201
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
202
|
Akbarian A, Golian A, Kermanshahi H, De Smet S, Michiels J. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts andCurcuma xanthorrhizaessential oil. J Anim Physiol Anim Nutr (Berl) 2014; 99:150-162. [DOI: 10.1111/jpn.12188] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Affiliation(s)
- A. Akbarian
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
| | - A. Golian
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
| | - H. Kermanshahi
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
| | - S. De Smet
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
| | - J. Michiels
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
- Department of Applied Biosciences; Ghent University; Ghent Belgium
| |
Collapse
|
203
|
Qiu J, Zhou Q, Zhai X, Jia X, Zhou Y. Curcumin regulates delta-like homolog 1 expression in activated hepatic stellate cell. Eur J Pharmacol 2014; 728:9-15. [DOI: 10.1016/j.ejphar.2014.01.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
|
204
|
Preparation of naringenin/ β-cyclodextrin complex and its more potent alleviative effect on choroidal neovascularization in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:623509. [PMID: 24795889 PMCID: PMC3985202 DOI: 10.1155/2014/623509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/11/2014] [Indexed: 11/17/2022]
Abstract
Choroidal neovascularization (CNV) is characterized by abnormal blood vessels growing from the choroid. Current remedies for CNV have not shown favorable therapeutic efficacy. It is urgent to identify and develop more safe and potent anti-CNV agents via multiple technologies. We previously showed that the natural product naringenin attenuated CNV. However, naringenin has poor water solubility and low bioavailability. Here, we prepared the β-cyclodextrin (β-CD) complex of naringenin and characterized it using infrared spectra and X-ray diffraction analyses. Determination of content and solubility in the complex showed that naringenin accounted for 20.53% in the complex and its solubility was increased by more than 10-fold. Using a laser-induced CNV model in rats we demonstrated that naringenin/β-CD complex more significantly reduced CNV area than naringenin alone in rats. Furthermore, naringenin and its β-CD complex significantly inhibited the mRNA and protein expression of VEGF, COX-2, PI3K, p38MAPK, MMP-2, and MMP-9 in retina and choroid tissues. Naringenin/β-CD complex showed more significant inhibitory effect on VEGF and COX-2 expression than naringenin. These results collectively indicated that naringenin/β-CD complex could be a promising therapeutic option for CNV and that the beneficial effects could be linked to the anti-inflammatory properties of naringenin.
Collapse
|
205
|
Nurrochmad A, Margono SA, Sardjiman, Hakim AR, Ernawati, Kurniawati E, Fatmawati E. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats. ASIAN PAC J TROP MED 2014; 6:438-42. [PMID: 23711702 DOI: 10.1016/s1995-7645(13)60070-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. METHODS The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. RESULTS The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. CONCLUSION All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.
Collapse
Affiliation(s)
- Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara Yogyakarta-55281, Indonesia.
| | | | | | | | | | | | | |
Collapse
|
206
|
Hepatoprotective effects of fermented field water-dropwort (Oenanthe javanica) extract and its major constituents. Food Chem Toxicol 2014; 67:154-60. [PMID: 24582681 DOI: 10.1016/j.fct.2014.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/08/2013] [Accepted: 02/07/2014] [Indexed: 11/22/2022]
Abstract
Dropwort (Oenanthe javanica) has been used for many years for the treatment of inflammatory conditions, including hepatitis. We investigated the protective effects of fermented field water-dropwort extract (FDE) on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cells and carbon tetrachloride (CCl4)-induced liver damage in rats. Pretreatment with FDE prior to the t-BHP treatment of HepG2 cells inhibited cell death and lactate dehydrogenase (LDH) leakage in a dose-dependent manner. In addition FDE significantly prevented the increase of hepatic enzyme markers (ALT, AST) in vivo. Moreover, FDE administration for 7 days significantly affected CYP2E1, CYP4A2, and PPARγ gene expressions. CYP2E1 and CYP4A2 gene expression in the liver, increased 2 and 22-fold by CCl4 administration, respectively, was attenuated to normal levels by pretreatment with FDE. PPARγ gene expression, completely blocked by CCl4 treatment, was increased by FDE pretreatment compared to normal control group. Histopathological examination of the livers also revealed that FDE reduced the incidence of liver lesions. Caffeic acid and chlorogenic acid were identified as major constituents of FDE. These results demonstrate the protective effects of FDE against hepatocytotoxicity induced by CCl4 and t-BHP in rats and HepG2 cells, thus indicating the potential of FDE as a therapeutic for acute liver diseases.
Collapse
|
207
|
Zhu X, Zhang F, Zhou L, Kong D, Chen L, Lu Y, Zheng S. Diallyl trisulfide attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic oxidative stress in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:445-55. [PMID: 24557053 DOI: 10.1007/s00210-014-0959-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
Abstract
Liver fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) components in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. The process of HSC activation is accompanied by enhanced expression of a series of marker proteins and pro-fibrogenic signal molecules. Natural products have been an important source of antifibrotic remedies. The present study aims to evaluate the in vivo effects of diallyl trisulfide (DATS), the primary component derived from garlic, on carbon tetrachloride (CCl4)-induced injury and fibrosis in rats. Our results showed that DATS improved liver histological architecture and decreased hepatic enzyme levels, but did not significantly affect cytochrome P450 2E1 activity in vivo. DATS also attenuated collagen deposition and inhibited HSC activation in the rat fibrotic liver demonstrated by reduced expression of α-smooth muscle actin, α1(I) procollagen, and fibronectin-three key markers of HSC activation-and by downregulation of transforming growth factor-β receptor 1, platelet-derived growth factor-β receptor, and epidermal growth factor receptor-three key receptors transmitting pro-fibrogenic pathways. In addition, DATS ameliorated hepatic oxidative stress by diminishing the levels of lipid peroxides and malondialdehyde and enhancing glutathione content. These data collectively revealed that DATS protected the rat liver from CCl4-caused injury and fibrogenesis in vivo, which was associated with inhibition of HSC activation and attenuation of oxidative stress. Our results suggested DATS as a promising antifibrogenic candidate for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaojing Zhu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
208
|
Ghasemi M, Azarnia M, Jamali M, Mirabolghasemi G, Nazarian S, Naghizadeh MM, Rajabi M, Tahamtani Y. Protective effects of Ephedra pachyclada extract on mouse models of carbon tetrachloride- induced chronic and acute liver failure. Tissue Cell 2014; 46:78-85. [DOI: 10.1016/j.tice.2013.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
|
209
|
Zhang F, Kong D, Chen L, Zhang X, Lian N, Zhu X, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ interrupts angiogenic signal transduction by transrepression of platelet-derived growth factor-β receptor in hepatic stellate cells. J Cell Sci 2013; 127:305-14. [PMID: 24259663 DOI: 10.1242/jcs.128306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cells (HSCs) are liver-specific pericytes that are recruited to vessels and secret pro-angiogenic cytokines, and thus actively involved in pathological vascularization during liver fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) is a switch molecule controlling HSC activation. We investigated PPARγ regulation of angiogenic signal transduction and the molecular mechanisms involved in HSCs. Primary rat HSCs and liver sinusoidal endothelial cells (LSECs) were isolated and used in this study. Boyden chamber and tubulogenesis assays, identified that focal adhesion kinase (FAK)-RhoA signaling activated by platelet-derived growth factor (PDGF) was required for HSC motility and the associated vascularization. PDGF also stimulated vascular endothelial growth factor (VEGF) expression and HSC-driven vascularization through signals mediated by extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Gain- and loss-of-function analyses demonstrated that activation of PPARγ interrupted FAK-RhoA, ERK and mTOR cascades and inhibited HSC-based vascularization. Molecular evidence further revealed that PPARγ attenuation of HSC angiogenic properties was dependent on inhibition of PDGF-β receptor expression. We concluded that PPARγ inhibited angiogenic signal transduction through transrepression of PDGF-β receptor leading to reduced HSC motility, reduced VEGF expression, and thereby attenuated HSC-driven angiogenesis. PPARγ could be a molecular target for preventing vascular remolding in hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Chen X, Ying X, Zhang W, Chen Y, Shi C, Hou Y, Zhang Y. The hepatoprotective effect of fraxetin on carbon tetrachloride induced hepatic fibrosis by antioxidative activities in rats. Int Immunopharmacol 2013; 17:543-7. [DOI: 10.1016/j.intimp.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/15/2022]
|
211
|
Zhang Z, Guo Y, Zhang S, Zhang Y, Wang Y, Ni W, Kong D, Chen W, Zheng S. Curcumin modulates cannabinoid receptors in liver fibrosis in vivo and inhibits extracellular matrix expression in hepatic stellate cells by suppressing cannabinoid receptor type-1 in vitro. Eur J Pharmacol 2013; 721:133-40. [PMID: 24076327 DOI: 10.1016/j.ejphar.2013.09.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event leading to extracellular matrix (ECM) overproduction during hepatic fibrogenesis. Compelling evidence indicates that cannabinoid receptors (CBRs) play an important role in chronic liver disease. Antagonism of hepatic CBR type 1 (CBR1) could be a novel therapeutic strategy for liver fibrosis. Our previous studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work was to examine the curcumin effect on CBRs system and its relevance to inhibition of ECM expression in HSCs. Our in vivo data demonstrated that curcumin ameliorated fibrotic injury, and downregulated CBR1 but upregulated CBR2 at both mRNA and protein levels in rat fibrotic liver caused by carbon tetrachloride. The subsequent in vitro investigations showed that curcumin reduced the mRNA and protein abundance of CBR1 in cultured HSCs and decreased the expression of three critical ECM proteins. Further analyses revealed that CBR1 agonist abrogated the curcumin inhibition of ECM expression, but CBR1 antagonist mimicked and reinforced the curcumin effects. Autodock simulations predicted that curcumin could bind to CBR1 with two hydrogen bonds. Collectively, our current studies revealed that curcumin reduction of liver fibrosis was associated with modulation of CBRs system and that antagonism of CBR1 contributed to curcumin inhibition of ECM expression in HSCs.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Lee MF, Tsai ML, Sun PP, Chien LL, Cheng AC, Ma NJL, Ho CT, Pan MH. Phyto-power dietary supplement potently inhibits dimethylnitrosamine-induced liver fibrosis in rats. Food Funct 2013; 4:470-5. [PMID: 23291610 DOI: 10.1039/c2fo30306j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Curcumin has been extensively studied for its therapeutic effects in a variety of disorders. Fermented soy consumption is associated with a low incidence rate of chronic diseases in many Asian countries. The aim of this study was to investigate the potential underlying mechanisms of the effect of a phyto-power dietary supplement on liver fibrosis. Sprague-Dawley rats were intraperitoneally injected with dimethylnitrosamine (DMN; 10 mg kg(-1)) three times a week for four consecutive weeks. A phyto-power dietary supplement (50 or 100 mg kg(-1)) was administered by oral gavage daily for four weeks. Liver morphology, function, and fibrotic status were examined in DMN induced hepatic fibrogenesis. However, a phyto-power dietary supplement alleviated liver damage as indicated by histopathological examination of the α-smooth muscle actin (α-SMA) and collagen I, accompanied by the concomitant reduction of transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 2 (MMP2). These data indicate that the phyto-power dietary supplement may inhibit the TGF-β1/Smad signaling and relieve liver damage in experimental fibrosis.
Collapse
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Efficacy of Ethanol Extract of Fructus lycii and Its Constituents Lutein/Zeaxanthin in Protecting Retinal Pigment Epithelium Cells against Oxidative Stress: In Vivo and In Vitro Models of Age-Related Macular Degeneration. J Ophthalmol 2013; 2013:862806. [PMID: 24163760 PMCID: PMC3791792 DOI: 10.1155/2013/862806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a large role in the pathogenesis of AMD. The present study was to evaluate the effects of Fructus lycii ethanol extract on AMD in mice and to investigate whether combination of lutein and zeaxanthin, two carotenoid pigments in Fructus lycii, could protect human retinal pigment epithelial ARPE-19 cells treated with hydrogen peroxide (H2O2) in vitro. We found that severe sediment beneath retinal pigment epithelium and thickened Bruch membrane occurred in AMD mice. However, Fructus lycii ethanol extract improved the histopathologic changes and decreased the thickness of Bruch membrane. Furthermore, the gene and protein expression of cathepsin B and cystatin C was upregulated in AMD mice but was eliminated by Fructus lycii ethanol extract. Investigations in vitro showed that ARPE-19 cell proliferation was suppressed by H2O2. However, lutein/zeaxanthin not only stimulated cell proliferation but also abrogated the enhanced expression of MMP-2 and TIMP-1 in H2O2-treated ARPE-19 cells. These data collectively suggested that Fructus lycii ethanol extract and its active components lutein/zeaxanthin had protective effects on AMD in vivo and in vitro, providing novel insights into the beneficial role of Fructus lycii for AMD therapy.
Collapse
|
214
|
Wu D, Gu QH, Li ZW. Cyclin-dependent kinases, control of cell cycle and hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21:2158-2163. [DOI: 10.11569/wcjd.v21.i22.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple etiologies of liver disease lead to liver fibrosis by driving the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Liver fibrosis is associated with the proliferation of HSCs, and the cell cycle of activated HSCs is abnormal. Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation. However, the molecular mechanisms responsible for the abnormal proliferation of activated HSCs during hepatic fibrogenesis remain to be defined. Here we will review recent progress in understanding the associations among CDKs, the control of cell cycle and hepatic fibrosis, with an aim to reveal the potential mechanisms of hepatic fibrosis.
Collapse
|
215
|
Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:424692. [PMID: 23956771 PMCID: PMC3730379 DOI: 10.1155/2013/424692] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 01/26/2023]
Abstract
Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7) in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w.) before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.). Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction.
Collapse
|
216
|
Curcumin ameliorates intrahepatic angiogenesis and capillarization of the sinusoids in carbon tetrachloride-induced rat liver fibrosis. Toxicol Lett 2013; 222:72-82. [PMID: 23845850 DOI: 10.1016/j.toxlet.2013.06.240] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023]
Abstract
Neoangiogenesis and the development of an abnormal angio-architecture in the liver are strongly linked with progressive fibrogenesis. This study aimed to evaluate the ability of curcumin to protect liver fibrosis-associated angiogenesis and capillarization of the sinusoids in experimental rats. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl₄) with or without curcumin for 6 weeks. The results suggest that curcumin treatment markedly attenuated CCl₄-induced liver fibrosis, as assessed by histology and hydroxyproline content, and inhibited hepatic stellate cell activation. Curcumin ameliorated hepatic angiogenesis, as assessed by measuring microvessel density using Von Willebrand factor staining and by examining the expression of the endothelial cell markers CD31 and vascular endothelial growth factor receptor (VEGFR)-2 in the livers. Pathologic remodeling of liver sinusoidal capillarization, as assessed by electron-microscopic analysis of Disse's space and by evaluation of the levels of basement membrane protein expression, was also attenuated by curcumin administration. The intrahepatic gene or protein expression of hypoxia-inducible factor-1α, VEGFR-1, placental growth factor, and cyclooxygenase-2 decreased with treatment with curcumin in fibrotic rats. In conclusion, curcumin ameliorates hepatic angiogenesis and sinusoidal capillarization in CCl₄-induced rat liver fibrosis through suppressing multiple proangiogenic factors.
Collapse
|
217
|
Kong D, Zhang F, Wei D, Zhu X, Zhang X, Chen L, Lu Y, Zheng S. Paeonol inhibits hepatic fibrogenesis via disrupting nuclear factor-κB pathway in activated stellate cells: in vivo and in vitro studies. J Gastroenterol Hepatol 2013; 28:1223-33. [PMID: 23425217 DOI: 10.1111/jgh.12147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS Hepatic fibrosis represents a major cause of morbidity and mortality worldwide. The present study was to evaluate the antifibrogenesis effect of paeonol and involved mechanisms. METHODS The degree of liver injury was evaluated biochemically by measuring serum and fibrotic markers and pathological examination. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and trypan blue staining. Cytotoxic effects were determined using lactate dehydrogenase release assay. Cell cycle was determined using single dyeing methods of propidium iodide (PI) by flow cytometry. Apoptosis was confirmed using double-staining of annexin V/PI and Hoechst. Western blot, immunofluorescence and real-time polymerase chain reaction were used to explore the molecular mechanisms. RESULTS Treatment with paeonol significantly protected the liver from injury by reducing the activities of serum aspartate aminotransferase, alanine aminotransferase, improving the histological architecture of the liver, and by inhibiting activation of hepatic stellate cells (HSCs) in vivo. Interestingly, paeonol had no apparent cytotoxic effects but could markedly inhibit primary HSC proliferation and induced HSC cell cycle arrest at the G2/M checkpoint. These effects were caused by paeonol suppression of phosphorylation of cycle protein cdc2 and of CDK2. Moreover, that paeonol triggered mitochondrial apoptosis pathway and led to activation of caspase cascades in HSCs was found. Mechanistic investigations revealed that the nuclear factor-κB (NF-κB) pathway inhibition resulted in the earlier events. Furthermore, paeonol altered the expression of some marker proteins relevant to HSCs activation. CONCLUSION Paeonol could inhibit HSC proliferation and induce mitochondrial apoptosis via disrupting NF-κB pathway, which might be the mechanisms of paeonol reduction of liver fibrosis.
Collapse
Affiliation(s)
- Desong Kong
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Moreillon JJ, Bowden RG, Deike E, Griggs J, Wilson R, Shelmadine B, Cooke M, Beaujean A. The use of an anti-inflammatory supplement in patients with chronic kidney disease. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2013; 10:/j/jcim.2013.10.issue-1/jcim-2012-0011/jcim-2012-0011.xml. [PMID: 23828329 DOI: 10.1515/jcim-2012-0011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease (CKD) is characterized by a continuous reduction in kidney function, increased inflammation, and reduced antioxidant capacity. The objective of this study was to assess the effects of a herbal supplement on systemic inflammation and antioxidant status in non-dialysis CKD patients. Sixteen patients with CKD (56.0±16.0 yrs, 171.4±11.9 cm, 99.3±20.2 kg) were randomly chosen to receive a herbal supplement composed of Curcuma longa and Boswellia serrata, or placebo. Plasma levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutathione peroxidase (GPx), and serum C-reactive protein (CRP) were measured at baseline and 8 weeks. Baseline data demonstrated elevated inflammation and low antioxidant levels. A significant time effect (p=0.03) and time x compliance interaction effect (p=0.04) were observed for IL-6. No significant differences were observed for any other variables. This study demonstrates that mild and moderate CKD is associated with chronic inflammation and low antioxidant activity. Systemic inflammation and impaired antioxidant status may be greater in CKD populations with multiple comorbidities. Curcumin and Boswellia serrata are safe and tolerable and helped to improve the levels of an inflammatory cytokine.
Collapse
|
219
|
Alghasham A, Salem TA, Meki ARM. Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem Toxicol 2013; 59:160-4. [PMID: 23764358 DOI: 10.1016/j.fct.2013.05.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/09/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED The present study was designed to investigate the effect of CdCl₂-polluted drinking water (40 mg CdCl₂/L) on the level of TNF-α and IL-6, as well as oxidative status biomarkers in plasma of rats. The possible protective effect of oral administration of curcumin (50 mg/kg body weight/day) was assessed. Results illustrated that Cd exposure significantly elevated the plasma levels of TNF-α and IL-6 (p<0.001) as compared to normal rats. Also, Cd administration resulted in a significant elevation in the lipid peroxidation and markedly reduction in the activities of SOD and catalase as well as the level of glutathione and total antioxidant capacity in plasma. The co-treatment of Cd with curcumin significantly reduced the levels of TNF-α and IL-6 and ameliorated the alteration in oxidative status biomarkers induced by Cd. Negative correlation between IL-6 or TNF-α was and the plasma activities of catalase, SOD and the level of total antioxidant capacity were found in rats exposed to Cd. CONCLUSION Cadmium toxicity induced the release of TNF-α and IL-6 which is associated with systemic oxidative stress. This may be involved in the mechanism of the Cd toxicity. On the other hand, the findings suggest the curative action of curcumin against Cd toxicity.
Collapse
Affiliation(s)
- Abdullah Alghasham
- Department of Pharmacology & Therapeutics, College of Medicine, Qassim University, Saudi Arabia
| | | | | |
Collapse
|
220
|
Onoue S, Nakamura T, Uchida A, Ogawa K, Yuminoki K, Hashimoto N, Hiza A, Tsukaguchi Y, Asakawa T, Kan T, Yamada S. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur J Pharm Sci 2013; 49:453-60. [PMID: 23707470 DOI: 10.1016/j.ejps.2013.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
The present study aimed to develop an amorphous solid dispersion (SD) of nobiletin (NOB), a citrus polymethoxylated flavone, with the aim of improving its biopharmaceutical and hepatoprotective properties. SD formulation of NOB (NOB/SD) was prepared by wet-milling and subsequent freeze drying, and its stability and dissolution properties were characterized. The hepatoprotective effects and pharmacokinetic behavior of orally dosed NOB/SD were evaluated in rats. During the storage of NOB/SD for 4 weeks under accelerated conditions, there were no significant transitions in the appearance, particle size, and amorphousity of wet-milled NOB. In comparison with crystalline NOB, the NOB/SD exhibited significant improvement in the dissolution with a 10-fold higher dissolution rate. In a rat model of acute liver injury, repeated treatment with NOB/SD (2 mg NOB/kg) every 4 h led to marked attenuation of hepatic damage as evidenced by decreased ALT and AST, surrogate biomarkers for hepatic injury; however, crystalline NOB was found to be less effective. After oral administration of NOB/SD (2 mg NOB/kg) in rats, compared with crystalline NOB, improved pharmacokinetic behavior was observed with increases of bioavailability and hepatic delivery by ca. 7- and 6-fold, respectively, possibly leading to better hepatoprotection. Given the improved physicochemical and biopharmaceutical properties, the SD formulation strategy might be efficacious for enhancing the therapeutic potential of NOB.
Collapse
Affiliation(s)
- Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Hoque R, Vodovotz Y, Mehal W. Therapeutic strategies in inflammasome mediated diseases of the liver. J Hepatol 2013; 58:1047-52. [PMID: 23266490 PMCID: PMC4113326 DOI: 10.1016/j.jhep.2012.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Tissue stress and cell death result in inflammation even in the absence of pathogens. Such sterile inflammation is dependent on a cytosolic complex of proteins inside immune cells termed the inflammasome. This complex converts two groups of extracellular signals into an inflammatory response via activation of caspase-1 and secretion of IL-1β and IL-18. Group 1 signals are typically TOLL like receptor agonists and result in transcriptional upregulation of inflammasome components and pro-cytokines. Group 2 signals are diverse, ranging from uric acid to ATP, and lead to assembly and activation of the inflammasome complex. Inflammasome components are required for a wide range of acute and chronic pathologies, including experimental alcoholic and non-alcoholic steatohepatitis, and drug-induced liver injury. Collectively, group 1 and 2 signals, inflammasome components, and cytokine receptors provide a rich source of therapeutic targets. Many of the advances in the field have come from standard reductionist experiments. Progress in the understanding of complex human systems will, however, be dependent on novel strategies such as systems analysis, which analyze large data sets to provide new insights.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, CT, United States
| | | | | |
Collapse
|
222
|
Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Cell Mol Life Sci 2013; 70:259-76. [PMID: 22699820 PMCID: PMC11113701 DOI: 10.1007/s00018-012-1046-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis is a dynamic chronic liver disease occurring as a consequence of wound-healing responses to various hepatic injuries. This disorder is one of primary predictors for liver-associated morbidity and mortality worldwide. To date, no pharmacological agent has been approved for hepatic fibrosis or could be recommended for routine use in clinical context. Cellular and molecular understanding of hepatic fibrosis has revealed that peroxisome proliferator-activated receptor-γ (PPARγ), the functioning receptor for antidiabetic thiazolidinediones, plays a pivotal role in the pathobiology of hepatic stellate cells (HSCs), whose activation is the central event in the pathogenesis of hepatic fibrosis. Activation of PPARγ inhibits HSC collagen production and modulates HSC adipogenic phenotype at transcriptional and epigenetic levels. These molecular insights indicate PPARγ as a promising drug target for antifibrotic chemotherapy. Intensive animal studies have demonstrated that stimulation of PPARγ regulatory system through gene therapy approaches and PPARγ ligands has therapeutic promise for hepatic fibrosis induced by a variety of etiologies. At the same time, thiazolidinedione agents have been investigated for their clinical benefits primarily in patients with nonalcoholic steatohepatitis, a common metabolic liver disorder with high potential to progress to fibrosis and liver-related death. Although some studies have shown initial promise, none has established long-term efficacy in well-controlled randomized clinical trials. This comprehensive review covers the 10-year discoveries of the molecular basis for PPARγ regulation of HSC pathophysiology and then focuses on the animal investigations and clinical trials of various therapeutic modalities targeting PPARγ for hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Desong Kong
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| | - Shizhong Zheng
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| |
Collapse
|
223
|
Lee BH, Pan TM. Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: Mini review. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
224
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
225
|
Deng G, Wang J, Zhang Q, He H, Wu F, Feng T, Zhou J, Zou K, Hattori M. Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats. Biol Pharm Bull 2012; 35:1118-25. [PMID: 22791160 DOI: 10.1248/bpb.b12-00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was to study the hepatoprotective effects of phloridzin (PHL) on hepatic fibrosis induced by carbon tetrachloride (CCl₄) in rats, on the basis of this investigation, the possible mechanism of PHL was elucidated. Male Sprague Dawley (SD) rats were randomly divided into six groups: control, model, PHL-L, PHL-M, PHL-H and colchine. All rats except control group were intraperitoneally injected with CCl₄, and control rats were injected with olive oil, twice a week for eight weeks. At the same time, the rats were orally given homologue drugs once a day, respectively. Hepatoprotective effects of PHL were evaluated by liver weight indexes, biochemical values, total antioxidant capacity and total-superoxide dismutase, histopathological observations, hepatic fibrosis, and the hepatic fibrosis relative gene and protein expressions. PHL significantly improved hepatic function; remarkably decreased serum hyaluronic acid (HA), transforming growth factor-β1 (TGF-β1), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and liver tissues hydroxyproline, malondialdehyde (MDA) levels, increased glutathione peroxidase (GSH-Px), total-antioxygen capacity (T-AOC) and total-superoxide dismutase (T-SOD) contents of liver tissues; Real-time polymerase chain reaction (PCR) and immunohisto-chemical results showed PHL might markedly reverse the up-regulated mRNA and protein expressions of the α-smooth muscle actin (SMA), TGF-β1 and tissue inhibitor of metalloproteinase-1 (TIMP1), up-regulate the matrix metalloproteinase-1 (MMP1) mRNA and protein expressions. Histopathological observations provided supportive evidence for biochemical analyses and the hepatic fibrosis relative gene and protein expressions, and with the dose of PHL increasing, the aforesaid improvement became more and more strong. The studies demonstrated that PHL exerted beneficially hepatoprotective effects on hepatic fibrosis induced by CCl₄, mainly enhancing antioxidant capacity of liver organizations, reduce the level of lipid peroxidation induced by CCl₄, and protect hepatocyte membranes from damage, and alleviate hepatic fibrosis.
Collapse
Affiliation(s)
- Gaigai Deng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lin J, Tang Y, Kang Q, Feng Y, Chen A. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol 2012; 166:2212-27. [PMID: 22352842 DOI: 10.1111/j.1476-5381.2012.01910.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes is characterized by hyperglycaemia, which facilitates the formation of advanced glycation end-products (AGEs). Type 2 diabetes mellitus is commonly accompanied by non-alcoholic steatohepatitis, which could lead to hepatic fibrosis. Receptor for AGEs (RAGE) mediates effects of AGEs and is associated with increased oxidative stress, cell growth and inflammation. The phytochemical curcumin inhibits the activation of hepatic stellate cells (HSCs), the major effectors during hepatic fibrogenesis. The aim of this study was to explore the underlying mechanisms of curcumin in the elimination of the stimulating effects of AGEs on the activation of HSCs. We hypothesize that curcumin eliminates the effects of AGEs by suppressing gene expression of RAGE. EXPERIMENTAL APPROACH Gene promoter activities were evaluated by transient transfection assays. The expression of rage was silenced by short hairpin RNA. Gene expression was analysed by real-time PCR and Western blots. Oxidative stress was evaluated. KEY RESULTS AGEs induced rage expression in cultured HSCs, which played a critical role in the AGEs-induced activation of HSCs. Curcumin at 20 µM eliminated the AGE effects, which required the activation of PPARγ. In addition, curcumin attenuated AGEs-induced oxidative stress in HSCs by elevating the activity of glutamate-cysteine ligase and by stimulating de novo synthesis of glutathione, leading to the suppression of gene expression of RAGE. CONCLUSION AND IMPLICATIONS Curcumin suppressed gene expression of RAGE by elevating the activity of PPARγ and attenuating oxidative stress, leading to the elimination of the AGE effects on the activation of HSCs. LINKED ARTICLE This article is commented on by Stefanska, pp. 2209-2211 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01959.x.
Collapse
Affiliation(s)
- Jianguo Lin
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
227
|
Li J, Dai CX, Sun H, Jin L, Guo CY, Cao W, Wu J, Tian HY, Luo C, Ye WC, Jiang RW. Protective effects and mechanisms of curcumin on podophyllotoxin toxicity in vitro and in vivo. Toxicol Appl Pharmacol 2012; 265:190-9. [DOI: 10.1016/j.taap.2012.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/07/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
|
228
|
Chong LW, Hsu YC, Chiu YT, Yang KC, Huang YT. Antifibrotic effects of triptolide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats. Phytother Res 2012; 25:990-9. [PMID: 21213358 DOI: 10.1002/ptr.3381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Triptolide (C₃₈H₄₂O₆N₂, TP, a diterpene triepoxide derived from Tripterygium wilfordii Hook F.), is a potent immunosuppresive and antiinflammatory agent. The present study investigated whether TP exerted antihepatofibrotic effects in vitro and in vivo. A cell line of rat hepatic stellate cells (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or transforming growth factor (TGF)-β1. The inhibitory effects of TP on the nuclear factor-κB (NFκB) signaling cascade and fibrosis markers, including α-smooth muscle actin (α-SMA) and collagen, were assessed. An in vivo therapeutic study was conducted in dimethylnitrosamine (DMN)-treated rats. The rats were randomly assigned to one of three groups: control rats, DMN rats receiving vehicle only and DMN rats receiving TP (20 μg/kg). Treatment was given by gavage twice daily for 3 weeks starting 1 week after the start of DMN administration. TP (5-100 nM) concentration-dependently inhibited the NFκB transcriptional activity induced by TNF-α, lipopolysaccharide and phorbol 12-myristate 13-acetate in HSC-T6 cells. In addition, TP also suppressed TNF-α and TGF-β1-induced collagen deposition and α-SMA secretion in HSC-T6 cells. In vivo, TP treatment significantly reduced hepatic fibrosis scores, collagen contents, IL-6 and TNF-α levels, and the number of α-SMA and NFκB-positive cells in DMN rats. The results showed that TP exerted antifibrotic effects in both HSC-T6 cells and DMN rats.
Collapse
Affiliation(s)
- Lee-Won Chong
- Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
229
|
Rodríguez-Rodríguez C, Telpoukhovskaia M, Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
230
|
Yao QY, Xu BL, Wang JY, Liu HC, Zhang SC, Tu CT. Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats. Altern Ther Health Med 2012; 12:156. [PMID: 22978413 PMCID: PMC3495222 DOI: 10.1186/1472-6882-12-156] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/08/2012] [Indexed: 12/20/2022]
Abstract
Background At present there is no effective and accepted therapy for hepatic fibrosis. Transforming growth factor (TGF)-β1 signaling pathway contributes greatly to hepatic fibrosis. Reducing TGF-β synthesis or inhibiting components of its complex signaling pathway represent important therapeutic targets. The aim of the study was to investigate the effect of curcumin on liver fibrosis and whether curcumin attenuates the TGF-β1 signaling pathway. Methods Sprague–Dawley rat was induced liver fibrosis by carbon tetrachloride (CCl4) for six weeks together with or without curcumin, and hepatic histopathology and collagen content were employed to quantify liver necro-inflammation and fibrosis. Moreover, the mRNA and protein expression levels of TGF-β1, Smad2, phosphorylated Smad2, Smad3, Smad7 and connective tissue growth factor (CTGF) were determined by quantitative real time-PCR, Western blot, or immunohistochemistry. Results Rats treated with curcumin improved liver necro-inflammation, and reduced liver fibrosis in association with decreased α-smooth muscle actin expression, and decreased collagen deposition. Furthermore, curcumin significantly attenuated expressions of TGFβ1, Smad2, phosphorylated Smad2, Smad3, and CTGF and induced expression of the Smad7. Conclusions Curcumin significantly attenuated the severity of CCl4-induced liver inflammation and fibrosis through inhibition of TGF-β1/Smad signalling pathway and CTGF expression. These data suggest that curcumin might be an effective antifibrotic drug in the prevention of liver disease progression.
Collapse
|
231
|
Tzeng JI, Chen MF, Chung HH, Cheng JT. Silymarin decreases connective tissue growth factor to improve liver fibrosis in rats treated with carbon tetrachloride. Phytother Res 2012; 27:1023-8. [PMID: 22933420 DOI: 10.1002/ptr.4829] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
Abstract
Silymarin is an herbal product showing potential as protection against hepatic disorders. In an attempt to develop the agent for the treatment of hepatic fibrosis, we screened the effects of silymarin on a rat model of hepatic fibrosis induced by carbon tetrachloride (CCl₄). Intraperitoneal administration of CCl₄ to rats for 8 weeks not only increased the plasma levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) but also induced a marked increase in the formation of hepatic fibrosis. Moreover, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were also reduced in the liver of rats treated with CCl₄. Oral administration of silymarin (200 mg/kg, three times daily), in parallel, decreased the plasma levels of GOT and GPT. Furthermore, in addition to the improvement of hepatic fibrosis, the hepatic levels of hydroxyproline and connective tissue growth factor (CTGF) were both markedly decreased by silymarin. Silymarin also elevated the activities of SOD and GPx in liver isolated from CCl₄-treated rats. The results suggest that oral administration of silymarin protects against CCl₄-induced hepatic fibrosis in rats, likely due to the decrease in fibrotic parameters such as CTGF.
Collapse
Affiliation(s)
- Jann-Inn Tzeng
- Department of Food Sciences and Technology, Chia Nan University of Pharmacy and Sciences, Jen-Te, Tainan City, Taiwan 71701
| | | | | | | |
Collapse
|
232
|
Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:269039. [PMID: 22919438 PMCID: PMC3424005 DOI: 10.1155/2012/269039] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 12/17/2022]
Abstract
Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8–10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes.
Collapse
|
233
|
Yi X, Song M, Yuan Y, Zhang X, Chen W, Li J, Tong M, Liu G, You S, Kong X. Hepatic stimulator substance alleviates toxin-induced and immune-mediated liver injury and fibrosis in rats. Dig Dis Sci 2012; 57:2079-87. [PMID: 22539040 DOI: 10.1007/s10620-012-2168-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/03/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liver fibrosis is a common scarring response to chronic liver injury. It is a precursor to cirrhosis and liver carcinoma. Hepatic stimulator substance (HSS), a known liver-specific but species-nonspecific growth factor, has been shown to protect hepatocytes from various toxins. METHODS We have investigated the effects of HSS therapy on carbon tetrachloride (CCl(4))-induced and porcine-serum-mediated hepatic injury and fibrosis. We hypothesize that HSS might attenuate liver injury and fibrosis by suppressing oxidative stress, down-regulating profibrogenic factors, and blocking HSCs activation. RESULTS This report demonstrated that HSS therapy diminished α-smooth muscle actin expression, decreased intrahepatic reactive oxygen species (ROS) level, and down-regulated transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB, and tissue inhibitor of metalloproteinase (TIMP)-1 expression. In addition, HSS treatment significantly protected the liver from injury by improving liver function tests and histological architecture of the liver. CONCLUSIONS These results provided novel insights into the mechanisms of HSS in the protection of the liver. Our results suggested that HSS might be a therapeutic antifibrotic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xuerui Yi
- Key Laboratory of Liver Disease, Center of Infectious Diseases, Guangzhou 458 Hospital, Dongfengdonglu 801#, Guangzhou 510600, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Lin X, Zhang S, Huang Q, Wei L, Zheng L, Chen Z, Jiao Y, Huang J, Fu S, Huang R. Protective effect of Fufang-Liu-Yue-Qing, a traditional Chinese herbal formula, on CCl4 induced liver fibrosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:548-556. [PMID: 22658988 DOI: 10.1016/j.jep.2012.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese prescription Fufang-Liu-Yue-Qing (FLYQ) has long been employed clinically to treat chronic hepatitis B, and we have reported its beneficial effects on liver fibrosis in vitro. The present study was investigated to verify protective effects of FLYQ on liver fibrosis in a rat model and to investigate the underlying mechanisms which have not been explored yet. MATERIALS AND METHODS Liver fibrosis was established by intragastric administration of 2 ml/kg CCl(4) twice a week for 12 weeks. During the experiment, the model group received CCl(4) only, and the normal control group received an equal volume of saline. Treatment groups received not only CCl(4) for 12 weeks, but also the corresponding drugs, colchicine (1.00 mg/kg/day) or FLYQ (300, 150, 75 mg/kg/day) from 5 to 12 weeks. RESULTS Analysis experiments showed that FLYQ could significantly alleviate liver injury, as indicated by decreasing levels of ALT, AST, ALP, GGT, IL-6 and TNF-α. Moreover, FLYQ could effectively inhibit collagen deposition and reduce the pathological tissue damage. Research on mechanism showed that FLYQ was able to markedly reduce lipid peroxidation, recruit the anti-oxidative defense system, promote ECM degradation by modulating the levels of TIMP-1 and MMP-2, and induce HSC apoptosis by down-regulating bcl-2 mRNA, as well as inhibit the expressions of α-SMA and TGF-β(1) proteins. CONCLUSIONS Our results show that FLYQ is effective in attenuating hepatic injury and fibrosis in the CCl(4)-induced rat model, which should be developed as a new drug for treatment of liver fibrosis and even cirrhosis.
Collapse
Affiliation(s)
- Xing Lin
- Guangxi Medical University, Nanning 530021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Zhang XP, Zhang F, Zhang ZL, Ma J, Kong DS, Ni GX, Wang AY, Chen WX, Lu Y, Zheng SZ. Acupuncture combined with curcumin disrupts platelet-derived growth factor β receptor/extracellular signal-regulated kinase signalling and stimulates extracellular matrix degradation in carbon tetrachloride-induced hepatic fibrosis in rats. Acupunct Med 2012; 30:324-30. [PMID: 22763371 DOI: 10.1136/acupmed-2012-010167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acupuncture treatment has been increasingly used to treat chronic liver diseases. We previously reported that acupuncture combined with curcumin, a natural antifibrotic compound, could remarkably attenuate liver fibrosis in chemically intoxicated rats, but the underlying molecular mechanisms are poorly understood. The present study was aimed at investigating the effects of acupuncture combined with curcumin on platelet-derived growth factor (PDGF) signalling and extracellular matrix (ECM) regulation in the fibrotic liver. METHODS A total of 60 Sprague-Dawley male rats were randomly divided into control, model, sham, acupuncture, curcumin and combination treatment groups. During the establishment of fibrosis using carbon tetrachloride (CCl(4)), acupuncture at LR3, LR14, BL18 and ST36 and/or curcumin treatment by mouth were performed simultaneously. After treatment, serum PDGF levels were measured. Protein and mRNA expression of key effectors in PDGF pathway and fibrinolysis in the liver was determined. RESULTS Acupuncture combined with curcumin potently reduced serum PDGF levels and selectively disrupted the PDGF-βR/extracellular signal-regulated kinase (ERK) cascade. Combination treatment also significantly repressed expression of connective tissue growth factor and upregulated expression of matrix metalloproteinase-9, promoting fibrinolysis in the fibrotic liver. CONCLUSIONS The beneficial effects of acupuncture and its combination with curcumin could be attributed to the disruption of PDGF-βR/ERK pathway and stimulated ECM degradation in the fibrotic liver. Acupuncture treatment significantly enhanced curcumin effects at the molecular level. These findings may provide molecular insights into the potential of acupuncture combined with curcumin for prevention of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yu WG, Xu G, Ren GJ, Xu X, Yuan HQ, Qi XL, Tian KL. Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian J Med Res 2012; 134:717-24. [PMID: 22199113 PMCID: PMC3249972 DOI: 10.4103/0971-5916.91009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & OBJECTIVES Curcuma longa (turmeric) has a long history of use in Ayurvedic medicine as a treatment for inflammatory conditions. The purpose of the present study was to investigate the preventive effects of curcumin against acute pancreatitis (AP) induced by caerulein in mouse and to elucidate possible mechanism of curcumin action. METHODS Curcumin (50 mg/kg/day) was intraperitoneally injected to Kun Ming male mice for 6 days, followed by injection of caerulein to induce AP. GW9662 (0.3 mg/kg), a specific peroxisome proliferator-activated receptor gamma (PPARγ) antagonist, was intravenously injected along with curcumin. Murine macrophage RAW264.7 cells were treated with 100 μmol/l curcumin for 2 h, and then stimulated with 0.1 μ g/ml lipopolysaccharide (LPS). Serum amylase and transaminase levels were measured at 10 h after AP. TNF-α level in mouse serum and cell culture medium were detected by ELISA. Expression of PPARγ and NF-κB were analyzed by RT-PCR and Western blot. RESULTS Curcumin significantly decreased the pancreas injury and reversed the elevation of serum amylase, ALT and AST activities and TNF-α level in mice with AP. Curcumin treatment inhibited the elevation of NF-κB-p65 in the nucleus of mouse pancreas AP group and RAW264.7 cells, but significantly increased the expression of PPARγ. GW9662 could abolish the effects of curcumin on serum levels of amylase, ALT, AST, TNF-α, and NF-κB level. INTERPRETATION & CONCLUSIONS Our results suggest that curcumin could attenuate pancreas tissue and other organ injury by inhibiting the release of inflammatory cytokine TNF-α. These effects may involve upregulation of PPARγ and subsequent downregulation of NF-κB.
Collapse
Affiliation(s)
- Wen-Guang Yu
- Department of Biochemistry & Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | | | | | | | | | | | | |
Collapse
|
237
|
Kuo JJ, Chang HH, Tsai TH, Lee TY. Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. Int J Mol Med 2012; 30:643-9. [PMID: 22692588 DOI: 10.3892/ijmm.2012.1020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/18/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance occurs in almost all patients with non-alcoholic fatty liver disease (NAFLD), and mitochondrial dysfunction likely plays a pivotal role in the progression of fatty liver into non-alcoholic steatohepatitis (NASH). Curcumin is a compound derived from the spice turmeric, a spice that is a potent antioxidant, anti-carcinogenic, and anti-hepatotoxic agent. The aim of this study was to analyze the ability of curcumin to protect against the mitochondrial impairment induced by high free fatty acids (HFFAs) and to determine the underlying mechanism for this cytoprotection. Curcumin treatment inhibited the lipoapoptosis, ROS production and ATP depletion elicited by HFFA in primary hepatocytes. We demonstrate that curcumin effectively suppressed HFFA-induced production of phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in hepatocytes. Not only did curcumin treatment increase mitochondrial DNA (mtDNA) copy number in hepatocytes, but it also increased levels of transcriptional factors that regulate mitochondrial biogenesis, including peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam). In addition, curcumin contributed to cell survival, as indicated by the restoration of the mitochondrial membrane potential (MMP) and the inhibition of the mitochondrial biogenesis induced by HFFA. Furthermore, this cytoprotection resulted from curcumin-mediated downregulation of the NF-κB p65 subunit, thereby inhibiting lipoapoptosis. Together, these data suggest that curcumin protects hepatocytes from HFFA-induced lipoapoptosis and mitochondrial dysfunction, which partially occurs through the regulation of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jong-Jen Kuo
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan, R.O.C
| | | | | | | |
Collapse
|
238
|
Tu CT, Yao QY, Xu BL, Wang JY, Zhou CH, Zhang SC. Protective effects of curcumin against hepatic fibrosis induced by carbon tetrachloride: modulation of high-mobility group box 1, Toll-like receptor 4 and 2 expression. Food Chem Toxicol 2012; 50:3343-51. [PMID: 22683883 DOI: 10.1016/j.fct.2012.05.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 12/21/2022]
Abstract
The aim of the study was to investigate the effect of curcumin on the liver fibrosis induced by carbon tetrachloride (CCl(4)) in rats, and to elucidate its underlying molecular mechanisms. Rats were administered with CCl(4) together with or without curcumin for 6 weeks. Hepatic damage was evaluated by analysis of liver function tests in serum. Hepatic histopathology and collagen content were employed to quantify liver fibrosis; and activated hepatic stellate cells were assessed. Moreover, the mRNA and protein expression levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, high-mobility group box 1 (HMGB1), Toll like receptor (TLR) 2 and TLR4 were determined by quantitative real time PCR, Western blot or immunohistochemistry. Treatment with curcumin significantly attenuated CCl(4)-induce liver injury, hepatic inflammation and reduced the levels of proinflammatory mediators (TNF-α, IL-6 and MCP-1). Moreover, curcumin significantly inhibited extracellular matrix deposition, reduced the number of activated stellate cells, and decreased the levels of HMGB1, TLR4 and TLR2 expression in the rat model of fibrogenesis. These results suggest that curcumin could be an effective agent for preventing liver fibrosis and its mechanism may in part be a consequence of the reduction TLR2, TLR4 and HMGB1 expression.
Collapse
Affiliation(s)
- Chuan-tao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
239
|
Zhang F, Ma J, Lu Y, Ni GX, Ni CY, Zhang XJ, Zhang XP, Kong DS, Wang AY, Chen WX, Zheng SZ. Acupuncture Combined with Curcumin Attenuates Carbon Tetrachloride-Induced Hepatic Fibrosis in Rats. Acupunct Med 2012; 30:132-8. [DOI: 10.1136/acupmed-2011-010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Increasingly, studies demonstrate the effectiveness of acupuncture therapy against liver fibrosis. Curcumin is a natural product with antifibrotic effects, but has poor pharmacokinetic profiles. This study aimed to evaluate whether acupuncture combined with curcumin could more potently attenuate liver fibrosis in chemical intoxicated rats. Methods 60 Sprague–Dawley male rats were randomly divided into control, model, sham, acupuncture, curcumin and combination therapy groups. During the establishment of fibrosis using carbon tetrachloride (CCl4), acupuncture at LR3, LR14, BL18 and ST36 and/or curcumin treatment by mouth were performed simultaneously. After treatment, pathological indexes and histology for hepatic injury and fibrogenesis were detected. The expression of extracellular matrix (ECM) components was also determined. Results Acupuncture combined with curcumin potently protected the liver from CCl4-induced injury and fibrogenesis, as indicated by reduced levels of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, hyaluronic acid, laminin and procollagen III. Combined use also led to significant liver histological improvements. Furthermore, combined use effectively inhibited ECM expression such as α-smooth muscle actin, fibronectin and α1(1) collagen. Conclusions Acupuncture treatment could significantly enhance the antifibrotic efficacy of curcumin on CCl4-induced hepatic fibrosis in rats in vivo, suggesting that a combination of acupuncture with curcumin may be exploited for the prevention of hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ma
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Xia Ni
- Jiangsu Key Laboratory of Integrated Acupuncture and Drugs, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun-Yan Ni
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Jiao Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Ping Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - De-Song Kong
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Yun Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Xing Chen
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Zhong Zheng
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
240
|
Abstract
BACKGROUND We previously demonstrated that kaerophyllin, a lignan, isolated from a widely used traditional Chinese herb, Bupleurum scorzonerifolium, leading to the inhibition of hepatic stellate cells (HSCs) activation in vitro. This current study evaluated the in vivo role of kaerophyllin in protecting the liver against injury and fibrogenesis caused by thioacetamide (TAA) in rats and further explored the underlying mechanisms. MATERIALS AND METHODS Liver fibrosis in Sprague-Dawley rats was induced by intraperitoneal injection of TAA (200 mg/kg) twice per week for 6 weeks. Animals were divided into five groups: vehicle control, TAA control, TAA + low dose kaerophyllin, TAA + high dose kaerophyllin and TAA + curcumin groups. Kaerophyllin (10 or 30 mg/kg) or curcumin (150 mg/mL) was given by gavage twice per day consecutively for 4 weeks starting 2 weeks after TAA injection. Rat HSCs were used to investigate the anti-inflammatory role of kaerophyllin against tumour necrosis factor α (TNF-α) in vitro. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression was knocked down in rat HSCs using PPAR-γ small interfering RNAs. RESULTS Kaerophyllin significantly protected liver from injury by reducing serum aspartate transaminase and alanine transaminase levels and by improving the histological architecture and fibrosis score. In addition, kaerophyllin suppressed inflammation by reducing the mRNA of TNF-α, interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) genes. In HSCs, kaerophyllin elevated PPAR-γ activity and reduced TNF-α-stimulated mRNA levels of intracellular adhesion molecule-1 (ICAM-1), MCP-1 and IL-1β genes, which were reversed by small interfering RNA knockdown of PPAR-γ gene. CONCLUSIONS Our results demonstrated that kaerophyllin protected the rat liver from TAA-caused injury and fibrogenesis by suppressing hepatic inflammation and inhibiting HSC activation, possibly through upregulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Ting-Fang Lee
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
241
|
Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. J Transl Med 2012; 92:827-41. [PMID: 22449800 PMCID: PMC3365656 DOI: 10.1038/labinvest.2012.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetes is featured by hyperglycemia, which facilitates the formation of advanced glycation end-products (AGEs). AGEs are a causal factor in development of diabetic complications. AGE receptor-1 (AGE-R1) is responsible for detoxification and clearance of AGEs. Type 2 diabetes mellitus is commonly accompanied by non-alcoholic steatohepatitis, which could cause hepatic fibrosis. Little attention has been paid to effects of AGEs on hepatic fibrogenesis. Curcumin, a phytochemical from turmeric, has been reported to inhibit the activation of hepatic stellate cells (HSCs), the major effectors during hepatic fibrogenesis, and to protect against hepatic fibrogenesis in vitro and in vivo. The current study was designed to evaluate the effects of AGEs on inducing HSC activation, to assess the role of curcumin in diminishing the AGE effects, and to explore the underlying mechanisms. Our results showed that AGEs stimulated HSC activation by inducing cell proliferation and expression of genes relevant to HSC activation, which were abrogated by curcumin. Curcumin induced gene expression of AGE-R1 in passaged HSCs, which might facilitate the attenuation of the stimulatory effects of AGEs on the activation of HSCs. Further experiments revealed that curcumin inhibited the activity of extracellular signal-regulated kinase (ERK), and induced gene expression and the activity of peroxisome proliferator-activated receptor-gamma (PPARγ), leading to the induction of the AGE-R1 gene expression. In summary, AGEs stimulated HSC activation. Curcumin eliminated the AGE effects at least partially by inducing the AGE-R1 gene expression. The process was mediated by inhibiting ERK activity, inducing gene expression of PPARγ and stimulating its transactivity.
Collapse
|
242
|
Rong S, Zhao Y, Bao W, Xiao X, Wang D, Nussler AK, Yan H, Yao P, Liu L. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:545-550. [PMID: 22445643 DOI: 10.1016/j.phymed.2011.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/10/2011] [Accepted: 12/13/2011] [Indexed: 05/16/2023]
Abstract
Our previous study found that curcumin, a major active component of turmeric, could ameliorate ethanol-induced hepatocytes oxidative stress in vitro. The objective of this work was to investigate the effect of curcumin on chronic alcoholic liver disease (ALD) in vivo. Ethanol-exposed (2.4g/kg/day ethanol for the initial 4 weeks and 4g/kg/day for another 2 weeks) Balb/c mice were simultaneously treated with curcumin for 6 weeks. The results showed that curcumin attenuated ethanol-induced histopathological changes of the liver and ameliorated the evident release of cellular alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Ethanol exposure resulted in reactive oxygen species (ROS) generation, malondialdehyde (MDA) elevation, glutathione (GSH) depletion and antioxidant defense system impairment, which were significantly reversed by curcumin treatment. In conclusion, curcumin provided protection against chronic ALD and the mechanism might be related to the alleviation of oxidative damage.
Collapse
Affiliation(s)
- Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem Res 2012; 37:1584-97. [PMID: 22476982 DOI: 10.1007/s11064-012-0754-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/09/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed. Neuronal oxidative stress was assessed, including extracellular hydrogen peroxide and intracellular reactive oxygen species. The abilities of curcumin to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation are further assessed and discussed. Curcumin preserves cell viability, which is decreased by Aβ. The results of changed morphology, released Lactate dehydrogenases and cell viability assays indicate that curcumin protects Aβ-induced neuronal damage. Curcumin depresses Aβ-induced up-regulation of neuronal oxidative stress. The treatment sequence impacts the protective effect of curcumin on Aβ-induced neuronal damage. Curcumin shows a more protective effect on neuronal oxidative damage when curcumin was added into cultured neurons not later than Aβ, especially prior to Aβ. The abilities of curcumin to scavenge free radicals and to inhibit the formation of β-sheeted aggregation are both beneficial to depress Aβ-induced oxidative damage. Curcumin prevents neurons from Aβ-induced oxidative damage, implying the therapeutic usage for the treatment of Alzheimer's disease patients.
Collapse
|
244
|
Zhao HL, Song CH, Chai OH. Negative Effects of Curcumin on Liver Injury Induced by Alcohol. Phytother Res 2012; 26:1857-63. [DOI: 10.1002/ptr.4664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Hai-Long Zhao
- Department of Anatomy; Chonbuk National University Medical School; Jeonju; Republic of Korea
| | | | | |
Collapse
|
245
|
Yadav P, Jadhav SE, Kumar V, Kaul KK, Pant SC, Flora SJ. Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats. Interdiscip Toxicol 2012; 5:1-8. [PMID: 22783142 PMCID: PMC3389502 DOI: 10.2478/v10102-012-0001-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/29/2012] [Accepted: 03/15/2012] [Indexed: 01/23/2023] Open
Abstract
The effect of 2- pyridine aldoxime methyl chloride (2-PAMCl) and atropine with or without curcumin was investigated in dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP) induced toxicity in rats. Rats were exposed to DDVP (2 mg/kg sub-cutaneously) once daily for the period of 21 days. Post DDVP exposure, rats were further treated with 2-PAMCl (50 mg/kg intramuscular, once daily) + atropine (10 mg/kg, i.m. once daily) with or without curcumin (200 mg/kg; oral; once daily) for further 21 days. We observed a significant increase in lipid peroxidation (LPO), reactive oxygen species (ROS), oxidized glutathione (GSSG), while there was a significant decrease in antioxidant enzymes, brain acetylcholinesterase (AChE) and 5-hydroxy tryptamine (5-HT) activity on DDVP exposure of rats. These alterations were restored significantly by co-administration of 2-PAMCl + atropine in DDVP exposed rats. Curcumin when co-supplemented with 2-PAMCl + atropine also significantly protected serum aspartate aminotransferase (AST) and restored brain AChE activity and 5-HT level in animals sub-chronically exposed to DDVP. Histopathological observations along with biochemical changes in rat blood and tissues revealed significant protection offered by 2-PAMCl + atropine against DDVP. The results indicate that DDVP-induced toxicity can be significantly protected by co-administration of 2-PAMCl + atropine individually, however, curcumin co-supplementation with 2-PAMCl + atropine provides more pronounced protection, concerning particularly neurological disorders.
Collapse
Affiliation(s)
- Preeti Yadav
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| | - Sunil E. Jadhav
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| | - Vinesh Kumar
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| | - Kirtee K. Kaul
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | - Satish C. Pant
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| | - Swaran J.S. Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| |
Collapse
|
246
|
Chen ZZ, Wang ZL, Deng CY, Zheng H, Wang XH, Ma L, Ye X, Ma YH, Xie CF, Chen LJ, Wei YQ. (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione protects rats from carbon tetrachloride-induced liver injury and fibrogenesis. World J Gastroenterol 2012; 18:654-61. [PMID: 22363136 PMCID: PMC3281222 DOI: 10.3748/wjg.v18.i7.654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the hepatoprotective roles of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (SKLB010) against carbon tetrachloride (CCl4)-induced acute and chronic liver injury and its underlying mechanisms of action.
METHODS: In the first experiment, rats were weighed and randomly divided into 5 groups (five rats in each group) to assess the protective effect of SKLB010 on acute liver injury. For induction of acute injury, rats were administered a single intraperitoneal injection of 2 mL/kg of 50% (v/v) CCl4 dissolved in olive oil (1:1). Group 1 was untreated and served as the control group; group 2 received CCl4 for induction of liver injury and served as the model group. In groups 3, 4 and 5, rats receiving CCl4 were also treated with SKLB010 at doses of 25, 50 and 100 mg/kg, respectively. Blood samples were collected at 6, 12 and 24 h after CCl4 intoxication to determine the serum activity of alanine amino transferase. Tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) were determined using enzyme-linked immunosorbent assay. At 24 h after CCl4 injection,liver fibrogenesis was evaluated by hematoxylin-eosin (HE) staining and immunohistochemical analyses. Cytokine transcript levels of TNF-α, IL-1β and inducible nitric oxide synthase in the liver tissues of rats were measured using a reverse transcriptase reverse transcription-polymerase chain reaction technique. In the second experiment, rats were randomly divided into 2 groups (15 rats in each group), and liver injury in the CCl4-administered groups was induced by a single intraperitoneal injection of 2 mL/kg of 50% (v/v) CCl4 dissolved in olive oil (1:1). The SKLB010-treated groups received oral 100 mg/kg SKLB010 before CCl4 administration. Five rats in each group were sacrificed at 2 h, 6 h, 12 h after CCl4 intoxication and small fortions of livers were rapidly frozen for extraction of total RNA, hepatic proteins and glutathione (GSH) assays. In the hepatic fibrosis model group, rats were randomly divided into 2 groups (5 rats each group). Rats were injected intraperitoneally with a mixture of CCl4 (1 mL/kg body weight) and olive oil [1:1 (v/v)] twice a week for 4 wk. In the SKLB010-treated groups, SKLB010 (100 mg/kg) was given once daily by oral gavage for 4 wk after CCl4 administration. The rats were sacrificed one week after the last injection and the livers from each group were harvested and fixed in 10% formalin for HE and immunohistochemical staining.
RESULTS: In this rat acute liver injury model, oral administration of SKLB010 blocked liver tissue injury by down-regulating the serum levels of alanine aminotransferase, suppressing inflammatory infiltration to liver tissue, and improving the histological architecture of liver. SKLB010 inhibited the activation of NF-κB by suppressing the degradation of IκB, and prevented the secretion of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and the reactive free radical, nitric oxide, at the transcriptional and translational levels. In this chronic liver fibrosis model, treatment with 100 mg/kg per day SKLB010 attenuated the degree of hepatic fibrosis and area of collagen, and blocked the accumulation of smooth-muscle actin-expressed cells.
CONCLUSION: These results suggest that SKLB010 is a potent therapeutic agent for the treatment of CCl4-induced hepatic injury.
Collapse
|
247
|
Ohyama T, Sato K, Kishimoto K, Yamazaki Y, Horiguchi N, Ichikawa T, Kakizaki S, Takagi H, Izumi T, Mori M. Azelnidipine is a calcium blocker that attenuates liver fibrosis and may increase antioxidant defence. Br J Pharmacol 2012; 165:1173-1187. [PMID: 21790536 PMCID: PMC3346246 DOI: 10.1111/j.1476-5381.2011.01599.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 06/20/2011] [Accepted: 07/11/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a critical role in liver fibrogenesis. Reactive oxygen species (ROS) stimulate hepatic stellate cells (HSCs), and ROS-mediated increases in calcium influx further increase ROS production. Azelnidipine is a calcium blocker that has been shown to have antioxidant effects in endothelial cells and cardiomyocytes. Therefore, we evaluated the anti-fibrotic and antioxidative effects of azelnidipine on liver fibrosis. EXPERIMENTAL APPROACH We used TGF-β1-activated LX-2 cells (a human HSC line) and mouse models of fibrosis induced by treatment with either carbon tetrachloride (CCl(4) ) or thioacetamide (TAA). KEY RESULTS Azelnidipine inhibited TGF-β1 and angiotensin II (Ang II)-activated α1(I) collagen mRNA expression in HSCs. Furthermore, TGF-β1- and Ang II-induced oxidative stress and TGF-β1-induced p38 and JNK phosphorylation were reduced in HSCs treated with azelnidipine. Azelnidipine significantly decreased inflammatory cell infiltration, pro-fibrotic gene expressions, HSC activation, lipid peroxidation, oxidative DNA damage and fibrosis in the livers of CCl(4) - or TAA-treated mice. Finally, azelnidipine prevented a decrease in the expression of some antioxidant enzymes and accelerated regression of liver fibrosis in CCl(4) -treated mice. CONCLUSIONS AND IMPLICATIONS Azelnidipine inhibited TGF-β1- and Ang II-induced HSC activation in vitro and attenuated CCl(4) - and TAA-induced liver fibrosis, and it accelerated regression of CCl(4) -induced liver fibrosis in mice. The anti-fibrotic mechanism of azelnidipine against CCl(4) -induced liver fibrosis in mice may have been due an increased level of antioxidant defence. As azelnidipine is widely used in clinical practice without serious adverse effects, it may provide an effective new strategy for anti-fibrotic therapy.
Collapse
Affiliation(s)
- T Ohyama
- Departments of Medicine and Molecular Science Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Guimarães MR, de Aquino SG, Coimbra LS, Spolidorio LC, Kirkwood KL, Rossa C. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immun 2012; 18:155-63. [PMID: 21242275 PMCID: PMC3132291 DOI: 10.1177/1753425910392935] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Curcumin is a plant-derived dietary spice ascribed various biological activities. Curcumin therapeutic applications have been studied in a variety of conditions, but not on periodontal disease. Periodontal disease is a chronic inflammatory condition initiated by an immune response to micro-organisms of the dental biofilm. Experimental periodontal disease was induced in rats by injecting LPS in the gingival tissues on the palatal aspect of upper first molars (30 µg LPS, 3 times/week for 2 weeks). Curcumin was administered to rats daily via oral gavage at 30 and 100 mg/kg body weight. Reverse transcriptase-qPCR and ELISA were used to determine the expression of IL-6, TNF-α and prostaglandin E(2) synthase on the gingival tissues. The inflammatory status was evaluated by stereometric and descriptive analysis on hematoxylin/eosin-stained sections, whereas modulation of p38 MAPK and NK-κB signaling was assessed by Western blot. Curcumin effectively inhibited cytokine gene expression at mRNA and protein levels, but NF-κB was inhibited only with the lower dose of curcumin, whereas p38 MAPK activation was not affected. Curcumin produced a significant reduction on the inflammatory infiltrate and increased collagen content and fibroblastic cell numbers. Curcumin potently inhibits innate immune responses associated with periodontal disease, suggesting a therapeutic potential in this chronic inflammatory condition.
Collapse
Affiliation(s)
- Morgana R Guimarães
- Department of Diagnosis and Surgery, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | | | |
Collapse
|
249
|
Restorative effect of (5E, 13E)–5,13–Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
250
|
Ghosh SS, Krieg R, Massey HD, Sica DA, Fakhry I, Ghosh S, Gehr TWB. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. Am J Physiol Renal Physiol 2011; 302:F439-54. [PMID: 22031851 DOI: 10.1152/ajprenal.00356.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that curcumin prevents chronic kidney disease (CKD) development in ⅚ nephrectomized (Nx) rats when given within 1 wk after Nx (Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TW. Am J Physiol Renal Physiol 296: F1146-F1157, 2009). To better mimic the scenario for renal disease in humans, we began curcumin and enalapril therapy when proteinuria was already established. We hypothesized that curcumin, by blocking the inflammatory mediators TNF-α and IL-1β, could also reduce cyclooxygenase (COX) and phospholipase expression in the kidney. Nx animals were divided into untreated Nx, curcumin-treated, and enalapril-treated groups. Curcumin (75 mg/kg) and enalapril (10 mg/kg) were administered for 10 wk. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was comparably reduced by curcumin and enalapril, with only enalapril significantly lowering blood pressure. Compared with controls, Nx animals had higher plasma/kidney TNF-α and IL-1β, which were reduced by curcumin and enalapril treatment. Nx animals had significantly elevated kidney levels of cytosolic PLA(2), calcium-independent intracellular PLA(2), COX 1, and COX 2, which were comparably reduced by curcumin and enalapril. Studies in mesangial cells and macrophages were carried out to establish that the in vivo increase in PLA(2) and COX were mediated by TNF-α and IL-1β and that curcumin, by antagonizing the cytokines, could significantly reduce both PLA(2) and COX. We conclude that curcumin ameliorates CKD by blocking inflammatory signals even if it is given at a later stage of the disease.
Collapse
Affiliation(s)
- S S Ghosh
- Virginia Commonwealth Univ., Dept. of Internal Medicine/Nephrology, 1101 E. Marshall St., Sanger Hall, Rm. 8-059, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|