201
|
Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic periodontitis is the most common disease which induces oral tissue destruction. The goal of periodontal treatment is to reduce inflammation and regenerate the defects. As the structure of periodontium is composed of four types of different tissue (cementum, alveolar bone periodontal ligament, and gingiva), the regeneration should allow different cell proliferation in the separated spaces. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) were introduced to prevent epithelial growth into the alveolar bone space. In the past, non-absorbable membranes with basic functions such as space maintenance were used with bone graft materials. Due to several limitations of the non-absorbable membranes, membranes of the second and third generation equipped with controlled absorbability, and a functional layer releasing growth factors or antimicrobials were introduced. Moreover, tissue engineering using biomaterials enabled faster and more stable tissue regeneration. The scaffold with three-dimensional structures manufactured by computer-aided design and manufacturing (CAD/CAM) showed high biocompatibility, and promoted cell infiltration and revascularization. In the future, using the cell sheath, pre-vascularizing and bioprinting techniques will be applied to the membrane to mimic the original tissue itself. The aim of the review was not only to understand the past and the present trends of GTR and GBR, but also to be used as a guide for a proper future of regeneration therapy in the oral region.
Collapse
|
202
|
Maria R, Ben-Zvi Y, Rechav K, Klein E, Shahar R, Weiner S. An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: A 3D hierarchical structural study. J Struct Biol 2019; 206:128-137. [PMID: 30849471 DOI: 10.1016/j.jsb.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Teeth are subjected to compressive loads during mastication. Under small loads the soft tissue periodontal ligament (PDL) deforms most. However when the loads increase and the PDL is highly compressed, the tooth and the alveolar bone supporting the tooth, begin to deform. Here we report on the structure of this alveolar bone in the upper furcation region of the first molars of mature minipigs. Using light microscopy and scanning electron microscopy (SEM) of bone cross-sections, we show that this bone is hypermineralized, containing abundant small pores around 1-5 μm in diameter, lacunae around 10-20 μm as well as larger spaces. This bone does not possess the typical lamellar motif or other repeating structures normally found in cortical or trabecular mammalian bone. We also use high resolution focused ion beam scanning electron microscopy (FIB-SEM) in the serial surface mode to image the 3D organization of the demineralized bone matrix. We show that the upper furcation bone matrix has a disordered isotropic structure composed mainly of individual collagen fibrils with no preferred orientation, as well as highly staining material that is probably proteoglycans. Much larger aligned arrays of collagen fibers - presumably Sharpey's fibers - are embedded in this material. This unusual furcation bone material is similar to the disordered material found in human lamellar bone. In the upper furcation region this disordered bone comprises almost all the volume excluding Sharpey's fibers. We surmise that this most unusual bone type functions to resist the repeating compressive loads incurred by molars during mastication.
Collapse
Affiliation(s)
- Raquel Maria
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yehonatan Ben-Zvi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eugenia Klein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
203
|
Geão C, Costa-Pinto AR, Cunha-Reis C, Ribeiro VP, Vieira S, Oliveira JM, Reis RL, Oliveira AL. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:27. [PMID: 30747338 DOI: 10.1007/s10856-019-6225-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Guided tissue regeneration (GTR) is a surgical procedure applied in the reconstruction of periodontal defects, where an occlusive membrane is used to prevent the fast-growing connective tissue from migrating into the defect. In this work, silk fibroin (SF) membranes were developed for periodontal guided tissue regeneration. Solutions of SF with glycerol (GLY) or polyvinyl alcohol (PVA) where prepared at several weight ratios up to 30%, followed by solvent casting and thermal annealing at 85 °C for periods of 6 and 12 h to produce high flexible and stable membranes. These were characterized in terms of their morphology, physical integrity, chemical structure, mechanical and thermal properties, swelling capability and in vitro degradation behavior. The developed blended membranes exhibited high ductility, which is particular relevant considering the need for physical handling and adaptability to the defect. Moreover, the membranes were cultured with human periodontal ligament fibroblast cells (hPDLs) up to 7 days. Also, the higher hydrophilicity and consequent in vitro proteolytic degradability of these blends was superior to pure silk fibroin membranes. In particular SF/GLY blends demonstrated to support high cell adhesion and viability with an adequate hPDLs' morphology, make them excellent candidates for applications in periodontal regeneration.
Collapse
Affiliation(s)
- Catarina Geão
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
| | - Ana R Costa-Pinto
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
| | - Cassilda Cunha-Reis
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
| | - Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Sílvia Vieira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco, Guimarães, Portugal
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal.
| |
Collapse
|
204
|
Sankardas PA, Lavu V, Lakakula BVKS, Rao SR. Differential expression of periostin, sclerostin, receptor activator of nuclear factor-κB, and receptor activator of nuclear factor-κB ligand genes in severe chronic periodontitis. JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY 2019; 10:e12369. [PMID: 30375186 DOI: 10.1111/jicd.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
AIM The aim of the present study was to determine and compare the expression profile of periostin (POSTN), sclerostin (SOST), receptor activator nuclear factor-κB (RANK), and RANK ligand (RANKL) genes in gingival tissue samples collected from healthy gingiva (control) and severe chronic periodontitis sites. METHODS Fifty systemically-healthy individuals was enrolled in the present case-control study. Gingival tissue samples were obtained from healthy gingiva (N = 25) and sites with severe chronic periodontitis (N = 25). Total RNA was isolated from all the tissues. cDNA conversion was then performed using a reverse transcription polymerase chain reaction (PCR) program. Real-time PCR and SYBR green method were used to determine the expression levels of SOST, POSTN, RANK, and RANKL genes. RESULTS An elevated expression (3.5-4-fold) of SOST, RANK, and RANKL genes, with a concomitant reduced expression of the POSTN gene, was identified in severe chronic periodontitis. The intergroup difference between the mean delta cyclic threshold values showed statistical significance at P<.001. CONCLUSIONS The expression profile of SOST, RANK, RANKL, and POSTN genes observed in gingival tissue samples from sites with severe chronic periodontitis and healthy gingiva suggests that the differential level of the gene expression could serve as an indicator of periodontitis progression/severity.
Collapse
Affiliation(s)
- Pooja A Sankardas
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - Vamsi Lavu
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | | | - Suresh R Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
205
|
Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater 2019; 10:E3. [PMID: 30609698 PMCID: PMC6463184 DOI: 10.3390/jfb10010003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases involve injuries to the supporting structures of the tooth and, if left untreated, can lead to the loss of the tooth. Regenerative periodontal therapies aim, ideally, at healing all the damaged periodontal tissues and represent a significant clinical and societal challenge for the current ageing population. This review provides a picture of the currently-used biomaterials for periodontal regeneration, including natural and synthetic polymers, bioceramics (e.g., calcium phosphates and bioactive glasses), and composites. Bioactive materials aim at promoting the regeneration of new healthy tissue. Polymers are often used as barrier materials in guided tissue regeneration strategies and are suitable both to exclude epithelial down-growth and to allow periodontal ligament and alveolar bone cells to repopulate the defect. The problems related to the barrier postoperative collapse can be solved by using a combination of polymeric membranes and grafting materials. Advantages and drawbacks associated with the incorporation of growth factors and nanomaterials in periodontal scaffolds are also discussed, along with the development of multifunctional and multilayer implants. Tissue-engineering strategies based on functionally-graded scaffolds are expected to play an ever-increasing role in the management of periodontal defects.
Collapse
Affiliation(s)
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
206
|
Davis EM. A Review of the Epithelial Cell Rests of Malassez on the Bicentennial of Their Description. J Vet Dent 2018. [DOI: 10.1177/0898756418811957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial cell rests of Malassez (ERM) were first described in 1817, yet their significance has remained an enigma for more than 200 years. Given their embryological origins and persistence in adult periodontal tissue, recent research has investigated whether the ERM could be useful as stem cells to regenerate tissues lost as a consequence of periodontitis. The objective of this review is to describe results of studies that have vigorously investigated the functional capabilities of ERM, particularly with regard to periodontal ligament homeostasis and prevention of dentoalveolar ankylosis. The significance of the ERM relative to evolution of the dental attachment apparatus will be examined. The current status of use of ERM as stem cells for dental tissue engineering and in other applications will be reviewed.
Collapse
Affiliation(s)
- Eric M. Davis
- Animal Dental Specialists of Upstate New York, Fayetteville, NY, USA
| |
Collapse
|
207
|
Le Cabec A, Tang NK, Ruano Rubio V, Hillson S. Nondestructive adult age at death estimation: Visualizing cementum annulations in a known age historical human assemblage using synchrotron X-ray microtomography. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:25-44. [DOI: 10.1002/ajpa.23702] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Adeline Le Cabec
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
- ID19 Beamline; Structure of Materials Group, European Synchrotron Radiation Facility; Grenoble France
| | | | | | - Simon Hillson
- Institute of Archaeology; University College London; London United Kingdom
| |
Collapse
|
208
|
Kukolj T, Trivanović D, Mojsilović S, Okić Djordjević I, Obradović H, Krstić J, Jauković A, Bugarski D. IL-33 guides osteogenesis and increases proliferation and pluripotency marker expression in dental stem cells. Cell Prolif 2018; 52:e12533. [PMID: 30430681 PMCID: PMC6430470 DOI: 10.1111/cpr.12533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives Soluble IL‐33 (interleukin (IL)‐1‐like cytokine) acts as endogenous alarm signal (alarmin). Since alarmins, besides activating immune system, act to restore tissue homeostasis, we investigated whether IL‐33 exerts beneficial effects on oral stem cell pull. Materials and Methods Clonogenicity, proliferation, differentiation and senescence of stem cells derived from human periodontal ligament (PDLSCs) and dental pulp (DPSCs) were determined after in vitro exposure to IL‐33. Cellular changes were detected by flow cytometry, Western blot, immunocytochemistry and semiquantitative RT‐PCR. Results IL‐33 stimulated proliferation, clonogenicity and expression of pluripotency markers, OCT‐4, SOX‐2 and NANOG, but it inhibited ALP activity and mineralization in both PDLSCs and DPSCs. Higher Ki67 expression and reduced β‐galactosidase activity in IL‐33‐treated cells were demonstrated, whereas these trends were more conspicuous in osteogenic medium. However, after 7‐day IL‐33 pretreatment, differentiation capacity of IL‐33‐pretreated cells was retained, and increased ALP activity was observed in both cell types. Results showed that IL‐33 regulates NF‐κB and β‐catenin signalling, indicating the association of these molecules with changes observed in IL‐33‐treated PDLSCs and DPSCs, particularly their proliferation, pluripotency‐associated marker expression and osteogenesis. Conclusions IL‐33 treatment impairs osteogenesis of PDLSCs and DPSCs, while increases their clonogenicity, proliferation and pluripotency marker expression. After exposure to IL‐33, osteogenic capacity of cells stayed intact. NF‐κB and β‐catenin are implicated in the effects achieved by IL‐33 in PDLSCs and DPSCs.
Collapse
Affiliation(s)
- Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana Okić Djordjević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
209
|
Fleissig O, Reichenberg E, Tal M, Redlich M, Barkana I, Palmon A. Morphologic and gene expression analysis of periodontal ligament fibroblasts subjected to pressure. Am J Orthod Dentofacial Orthop 2018; 154:664-676. [PMID: 30384937 DOI: 10.1016/j.ajodo.2018.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Force application (FA) during orthodontic tooth movement is mediated through periodontal ligament (PDL) fibroblasts. FA on deciduous teeth has an inherent risk of root resorption, which is less in permanent teeth. Currently, the root resorption mechanism is poorly understood. We hypothesized that FA alters the morphology and gene expression of PDL fibroblasts. This study was designed to achieve homogenous PDL fibroblast cultures, establish an in-vitro FA model, analyze fibroblast morphology after FA, and compare the gene expressions of PDL fibroblasts of deciduous and permanent teeth after FA. METHODS Fibroblasts were sorted from primary cultures of deciduous and permanent tooth PDLs. Cell viability was evaluated in the Opticell (Thermo Scientific, Waltham, Mass) FA model. Cellular morphology was analyzed using immunofluorescence staining for actin and focal adhesion complexes. Gene expressions of untreated or pressure-treated PDL fibroblasts of deciduous and permanent teeth were compared by gene array and confirmed by real-time polymerase chain reaction. RESULTS Cell sorting resulted in cultures containing 98% of PDL fibroblasts. The Opticell model showed 94% cell survival after FA. FA increased fibroblasts' adhesion. Gene arrays and real-time polymerase chain reactions indicated greater up-regulation of DKK2 mRNA in untreated PDL fibroblasts of deciduous teeth and greater up-regulation of ADAMTS1 mRNA in pressurized PDL fibroblasts of deciduous and permanent teeth. CONCLUSIONS Cell sorting is an efficient method to establish homogenous PDL fibroblast cultures. Using the Opticell FA model allows the maintenance of excellent cell viability. FA increased the surface adherence of fibroblasts. Up-regulation of ADAMTS1 after FA may indicate its involvement in the remodeling of the periodontium during orthodontic tooth movement. Understanding root resorption mechanisms under FA will help to prevent it during orthodontic treatment.
Collapse
Affiliation(s)
- Omer Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Elisha Reichenberg
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Maoz Tal
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | | | - Idit Barkana
- Department of Orthodontics, Dental Medicine Institute, Tel Hashomer Hospital, Ramat Gan, Israel
| | - Aaron Palmon
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
210
|
Shi J, Baumert U, Folwaczny M, Wichelhaus A. Influence of static forces on the expression of selected parameters of inflammation in periodontal ligament cells and alveolar bone cells in a co-culture in vitro model. Clin Oral Investig 2018; 23:2617-2628. [PMID: 30324573 DOI: 10.1007/s00784-018-2697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Aim of this study was to investigate the impact of human PDL-derived fibroblasts (HPDF) and human alveolar bone-derived osteoblasts (HABO) co-culture on the expression of cytokines involved in tissue remodeling using an in vitro compressive force (CF) model. MATERIALS AND METHODS Static compressive force (CF) of 47.4 g/cm2 was applied on mono- and co-cultured HPDFs and HABOs for 1, 2, or 4 h at 30 °C. TNFA, PTGS2, and IL6 gene expressions were determined by quantitative real-time polymerase chain reaction. TNF, PGE2, and IL6 concentrations were measured using enzyme-linked immunosorbent assay. RESULTS In mono-culture, TNFA, PTGS2, and IL6 gene expressions were upregulated under CF as compared to controls for each time period in both cell types. PGE2 increased at 1 and 2 h in both cell types, and IL6 increased only at 2 and 4 h in HPDFs. Co-culture alleviated the force-induced increase of the expression of TNFA, PTGS2, IL6, PGE2, and IL6 in HPDFs at any time point. In HABOs, co-cultivation decreased the expression of PGE2 after 1 h and 4 h, and that of IL6 after 1 h compared to mono-culture. CONCLUSIONS CF application on co-cultures of HPDFs and HABOs causes significant changes of TNFA, PTGS2, and IL6 gene expressions and PGE2 and IL6 production in comparison to mono-culture indicating intercellular communication. CLINICAL RELEVANCE Mechanical stimulation of HPDFs and HABOs in co-culture induces a different gene expression pattern than stimulation of individual cell types alone. Co-culture might therefore be a relevant method to elucidate periodontal regeneration during orthodontic therapy.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Guangzhou Medical University, Guangzhou, 510140, China
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| |
Collapse
|
211
|
Han NY, Hong JY, Park JM, Shin C, Lee S, Lee H, Yun JH. Label-free quantitative proteomic analysis of human periodontal ligament stem cells by high-resolution mass spectrometry. J Periodontal Res 2018; 54:53-62. [DOI: 10.1111/jre.12604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Na-Young Han
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Ji-Youn Hong
- Department of Periodontology; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Changsik Shin
- Department of Microbiology and Immunology; Penn State University College of Medicine and Milton Hershey Medical Center; Hershey; PA USA
| | - Saya Lee
- Department of Periodontology; College of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Jeong-Ho Yun
- Department of Periodontology; College of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital; Jeonju Korea
| |
Collapse
|
212
|
Hu F, Zhou Z, Xu Q, Fan C, Wang L, Ren H, Xu S, Ji Q, Chen X. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int J Biol Macromol 2018; 129:1113-1119. [PMID: 30218737 DOI: 10.1016/j.ijbiomac.2018.09.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the antibacterial activity and cytocompatibility of novel pH-activated nanoparticles (NPs) in vitro and in vivo. The NPs were synthesized from a quaternary ammonium chitosan, i.e., N,N,N-trimethyl chitosan, a liposome, and doxycycline (TMC-Lip-DOX NPs). The cytocompatibility of the NPs was evaluated. The TMC-Lip-DOX NPs achieved superb inhibition of free mixed bacteria and biofilm formation. They also showed excellent biocompatibility with human periodontal ligament fibroblasts. Animal experiments showed that the NPs strongly inhibited biofilm formation and prevented alveolar bone absorption in vivo. All the results indicate that the TMC-Lip-DOX NPs have good potential for use in the treatment of periodontal and other inflammatory diseases.
Collapse
Affiliation(s)
- Fang Hu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhongzheng Zhou
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China
| | - Quanchen Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hao Ren
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuo Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China; Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
213
|
Seong J, Bartlett D, Newcombe R, Claydon N, Hellin N, West N. Prevalence of gingival recession and study of associated related factors in young UK adults. J Dent 2018; 76:58-67. [DOI: 10.1016/j.jdent.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022] Open
|
214
|
Işılay Özdoğan A, Akca G, Şenel S. Development and in vitro evaluation of chitosan based system for local delivery of atorvastatin for treatment of periodontitis. Eur J Pharm Sci 2018; 124:208-216. [PMID: 30171985 DOI: 10.1016/j.ejps.2018.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 01/13/2023]
Abstract
In recent years, statin group drugs have been widely investigated in treatment of periodontal diseases due to their anti-inflammatory effect. The efficacy of statins can be enhanced by local administration into the periodontal pocket by appropriate delivery systems. The aim of our study was to develop a bioadhesive delivery system for local delivery of atorvastatin in treatment of periodontal disease. For this purpose, gel formulations were prepared using different types of chitosan (base and water soluble) and viscosity, bioadhesivity and syringeability of the gels as well as in vitro drug release properties were investigated vitro. Furthermore, anti-inflammatory effect of the formulations was studied in vitro using tumor necrosis factor (TNF)-alfa induced human gingival fibroblast (hGF) cells. Release of proinflammatory (IL-1β, IL-6, IL-8) and anti-inflammatory (TGF-β1, TGF-β2, TGF-β3, IL-10) cytokines were measured after incubating the hGF cells with the formulations. The viscosity of the formulations was found to be suitable for a local application into periodontal pocket. In presence of drug, bioadhesive property of the formulations was found to increase, and bioadhesion force was within the range, which would retain the delivery system at the application site, subsequently maintain drug levels at desired amount for longer period of time. The release of atorvastatin from the gels was found to be slower than that of the solution. The cytokine levels were found to decrease following application of the formulations, and anti-inflammatory effect was observed to enhance in presence of chitosan. No significant differences were found between base and water-soluble chitosan.
Collapse
Affiliation(s)
- A Işılay Özdoğan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey; Turkish Patent and Trademark Office, Ankara 06560, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara 06510, Turkey
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
215
|
Lee HK, Kim SJ, Kim YH, Ko Y, Ji S, Park JC. Odontogenic ameloblast-associated protein (ODAM) in gingival crevicular fluid for site-specific diagnostic value of periodontitis: a pilot study. BMC Oral Health 2018; 18:148. [PMID: 30143043 PMCID: PMC6109327 DOI: 10.1186/s12903-018-0609-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background Odontogenic Ameloblast-Associated Protein (ODAM) in gingival crevicular fluid (GCF) can provide evidence of the detachment of junctional epithelium from the tooth surface by periodontitis. This study sought to investigate the ability of ODAM to reflect the severity of periodontitis at a site-specific level; thus whether there was a relationship between clinical diagnostic parameters and the value of ODAM in GCF was analyzed. Methods Eight periodontitis patients with various severities were enrolled, and the clinical parameters and samples of GCF were obtained from 44 to 60 sites of each subject. The ODAM concentration was quantified by enzyme-linked immunosorbent assay. Correlation analyses between clinical parameters and ODAM values and unadjusted and adjusted (linear) mixed model analyses were performed. The accuracy of ODAM to reflect sites having a probing depth (PD) ≥ 5 mm and a positive bleeding on probing (BOP) was evaluated by receiver-operating characteristic analysis. Results A total of 424 GCF samples were collected. The mean ODAM concentration from each patient varied from 0.2 to 1.52 ng/ml. Correlations between PD or clinical attachment level (CAL) and ODAM values were found (p < 0.0001). An adjusted linear mixed model showed that PD or CAL were associated with ODAM values (p < 0.05). The area under the curve of ODAM, which reflected sites with PD ≥ 5 mm and positive BOP, was 0.661 (p < 0.0001). Conclusion This result shows the possibility of GCF ODAM as a site-specific biomarker for periodontal tissue destruction.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Departments of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehagro, Chongro-gu, Seoul, 110-749, South Korea
| | - Soo Jin Kim
- Office of Biostatistics, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Young Ho Kim
- Department of Orthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, South Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Suk Ji
- Department of Periodontics, Institute of Oral Health Science, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, South Korea.
| | - Joo-Cheol Park
- Departments of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehagro, Chongro-gu, Seoul, 110-749, South Korea.
| |
Collapse
|
216
|
Abstract
Ligaments serve as compliant connectors between hard tissues. In that role, they function under various load regimes and directions. The 3D structure of ligaments is considered to form as a uniform entity that changes due to function. The periodontal ligament (PDL) connects the tooth to the bone and sustains different types of loads in various directions. Using the PDL as a model, employing a fabricated motorized setup in a microCT, we demonstrate that the fibrous network structure within the PDL is not uniform, even before the tooth becomes functional. Utilizing morphological automated segmentation methods, directionality analysis, as well as second harmonic generation imaging, we find high correlation between blood vessel distribution and fiber density. We also show a structural feature in a form of a dense collar around the neck of the tooth as well as a preferred direction of the fibrous network. Finally, we show that the PDL develops as a nonuniform structure, with an architecture designed to sustain specific types of load in designated areas. Based on these findings, we propose that ligaments in general should be regarded as nonuniform entities, structured already at developmental stages for optimal functioning under variable load regimes.
Collapse
|
217
|
Hirashima S, Ohta K, Kanazawa T, Okayama S, Togo A, Miyazono Y, Kusukawa J, Nakamura KI. Three-dimensional ultrastructural analysis and histomorphometry of collagen bundles in the periodontal ligament using focused ion beam/scanning electron microscope tomography. J Periodontal Res 2018; 55:23-31. [PMID: 30035304 DOI: 10.1111/jre.12592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE The periodontal ligament (PDL) is an essential tissue for tooth function. However, the 3-dimensional ultrastructure of these PDL collagen bundles on a mesoscale is not clear. We investigated the 3-dimensional ultrastructure of these collagen bundles and quantitatively analyzed their histomorphometry using focused ion beam/scanning electron microscope (FIB/SEM) tomography. MATERIAL AND METHODS The PDLs of the first mandibular molar of male C57BL/6 mice were analyzed using FIB/SEM tomography. The serial images of the collagen bundles so obtained were reconstructed. The collagen bundles were analyzed quantitatively using 3-dimensional histomorphometry. RESULTS Collagen bundles of the PDL demonstrated multiple branched structures, rather than a single rope-like structure, and were wrapped in cytoplasm sheets. The structure of the horizontal fiber of the collagen bundle was an extensive meshwork. In contrast, the oblique and apical fibers of the collagen bundle showed a chain-like structure. The area and the minor and major axis lengths of cross-sections of the horizontal fiber, as determined from 3-dimensional images, were significantly different from those of the oblique and apical fibers. CONCLUSION These findings indicate that collagen bundles in horizontal fiber areas have high strength and that the tooth is firmly anchored to the alveolar bone by the horizontal fibers, but is not secured evenly to the alveolar bone. The tooth is firmly anchored around the cervical area, creating a "slingshot-like structure." This study has provided further insights into the structure of the PDL and forms the basis for the development of more effective therapies for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Satoko Okayama
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Miyazono
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
218
|
Wang Y, Papagerakis S, Faulk D, Badylak SF, Zhao Y, Ge L, Qin M, Papagerakis P. Extracellular Matrix Membrane Induces Cementoblastic/Osteogenic Properties of Human Periodontal Ligament Stem Cells. Front Physiol 2018; 9:942. [PMID: 30072915 PMCID: PMC6058254 DOI: 10.3389/fphys.2018.00942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Objective: Periodontitis affects nearly 90% of adults over the age of 70, resulting to periodontal tissue infection, destruction, and ultimately tooth loss. Guided tissue regeneration (GTR) is a method widely used to treat severe periodontal disease, and involves placement of an occlusive barrier to facilitate regeneration of the damaged area by periodontal ligament stem cells (PDLSCs). In this study, we evaluate natural extracellular matrix (ECM) as a scaffold material to provide a suitable microenvironment to support the proliferation, differentiation, and tissue-regenerating properties of PDLSCs. Design: The viability, proliferation, apoptosis, and migration of PDLSCs cultured on ECM membrane, that was isolated from porcine urinary bladders, were compared with those cultured on type I collagen membrane, a commonly used scaffold in GTR. To evaluate the effects of ECM vs. type I collagen on the tissue-regenerating properties of PDLSCs, the bio-attachment and cementoblastic/osteogenic differentiation of PDLSCs were evaluated. Results: Incubation of PDLSCs with ECM resulted in increased viability, proliferation, and reduced apoptosis, compared with type I collagen treated PDLSCs. Co-culture with ECM membrane also increased the migration and bio-attachment of PDLSCs. Incubation of PDLSCs with ECM membrane increased expression of the cementoblastic/osteogenic differentiation markers BSP, RUNX2, ALP, OPN, OCN, and periostin. Conclusion: ECM membrane enhances the proliferation and regenerative properties of PDLSCs, indicating that ECM membrane can serve as a suitable scaffold in the application of GTR to treat periodontal disease.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, United States
| | - Denver Faulk
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuming Zhao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Lihong Ge
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Petros Papagerakis
- Colleges of Dentistry and Biomedical Engineering, Toxicology, Pharmacy, Nutrition, Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
219
|
Kriebel K, Hieke C, Engelmann R, Potempa J, Müller-Hilke B, Lang H, Kreikemeyer B. Porphyromonas gingivalis Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. J Innate Immun 2018; 10:264-278. [PMID: 29860256 DOI: 10.1159/000489020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance.
Collapse
Affiliation(s)
- Katja Kriebel
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Jan Potempa
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland.,University of Louisville School of Dentistry, Department of Oral Immunity and Infectious Diseases, Louisville, Kentucky, USA
| | | | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
220
|
Teubner S, Schmidlin PR, Menghini G, Attin T, Baumgartner S. The Impact of Orthodontic Bands on the Marginal Periodontium of Maxillary First Molars: A Retrospective Cross-Sectional Radiographic Analysis. Open Dent J 2018; 12:312-321. [PMID: 29760824 PMCID: PMC5944122 DOI: 10.2174/1874210601812010312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
AIM Available information on the effect of orthodontic treatment on crestal alveolar bone levels measured in radiographs is contradictory. The aim of this study was to compare the alveolar bone level and periodontal ligament space of banded upper first molars to untreated controls. MATERIALS AND METHODS This retrospective cross-sectional radiographic study investigated alveolar bone levels of upper first molars of an orthodontic test group and an untreated control group of comparable age (15-16.25 years), using existing bitewing radiographs.Eighty-six individuals were included in each group. Three parameters were measured mesially and distally on both sides of the patient as follows: I) Alveolar Bone Level (ABL): measured as the distance between the cemento-enamel junction and the alveolar crest, II) the Periodontal Ligament Space (PLS): measured as the most coronal distance between the alveolar crest and the tooth surface, and III) angle between the lines (alveolar crests mesial and distal) and (cemento-enamel junction mesial and distal). RESULTS The mean duration of the orthodontic treatment in the test group was 2.5 years. The periodontal ligament space was statistically significantly wider on mesial areas of right molars (mean 0.2 mm, p<0.01), but there was no statistically significant difference found in the three other areas (distal part of the right molar, mesial and distal parts of the left molar). There was a statistically significant mean alveolar bone loss in the right and left mesial areas, respectively accounting for 0.3 mm (p<0.001) and 0.2 mm (p<0.01). No statistically significant alveolar bone loss was measured on the distal surfaces of the upper molars. The angle was wider on both sides for the test group (right p<0.001 and left p<0.05). CONCLUSIONS A significant alveolar bone loss on the mesial tooth surface of upper first molars after orthodontic treatment was found with concurrent different levelling angles in the test group. On all other sites, no statistically significant changes were found. There was some minimal statistical significant alveolar bone loss after finishing treatment in patients who had orthodontic bands placed on their maxillary 1st molars, but no clinical significance was found.
Collapse
Affiliation(s)
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Giorgio Menghini
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Stefan Baumgartner
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
221
|
Nakamura M. Histological and immunological characteristics of the junctional epithelium. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:59-65. [PMID: 29755616 PMCID: PMC5944073 DOI: 10.1016/j.jdsr.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
The continuity of epithelial tissue is collapsed by tooth eruption. The junctional epithelium (JE) is attached to the tooth surface by hemidesmosomes, which constitutes the front-line defense against periodontal bacterial infection. JE constitutively expresses intercellular adhesion molecule-1 (ICAM-1), and neutrophils and lymphocytes penetrate into JE via interaction between ICAM-1 and LFA-1 expressed on the surface of these migrating cells. JE also expresses cytokines and chemokines. These functions of JE are maintained even in germ-free condition. Therefore, the constitutive expression of adhesion molecules, cytokines, and chemokines might be used not only for anti-pathogenic defense but also for maintaining the physiological homeostasis of JE. In this review, we have mainly focused on the structural and functional features of JE, and discussed the function of intraepithelial lymphocytes in JE as a front-line anti-microbial defense barrier and regulator of JE hemostasis.
Collapse
Affiliation(s)
- Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
222
|
de Paiva Gonçalves V, Ortega AAC, Steffens JP, Spolidorio DMP, Rossa C, Spolidorio LC. Long-term testosterone depletion attenuates inflammatory bone resorption in the ligature-induced periodontal disease model. J Periodontol 2018; 89:466-475. [DOI: 10.1002/jper.17-0457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Vinícius de Paiva Gonçalves
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State; UNESP Araraquara SP Brazil
| | - Adriana Alicia C. Ortega
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State; UNESP Araraquara SP Brazil
| | - João Paulo Steffens
- Department of Stomatology; Federal University of Paraná; UFPR Curitiba PR Brazil
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State; UNESP Araraquara SP Brazil
| | - Luis C. Spolidorio
- Department of Physiology and Pathology; Araraquara School of Dentistry; University of São Paulo State; UNESP Araraquara SP Brazil
| |
Collapse
|
223
|
Yang M, Nam GE, Salamati A, Baldwin M, Deng M, Liu ZJ. Alveolar bone loss and mineralization in the pig with experimental periodontal disease. Heliyon 2018; 4:e00589. [PMID: 29862352 PMCID: PMC5968141 DOI: 10.1016/j.heliyon.2018.e00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 02/05/2023] Open
Abstract
Objective To address how experimental periodontal disease affects alveolar bone mass and mineral apposition in a young pig model. Materials and methods Seven three-month-old pigs were periodically inoculated with 4 types of periodontal bacteria, along with a ligature around the last maxillary deciduous molar for 8 weeks to induce periodontal disease (PG). Eight same-aged pigs served as the control (CG). Segmentations of 3D cone-beam CT images were performed to quantify volumes of the total alveolar bone, alveolar ridge, and all roots of the target molar. Calcein and alizarin were administered for labeling mineral apposition before euthanasia. The harvested molar blocks were sectioned and examined under epifluorescence. The inter-label distance between the two vital markers at regional bone surfaces were measured and mineral apposition rate (MAR) was calculated. Results A significant reduction of total alveolar bone volume was seen in PG with the major loss at the alveolar ridge. MAR was significantly higher at the root furcation region than those at both buccal and palatal ridges in CG. Compared with CG, PG animals showed more interrupted labeled bands with significantly lower MAR at the furcation region. MARs were positively associated with both the volumes of total alveolar bone and ridge in CG, but only with the total alveolar bone in PG. Conclusions In young growing pigs, mineral apposition is region specific. The experimental periodontal disease not only leads to alveolar bone loss, but also perturbs mineral apposition for new bone formation, thus impairing the homeostasis of alveolar bone remodeling.
Collapse
Affiliation(s)
- Mandee Yang
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA
| | - Grace Eun Nam
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA
| | - Atriya Salamati
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA.,Dept. Oral Health Sciences, School of Dentistry, University of Washington, Seattle, USA
| | - Michael Baldwin
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA.,Dept. Oral Health Sciences, School of Dentistry, University of Washington, Seattle, USA
| | - Mengzhao Deng
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Zi-Jun Liu
- Dept. Orthodontics, School of Dentistry, University of Washington, Seattle, USA.,Dept. Oral Health Sciences, School of Dentistry, University of Washington, Seattle, USA
| |
Collapse
|
224
|
Wang Y, Li J, Qiu Y, Hu B, Chen J, Fu T, Zhou P, Song J. Low‑intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1‑mediated SDF‑1 expression. Int J Mol Med 2018; 42:322-330. [PMID: 29620151 PMCID: PMC5979833 DOI: 10.3892/ijmm.2018.3592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Low‑intensity pulsed ultrasound (LIPUS) is a non‑invasive therapeutic treatment for accelerating fracture healing. A previous study from our group demonstrated that LIPUS has the potential to promote periodontal tissue regeneration. However, the underlying molecular mechanism by which LIPUS promotes periodontal tissue regeneration remains unknown. In the present study, periodontal ligament stem cells (PDLSCs) were isolated from premolars. Flow cytometry and differentiation assays were used to characterize the isolated PDLSCs. LIPUS treatment was administered to PDLSCs, and stromal cell‑derived factor‑1 (SDF‑1) expression levels were examined by reverse transcription‑quantitative polymerase chain reaction with or without blocking the SDF‑1/C‑X‑C motif chemokine receptor 4 (CXCR4) pathway with AMD3100. ELISA was used to evaluate SDF‑1 secretion in PDLSCs. Wound healing and transwell assays were conducted to assess the migration‑promoting effect of LIPUS. A potential upstream gene of SDF‑1, twist family bHLH transcription factor 1 (TWIST1), was silenced by small interfering (si) RNA transfection. The results demonstrated that LIPUS treatment promoted the expression of TWIST1 and SDF‑1 at both the mRNA and protein levels. In addition, LIPUS treatment enhanced the cell migration of PDLSCs. Knockdown of TWIST1 impaired the expression of SDF‑1 and the cell migration ability of PDLSCs. TWIST1 may be an upstream regulator of SDF‑1 in PDLSCs. Taken together, these findings indicate that the SDF1/CXCR4 signaling pathway is involved in LIPUS‑promoted PDLSC migration, which might be one of the mechanisms for LIPUS‑mediated periodontal regeneration. TWIST1 might be a mechanical stress sensor during mechanotransduction.
Collapse
Affiliation(s)
- Yunji Wang
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jie Li
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Ye Qiu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Bo Hu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jin Chen
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Tiwei Fu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Pengfei Zhou
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| |
Collapse
|
225
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
226
|
Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018; 34:207-214. [PMID: 29655409 DOI: 10.1016/j.kjms.2018.01.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/24/2022] Open
Abstract
Orthodontic tooth movement relies on coordinated tissue resorption and formation in the surrounding bone and periodontal ligament. Tooth loading causes local hypoxia and fluid flow, initiating an aseptic inflammatory cascade culminating in osteoclast resorption in areas of compression and osteoblast deposition in areas of tension. Compression and tension are associated with particular signaling factors, establishing local gradients to regulate remodeling of the bone and periodontal ligament for tooth displacement. Key regulators of inflammation and tissue turnover include secreted factors like RANK ligand and osteoprotegerin, transcription factors such as RUNX2 and hypoxia-inducible factor, cytokines, prostaglandins, tissue necrosis factors, and proteases, among others. Inflammation occurred during tooth movement needs to be well controlled, as dysregulated inflammation leads to tissue destruction manifested in orthodontic-induced root resorption and periodontal disease. Understanding the biology has profound clinical implications especially in the area of accelerating orthodontic tooth movement. Surgical, pharmacological, and physical interventions are being tested to move teeth faster to reduce treatment times and time-dependent adverse outcomes. Future developments in acceleratory technology and custom appliances will allow orthodontic tooth movement to occur more efficiently and safely.
Collapse
Affiliation(s)
- Yina Li
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Laura A Jacox
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Shannyn H Little
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
227
|
Kresnoadi U, Rahayu RP, Rubianto M, Sudarmo SM, Budi HS. TLR2 Signaling Pathway in Alveolar Bone Osteogenesis Induced by Aloe vera and Xenograft (XCB). Braz Dent J 2018; 28:281-286. [PMID: 29297547 DOI: 10.1590/0103-6440201600834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/08/2017] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to find the role of TLR2 signaling pathway in reducing osteoclast activity and promoting osteoblast growth by inducing a combination of Aloe vera and cancellous bovine xenograft (XCB) into dental extraction socket. Forty-eight Cavia cobayas were used. They were divided into eight groups (n=6). For control group, their mandibular incisors were extracted and filled with PEG. For treatment groups, they were extracted and filled with XCB, Aloe vera and the combination of Aloe vera and XCB. The first four groups were sacrificed after 7 days and the other groups after 30 days. Immunohistochemistry and histopathology examination were conducted to examine TLR2, TNFa, OPG, collagen-1, and the osteoblast and osteoclast expressions. The expressions of TLR2, OPG and Collagen-1, as well as the number of osteoblast were increased. Meanwhile, the expressions of TNFa and osteoclast were decreased. The study finding was that TLR2 signaling pathway influenced alveolar bone osteogenesis process by reducing osteoclast activity and stimulating osteoblast growth induced by the combination of Aloe vera and XCB.
Collapse
Affiliation(s)
- Utari Kresnoadi
- Prosthodontic Department, Dental Medicine Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Oral Patologic Department, Dental Medicine Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - M Rubianto
- Periodontic Department, Dental Medicine Faculty, Universitas Airlangga, Surabaya, Indonesia
| | | | - Hendrik Setia Budi
- Oral Biology Department, Dental Medicine Faculty, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
228
|
Dean C, Le Cabec A, Spiers K, Zhang Y, Garrevoet J. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J R Soc Interface 2018; 15:20170626. [PMID: 29321271 PMCID: PMC5805964 DOI: 10.1098/rsif.2017.0626] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/08/2017] [Indexed: 11/12/2022] Open
Abstract
Cementum and the incremental markings it contains have been widely studied as a means of ageing animals and retrieving information about diet and nutrition. The distribution of trace elements in great ape and fossil hominin cementum has not been studied previously. Synchrotron X-ray fluorescence (SXRF) enables rapid scanning of large tissue areas with high resolution of elemental distributions. First, we used SXRF to map calcium, phosphorus, strontium and zinc distributions in great ape dentine and cementum. At higher resolution, we compared zinc and strontium distributions in cellular and acellular cementum in regions where clear incremental markings were expressed. We then mapped trace element distributions in fossil hominin dentine and cementum from the 1.55-1.65 million year old site of Koobi Fora, Kenya. Zinc, in particular, is a precise marker of cementum increments in great apes, and is retained in fossil hominin cementum, but does not correspond well with the more diffuse fluctuations observed in strontium distribution. Cementum is unusual among mineralized tissues in retaining so much zinc. This is known to reduce the acid solubility of hydroxyapatite and so may confer resistance to resorption by osteoclasts in the dynamic remodelling environment of the periodontal ligament and alveolar bone.
Collapse
Affiliation(s)
- Christopher Dean
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Kathryn Spiers
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yi Zhang
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
229
|
Thaiwong T, Sledge DG, Collins-Webb A, Kiupel M. Immunohistochemical Characterization of Canine Oral Papillary Squamous Cell Carcinoma. Vet Pathol 2017; 55:224-232. [DOI: 10.1177/0300985817741732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, histologic subtypes of oral squamous cell carcinoma (SCC) corresponding to the human classification scheme have been proposed for dogs. A papillary squamous cell carcinoma subtype is characterized by dominant exophytic architectural growth with limited invasion, a lower metastatic rate, and better overall survival compared with conventional SCC. Whereas most canine oral conventional SCCs are easily diagnosed by histologic examination, the diagnosis of canine oral papillary squamous cell carcinoma (COPSCC) can be challenging since the exophytic portion lacks histologic features of malignancy and appears similar to oral nonviral papillomas. In contrast, the invasive portion of COPSCC has morphologic similarities to conventional SCC and canine acanthomatous ameloblastoma. The goals of this study were to immunophenotype these 3 entities and to potentially identify discriminating markers. A panel of 17 immunohistochemical markers was investigated in tissue microarrays that included 25 COPSCCs, 10 conventional SCCs, and 10 canine acanthomatous ameloblastomas. Additionally, COPSCCs were screened for papillomavirus as a potential cause using immunohistochemistry and in situ hybridization. COPSCC had immunophenotypical similarities with conventional SCC and acanthomatous ameloblastoma, but the combined differences in immunolabeling for AE1/AE3, 34βE12, p63, and calretinin discriminated between the entities. Papillomavirus was not detected in any COPSCC, making a viral pathogenesis unlikely. A better understanding of the immunophenotype of COPSCC will aid in a more accurate diagnosis and potentially improve therapeutic approaches.
Collapse
Affiliation(s)
- Tuddow Thaiwong
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
| | - Dodd G. Sledge
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
| | | | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
230
|
Zhang D, Han X, Zhang Z, Liu J, Jiang C, Yoda N, Meng X, Li Q. Identification of dynamic load for prosthetic structures. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28425209 DOI: 10.1002/cnm.2889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Dynamic load exists in numerous biomechanical systems, and its identification signifies a critical issue for characterizing dynamic behaviors and studying biomechanical consequence of the systems. This study aims to identify dynamic load in the dental prosthetic structures, namely, 3-unit implant-supported fixed partial denture (I-FPD) and teeth-supported fixed partial denture. The 3-dimensional finite element models were constructed through specific patient's computerized tomography images. A forward algorithm and regularization technique were developed for identifying dynamic load. To verify the effectiveness of the identification method proposed, the I-FPD and teeth-supported fixed partial denture structures were investigated to determine the dynamic loads. For validating the results of inverse identification, an experimental force-measuring system was developed by using a 3-dimensional piezoelectric transducer to measure the dynamic load in the I-FPD structure in vivo. The computationally identified loads were presented with different noise levels to determine their influence on the identification accuracy. The errors between the measured load and identified counterpart were calculated for evaluating the practical applicability of the proposed procedure in biomechanical engineering. This study is expected to serve as a demonstrative role in identifying dynamic loading in biomedical systems, where a direct in vivo measurement may be rather demanding in some areas of interest clinically.
Collapse
Affiliation(s)
- Dequan Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xu Han
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongpu Zhang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jie Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Chao Jiang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Xianghua Meng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
231
|
Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Mice dental pulp and periodontal ligament endothelial cells exhibit different proangiogenic properties. Tissue Cell 2017; 50:31-36. [PMID: 29429515 DOI: 10.1016/j.tice.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
Dental pulp is a highly vascularized tissue with a high regenerative capacity. This is attributed to its unique blood supply and the presence of progenitor or postnatal dental pulp stem cells. Here we aimed to isolate and compare the angiogenic properties of endothelial cells (EC) prepared from mouse dental pulp and periodontal ligament (PDL). EC were isolated from 4-week-old wild type immorto mice. Mice were sacrificed and after mandible isolation, the molar and incisor teeth and the PDL from molar teeth were dissected. EC were prepared by collagenase digestion of tissues and affinity purification using magnetic beads coated with platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) antibody. EC prepared from incisor and molar pulps and PDL were examined for expression of appropriate markers by fluorescence-activated cell sorting (FACS) analysis. The proliferation, migration, and capillary morphogenesis of EC were evaluated. Ex vivo sprouting angiogenesis from various tissues was also compared. Data were analyzed at the level of significance of P<0.05. Pulp EC prepared from incisors proliferated and migrated significantly faster than molar and PDL EC (P<0.05). In addition, molar and PDL EC formed a more extensive capillary network when plated on Matrigel. This is consistent with the lower proliferative and migratory characteristics of these cells compared with incisor EC (P<0.05). However, PDL tissue showed significantly more sprouting area than molar and incisor pulp tissues (P<0.05). Thus, pulp EC from molar and incisor and PDL EC present different proangiogenic properties. Collectively our results suggest that EC from different tooth tissue have unique characteristics related to their target tissue and function.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Departments of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.
| | - Armen Asatourian
- Sector of Angiogenesis Regenerative Medicine, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Christine M Sorenson
- Department of Pediatircs, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Departments of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
232
|
Wang L, Wu F, Song Y, Duan Y, Jin Z. Erythropoietin induces the osteogenesis of periodontal mesenchymal stem cells from healthy and periodontitis sources via activation of the p38 MAPK pathway. Int J Mol Med 2017; 41:829-835. [PMID: 29207066 PMCID: PMC5752238 DOI: 10.3892/ijmm.2017.3294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin (Epo), a hematopoietic hormone, has multiple biological functions. Recently, the positively osteogenic effects of Epo on mesenchymal stem cells (MSCs) have attracted broad interest. However, the effects of Epo on the osteogenesis of human periodontal ligament tissue‑derived mesenchymal stem cells (hPDLSCs) and periodontitis mesenchymal stem cells (pPDLSCs) from patients with periodontitis remain unknown. In the present study, osteogenic effects of Epo on hPDLSCs and pPDLSCs were investigated, and the results suggested that the effects were mediated by promoting the expression of runt related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin. Using Alizarin Red and ALP staining, it was demonstrated that Epo exerted positive osteogenic effects on hPDLSCs and pPDLSCs. Additionally, Epo upregulated the proliferation of hPDLSCs and pPDLSCs, based on flow cytometric analyses of the cell cycle. To determine the underlying mechanism, the role of the p38 mitogen‑activated protein kinase (MAPK) pathway, which is associated with the osteogenesis of hPDLSCs and pPDLSCs, was investigated further. Epo increases p38 phosphorylation (the target of the MAPK pathway) in hPDLSCs and pPDLSCs. Furthermore, when the cells were treated with SB203580, an inhibitor of the p38 MAPK pathway, the osteogenic effects of Epo on hPDLSCs and pPDLSCs were attenuated. In conclusion, Epo may upregulate the bone formation ability of hPDLSCs and pPDLSCs via the p38 MAPK pathways.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Wu
- Laparoscopic Surgery Department, The 451st Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Yang Song
- Department of Stomatology, The 323rd Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Yinzhong Duan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zoulin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
233
|
Gaviria L, Pearson JJ, Montelongo SA, Guda T, Ong JL. Three-dimensional printing for craniomaxillofacial regeneration. J Korean Assoc Oral Maxillofac Surg 2017; 43:288-298. [PMID: 29142862 PMCID: PMC5685857 DOI: 10.5125/jkaoms.2017.43.5.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.
Collapse
Affiliation(s)
- Laura Gaviria
- Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Joseph J Pearson
- Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sergio A Montelongo
- Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Joo L Ong
- Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
234
|
Chen H, Fu T, Ma Y, Wu X, Li X, Li X, Shen J, Wang H. Intermittent administration of parathyroid hormone ameliorated alveolar bone loss in experimental periodontitis in streptozotocin-induced diabetic rats. Arch Oral Biol 2017; 83:76-84. [DOI: 10.1016/j.archoralbio.2017.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022]
|
235
|
Zhang Q, Chen L, Cui S, Li Y, Zhao Q, Cao W, Lai S, Yin S, Zuo Z, Ren J. Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment. Sci Rep 2017; 7:13991. [PMID: 29070806 PMCID: PMC5656573 DOI: 10.1038/s41598-017-14451-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023] Open
Abstract
Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.
Collapse
Affiliation(s)
- Qingbin Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Li Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shiman Cui
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Yan Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wei Cao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Shixiang Lai
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Sanjun Yin
- Health Time Gene Institute, Shenzhen, 518000, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jian Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China. .,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
236
|
Pavez L, Tobar N, Chacón C, Arancibia R, Martínez C, Tapia C, Pastor A, González M, Martínez J, Smith PC. Chitosan-triclosan particles modulate inflammatory signaling in gingival fibroblasts. J Periodontal Res 2017; 53:232-239. [DOI: 10.1111/jre.12510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- L. Pavez
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
| | - N. Tobar
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology; University of Chile; Santiago RM Chile
| | - C. Chacón
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
| | - R. Arancibia
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| | - C. Martínez
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| | - C. Tapia
- Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago RM Chile
| | - A. Pastor
- Department of Sciences, Chemistry Section; Pontificia Universidad Católica del Peru; Lima Peru
| | - M. González
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
- Bioinformatics and Gene Expression, Institute of Nutrition and Food Technology; University of Chile and Center for Genome Regulation, University of Chile; Santiago RM Chile
| | - J. Martínez
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology; University of Chile; Santiago RM Chile
| | - P. C. Smith
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| |
Collapse
|
237
|
Coyac BR, Falgayrac G, Baroukh B, Slimani L, Sadoine J, Penel G, Biosse-Duplan M, Schinke T, Linglart A, McKee MD, Chaussain C, Bardet C. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 2017; 103:334-346. [PMID: 28764922 DOI: 10.1016/j.bone.2017.07.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/22/2017] [Accepted: 07/27/2017] [Indexed: 01/28/2023]
Abstract
X-linked hypophosphatemia (XLH) is a dento-osseous disorder caused by inactivating mutations in the PHEX gene, leading to renal phosphate wasting and hypophosphatemia, and impaired mineralization of bones and teeth. In the oral cavity, recent reports suggest a higher susceptibility of XLH patients to periodontitis, where patients present with impaired tooth cementum - a bone-like tissue involved in tooth attachment to the jaw bones and post-eruption tooth positioning - and a higher frequency of intrabony defects. In the present study, the pathobiology of alveolar bone and tooth cementum was investigated in the Hyp mouse, the murine analog of XLH. PHEX deficiency in XLH/Hyp dramatically alters the periodontal phenotype, with hypoplasia of tooth root cementum associated with a lack of periodontal ligament attachment and the presence of an immature apatitic mineral phase of all periodontal mineralized tissues. Challenging the Hyp periodontium in two surgical experimental models - ligature-induced periodontal breakdown and repair, and a model of tooth movement adaptation inducing cementum formation - we show that bone and cementum formation, and their healing, are altered. Bone and cementum mineralization appear similarly disturbed, where hypomineralized pericellular matrix surrounds cells, and where the protein osteopontin (OPN, a mineralization inhibitor) accumulates in a tissue-specific manner, most notably in the perilacunar matrix surrounding osteocytes. Although the pathobiology is different between XLH/Hyp bone and cementum, our results show a major XLH phenotype in oral mineralized tissues consistent with variations in patient susceptibility to periodontal disorders.
Collapse
Affiliation(s)
- Benjamin R Coyac
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France; Department of Periodontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, Paris Diderot University, Paris, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France
| | - Brigitte Baroukh
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France
| | - Lotfi Slimani
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France
| | - Jérémy Sadoine
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France
| | - Martin Biosse-Duplan
- Department of Odontology, Bretonneau Hospital PNVS, AP-HP, Paris, France; APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France; INSERM U1169, Hôpital Bicêtre, Le Kremlin Bicêtre, and Université Paris-Saclay, France
| | - Marc D McKee
- Faculties of Dentistry and Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Catherine Chaussain
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France; Department of Odontology, Bretonneau Hospital PNVS, AP-HP, Paris, France; APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
| | - Claire Bardet
- EA2496, Faculty of Dentistry, Paris Descartes University, Montrouge, France.
| |
Collapse
|
238
|
Sreenivasan PK, Tischio-Bereski D, Fine DH. Reduction in bacteremia after brushing with a triclosan/copolymer dentifrice-A randomized clinical study. J Clin Periodontol 2017; 44:1020-1028. [DOI: 10.1111/jcpe.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Deborah Tischio-Bereski
- Oral Biology Department; Rutgers School of Dental Medicine; Rutgers University; Newark NJ USA
| | - Daniel H. Fine
- Oral Biology Department; Rutgers School of Dental Medicine; Rutgers University; Newark NJ USA
| |
Collapse
|
239
|
Oral fibroblasts modulate the macrophage response to bacterial challenge. Sci Rep 2017; 7:11516. [PMID: 28912533 PMCID: PMC5599598 DOI: 10.1038/s41598-017-11771-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/30/2017] [Indexed: 02/08/2023] Open
Abstract
Tissue damage in chronic periodontal disease is driven by the host response to a dysbiotic microbiota, and not by bacteria directly. Among chronic inflammatory diseases of the oral cavity, inflammation and tissue damage around dental implants (peri-implantitis) is emerging as a major clinical challenge, since it is more severe and less responsive to treatment compared to inflammation around natural teeth. We tested whether oral fibroblasts from the periodontal ligament (PDLF), which are present around natural teeth but not around dental implants, actively regulate inflammatory responses to bacterial stimulation. We show that human PDLF down-regulate TNF-α post-transcriptionally in macrophages stimulated with the oral pathogen Porphyromonas gingivalis. Cell contact and secretion of IL-6 and IL-10 contribute to the modulation of inflammatory cytokine production. Although fibroblasts decreased TNF-α secretion, they enhanced the ability of macrophages to phagocytose bacteria. Surprisingly, donor matched oral fibroblasts from gingival tissues, or fibroblasts from peri-implant inflamed tissues were at least as active as PDLF in regulating macrophage responses to bacteria. In addition, priming fibroblasts with inflammatory mediators enhanced PDLF regulatory activity. A further understanding of the spectrum of fibroblast activities in inflammatory lesions is important in order to design ways to control inflammatory tissue damage.
Collapse
|
240
|
Abstract
Despite numerous guidelines, joint interprofessional collaboration, and years of data collection, the use of antibiotic prophylaxis before dental procedures remains controversial. There continues to be disagreement on indications, justification, and outcome of the use of various antibiotic prophylaxis regiments. This is complicated by the lack of data demonstrating any positive or negative impact on the care of patients. The dental community has distanced itself from a leadership role in this conversation, based on multiple concerns including fear of litigation, lack of clear pathophysiology, and unclear cause-effect relationship.
Collapse
Affiliation(s)
- Mehran Hossaini-zadeh
- Oral and Maxillofacial Surgery, Temple University Kornberg School of Dentistry, 3223 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
241
|
Irmak Ö, Yaman BC, Lee DY, Orhan EO, Mante FK, Ozer F. Flexural strength of fiber reinforced posts after mechanical aging by simulated chewing forces. J Mech Behav Biomed Mater 2017; 77:135-139. [PMID: 28898724 DOI: 10.1016/j.jmbbm.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 02/01/2023]
Abstract
This study evaluated the effect of simulated chewing forces on the flexural strength of fiber reinforced posts (FRPs). Four different brands of FRPs were selected as main group for the study: RelyX Fiber Post (RX), IceLight (ICE), Unicore Posts (UC), FlouroPost (FP). Ten posts in each main group didn't receive any aging process and tested as baseline (BL), other ten posts were subjected to simulated chewing forces/mechanical aging (MA) as follows: Post spaces were prepared in acrylic with drill. Depth of preparation was adjusted to leave 4-mm coronal part of posts protruding from canals. Coronal parts were incrementally restored with resin-composite (Clearfil Majesty Posterior A2, Kuraray, Osaka, Japan). Prepared samples were subjected to chewing cycles in a chewing simulator (Chewing Simulator CS-4, Mechatronik, Germany). Flexural strengths of all groups were measured with three-point bending test. Data were analyzed by two-way ANOVA and Tukey's test (α = 0.05). After MA, flexural strengths of all posts were significantly decreased when compared with BL for all FRPs tested (p < 0.05). At BL, highest flexural strength values were obtained for ICE. After MA, similar to BL, highest flexural strength values were obtained for ICE. Only RX showed statistically significant difference when compared with ICE (p < 0.05). UC and FP showed similar flexural strength values with ICE (p > 0.05). It may be concluded that chewing forces on post-core systems may reduce the flexural strengths of FRPs.
Collapse
Affiliation(s)
- Özgür Irmak
- Eskişehir Osmangazi University, Faculty of Dentistry, Department of Restorative Dentistry, Eskişehir, Turkey.
| | - Batu Can Yaman
- Eskişehir Osmangazi University, Faculty of Dentistry, Department of Restorative Dentistry, Eskişehir, Turkey
| | | | - Ekim Onur Orhan
- Eskişehir Osmangazi University, Faculty of Dentistry, Department of Endodontics, Eskişehir, Turkey
| | - Francis K Mante
- University of Pennsylvania, School of Dental Medicine, Department of Preventive and Restorative Sciences, Philadelphia, PA, USA
| | - Fusun Ozer
- University of Pennsylvania, School of Dental Medicine, Department of Preventive and Restorative Sciences, Philadelphia, PA, USA
| |
Collapse
|
242
|
Healing of root and surrounding periodontium after root damage with miniscrew implants: a histomorphologic study in dogs. Clin Oral Investig 2017; 22:1103-1111. [PMID: 28861710 DOI: 10.1007/s00784-017-2194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The main purpose of this study was to investigate the detailed healing process of the roots and surrounding periodontium [cementum, periodontal ligament (PDL), and bone] at different time points after intentional root damage with miniscrew implants (MSIs). MATERIALS AND METHODS After cone-beam computed tomography examination and measurement, a total of 78 premolar and molar roots from five beagle dogs were intentionally damaged by implanting miniscrews in the interradicular region. MSIs were immediately removed, and the histological morphology was observed at days 0 and 3 and at weeks 1, 2, 3, 4, 6, 8, and 12 after root injury using haematoxylin and eosin and fluorescence stainings (fluorescence staining was performed at days 28 and 56). RESULTS An early new attachment of PDL adhering on to the damaged root surface was found at week 2 after root injury. Tissue differentiation of newly formed bone tissue, PDL, and cementum began at week 3. Moreover, the newly formed cementum and bone were constantly forming and mineralising at weeks 4, 6, 8, and 12, and the width of PDL gradually narrowed until close to the normal width at week 12. CONCLUSIONS This study demonstrated the complete healing process of the roots and surrounding periodontium after root damage with MSIs in dogs when the damage was limited to the cementum or dentin. CLINICAL RELEVANCE The findings of this study may help provide a better understanding of the detailed healing process in roots and PDLs damaged by MSIs.
Collapse
|
243
|
Abstract
Though cementum of the tooth root is critical for periodontal structure and tooth attachment and function, this tissue was not discovered and characterized on human teeth until a full century later than enamel and dentin. Early observations from the seventeenth to the nineteenth centuries by Marcello Malpighi, Antonie van Leeuwenhoek, Robert Blake, Jacques Tenon and Georges Cuvier founded a confusing and conflicting nomenclature that obscured the nature of cementum, often conflating it with bone. Advances in microscopy and histological procedures yielded the first detailed descriptions of human cementum in the 1830s by Jan Purkinje and Anders Retzius, who identified for the first time acellular and cellular types of cementum, and the resident cementocytes embedded in the latter. Comparative anatomy studies by Richard Owen and others over the latter half of the nineteenth century identified coronal and radicular cementum varieties across the Reptilia and Mammalia. The functional importance of cementum was not appreciated until detailed anatomical studies of the periodontium were performed by G.V. Black and others in the late nineteenth and early twentieth centuries. These early studies on cementum laid the foundation for more advanced understanding of cementum ultrastructure, composition, development, physiology, disease, genetics, repair and regeneration throughout the twentieth and into the twenty-first century.
Collapse
Affiliation(s)
- B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
244
|
Guo S, Kang J, Ji B, Guo W, Ding Y, Wu Y, Tian W. Periodontal-Derived Mesenchymal Cell Sheets Promote Periodontal Regeneration in Inflammatory Microenvironment. Tissue Eng Part A 2017; 23:585-596. [PMID: 28437177 DOI: 10.1089/ten.tea.2016.0334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shujuan Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jian Kang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, Tianjin Stomatological Hospital, Tianjin, P.R. China
| | - Baohui Ji
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
245
|
Fibulins and matrilins are novel structural components of the periodontium in the mouse. Arch Oral Biol 2017; 82:216-222. [PMID: 28654783 DOI: 10.1016/j.archoralbio.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 11/23/2022]
Abstract
Periodontitis refers to inflammatory disease of the periodontal structures (the gingiva, dental cementum, periodontal ligament (PDL) and alveolar bone) that ultimately leads to their destruction. Whereas collagens are well-examined main components of the periodontium, little is known about the other structural proteins that make up this tissue. The aim of this study was to identify new extracellular matrix (ECM) components, including fibulins and matrilins, in the periodontium of mice. After sacrificing 14 mice (Sv/129 strain), jaws were prepared. Each tissue sample contained a molar and its surrounding alveolar bone. Immunohistochemistry was carried out on paraffin-embedded sections. Our results show that mice exhibit fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 in PDL and in blood vessels of alveolar bone and PDL as well as in the pericellular matrix of osteocytes and cementocytes. In dental cementum, only fibulin-4 is expressed. For the first time, we show that fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 are essential components of the periodontal tissues. Our findings indicate an association of these proteins with collagens and oxytalan fibers that might be of future interest in regenerative periodontitis therapy.
Collapse
|
246
|
de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J Periodontal Res 2017. [PMID: 28635007 DOI: 10.1111/jre.12477] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The periodontal ligament (PDL) connects the tooth root and alveolar bone. It is an aligned fibrous network that is interposed between, and anchored to, both mineralized surfaces. Periodontal disease is common and reduces the ability of the PDL to act as a shock absorber, a barrier for pathogens and a sensor of mastication. Although disease progression can be stopped, current therapies do not primarily focus on tissue regeneration. Functional regeneration of PDL may be achieved using innovative techniques, such as tissue engineering. However, the complex fibrillar architecture of the PDL, essential to withstand high forces, makes PDL tissue engineering very challenging. This challenge may be met by studying PDL anatomy and development. Understanding PDL anatomy, development and maintenance provides clues regarding the specific events that need to be mimicked for the formation of this intricate tissue. Owing to the specific composition of the PDL, which develops by self-organization, a different approach than the typical combination of biomaterials, growth factors and regenerative cells is necessary for functional PDL engineering. Most specifically, the architecture of the new PDL to be formed does not need to be dictated by textured biomaterials but can emerge from the local mechanical loading conditions. Elastic hydrogels are optimal to fill the space properly between tooth and bone, may house cells and growth factors to enhance regeneration and allow self-optimization by the alignment to local stresses. We suggest that cells and materials should be placed in a proper mechanical environment to initiate a process of self-organization resulting in a functional architecture of the PDL.
Collapse
Affiliation(s)
- T de Jong
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - A D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - V Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - T H Smit
- Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
247
|
Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway. Arch Oral Biol 2017; 78:100-108. [DOI: 10.1016/j.archoralbio.2017.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
|
248
|
Seidel K, Marangoni P, Tang C, Houshmand B, Du W, Maas RL, Murray S, Oldham MC, Klein OD. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. eLife 2017; 6:e24712. [PMID: 28475038 PMCID: PMC5419740 DOI: 10.7554/elife.24712] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity.
Collapse
Affiliation(s)
- Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Pauline Marangoni
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Tang
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bahar Houshmand
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Wen Du
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Richard L Maas
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Michael C Oldham
- Department of Neurological SurgeryUniversity of California, San FranciscoSan FranciscoUnited States
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial BiologyUniversity of California, San FranciscoSan FranciscoUnited States
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Pediatrics and Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
249
|
Lin JD, Jang AT, Kurylo MP, Hurng J, Yang F, Yang L, Pal A, Chen L, Ho SP. Periodontal ligament entheses and their adaptive role in the context of dentoalveolar joint function. Dent Mater 2017; 33:650-666. [PMID: 28476202 DOI: 10.1016/j.dental.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. METHODS Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. RESULTS Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. SIGNIFICANCE A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing "functional regeneration and adaptation" strategies with an emphasis on restoring physiologic joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew T Jang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Michael P Kurylo
- South of Market Health Center, San Francisco, CA 94103, United States
| | - Jonathan Hurng
- Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Feifei Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lynn Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Arvin Pal
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Ling Chen
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
250
|
First Evidence for Regeneration of the Periodontium to Mineral Trioxide Aggregate in Human Teeth. J Endod 2017; 43:715-722. [DOI: 10.1016/j.joen.2016.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023]
|