201
|
Population Genetics of Franciscana Dolphins (Pontoporia blainvillei): Introducing a New Population from the Southern Edge of Their Distribution. PLoS One 2015. [PMID: 26221960 PMCID: PMC4519281 DOI: 10.1371/journal.pone.0132854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Due to anthropogenic factors, the franciscana dolphin, Pontoporia blainvillei, is the most threatened small cetacean on the Atlantic coast of South America. Four Franciscana Management Areas have been proposed: Espiritu Santo to Rio de Janeiro (FMA I), São Paulo to Santa Catarina (FMA II), Rio Grande do Sul to Uruguay (FMA III), and Argentina (FMA IV). Further genetic studies distinguished additional populations within these FMAs. We analyzed the population structure, phylogeography, and demographic history in the southernmost portion of the species range. From the analysis of mitochondrial DNA control region sequences, 5 novel haplotypes were found, totalizing 60 haplotypes for the entire distribution range. The haplotype network did not show an apparent phylogeographical signal for the southern FMAs. Two populations were identified: Monte Hermoso (MH) and Necochea (NC)+Claromecó (CL)+Río Negro (RN). The low levels of genetic variability, the relative constant size over time, and the low levels of gene flow may indicate that MH has been colonized by a few maternal lineages and became isolated from geographically close populations. The apparent increase in NC+CL+RN size would be consistent with the higher genetic variability found, since genetic diversity is generally higher in older and expanding populations. Additionally, RN may have experienced a recent split from CL and NC; current high levels of gene flow may be occurring between the latter ones. FMA IV would comprise four franciscana dolphin populations: Samborombón West+Samborombón South, Cabo San Antonio+Buenos Aires East, NC+CL+Buenos Aires Southwest+RN and MH. Results achieved in this study need to be taken into account in order to ensure the long-term survival of the species.
Collapse
|
202
|
Morin PA, Parsons KM, Archer FI, Ávila-Arcos MC, Barrett-Lennard LG, Dalla Rosa L, Duchêne S, Durban JW, Ellis GM, Ferguson SH, Ford JK, Ford MJ, Garilao C, Gilbert MTP, Kaschner K, Matkin CO, Petersen SD, Robertson KM, Visser IN, Wade PR, Ho SYW, Foote AD. Geographic and temporal dynamics of a global radiation and diversification in the killer whale. Mol Ecol 2015; 24:3964-79. [PMID: 26087773 DOI: 10.1111/mec.13284] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350 000 years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification.
Collapse
Affiliation(s)
- Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kim M Parsons
- Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Frederick I Archer
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Lance G Barrett-Lennard
- Vancouver Aquarium Marine Science Centre, 845 Avison Way, Vancouver, British Columbia, V6G 3E2, Canada
| | - Luciano Dalla Rosa
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km. 8 s/n, Campus Carreiros, Rio Grande, RS, 96201-900, Brazil
| | - Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John W Durban
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA.,Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Graeme M Ellis
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, British Columbia, Canada
| | - Steven H Ferguson
- Fisheries & Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6, Canada
| | - John K Ford
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, British Columbia, Canada
| | - Michael J Ford
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA 2725 Montlake Blvd E, Seattle, WA, USA
| | - Cristina Garilao
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Düsternbrooker Weg 2, 24105, Kiel, Germany
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6845, Australia
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University of Freiburg, Tennenbacher Strasse 4, 79106, Freiburg, Germany
| | - Craig O Matkin
- North Gulf Oceanic Society, 3430 Main St. Ste. B1, Homer, AK, 99603, USA
| | - Stephen D Petersen
- Assiniboine Park Zoo, 2595 Roblin Blvd, Winnipeg, Manitoba, R3P 2N7, Canada
| | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Ingrid N Visser
- Orca Research Trust, P.O. Box 402043, Tutukaka, Northland, 0153, New Zealand
| | - Paul R Wade
- Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
203
|
Ruane S, Torres-Carvajal O, Burbrink FT. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis). PLoS One 2015; 10:e0128543. [PMID: 26083467 PMCID: PMC4470684 DOI: 10.1371/journal.pone.0128543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/28/2015] [Indexed: 01/02/2023] Open
Abstract
The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.
Collapse
Affiliation(s)
- Sara Ruane
- Department of Biology, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, United States of America
- The Graduate Center, City University of New York, 365 5 Avenue, New York, NY, 10016, United States of America
- * E-mail:
| | - Omar Torres-Carvajal
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Apartado 17-01-2184, Quito, Ecuador
| | - Frank T. Burbrink
- Department of Biology, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, United States of America
- The Graduate Center, City University of New York, 365 5 Avenue, New York, NY, 10016, United States of America
| |
Collapse
|
204
|
Large-scale recent expansion of European patrilineages shown by population resequencing. Nat Commun 2015; 6:7152. [PMID: 25988751 PMCID: PMC4441248 DOI: 10.1038/ncomms8152] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
The proportion of Europeans descending from Neolithic farmers ∼ 10 thousand years ago (KYA) or Palaeolithic hunter-gatherers has been much debated. The male-specific region of the Y chromosome (MSY) has been widely applied to this question, but unbiased estimates of diversity and time depth have been lacking. Here we show that European patrilineages underwent a recent continent-wide expansion. Resequencing of 3.7 Mb of MSY DNA in 334 males, comprising 17 European and Middle Eastern populations, defines a phylogeny containing 5,996 single-nucleotide polymorphisms. Dating indicates that three major lineages (I1, R1a and R1b), accounting for 64% of our sample, have very recent coalescent times, ranging between 3.5 and 7.3 KYA. A continuous swathe of 13/17 populations share similar histories featuring a demographic expansion starting ∼ 2.1-4.2 KYA. Our results are compatible with ancient MSY DNA data, and contrast with data on mitochondrial DNA, indicating a widespread male-specific phenomenon that focuses interest on the social structure of Bronze Age Europe.
Collapse
|
205
|
Applying Effective Population Size Estimates of Kandelia obovata Sheue, Liu and Yong to Conservation and Restoration Management. FORESTS 2015. [DOI: 10.3390/f6051439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
206
|
Exploring population size changes using SNP frequency spectra. Nat Genet 2015; 47:555-9. [PMID: 25848749 PMCID: PMC4414822 DOI: 10.1038/ng.3254] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/26/2015] [Indexed: 02/05/2023]
Abstract
Inferring demographic history is an important task in population genetics. Many existing inference methods are based on pre-defined simplified population models, which are more suitable for hypothesis testing than for exploratory analysis. We developed a novel model-flexible method called stairway plot, which infers population size changes over time using SNP frequency spectra. This method is applicable for whole-genome sequences of hundreds of individuals. Using extensive simulation we demonstrated the usefulness of the method for inferring demographic history, especially recent population size changes. The method was applied to the whole genome sequence data of nine populations from the 1000 Genomes Project, and showed a pattern of human population fluctuations from 10 to 200 thousand years ago.
Collapse
|
207
|
Duchêne S, Duchêne D, Holmes EC, Ho SYW. The Performance of the Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data. Mol Biol Evol 2015; 32:1895-906. [PMID: 25771196 DOI: 10.1093/molbev/msv056] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rates and timescales of viral evolution can be estimated using phylogenetic analyses of time-structured molecular sequences. This involves the use of molecular-clock methods, calibrated by the sampling times of the viral sequences. However, the spread of these sampling times is not always sufficient to allow the substitution rate to be estimated accurately. We conducted Bayesian phylogenetic analyses of simulated virus data to evaluate the performance of the date-randomization test, which is sometimes used to investigate whether time-structured data sets have temporal signal. An estimate of the substitution rate passes this test if its mean does not fall within the 95% credible intervals of rate estimates obtained using replicate data sets in which the sampling times have been randomized. We find that the test sometimes fails to detect rate estimates from data with no temporal signal. This error can be minimized by using a more conservative criterion, whereby the 95% credible interval of the estimate with correct sampling times should not overlap with those obtained with randomized sampling times. We also investigated the behavior of the test when the sampling times are not uniformly distributed throughout the tree, which sometimes occurs in empirical data sets. The test performs poorly in these circumstances, such that a modification to the randomization scheme is needed. Finally, we illustrate the behavior of the test in analyses of nucleotide sequences of cereal yellow dwarf virus. Our results validate the use of the date-randomization test and allow us to propose guidelines for interpretation of its results.
Collapse
Affiliation(s)
- Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Edward C Holmes
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
208
|
Kumar VP, Sharma LK, Shukla M, Sathyakumar S. Pragmatic perspective on conservation genetics and demographic history of the last surviving population of Kashmir red deer (Cervus elaphus hanglu) in India. PLoS One 2015; 10:e0117069. [PMID: 25671567 PMCID: PMC4324630 DOI: 10.1371/journal.pone.0117069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022] Open
Abstract
The hangul (Cervus elaphus hanglu) is of great conservation concern because it represents the easternmost and only hope for an Asiatic survivor of the red deer species in the Indian subcontinent. Despite the rigorous conservation efforts of the Department of Wildlife Protection in Jammu & Kashmir, the hangul population has experienced a severe decline in numbers and range contraction in the past few decades. The hangul population once abundant in the past has largely become confined to the Dachigam landscape, with a recent population estimate of 218 individuals. We investigated the genetic variability and demographic history of the hangul population and found that it has shown a relatively low diversity estimates when compared to other red deer populations of the world. Neutrality tests, which are used to evaluate demographic effects, did not support population expansion, and the multimodal pattern of mismatch distribution indicated that the hangul population is under demographic equilibrium. Furthermore, the hangul population did not exhibit any signature of bottleneck footprints in the past, and Coalescent Bayesian Skyline plot analysis revealed that the population had not experienced any dramatic changes in the effective population size over the last several thousand years. We observed a strong evidence of sub-structuring in the population, wherein the majority of individuals were assigned to different clusters in Bayesian cluster analysis. Population viability analysis demonstrated insignificant changes in the mean population size, with a positive growth rate projected for the next hundred years. We discuss the phylogenetic status of hangul for the first time among the other red deer subspecies of the world and strongly recommend to upgrade hangul conservation status under IUCN that should be discrete from the other red deer subspecies of the world to draw more conservation attention from national and international bodies.
Collapse
Affiliation(s)
- Ved P Kumar
- Wildlife Institute of India, Chandrabani, Dehradun 248 001, Uttarakhand, India
| | - Lalit K Sharma
- Wildlife Institute of India, Chandrabani, Dehradun 248 001, Uttarakhand, India
| | - Malay Shukla
- Gujarat Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | | |
Collapse
|
209
|
Zaytseva OO, Gunbin KV, Mglinets AV, Kosterin OE. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene 2015; 556:235-44. [PMID: 25476028 DOI: 10.1016/j.gene.2014.11.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/07/2014] [Accepted: 11/29/2014] [Indexed: 11/16/2022]
Abstract
Two histone H1 subtype genes, His7 and His5, were sequenced in a set of 56 pea accessions. Phylogenetic reconstruction based on concatenated His5 and His7 sequences had three main clades. First clade corresponded to Pisum fulvum, the next divergence separated a clade inside Pisum sativum in the broad sense that did not correspond strictly to any proposed taxonomical subdivisions. According to our estimations, the earliest divergence separating P. fulvum occurred 1.7±0.4MYA. The other divergence with high bootstrap support that separated two P. sativum groups took place approximately 1.3±0.3MYA. Thus, the main divergences in the genus took place either in late Pliocene or in early Pleistocene, the time of onset of the profound climate cooling in the northern hemisphere. The ω=K(a)/K(s) ratio was 2.5 times higher for His5 sequences than for His7. Thus, His7 gene, coding for a unique subtype specific for actively growing tissues, might have evolved under stricter evolutionary constraints than His5, that codes for a minor H1 subtype with less specific expression pattern. For this reason phylogenetic reconstructions separately obtained from His5 sequences resolved tree topology much better than those obtained from His7 sequences. Computational estimation of population dynamic parameters in the genus Pisum L. from His5-His7 sequences using IMa2 software revealed a decrease of effective population size on the early stage of Pisum evolution.
Collapse
Affiliation(s)
- Olga O Zaytseva
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Konstantin V Gunbin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Anatoliy V Mglinets
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk 630090, Russia
| | - Oleg E Kosterin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
210
|
Franzo G, Dotto G, Cecchinato M, Pasotto D, Martini M, Drigo M. Phylodynamic analysis of porcine reproductive and respiratory syndrome virus (PRRSV) in Italy: action of selective pressures and interactions between different clades. INFECTION GENETICS AND EVOLUTION 2015; 31:149-57. [PMID: 25660037 DOI: 10.1016/j.meegid.2015.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most relevant and challenging infectious disease to affect swine breeding. Despite this, several aspects of the virus' evolution and virus-host interaction are still poorly understood and largely based on knowledge obtained through in vitro or in vivo experimental infections. Due to peculiar experimental conditions, our understanding is often contradictory and difficult to infer with respect to actual field conditions. Our phylodynamic study, based on ORF5 sequences of 141 samples collected in Italy from 1993 to 2012, explores different aspects of PRRSV epidemiology, evolution, and virus-host interaction. Two major clades, belonging to Type 1 subtype 1, were demonstrated to co-circulate while harboring a relevant intra- and inter-clade genetic diversity. Most Recent Common Ancestor (MRCA), evolution rates, and population dynamics were estimated using a serial coalescent-based approach, and different demographic histories were reconstructed for the two clades. Analysis of selective pressure revealed that sites subjected to diversifying selection were mainly located in the region of glycoprotein 5 (GP5) exposed to the host environment. Similarly, the vast majority of strains were highly glycosylated, confirming the proposed protective role of the glycan shield against the humoral immune response. Overall, our study reports both interactions among the viral populations as well as between virus and host, and their relevance in shaping viral evolution: different population dynamics over time seem to reflect a competition between clades. Some evidence argues in favor of the role of immune pressure in affecting GP5 evolution, including frequent changes in the region exposed to the host immune response, and preserving glycosylation profiles that can hamper humoral immunity.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Giorgia Dotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Marco Martini
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
211
|
Garrick RC, Kajdacsi B, Russello MA, Benavides E, Hyseni C, Gibbs JP, Tapia W, Caccone A. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecol Evol 2015; 5:676-94. [PMID: 25691990 PMCID: PMC4328771 DOI: 10.1002/ece3.1388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (N e ) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical N e of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary N e were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, N e generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should facilitate prioritization of management action.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Michael A Russello
- Department of Biology, University of British ColumbiaOkanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Chaz Hyseni
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New YorkSyracuse, New York, 13210
| | - Washington Tapia
- Department of Applied Research, Galápagos National Park ServicePuerto Ayora, Galápagos, Ecuador
- Biodiver S.A. ConsultoresKm 5 Vía a Baltra, Isla Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| |
Collapse
|
212
|
Ho PT, Kwan YS, Kim B, Won YJ. Postglacial range shift and demographic expansion of the marine intertidal snail Batillaria attramentaria. Ecol Evol 2015; 5:419-35. [PMID: 25691968 PMCID: PMC4314273 DOI: 10.1002/ece3.1374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 11/26/2022] Open
Abstract
To address the impacts of past climate changes, particularly since the last glacial period, on the history of the distribution and demography of marine species, we investigated the evolutionary and demographic responses of the intertidal batillariid gastropod, Batillaria attramentaria, to these changes, using the snail as a model species in the northwest Pacific. We applied phylogeographic and divergence population genetic approaches to mitochondrial COI sequences from B. attramentaria. To cover much of its distributional range, 197 individuals collected throughout Korea and 507 publically available sequences (mostly from Japan) were used. Finally, a Bayesian skyline plot (BSP) method was applied to reconstruct the demographic history of this species. We found four differentiated geographic groups around Korea, confirming the presence of two distinct, geographically subdivided haplogroups on the Japanese coastlines along the bifurcated routes of the warm Tsushima and Kuroshio Currents. These two haplogroups were estimated to have begun to split approximately 400,000 years ago. Population divergence analysis supported the hypothesis that the Yellow Sea was populated by a northward range expansion of a small fraction of founders that split from a southern ancestral population since the last glacial maximum (LGM: 26,000-19,000 years ago), when the southern area became re-submerged. BSP analyses on six geographically and genetically defined groups in Korea and Japan consistently demonstrated that each group has exponentially increased approximately since the LGM. This study resolved the phylogeography of B. attramentaria as a series of events connected over space and time; while paleoceanographic conditions determining the connectivity of neighboring seas in East Asia are responsible for the vicariance of this species, the postglacial sea-level rise and warming temperatures have played a crucial role in rapid range shifts and broad demographic expansions of its populations.
Collapse
Affiliation(s)
- Phuong-Thao Ho
- Division of EcoCreative, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Ye-Seul Kwan
- Division of EcoScience, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Boa Kim
- Division of EcoScience, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Yong-Jin Won
- Division of EcoCreative, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
- Division of EcoScience, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
- Department of Life Science, Ewha Womans University52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| |
Collapse
|
213
|
Avitia M, Escalante AE, Rebollar EA, Moreno-Letelier A, Eguiarte LE, Souza V. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence. PeerJ 2014; 2:e696. [PMID: 25548732 PMCID: PMC4273935 DOI: 10.7717/peerj.696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/22/2014] [Indexed: 01/19/2023] Open
Abstract
Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas) that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1) performed comparative phylogenetic analyses, (2) described the genetic structure of bacterial populations, (3) calculated descriptive parameters of genetic diversity, (4) performed neutrality tests, and (5) conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes.
Collapse
Affiliation(s)
- Morena Avitia
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Ana E Escalante
- Departamento de Ecología de la Biodiversidad, Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Eria A Rebollar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México ; Biology Department, James Madison University , Harrisonburg VA , USA
| | | | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| |
Collapse
|
214
|
Bernard AM, Shivji MS, Prince ED, Hazin FHV, Arocha F, Domingo A, Feldheim KA. Comparative population genetics and evolutionary history of two commonly misidentified billfishes of management and conservation concern. BMC Genet 2014; 15:141. [PMID: 25494814 PMCID: PMC4278234 DOI: 10.1186/s12863-014-0141-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Misidentifications between exploited species may lead to inaccuracies in population assessments, with potentially irreversible conservation ramifications if overexploitation of either species is occurring. A notable showcase is provided by the realization that the roundscale spearfish (Tetrapturus georgii), a recently validated species, has been historically misidentified as the morphologically very similar and severely overfished white marlin (Kajikia albida) (IUCN listing: Vulnerable). In effect, no information exists on the population status and evolutionary history of the enigmatic roundscale spearfish, a large, highly vagile and broadly distributed pelagic species. We provide the first population genetic evaluation of the roundscale spearfish, utilizing nuclear microsatellite and mitochondrial DNA sequence markers. Furthermore, we re-evaluated existing white marlin mitochondrial genetic data and present our findings in a comparative context to the roundscale spearfish. RESULTS Microsatellite and mitochondrial (control region) DNA markers provided mixed evidence for roundscale spearfish population differentiation between the western north and south Atlantic regions, depending on marker-statistical analysis combination used. Mitochondrial DNA analyses provided strong signals of historical population growth for both white marlin and roundscale spearfish, but higher genetic diversity and effective female population size (1.5-1.9X) for white marlin. CONCLUSIONS The equivocal indications of roundscale spearfish population structure, combined with a smaller effective female population size compared to the white marlin, already a species of concern, suggests that a species-specific and precautionary management strategy recognizing two management units is prudent for this newly validated billfish.
Collapse
Affiliation(s)
- Andrea M Bernard
- The Guy Harvey Research Institute, Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, FL, 33004, USA.
| | - Mahmood S Shivji
- The Guy Harvey Research Institute, Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, FL, 33004, USA.
| | - Eric D Prince
- National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL, 33149, USA.
| | - Fabio H V Hazin
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-032, Brazil.
| | - Freddy Arocha
- Instituto Oceanográfico de Venezuela, Universidad de Oriente, Apartado de Correos, 204, Cumaná, 6101, Venezuela.
| | - Andres Domingo
- Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Constituyente 1497, Montevideo, CP, 11200, Uruguay.
| | - Kevin A Feldheim
- The Field Museum of Natural History, Pritzker Laboratory for Molecular Systematics and Evolution, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA.
| |
Collapse
|
215
|
Orlando L, Cooper A. Using Ancient DNA to Understand Evolutionary and Ecological Processes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091712] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of population genetics have revealed dynamic patterns of change in many large vertebrates, featuring localized extinctions, migrations, and population bottlenecks. The pronounced climate cycles of the Late Pleistocene have played a key role, reducing the taxonomic and genetic diversity of many taxa and shaping modern populations. Importantly, the complex series of events revealed by ancient DNA data is seldom reflected in current biogeographic patterns. DNA preserved in ancient sediments and coprolites has been used to characterize a range of paleoenvironments and reconstruct functional relationships in paleoecological systems. In the near future, genome-level surveys of ancient populations will play an increasingly important role in revealing, calibrating, and testing evolutionary processes.
Collapse
Affiliation(s)
- Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K Copenhagen, Denmark;,
| | - Alan Cooper
- Australian Center for Ancient DNA, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
216
|
Ho SYW, Duchêne S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 2014; 23:5947-65. [DOI: 10.1111/mec.12953] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Y. W. Ho
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Sebastián Duchêne
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
217
|
Xu W, Yin W, Chen A, Li J, Lei G, Fu C. Phylogeographical analysis of a cold-temperate freshwater fish, the Amur sleeper (Perccottus glenii) in the Amur and Liaohe River basins of Northeast Asia. Zoolog Sci 2014; 31:671-9. [PMID: 25284386 DOI: 10.2108/zs130046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Amur sleeper Perccottus glenii (Perciformes, Gobioidei, Odontobutidae) is well known as an invasive fish in the river basins of Eastern and Central Europe, but its genetic background is unavailable across its native habitats in northeast Asia. In this study, we used the mitochondrial cytochrome b gene by sampling 19 populations of P. glenii across its native distributional areas of Liaohe and Amur River basins to explore its evolutionary history. Phylogenetic analyses identified three major clades within P. glenii, among which Clade A and Clade B were co-distributed in the Liaohe and Amur River basins, and Clade C was restricted to the latter. Molecular dating showed that the splits of Clades A, B and C have happened in the late Early-early Middle Pleistocene and the most recent common ancestors of these clades have been presented in the late Middle-early Late Pleistocene. The P. glenii showed very high levels of genetic structure among populations (ΦST = 0.801), probably due to the characters of its life histories with very limited dispersal ability. The admixture of different clades in some populations of P. glenii probably reflects historical secondary contact. These findings indicate that Pleistocene climatic oscillation and river capture were major determinants for genetic variations and evolutionary history of the P. glenii.
Collapse
Affiliation(s)
- Wang Xu
- 1 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
218
|
Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M. Investigating population history using temporal genetic differentiation. Mol Biol Evol 2014; 31:2516-27. [PMID: 24939468 PMCID: PMC4137715 DOI: 10.1093/molbev/msu192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The rapid advance of sequencing technology, coupled with improvements in molecular methods for obtaining genetic data from ancient sources, holds the promise of producing a wealth of genomic data from time-separated individuals. However, the population-genetic properties of time-structured samples have not been extensively explored. Here, we consider the implications of temporal sampling for analyses of genetic differentiation and use a temporal coalescent framework to show that complex historical events such as size reductions, population replacements, and transient genetic barriers between populations leave a footprint of genetic differentiation that can be traced through history using temporal samples. Our results emphasize explicit consideration of the temporal structure when making inferences and indicate that genomic data from ancient individuals will greatly increase our ability to reconstruct population history.
Collapse
Affiliation(s)
- Pontus Skoglund
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Per Sjödin
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Tobias Skoglund
- Department of Evolutionary Biology, Uppsala University, Uppsala, SwedenDepartment of Information Technology, Uppsala University, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Program in Plant Ecology and Evolution, Uppsala University, Uppsala, SwedenScience for Life Laboratory, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Uppsala, SwedenScience for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
219
|
Chan YL, Schanzenbach D, Hickerson MJ. Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation. Mol Biol Evol 2014; 31:2501-15. [PMID: 24925925 PMCID: PMC4137712 DOI: 10.1093/molbev/msu187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate.
Collapse
Affiliation(s)
- Yvonne L Chan
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa
| | | | - Michael J Hickerson
- Biology Department, City College of New YorkThe Graduate Center, City University of New York
| |
Collapse
|
220
|
Hope AG, Ho SYW, Malaney JL, Cook JA, Talbot SL. ACCOUNTING FOR RATE VARIATION AMONG LINEAGES IN COMPARATIVE DEMOGRAPHIC ANALYSES. Evolution 2014; 68:2689-700. [DOI: 10.1111/evo.12469] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/22/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Andrew G. Hope
- U.S. Geological Survey; Alaska Science Center; 4210 University Drive Anchorage Alaska 99508
| | - Simon Y. W. Ho
- School of Biological Sciences; Edgeworth David Building A11; The University of Sydney; Sydney New South Wales 2006 Australia
| | - Jason L. Malaney
- Department of Natural Resources and Environmental Science; University of Nevada-Reno; Reno Nevada 89557
| | - Joseph A. Cook
- Department of Biology; University of New Mexico; Museum of Southwestern Biology MSC03 2020; Albuquerque New Mexico 87131
| | - Sandra L. Talbot
- U.S. Geological Survey; Alaska Science Center; 4210 University Drive Anchorage Alaska 99508
| |
Collapse
|
221
|
Licona-Vera Y, Ornelas JF. Genetic, ecological and morphological divergence between populations of the endangered Mexican Sheartail hummingbird (Doricha eliza). PLoS One 2014; 9:e101870. [PMID: 24992589 PMCID: PMC4081810 DOI: 10.1371/journal.pone.0101870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
The Mexican Sheartail (Doricha eliza), an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation.
Collapse
Affiliation(s)
- Yuyini Licona-Vera
- Departamento de Biología Evolutiva, Instituto de Ecología, AC, Xalapa, Veracruz, Mexico
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, AC, Xalapa, Veracruz, Mexico
- * E-mail:
| |
Collapse
|
222
|
Fontaine MC, Roland K, Calves I, Austerlitz F, Palstra FP, Tolley KA, Ryan S, Ferreira M, Jauniaux T, Llavona A, Öztürk B, Öztürk AA, Ridoux V, Rogan E, Sequeira M, Siebert U, Vikingsson GA, Borrell A, Michaux JR, Aguilar A. Postglacial climate changes and rise of three ecotypes of harbour porpoises,Phocoena phocoena, in western Palearctic waters. Mol Ecol 2014; 23:3306-21. [DOI: 10.1111/mec.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 05/11/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Michaël C. Fontaine
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN 46556 USA
- Ecologie, Systématique et Evolution; UMR8079; Université Paris-Sud; F-91405 Orsay France
- CNRS; 91405 Orsay France
- AgroParisTech; F-91405 Orsay France
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Kathleen Roland
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
- Research Unit in Environmental and Evolutionary Biology (URBE); Narilis (Namur Research Institute for Lifesciences); University of Namur (FUNDP); Rue de Bruxelles 61 B-5000 Namur Belgium
| | - Isabelle Calves
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
- Laboratoire LEMAR (UMR CNRS/UBO/IRD/Ifremer 6539); Institut Universitaire Européen de la Mer; Technopôle Brest-Iroise; Rue Dumont d'Urville 29280 Plouzané France
| | - Frederic Austerlitz
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Friso P. Palstra
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Krystal A. Tolley
- Applied Biodiversity Research; South African National Biodiversity Institute; Private Bag X7 Claremont 7735 Cape Town South Africa
- Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Sean Ryan
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN 46556 USA
| | - Marisa Ferreira
- Departmento de Biologia; Sociedade Portuguesa de Vida Selvagem & Molecular and Environmental Biology Centre (CBMA); Universidade de Minho; Campus de Gualtar 4710-047 Braga Portugal
| | - Thierry Jauniaux
- Department of Pathology; University of Liège; Sart Tilman B43 4000 Liège Belgium
| | - Angela Llavona
- C.E.M.MA. Coordinadora para o Estudio dos Mamíferos MAriños; Apartado 15 36380 Nigrán Pontevedra Spain
| | - Bayram Öztürk
- Faculty of Fisheries; Istanbul University; Ordu Cad. No.200 34320 Laleli-Istanbul Turkey
- Turkish Marine Research Foundation (TUDAV) PK 10; 34820 Beykoz-Istanbul Turkey
| | - Ayaka A. Öztürk
- Faculty of Fisheries; Istanbul University; Ordu Cad. No.200 34320 Laleli-Istanbul Turkey
- Turkish Marine Research Foundation (TUDAV) PK 10; 34820 Beykoz-Istanbul Turkey
| | - Vincent Ridoux
- Littoral Environnement et Sociétés; UMR 7266; Université de La Rochelle/CNRS; F-17000 La Rochelle France
- Observatoire PELAGIS - Systèmes d'Observation pour la Conservation des Mammifères et des Oiseaux Marins; UMS 3462 Université de La Rochelle/CNRS; F-17000 La Rochelle France
| | - Emer Rogan
- School of Biological; Earth and Environmental Sciences; University College Cork; Cork Ireland
| | - Marina Sequeira
- Instituto da Conservação da Natureza e das Florestas; Rua de Santa Marta 55 1169-230 Lisboa Portugal
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research; University of Veterinary Medicine Hannover, Foundation; Werftstr. 6 25761 Büsum Germany
| | | | - Asunción Borrell
- Department of Animal Biology and IRBio; Faculty of Biology; University of Barcelona; Diagonal 643 08071 Barcelona Spain
| | - Johan R. Michaux
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
| | - Alex Aguilar
- Department of Animal Biology and IRBio; Faculty of Biology; University of Barcelona; Diagonal 643 08071 Barcelona Spain
| |
Collapse
|
223
|
Houston DD, Shiozawa DK, Smith BT, Riddle BR. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow. BMC Evol Biol 2014; 14:111. [PMID: 24885371 PMCID: PMC4038058 DOI: 10.1186/1471-2148-14-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022] Open
Abstract
Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper Columbia River drainage.
Collapse
Affiliation(s)
- Derek D Houston
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154-4004, USA.
| | | | | | | |
Collapse
|
224
|
Vignaud TM, Maynard JA, Leblois R, Meekan MG, Vázquez-Juárez R, Ramírez-Macías D, Pierce SJ, Rowat D, Berumen ML, Beeravolu C, Baksay S, Planes S. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol Ecol 2014; 23:2590-601. [DOI: 10.1111/mec.12754] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas M. Vignaud
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| | - Jeffrey A. Maynard
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14568 USA
| | | | - Mark G. Meekan
- Australian Institute of Marine Science; UWA Oceans Institute (MO96); 35 Stirling Hwy Crawley WA 6009 Australia
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biologicas del Noroeste; Mar Bermejo 195, Col. Playa Palo de Santa Rita La Paz B.C.S. 23096 Mexico
| | - Dení Ramírez-Macías
- Centro de Investigaciones Biologicas del Noroeste; Mar Bermejo 195, Col. Playa Palo de Santa Rita La Paz B.C.S. 23096 Mexico
- Tiburón Ballena México proyecto de Conciencia Mexico; Manatí 4802, Col. Esperanza III La Paz B.C.S. 23090 Mexico
| | - Simon J. Pierce
- Marine Megafauna Foundation; 3024 Frandoras Circle Oakley CA 94561 USA
- Wild Me; Praia do Tofo; Inhambane Mozambique
| | - David Rowat
- Marine Conservation Society Seychelles; PO Box 1299 Victoria Mahe Seychelles
| | - Michael L. Berumen
- Red Sea Research Center; King Abdullah University of Science and Technology; 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Sandra Baksay
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| | - Serge Planes
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| |
Collapse
|
225
|
Xue DX, Wang HY, Zhang T, Liu JX. Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers. PLoS One 2014; 9:e95436. [PMID: 24789175 PMCID: PMC4006771 DOI: 10.1371/journal.pone.0095436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/27/2014] [Indexed: 11/24/2022] Open
Abstract
The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata.
Collapse
Affiliation(s)
- Dong-Xiu Xue
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Wang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Tao Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- * E-mail: (TZ); (JXL)
| | - Jin-Xian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- * E-mail: (TZ); (JXL)
| |
Collapse
|
226
|
Torres C, Lema C, Dohmen FG, Beltran F, Novaro L, Russo S, Freire MC, Velasco-Villa A, Mbayed VA, Cisterna DM. Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol Ecol 2014; 23:2340-2352. [PMID: 24661865 PMCID: PMC4870601 DOI: 10.1111/mec.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Common vampire bat populations distributed from Mexico to Argentina are important rabies reservoir hosts in Latin America. The aim of this work was to analyse the population structure of the rabies virus (RABV) variants associated with vampire bats in the Americas and to study their phylodynamic pattern within Argentina. The phylogenetic analysis based on all available vampire bat-related N gene sequences showed both a geographical and a temporal structure. The two largest groups of RABV variants from Argentina were isolated from northwestern Argentina and from the central western zone of northeastern Argentina, corresponding to livestock areas with different climatic, topographic and biogeographical conditions, which determined their dissemination and evolutionary patterns. In addition, multiple introductions of the infection into Argentina, possibly from Brazil, were detected. The phylodynamic analysis suggests that RABV transmission dynamics is characterized by initial epizootic waves followed by local enzootic cycles with variable persistence. Anthropogenic interventions in the ecosystem should be assessed taking into account not only the environmental impact but also the potential risk of disease spreading through dissemination of current RABV lineages or the emergence of novel ones associated with vampire bats.
Collapse
Affiliation(s)
- C Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
- CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - C Lema
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - F Gury Dohmen
- Instituto de Zoonosis "Dr. Luis Pasteur", Av Díaz Vélez 4821 Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - F Beltran
- Instituto de Zoonosis "Dr. Luis Pasteur", Av Díaz Vélez 4821 Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - L Novaro
- DILAB, SENASA, Av. Paseo Colon 367, Ciudad Autónoma de Buenos Aires C1063ACD, Argentina
| | - S Russo
- DILAB, SENASA, Av. Paseo Colon 367, Ciudad Autónoma de Buenos Aires C1063ACD, Argentina
| | - M C Freire
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - A Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, Georgia 30333, USA
| | - V A Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
- CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - D M Cisterna
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán," Av.Velez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| |
Collapse
|
227
|
Fahey AL, Ricklefs RE, Dewoody JA. DNA-based approaches for evaluating historical demography in terrestrial vertebrates. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anna L. Fahey
- Departments of Forestry and Natural Resource; Purdue University; West Lafayette Indiana 47907 USA
| | - Robert E. Ricklefs
- Department of Biology; University of Missouri at St Louis; St Louis MO 63121 USA
| | - J. Andrew Dewoody
- Departments of Forestry and Natural Resource; Purdue University; West Lafayette Indiana 47907 USA
- Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
| |
Collapse
|
228
|
Wilfert L, Jiggins FM. Flies on the move: an inherited virus mirrors Drosophila melanogaster's elusive ecology and demography. Mol Ecol 2014; 23:2093-104. [PMID: 24597631 DOI: 10.1111/mec.12709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
Abstract
Vertically transmitted parasites rely on their host's reproduction for their transmission, leading to the evolutionary histories of both parties being intimately entwined. Parasites can thus serve as a population genetic magnifying glass for their host's demographic history. Here, we study the fruitfly Drosophila melanogaster's vertically transmitted sigma virus DMelSV. The virus has a high mutation rate and low effective population size, allowing us to reconstruct at a fine scale how the combined forces of the movement of flies and selection on the virus have shaped its migration patterns. We found that the virus is likely to have spread to Europe from Africa, mirroring the colonization route of Drosophila. The North American DMelSV population appears to be the result of a recent single immigration from Europe, invading together with its host in the late 19th century. Across Europe, DMelSV migration rates are low and populations are highly genetically structured, likely reflecting limited fly movement. Despite being intolerant of extreme cold, viral diversity suggests that fly populations can persist in harsh continental climates and that recolonization from the warmer south plays a minor role. In conclusion, studying DMelSV can provide insights into the poorly understood ecology of D. melanogaster, one of the best-studied organisms in biology.
Collapse
Affiliation(s)
- Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | |
Collapse
|
229
|
Qi XS, Yuan N, Comes HP, Sakaguchi S, Qiu YX. A strong 'filter' effect of the East China Sea land bridge for East Asia's temperate plant species: inferences from molecular phylogeography and ecological niche modelling of Platycrater arguta (Hydrangeaceae). BMC Evol Biol 2014; 14:41. [PMID: 24593236 PMCID: PMC4015774 DOI: 10.1186/1471-2148-14-41] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/25/2014] [Indexed: 11/27/2022] Open
Abstract
Background In East Asia, an increasing number of studies on temperate forest tree species find evidence for migration and gene exchange across the East China Sea (ECS) land bridge up until the last glacial maximum (LGM). However, it is less clear when and how lineages diverged in this region, whether in full isolation or in the face of post-divergence gene flow. Here, we investigate the effects of Quaternary changes in climate and sea level on the evolutionary and demographic history of Platycrater arguta, a rare temperate understorey shrub with disjunct distributions in East China (var. sinensis) and South Japan (var. arguta). Molecular data were obtained from 14 P. arguta populations to infer current patterns of molecular structure and diversity in relation to past (Last Interglacial and Last Glacial Maximum) and present distributions based on ecological niche modelling (ENM). A coalescent-based isolation-with-migration (IM) model was used to estimate lineage divergence times and population demographic parameters. Results Combining information from nuclear/chloroplast sequence data with nuclear microsatellites, our IM analyses identify the two varieties as genetically distinct units that evolved in strict allopatry since the mid-Pleistocene, c. 0.89 (0.51–1.2) Ma. Together with Bayesian Skyeline Plots, our data further suggest that both lineages experienced post-divergence demographic growth, followed by refugial isolation, divergence, and in the case of var. arguta post-glacial admixture. However, past species distribution modelling indicates that the species’ overall distribution has not greatly changed over the last glacial cycles. Conclusions Our findings highlight the important influence of ancient sea-level changes on the diversification of East Asia’s temperate flora. Implicitly, they challenge the notion of general temperate forest expansion across the ECS land bridge, demonstrating instead its ‘filter’ effect owing to an unsuitable environment for certain species and their biological (e.g., recruitment) properties.
Collapse
Affiliation(s)
| | | | | | | | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
230
|
Salvi D, Schembri PJ, Sciberras A, Harris DJ. Evolutionary history of the Maltese wall lizardPodarcis filfolensis: insights on the ‘Expansion-Contraction’ model of Pleistocene biogeography. Mol Ecol 2014; 23:1167-87. [DOI: 10.1111/mec.12668] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Salvi
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão; 4485-661 Vairão Portugal
| | | | | | - D. James Harris
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão; 4485-661 Vairão Portugal
| |
Collapse
|
231
|
Henriques R, Potts WM, Santos CV, Sauer WHH, Shaw PW. Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current region: evidence of an ancient vicariant event. PLoS One 2014; 9:e87907. [PMID: 24586296 PMCID: PMC3930521 DOI: 10.1371/journal.pone.0087907] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022] Open
Abstract
Contemporary patterns of genetic diversity and population connectivity within species can be influenced by both historical and contemporary barriers to gene flow. In the marine environment, present day oceanographic features such as currents, fronts and upwelling systems can influence dispersal of eggs/larvae and/juveniles/adults, shaping population substructuring. The Benguela Current system in the southeastern Atlantic is one of the oldest upwelling systems in the world, and provides a unique opportunity to investigate the relative influence of contemporary and historical mechanisms shaping the evolutionary history of warm-temperate fish species. Using the genetic variation in the mitochondrial DNA Control Region and eight nuclear microsatellite DNA loci, we identified the presence of two highly divergent populations in a vagile and warm-temperate fish species, Atractoscion aequidens, across the Benguela region. The geographical distributions of the two populations, on either side of the perennial upwelling cell, suggest a strong correlation between the oceanographic features of the system and the breakdown of gene flow within this species. Genetic divergence (mtDNA φ ST = 0.902, microsatellite F ST = 0.055: probability of genetic homogeneity for either marker = p<0.001), absence of migrants (less than 1% per generation) between populations and coalescent estimates of time since most recent common ancestor suggest that the establishment of the main oceanographic features of the system (2 million years ago), particularly the strengthening and position of the perennial upwelling cell, is the most likely mechanism behind the observed isolation. Concordance between mitochondrial and nuclear genetic markers indicates that isolation and divergence of the northern and southern Benguela populations of A. aequidens occurred deep in the past and has continued to the present day. These findings suggest that the Benguela Current system may constitute an ancient and impermeable barrier to gene flow for warm-temperate fish species.
Collapse
Affiliation(s)
- Romina Henriques
- Centre for Ecology, Evolution and Behavior, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Warren M. Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Carmen V. Santos
- Faculdade de Ciências, Universidade Agostinho Neto, Luanda, Angola
| | - Warwick H. H. Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Paul W. Shaw
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
232
|
Diedericks G, Daniels SR. Ain’t no mountain high enough, ain’t no valley low enough? Phylogeography of the rupicolous Cape girdled lizard (Cordylus cordylus) reveals a generalist pattern. Mol Phylogenet Evol 2014; 71:234-48. [DOI: 10.1016/j.ympev.2013.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
|
233
|
|
234
|
Bryson RW, Prendini L, Savary WE, Pearman PB. Caves as microrefugia: Pleistocene phylogeography of the troglophilic North American scorpion Pseudouroctonus reddelli. BMC Evol Biol 2014; 14:9. [PMID: 24428910 PMCID: PMC3902065 DOI: 10.1186/1471-2148-14-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Survival in microrefugia represents an important paradigm in phylogeography for explaining rapid postglacial re-colonization by species in temperate regions. Microrefugia may allow populations to persist in areas where the climatic conditions on the surface have become unfavourable. Caves generally contain stable microclimates and may represent microrefugia for species capable of exploiting both cave and surface habitats (troglophiles). We examine the phylogeography of the troglophilic North American vaejovid scorpion Pseudouroctonus reddelli using 1,993 base pairs of mitochondrial and nuclear DNA sequence data generated from 12 populations. We use (i) descriptive measures of genetic diversity and population genetics statistics, (ii) reconstructions of phylogeographical structure, spatial diffusion during diversification, and population sizes through time, and (iii) species distribution modelling to test predictions of the hypothesis that caves serve as microrefugia. We compare phylogeographical patterns in P. reddelli with other troglophilic species across the Edwards Plateau karst region of Texas. RESULTS Results revealed high haplotype and nucleotide diversity and substantial phylogeographical structure, probably generated during the Pleistocene. Spatial diffusion occurred along the southern edge of the Edwards Plateau from multiple refugia along the Balcones Escarpment. There was little evidence for population and geographical expansion. Species distribution models predicted substantial reductions in suitable epigean habitat for P. reddelli at the Last Glacial Maximum (LGM). CONCLUSIONS High genetic diversity, strong phylogeographical structure, diffusion from multiple refugia, and unfavourable climatic conditions at the LGM collectively support the hypothesis that caves served as microrefugia for P. reddelli. Similar patterns of genetic structure in P. reddelli and other troglophilic species across the Edwards Plateau karst region of Texas suggest that caves serving as microrefugia are important for the formation, maintenance, and future survival of troglophilic species in temperate karst regions.
Collapse
Affiliation(s)
- Robert W Bryson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | - Lorenzo Prendini
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - Warren E Savary
- Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA
| | - Peter B Pearman
- Landscape Dynamics Unit, Swiss Federal Research Institute WSL, Zuercherstrasse 111, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
235
|
Meyer ALS, Pie MR, Passos FC. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am J Primatol 2013; 76:551-62. [PMID: 24346860 DOI: 10.1002/ajp.22247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/06/2022]
Abstract
Understanding how biodiversity will respond to climate change is a major challenge in conservation science. Climatic changes are likely to impose serious threats to many organisms, especially those with narrow distribution ranges, small populations and low dispersal capacity. Lion tamarins (Leontopithecus spp.) are endangered primates endemic to Brazilian Atlantic Forest (BAF), and all four living species are typical examples of these aggravating conditions. Here, we integrate ecological niche modeling and GIS-based information about BAF remnants and protected areas to estimate the exposure (i.e., the extent of climate change predicted to be experienced by a species) of current suitable habitats to climate change for 2050 and 2080, and to evaluate the efficacy of existing reserves to protect climatically suitable areas. Niche models were built using Maxent and then projected onto seven global circulation models derived from the A1B climatic scenario. According to our projections, the occurrence area of L. caissara will be little exposed to climate change. Western populations of L. chrysomelas could be potentially exposed, while climatically suitable habitats will be maintained only in part of the eastern region. Protected areas that presently harbor large populations of L. chrysopygus and L. rosalia will not retain climatic suitability by 2080. Monitoring trends of exposed populations and protecting areas predicted to hold suitable conditions should be prioritized. Given the potential exposure of key lion tamarin populations, we stress the importance of conducting additional studies to assess other aspects of their vulnerability (i.e., sensitivity to climate and adaptive capacity) and, therefore, to provide a more solid framework for future management decisions in the context of climate change.
Collapse
Affiliation(s)
- Andreas L S Meyer
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Laboratório de Dinâmica Evolutiva e Sistemas Complexos, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
236
|
Leventhal GE, Günthard HF, Bonhoeffer S, Stadler T. Using an epidemiological model for phylogenetic inference reveals density dependence in HIV transmission. Mol Biol Evol 2013; 31:6-17. [PMID: 24085839 PMCID: PMC3879443 DOI: 10.1093/molbev/mst172] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The control, prediction, and understanding of epidemiological processes require insight into how infectious pathogens transmit in a population. The chain of transmission can in principle be reconstructed with phylogenetic methods which analyze the evolutionary history using pathogen sequence data. The quality of the reconstruction, however, crucially depends on the underlying epidemiological model used in phylogenetic inference. Until now, only simple epidemiological models have been used, which make limiting assumptions such as constant rate parameters, infinite total population size, or deterministically changing population size of infected individuals. Here, we present a novel phylogenetic method to infer parameters based on a classical stochastic epidemiological model. Specifically, we use the susceptible-infected-susceptible model, which accounts for density-dependent transmission rates and finite total population size, leading to a stochastically changing infected population size. We first validate our method by estimating epidemic parameters for simulated data and then apply it to transmission clusters from the Swiss HIV epidemic. Our estimates of the basic reproductive number R0 for the considered Swiss HIV transmission clusters are significantly higher than previous estimates, which were derived assuming infinite population size. This difference in key parameter estimates highlights the importance of careful model choice when doing phylogenetic inference. In summary, this article presents the first fully stochastic implementation of a classical epidemiological model for phylogenetic inference and thereby addresses a key aspect in ongoing efforts to merge phylogenetics and epidemiology.
Collapse
|
237
|
Horreo JL, Palacín C, Alonso JC, Milá B. A link between historical population decline in the threatened great bustard and human expansion in Iberia: evidence from genetic and demographic data. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jose Luis Horreo
- Museo Nacional de Ciencias Naturales; Consejo Superior de Investigaciones Científicas (CSIC); Madrid; 28006; Spain
| | - Carlos Palacín
- Museo Nacional de Ciencias Naturales; Consejo Superior de Investigaciones Científicas (CSIC); Madrid; 28006; Spain
| | - Juan Carlos Alonso
- Museo Nacional de Ciencias Naturales; Consejo Superior de Investigaciones Científicas (CSIC); Madrid; 28006; Spain
| | - Borja Milá
- Museo Nacional de Ciencias Naturales; Consejo Superior de Investigaciones Científicas (CSIC); Madrid; 28006; Spain
| |
Collapse
|
238
|
Aimé C, Laval G, Patin E, Verdu P, Ségurel L, Chaix R, Hegay T, Quintana-Murci L, Heyer E, Austerlitz F. Human genetic data reveal contrasting demographic patterns between sedentary and nomadic populations that predate the emergence of farming. Mol Biol Evol 2013; 30:2629-44. [PMID: 24063884 DOI: 10.1093/molbev/mst156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Demographic changes are known to leave footprints on genetic polymorphism. Together with the increased availability of large polymorphism data sets, coalescent-based methods allow inferring the past demography of populations from their present-day patterns of genetic diversity. Here, we analyzed both nuclear (20 noncoding regions) and mitochondrial (HVS-I) resequencing data to infer the demographic history of 66 African and Eurasian human populations presenting contrasting lifestyles (nomadic hunter-gatherers, nomadic herders, and sedentary farmers). This allowed us to investigate the relationship between lifestyle and demography and to address the long-standing debate about the chronology of demographic expansions and the Neolithic transition. In Africa, we inferred expansion events for farmers, but constant population sizes or contraction events for hunter-gatherers. In Eurasia, we inferred higher expansion rates for farmers than herders with HVS-I data, except in Central Asia and Korea. Although isolation and admixture processes could have impacted our demographic inferences, these processes alone seem unlikely to explain the contrasted demographic histories inferred in populations with different lifestyles. The small expansion rates or constant population sizes inferred for herders and hunter-gatherers may thus result from constraints linked to nomadism. However, autosomal data revealed contraction events for two sedentary populations in Eurasia, which may be caused by founder effects. Finally, the inferred expansions likely predated the emergence of agriculture and herding. This suggests that human populations could have started to expand in Paleolithic times, and that strong Paleolithic expansions in some populations may have ultimately favored their shift toward agriculture during the Neolithic.
Collapse
Affiliation(s)
- Carla Aimé
- Laboratoire Eco-Anthropologie et Ethnobiologie, UMR 7206, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Université Paris 7 Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Bartáková V, Reichard M, Janko K, Polačik M, Blažek R, Reichwald K, Cellerino A, Bryja J. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol 2013; 13:196. [PMID: 24028633 PMCID: PMC4231482 DOI: 10.1186/1471-2148-13-196] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022] Open
Abstract
Background Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Results Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary contact between Chefu and Limpopo populations. Conclusions We demonstrated: (1) ancient (pre-Pleistocene) divergence between the two main N. furzeri lineages, their recent secondary contact and lack of reproductive isolation; (2) important genetic structuring attributed to the fragmented nature of their environment and isolation-by-distance, suggesting that dispersal is limited, occurs over short distances and is not directly associated with river routes; (3) an apparent role of the River Limpopo as a barrier to dispersal and gene flow.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, Brno 603 65, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Yeoh SH, Ho SY, Thornhill AH, Foley WJ. Regional population expansion in Eucalyptus globulus. Mol Phylogenet Evol 2013; 68:498-501. [DOI: 10.1016/j.ympev.2013.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
241
|
Blanco-Pastor JL, Fernández-Mazuecos M, Vargas P. Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol Ecol 2013; 22:4177-4195. [DOI: 10.1111/mec.12383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - P. Vargas
- Real Jardín Botánico (RJB-CSIC); Plaza de Murillo 2 28014 Madrid Spain
| |
Collapse
|
242
|
Camargo A, Werneck FP, Morando M, Sites JW, Avila LJ. Quaternary range and demographic expansion of Liolaemus darwinii (Squamata: Liolaemidae) in the Monte Desert of Central Argentina using Bayesian phylogeography and ecological niche modelling. Mol Ecol 2013; 22:4038-54. [PMID: 23786355 DOI: 10.1111/mec.12369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 12/29/2022]
Abstract
Until recently, most phylogeographic approaches have been unable to distinguish between demographic and range expansion processes, making it difficult to test for the possibility of range expansion without population growth and vice versa. In this study, we applied a Bayesian phylogeographic approach to reconstruct both demographic and range expansion in the lizard Liolaemus darwinii of the Monte Desert in Central Argentina, during the Late Quaternary. Based on analysis of 14 anonymous nuclear loci and the cytochrome b mitochondrial DNA gene, we detected signals of demographic expansion starting at ~55 ka based on Bayesian Skyline and Skyride Plots. In contrast, Bayesian relaxed models of spatial diffusion suggested that range expansion occurred only between ~95 and 55 ka, and more recently, diffusion rates were very low during demographic expansion. The possibility of population growth without substantial range expansion could account for the shared patterns of demographic expansion during the Last Glacial Maxima (OIS 2 and 4) in fish, small mammals and other lizards of the Monte Desert. We found substantial variation in diffusion rates over time, and very high rates during the range expansion phase, consistent with a rapidly advancing expansion front towards the southeast shown by palaeo-distribution models. Furthermore, the estimated diffusion rates are congruent with observed dispersal rates of lizards in field conditions and therefore provide additional confidence to the temporal scale of inferred phylogeographic patterns. Our study highlights how the integration of phylogeography with palaeo-distribution models can shed light on both demographic and range expansion processes and their potential causes.
Collapse
Affiliation(s)
- Arley Camargo
- Unidad de Diversidad, Sistemática y Evolución, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina.
| | | | | | | | | |
Collapse
|
243
|
Guillot EG, Tumonggor MK, Lansing JS, Sudoyo H, Cox MP. Climate Change Influenced Female Population Sizes Through Time Across the Indonesian Archipelago. Hum Biol 2013; 85:135-52. [DOI: 10.3378/027.085.0306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
|
244
|
Bertheau C, Schuler H, Arthofer W, Avtzis DN, Mayer F, Krumböck S, Moodley Y, Stauffer C. Divergent evolutionary histories of two sympatric spruce bark beetle species. Mol Ecol 2013; 22:3318-32. [PMID: 23710700 DOI: 10.1111/mec.12296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/07/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
Ips typographus and Pityogenes chalcographus are two sympatric Palearctic bark beetle species with wide distribution ranges. As both species are comparable in biology, life history, and habitat, including sharing the same host, Picea abies, they provide excellent models for applying a comparative approach in which to identify common historical patterns of population differentiation and the influence of species-specific ecological characteristics. We analysed patterns of genetic diversity, genetic structure and demographic history of ten I. typographus and P. chalcographus populations co-distributed across Europe using both COI and ITS2 markers. Rather than similarities, our results revealed striking differences. Ips typographus was characterised by low genetic diversity, shallow population structure and strong evidence that all extant haplogroups arose via a single Holocene population expansion event. In contrast, genetic variation and structuring were high in P. chalcographus indicating a longer and more complex evolutionary history. This was estimated to be five times older than I. typographus, beginning during the last Pleistocene glacial maximum over 100 000 years ago. Although the expansions of P. chalcographus haplogroups also date to the Holocene or just prior to its onset, we show that these occurred from at least three geographically separated glacial refugia. Overall, these results suggest that the much longer evolutionary history of P. chalcographus greatly influenced the levels of phylogeographic subdivision among lineages and may have led to the evolution of different life-history traits which in turn have affected genetic structure and resulted in an advantage over the more aggressive I. typographus.
Collapse
Affiliation(s)
- Coralie Bertheau
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Heller R, Chikhi L, Siegismund HR. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS One 2013; 8:e62992. [PMID: 23667558 PMCID: PMC3646956 DOI: 10.1371/journal.pone.0062992] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Many coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several recent studies have shown that the results can be misleading when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences have so far not been addressed and quantified. We simulated DNA sequence data under a variety of scenarios involving structured populations with variable levels of gene flow and analysed them using BSPs as implemented in the software package BEAST. Results revealed that BSPs can show false signals of population decline under biologically plausible combinations of population structure and sampling strategy, suggesting that the interpretation of several previous studies may need to be re-evaluated. We found that a balanced sampling strategy whereby samples are distributed on several populations provides the best scheme for inferring demographic change over a typical time scale. Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by simulations. We recommend that sample selection should be carefully considered in relation to population structure previous to BSP analyses, and that alternative scenarios should be evaluated when interpreting signals of population size change.
Collapse
|
246
|
Gattepaille LM, Jakobsson M, Blum MGB. Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity (Edinb) 2013; 110:409-19. [PMID: 23423148 PMCID: PMC3630807 DOI: 10.1038/hdy.2012.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reconstructing historical variation of population size from sequence and single-nucleotide polymorphism (SNP) data is valuable for understanding the evolutionary history of species. Changes in the population size of humans have been thoroughly investigated, and we review different methodologies of demographic reconstruction, specifically focusing on human bottlenecks. In addition to the classical approaches based on the site-frequency spectrum (SFS) or based on linkage disequilibrium, we also review more recent approaches that utilize atypical shared genomic fragments, such as identical by descent or homozygous segments between or within individuals. Compared with methods based on the SFS, these methods are well suited for detecting recent bottlenecks. In general, all these various methods suffer from bias and dependencies on confounding factors such as population structure or poor specification of the mutational and recombination processes, which can affect the demographic reconstruction. With the exception of SFS-based methods, the effects of confounding factors on the inference methods remain poorly investigated. We conclude that an important step when investigating population size changes rests on validating the demographic model by investigating to what extent the fitted demographic model can reproduce the main features of the polymorphism data.
Collapse
Affiliation(s)
- L M Gattepaille
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
247
|
Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel S, Orozco-terWengel P, Vieites DR, Nieto-Roman S, Haas S, Laugsch C, Gehara M, Bruchmann S, Pabijan M, Ludewig AK, Rudert D, Angelini C, Borkin LJ, Crochet PA, Crottini A, Dubois A, Ficetola GF, Galán P, Geniez P, Hachtel M, Jovanovic O, Litvinchuk SN, Lymberakis P, Ohler A, Smirnov NA. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol Phylogenet Evol 2013; 68:657-70. [PMID: 23632031 DOI: 10.1016/j.ympev.2013.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022]
Abstract
We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.
Collapse
Affiliation(s)
- Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Toussaint EFA, Sagata K, Surbakti S, Hendrich L, Balke M. Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp. Ecol Evol 2013; 3:1031-49. [PMID: 23610642 PMCID: PMC3631412 DOI: 10.1002/ece3.517] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022] Open
Abstract
The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human-mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well-isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting very recent origin of high altitudes in the region.
Collapse
|
249
|
Rakotoarisoa JE, Raheriarisena M, Goodman SM. Late Quaternary climatic vegetational shifts in an ecological transition zone of northern Madagascar: insights from genetic analyses of two endemic rodent species. J Evol Biol 2013; 26:1019-34. [DOI: 10.1111/jeb.12116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/30/2012] [Indexed: 02/01/2023]
Affiliation(s)
- J.-E. Rakotoarisoa
- School of Biological Sciences; Illinois State University; Normal IL USA
- Ecology and Evolutionary Biology Department; Yale University; New Haven CT USA
| | - M. Raheriarisena
- Département de Biologie Animale; Université d'Antananarivo; Antananarivo Madagascar
- Association Vahatra; Antananarivo Madagascar
| | - S. M. Goodman
- Association Vahatra; Antananarivo Madagascar
- Department of Zoology; Field Museum of Natural History; Chicago IL USA
| |
Collapse
|
250
|
Gür H. The effects of the Late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods? Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hakan Gür
- Department of Biology; Faculty of Arts and Sciences; Ahi Evran University; Bağbaşı Campus; 40100; Kırşehir; Turkey
| |
Collapse
|