activation of specific projection cells and interneurons. Ripples are frequently triggered by a massive synaptic activation from the hippocampal CA3 subfield, which is called a sharp wave. Recent evidence suggests that ripples have a specific task in memory processing-namely, that they convey information stored in the hippocampus to the cortex where it can be preserved permanently. Network mechanisms involved in ripple oscillations may be relevant for understanding pathologic synchronization processes in temporal lobe epilepsy.
Collapse
Affiliation(s)
- A Draguhn
- Johannes-Müller-lnstitut für Physiologie der Charité, Berlin, Germany
| | | | | | | |
Collapse
|