201
|
Shimozawa T, Ishiwata S. Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging. Biophys J 2009; 96:1036-44. [PMID: 19186141 DOI: 10.1016/j.bpj.2008.09.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022] Open
Abstract
Actin is a major component of the cytoskeleton that transmits mechanical stress in both muscle and nonmuscle cells. As the first step toward developing a "bio-nano strain gauge" that would be able to report the mechanical stress imposed on an actin filament, we quantitatively examined the fluorescence intensity of dyes attached to single actin filaments under various tensile forces (5-20 pN). Tensile force was applied via two optically trapped plastic beads covalently coated with chemically modified heavy meromyosin molecules that were attached to both end regions of an actin filament. As a result, we found that the fluorescence intensity of an actin filament, where 20% of monomers were labeled with tetramethylrhodamine (TMR)-5-maleimide at Cys(374) and the filamentous structure was stabilized with nonfluorescent phalloidin, decreased by approximately 6% per 10 pN of the applied force, whereas the fluorescence intensity of an actin filament labeled with either BODIPY TMR cadaverin-iodoacetamide at Cys(374) or rhodamine-phalloidin showed only an approximately 2% decrease per 10 pN of the applied force. On the other hand, spectroscopic measurements of actin solutions showed that the fluorescence intensity of TMR-actin increased 1.65-fold upon polymerization (G-F transformation), whereas that of BODIPY-actin increased only 1.06-fold. These results indicate that the external force distorts the filament structure, such that the microenvironment around Cys(374) approaches that in G-actin. We thus conclude that the fluorescent dye incorporated into an appropriate site of actin can report the mechanical distortion of the binding site, which is a necessary condition for the bio-nano strain gauge.
Collapse
Affiliation(s)
- Togo Shimozawa
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | | |
Collapse
|
202
|
Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. The nature of the globular- to fibrous-actin transition. Nature 2009; 457:441-5. [PMID: 19158791 DOI: 10.1038/nature07685] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 11/28/2008] [Indexed: 01/02/2023]
Abstract
Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.
Collapse
Affiliation(s)
- Toshiro Oda
- X-ray Structural Analysis Research Team, RIKEN SPring-8 Center, RIKEN Harima Institute, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
203
|
|
204
|
Altschuler GM, Willison KR. Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 2009; 5:1391-408. [PMID: 18708324 DOI: 10.1098/rsif.2008.0185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A free-energy-based approach is used to describe the mechanism through which chaperonin-containing TCP-1 (CCT) folds the filament-forming cytoskeletal protein actin, which is one of its primary substrates. The experimental observations on the actin folding and unfolding pathways are collated and then re-examined from this perspective, allowing us to determine the position of the CCT intervention on the actin free-energy folding landscape. The essential role for CCT in actin folding is to provide a free-energy contribution from its ATP cycle, which drives actin to fold from a stable, trapped intermediate I3, to a less stable but now productive folding intermediate I2. We develop two hypothetical mechanisms for actin folding founded upon concepts established for the bacterial type I chaperonin GroEL and extend them to the much more complex CCT system of eukaryotes. A new model is presented in which CCT facilitates free-energy transfer through direct coupling of the nucleotide hydrolysis cycle to the phases of actin substrate maturation.
Collapse
Affiliation(s)
- Gabriel M Altschuler
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
205
|
Scoville D, Stamm JD, Altenbach C, Shvetsov A, Kokabi K, Rubenstein PA, Hubbell WL, Reisler E. Effects of binding factors on structural elements in F-actin. Biochemistry 2009; 48:370-8. [PMID: 19113841 PMCID: PMC3133778 DOI: 10.1021/bi801649j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the dynamics of the actin filament is essential to a detailed description of their interactions and role in the cell. Previous studies have linked the dynamic properties of actin filaments (F-actin) to three structural elements contributing to a hydrophobic pocket, namely, the hydrophobic loop, the DNase I binding loop, and the C-terminus. Here, we examine how these structural elements are influenced by factors that stabilize or destabilize F-actin, using site-directed spin-labeled (SDSL) electron paramagnetic resonance (EPR), fluorescence, and cross-linking techniques. Specifically, we employ cofilin, an actin destabilizing protein that binds and severs filaments, and phalloidin, a fungal toxin that binds and stabilizes F-actin. We find that cofilin shifts both the DNase I binding loop and the hydrophobic loop away from the C-terminus in F-actin, as demonstrated by weakened spin-spin interactions, and alters the environment of spin probes on residues of these two loops. In contrast, although phalloidin strongly stabilizes F-actin, it causes little or no local change in the environment of the loop residues. This indicates that the stabilizing effect of phalloidin is achieved mainly through constraining structural fluctuations in F-actin and suggests that factors and interactions that control these fluctuations have an important role in the cytoskeleton dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emil Reisler
- To whom correspondence should be addressed: 405 Hilgard Ave., UCLA, MBI Rm. 401, Los Angeles, CA 90095. Telephone: (310) 825-2668. Fax: (310) 206-7286.
| |
Collapse
|
206
|
Structural Variations in Protein Superfamilies: Actin and Tubulin. Mol Biotechnol 2009; 42:49-60. [DOI: 10.1007/s12033-008-9128-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/14/2008] [Indexed: 11/28/2022]
|
207
|
Hagelueken G, Albrecht S, Steinmetz H, Jansen R, Heinz D, Kalesse M, Schubert WD. Absolute Konfiguration von Rhizopodin und Inhibierung der Aktinpolymerisation durch Dimerisierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802915] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
208
|
The Absolute Configuration of Rhizopodin and Its Inhibition of Actin Polymerization by Dimerization. Angew Chem Int Ed Engl 2009; 48:595-8. [DOI: 10.1002/anie.200802915] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
209
|
Hofmann WA. Cell and molecular biology of nuclear actin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:219-63. [PMID: 19215906 DOI: 10.1016/s1937-6448(08)01806-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Actin is a highly conserved protein and one of the major components of the cytoplasm and the nucleus in eukaryotic cells. In the nucleus, actin is involved in a variety of nuclear processes that include transcription and transcription regulation, RNA processing and export, intranuclear movement, and structure maintenance. Recent advances in the field of nuclear actin have established that functions of actin in the nucleus are versatile, complex, and interconnected. It also has become increasingly evident that the cytoplasmic and nuclear pools of actin are functionally linked. However, while the biological significance of nuclear actin has become clear, we are only beginning to understand the mechanisms that lie behind the regulation of nuclear actin. This review provides an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY, USA
| |
Collapse
|
210
|
Iwane AH, Morimatsu M, Yanagida T. Recombinant alpha-actin for specific fluorescent labeling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:491-499. [PMID: 20009382 PMCID: PMC3621554 DOI: 10.2183/pjab.85.491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/28/2009] [Indexed: 05/28/2023]
Abstract
Until recently, actin was thought to act merely as a passive track for its motility partner, myosin, during actomyosin interactions. Yet a recent report having observed dynamical conformational changes in labeled skeletal muscle alpha-actin suggests that actin has a more active role. Because the labeling technique was still immature, however, conclusions regarding the significance of the different conformations are difficult to make. Here, we describe the preparation of fully active alpha-actin obtained from a baculovirus expression system. We developed alpha-actin recombinants, of which subdomains 1 and 2 have specific sites for fluorescent probes. This specific labeling technique offers to significantly expand the information acquired from actin studies.
Collapse
Affiliation(s)
- Atsuko H Iwane
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
211
|
Feng JJ, Marston S. Genotype–phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord 2009; 19:6-16. [DOI: 10.1016/j.nmd.2008.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022]
|
212
|
Nair UB, Joel PB, Wan Q, Lowey S, Rould MA, Trybus KM. Crystal structures of monomeric actin bound to cytochalasin D. J Mol Biol 2008; 384:848-64. [PMID: 18938176 PMCID: PMC2638586 DOI: 10.1016/j.jmb.2008.09.082] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/16/2008] [Indexed: 11/17/2022]
Abstract
The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play equally important roles in CD binding, and six hydrogen bonds stabilize the actin-CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The cocrystallized actin-CD structure also revealed changes in actin conformation. An approximately 6 degrees rotation of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure instead of being disordered, as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament.
Collapse
Affiliation(s)
- Usha B. Nair
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Peteranne B. Joel
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Qun Wan
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Susan Lowey
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Mark A. Rould
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
213
|
Fulga F, Nicolau DV, Nicolau DV. Models of protein linear molecular motors for dynamic nanodevices. Integr Biol (Camb) 2008; 1:150-69. [PMID: 20023800 DOI: 10.1039/b814985b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices.
Collapse
Affiliation(s)
- Florin Fulga
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
214
|
Rai R, Wong CCL, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR, Kashina A. Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 2008; 135:3881-9. [PMID: 18948421 PMCID: PMC2582055 DOI: 10.1242/dev.022723] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-translational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of the actin cytoskeleton and in cell motility. Here, we investigated the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analyses showed that alpha cardiac actin undergoes arginylation at four sites during development. Ultrastructural analysis of the myofibrils in wild-type and Ate1 knockout mouse hearts showed that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild-type and Ate1 knockout mouse embryos revealed that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of the actin cytoskeleton in cardiac myocytes.
Collapse
Affiliation(s)
- Reena Rai
- Department of Animal Biology, La Jolla, CA 92037
| | | | - Tao Xu
- The Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | - Anna Kashina
- Department of Animal Biology, La Jolla, CA 92037
| |
Collapse
|
215
|
Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. EMBO J 2008; 27:3198-208. [PMID: 19008859 PMCID: PMC2583105 DOI: 10.1038/emboj.2008.235] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/10/2008] [Indexed: 01/13/2023] Open
Abstract
Serum response factor transcriptional activity is controlled through interactions with regulatory cofactors such as the coactivator MAL/MRTF-A (myocardin-related transcription factor A). MAL is itself regulated in vivo by changes in cellular actin dynamics, which alter its interaction with G-actin. The G-actin-sensing mechanism of MAL/MRTF-A resides in its N-terminal domain, which consists of three tandem RPEL repeats. We describe the first molecular insights into RPEL function obtained from structures of two independent RPELMAL peptide:G-actin complexes. Both RPEL peptides bind to the G-actin hydrophobic cleft and to subdomain 3. These RPELMAL:G-actin structures explain the sequence conservation defining the RPEL motif, including the invariant arginine. Characterisation of the RPELMAL:G-actin interaction by fluorescence anisotropy and cell reporter-based assays validates the significance of actin-binding residues for proper MAL localisation and regulation in vivo. We identify important differences in G-actin engagement between the two RPELMAL structures. Comparison with other actin-binding proteins reveals an unexpected similarity to the vitamin-D-binding protein, extending the G-actin-binding protein repertoire.
Collapse
|
216
|
Stokasimov E, McKane M, Rubenstein PA. Role of intermonomer ionic bridges in the stabilization of the actin filament. J Biol Chem 2008; 283:34844-54. [PMID: 18945676 DOI: 10.1074/jbc.m804419200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filament formation is required for most of the functions of actin. However, the intermonomer interactions that stabilize F-actin have not been elucidated because of a lack of an F-actin crystal structure. The Holmes muscle actin model suggests that an ionic interaction between Arg-39 of one monomer and Glu-167 of an adjacent monomer in the same strand contributes to this stabilization. Yeast actin has an Ala-167 instead. F-actin molecular dynamics modeling predicts another interaction between Arg-39 of one monomer and Asp-275 of an opposing strand monomer. In Toxoplasma gondii actin, which forms short stubby filaments, the Asp-275 equivalent is replaced by Arg leading to a potential filament-destabilizing charge-charge repulsion. Using yeast actin, we tested the effect of A167E as a potential stabilizer and A167R and D275R as potential filament disruptors. All mutations caused abnormal growth and mitochondrial malfunction. A167E and D275R actins polymerize normally and form relatively normal appearing filaments. A167R nucleates filaments more slowly and forms filament bundles. The R39D/A167R double mutant, which re-establishes an ionic bond in the opposite orientation, reverses this polymerization and bundling defect. Stoichiometric amounts of yeast cofilin have little effect on wild-type and A167E filaments. However, D275R and A167R actin depolymerization is profound with cofilin. Although our results suggest that disruption of an interaction between Arg-39 and Asp-275 is not sufficient to cause fragmentation, it suggests that it changes filament stability thereby disposing it for enhanced cofilin depolymerizing effects. Ala-167 results demonstrate the in vivo and in vitro importance of another potential Arg-39 ionic interaction.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
217
|
Actomyosin interaction: mechanical and energetic properties in different nucleotide binding states. Int J Mol Sci 2008; 9:1927-1943. [PMID: 19325727 PMCID: PMC2635604 DOI: 10.3390/ijms9101927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/17/2022] Open
Abstract
The mechanics of the actomyosin interaction is central in muscle contraction and intracellular trafficking. A better understanding of the events occurring in the actomyosin complex requires the examination of all nucleotide-dependent states and of the energetic features associated with the dynamics of the cross-bridge cycle. The aim of the present study is to estimate the interaction strength between myosin in nucleotide-free, ATP, ADP·Pi and ADP states and actin monomer. The molecular models of the complexes were constructed based on cryo-electron microscopy maps and the interaction properties were estimated by means of a molecular dynamics approach, which simulate the unbinding of the complex applying a virtual spring to the core of myosin protein. Our results suggest that during an ATP hydrolysis cycle the affinity of myosin for actin is modulated by the presence and nature of the nucleotide in the active site of the myosin motor domain. When performing unbinding simulations with a pulling rate of 0.001 nm/ps, the maximum pulling force applied to the myosin during the experiment is about 1nN. Under these conditions the interaction force between myosin and actin monomer decreases from 0.83 nN in the nucleotide-free state to 0.27 nN in the ATP state, and increases to 0.60 nN after ATP hydrolysis and Pi release from the complex (ADP state).
Collapse
|
218
|
Spire and Cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol 2008; 18:494-504. [PMID: 18774717 DOI: 10.1016/j.tcb.2008.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 12/20/2022]
Abstract
WASP-homology 2 (WH2) domains, which were first identified in the WASP/Scar (suppressor of cAMP receptor)/WAVE (WASP-family verprolin homologous protein) family of proteins, are multifunctional regulators of actin assembly. Two recently discovered actin-binding proteins, Spire and Cordon-bleu (Cobl), which have roles in axis patterning in developmental processes, use repeats of WH2 domains to generate a large repertoire of novel regulatory activities, including G-actin sequestration, actin-filament nucleation, filament severing and barbed-end dynamics regulation. We describe how these multiple functions selectively operate in a cellular context to control the dynamics of the actin cytoskeleton. In vivo, Spire and Cobl can synergize with other actin regulators. As an example, we outline potential methods to gain insight into the functional basis for reported genetic interactions among Spire, profilin and formin.
Collapse
|
219
|
Ammer AG, Weed SA. Cortactin branches out: roles in regulating protrusive actin dynamics. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:687-707. [PMID: 18615630 PMCID: PMC2561250 DOI: 10.1002/cm.20296] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990's, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neuroscience and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | |
Collapse
|
220
|
Baek K, Liu X, Ferron F, Shu S, Korn ED, Dominguez R. Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding. Proc Natl Acad Sci U S A 2008; 105:11748-53. [PMID: 18689676 PMCID: PMC2575267 DOI: 10.1073/pnas.0805852105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Indexed: 11/18/2022] Open
Abstract
On starvation, Dictyostelium cells aggregate to form multicellular fruiting bodies containing spores that germinate when transferred to nutrient-rich medium. This developmental cycle correlates with the extent of actin phosphorylation at Tyr-53 (pY53-actin), which is low in vegetative cells but high in viable mature spores. Here we describe high-resolution crystal structures of pY53-actin and unphosphorylated actin in complexes with gelsolin segment 1 and profilin. In the structure of pY53-actin, the phosphate group on Tyr-53 makes hydrogen-bonding interactions with residues of the DNase I-binding loop (D-loop) of actin, resulting in a more stable conformation of the D-loop than in the unphosphorylated structures. A more rigidly folded D-loop may explain some of the previously described properties of pY53-actin, including its increased critical concentration for polymerization, reduced rates of nucleation and pointed end elongation, and weak affinity for DNase I. We show here that phosphorylation of Tyr-53 inhibits subtilisin cleavage of the D-loop and reduces the rate of nucleotide exchange on actin. The structure of profilin-Dictyostelium-actin is strikingly similar to previously determined structures of profilin-beta-actin and profilin-alpha-actin. By comparing this representative set of profilin-actin structures with other structures of actin, we highlight the effects of profilin on the actin conformation. In the profilin-actin complexes, subdomains 1 and 3 of actin close around profilin, producing a 4.7 degrees rotation of the two major domains of actin relative to each other. As a result, the nucleotide cleft becomes moderately more open in the profilin-actin complex, probably explaining the stimulation of nucleotide exchange on actin by profilin.
Collapse
Affiliation(s)
- Kyuwon Baek
- *Department of Physiology, 3700 Hamilton Walk, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Xiong Liu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - François Ferron
- *Department of Physiology, 3700 Hamilton Walk, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D. Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Roberto Dominguez
- *Department of Physiology, 3700 Hamilton Walk, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| |
Collapse
|
221
|
Perieteanu AA, Sweeting B, Dawson JF. The real-time monitoring of the thermal unfolding of tetramethylrhodamine-labeled actin. Biochemistry 2008; 47:9688-96. [PMID: 18702522 DOI: 10.1021/bi800421u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modification of actin at Cys (374) with tetramethylrhodamine maleimide (TMR-actin) has been used for visualization of actin filaments and to produce high-resolution crystal structures of actin. We show that TMR-actin exhibits a 21% decrease in absorbance at 557 nm upon thermal unfolding, likely due to the movement of TMR to a more hydrophobic environment upon rapid unfolding and protein aggregation. We took advantage of this property to test models of actin protein unfolding. A transition temperature ( T m) of 60.2 +/- 0.2 degrees C for Ca (2+).ATP.TMR-actin was determined using A 557 and agreed with our own determinations employing different techniques and previous work with unlabeled actin. Our data show that the dependence of TMR-actin thermal stability on the bound nucleotide and cations follows a trend of Ca (2+).ATP > Mg (2+).ATP > Ca (2+).ADP > Mg (2+).ADP. The activation energies and frequency factors for the thermal unfolding of TMR-actin determined with two methods were in good agreement with those previously determined for unlabeled actin. We observed a biphasic trend in the T m of TMR-actin with increasing nucleotide concentrations, supporting a two-pathway model for actin protein unfolding where one pathway dominates at different concentrations of nucleotide. Additionally, TMR-actin bound by DNase I or gelsolin segment-1 exhibited elevated transition temperatures.
Collapse
Affiliation(s)
- Alexandru A Perieteanu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
222
|
Paavilainen VO, Oksanen E, Goldman A, Lappalainen P. Structure of the actin-depolymerizing factor homology domain in complex with actin. ACTA ACUST UNITED AC 2008; 182:51-9. [PMID: 18625842 PMCID: PMC2447895 DOI: 10.1083/jcb.200803100] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin dynamics provide the driving force for many cellular processes including motility and endocytosis. Among the central cytoskeletal regulators are actin-depolymerizing factor (ADF)/cofilin, which depolymerizes actin filaments, and twinfilin, which sequesters actin monomers and caps filament barbed ends. Both interact with actin through an ADF homology (ADF-H) domain, which is also found in several other actin-binding proteins. However, in the absence of an atomic structure for the ADF-H domain in complex with actin, the mechanism by which these proteins interact with actin has remained unknown. Here, we present the crystal structure of twinfilin's C-terminal ADF-H domain in complex with an actin monomer. This domain binds between actin subdomains 1 and 3 through an interface that is conserved among ADF-H domain proteins. Based on this structure, we suggest a mechanism by which ADF/cofilin and twinfilin inhibit nucleotide exchange of actin monomers and present a model for how ADF/cofilin induces filament depolymerization by weakening intrafilament interactions.
Collapse
Affiliation(s)
- Ville O Paavilainen
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|
223
|
Rebowski G, Boczkowska M, Hayes DB, Guo L, Irving TC, Dominguez R. X-ray scattering study of actin polymerization nuclei assembled by tandem W domains. Proc Natl Acad Sci U S A 2008; 105:10785-90. [PMID: 18669664 PMCID: PMC2504828 DOI: 10.1073/pnas.0801650105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/19/2022] Open
Abstract
The initiation of actin polymerization in cells requires actin filament nucleators. With the exception of formins, known filament nucleators use the Wiskott-Aldrich syndrome protein (WASP) homology 2 (WH2 or W) domain for interaction with actin. A common architecture, found in Spire, Cobl, VopL, and VopF, consists of tandem W domains that tie together three to four actin monomers to form a polymerization nucleus. Uncontrollable polymerization has prevented the structural investigation of such nuclei. We have engineered stable nuclei consisting of an actin dimer and a trimer stabilized by tandem W domain hybrid constructs and studied their structures in solution by x-ray scattering. We show that Spire-like tandem W domains stabilize a polymerization nucleus by lining up actin subunits along the long-pitch helix of the actin filament. Intersubunit contacts in the polymerization nucleus, thought to involve the DNase I-binding loop of actin, coexist with the binding of the W domain in the cleft between actin subdomains 1 and 3. The successful stabilization of filament-like multiactin assemblies opens the way to the crystallographic investigation of intersubunit contacts in the actin filament.
Collapse
Affiliation(s)
- Grzegorz Rebowski
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Malgorzata Boczkowska
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David B. Hayes
- Boston Biomedical Research Institute, Watertown, MA 02472; and
| | - Liang Guo
- BioCAT, Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Thomas C. Irving
- BioCAT, Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Roberto Dominguez
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
224
|
Levitsky DI, Pivovarova AV, Mikhailova VV, Nikolaeva OP. Thermal unfolding and aggregation of actin. FEBS J 2008; 275:4280-95. [DOI: 10.1111/j.1742-4658.2008.06569.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
225
|
Cascella M, Neri MA, Carloni P, Dal Peraro M. Topologically Based Multipolar Reconstruction of Electrostatic Interactions in Multiscale Simulations of Proteins. J Chem Theory Comput 2008; 4:1378-85. [DOI: 10.1021/ct800122x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michele Cascella
- Laboratory of Computational Chemistry and Biochemistry and Laboratory for Biomolecular Modeling, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, International School for Advanced Studies (SISSA/ISAS) and CNR-INFM-DEMOCRITOS, I-34014 Trieste, Italy, and Italian Institute of Technology, Italy
| | - Marilisa A. Neri
- Laboratory of Computational Chemistry and Biochemistry and Laboratory for Biomolecular Modeling, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, International School for Advanced Studies (SISSA/ISAS) and CNR-INFM-DEMOCRITOS, I-34014 Trieste, Italy, and Italian Institute of Technology, Italy
| | - Paolo Carloni
- Laboratory of Computational Chemistry and Biochemistry and Laboratory for Biomolecular Modeling, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, International School for Advanced Studies (SISSA/ISAS) and CNR-INFM-DEMOCRITOS, I-34014 Trieste, Italy, and Italian Institute of Technology, Italy
| | - Matteo Dal Peraro
- Laboratory of Computational Chemistry and Biochemistry and Laboratory for Biomolecular Modeling, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, International School for Advanced Studies (SISSA/ISAS) and CNR-INFM-DEMOCRITOS, I-34014 Trieste, Italy, and Italian Institute of Technology, Italy
| |
Collapse
|
226
|
Fujiwara S, Plazanet M, Matsumoto F, Oda T. Differences in internal dynamics of actin under different structural states detected by neutron scattering. Biophys J 2008; 94:4880-9. [PMID: 18326640 PMCID: PMC2397340 DOI: 10.1529/biophysj.107.125302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
F-actin, a helical polymer formed by polymerization of the monomers (G-actin), plays crucial roles in various aspects of cell motility. Flexibility of F-actin has been suggested to be important for such a variety of functions. Understanding the flexibility of F-actin requires characterization of a hierarchy of dynamical properties, from internal dynamics of the actin monomers through domain motions within the monomers and relative motions between the monomers within F-actin to large-scale motions of F-actin as a whole. As a first step toward this ultimate purpose, we carried out elastic incoherent neutron scattering experiments on powders of F-actin and G-actin hydrated with D(2)O and characterized the internal dynamics of F-actin and G-actin. Well established techniques and analysis enabled the extraction of mean-square displacements and their temperature dependence in F-actin and in G-actin. An effective force constant analysis with a model consisting of three energy states showed that two dynamical transitions occur at approximately 150 K and approximately 245 K, the former of which corresponds to the onset of anharmonic motions and the latter of which couples with the transition of hydration water. It is shown that behavior of the mean-square displacements is different between G-actin and F-actin, such that G-actin is "softer" than F-actin. The differences in the internal dynamics are detected for the first time between the different structural states (the monomeric state and the polymerized state). The different behavior observed is ascribed to the differences in dynamical heterogeneity between F-actin and G-actin. Based on structural data, the assignment of the differences observed in the two samples to dynamics of specific loop regions involved in the polymerization of G-actin into F-actin is proposed.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | | | | | | |
Collapse
|
227
|
Iwasa M, Maeda K, Narita A, Maéda Y, Oda T. Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants. J Biol Chem 2008; 283:21045-53. [PMID: 18515362 DOI: 10.1074/jbc.m800570200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin filament is quite dynamic in the cell. To determine the relationship between the structure and the dynamic properties of the actin filament, experiments using actin mutants are indispensable. We focused on Gln(137) to understand the relationships between two activities: the conformational changes relevant to the G- to F-actin transition and the activation of actin ATPase upon actin polymerization. To elucidate the function of Gln(137) in these activities, we characterized Gln(137) mutants of human cardiac muscle alpha-actin. Although all of the single mutants, Q137E, Q137K, Q137P, and Q137A, as well as the wild type were expressed by a baculovirus-based system, only Q137A and the wild type were purified to high homogeneity. The CD spectrum of Q137A was similar to that of the wild type, and Q137A showed the typical morphology of negatively stained Q137A F-actin images. However, Q137A had an extremely low critical concentration for polymerization. Furthermore, we found that Q137A polymerized 4-fold faster, cleaved the gamma-phosphate group of bound ATP 4-fold slower, and depolymerized 5-fold slower, as compared with the wild-type rates. These results suggest that Gln(137) plays dual roles in actin polymerization, in both the conformational transition of the actin molecule and the mechanism of ATP hydrolysis.
Collapse
Affiliation(s)
- Mitsusada Iwasa
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency, c/o RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | | | | | | | | |
Collapse
|
228
|
Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 2008; 412:1-18. [PMID: 18426389 DOI: 10.1042/bj20080359] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally divergent proteins, they actually utilize similar mechanisms of DNA segregation. Thus, in the present review, the known Par protein and Par-protein complex structures are discussed with regard to their functions in DNA segregation in an attempt to begin to define, at a detailed atomic level, the molecular mechanisms involved in plasmid segregation.
Collapse
|
229
|
Miller BM, Trybus KM. Functional effects of nemaline myopathy mutations on human skeletal alpha-actin. J Biol Chem 2008; 283:19379-88. [PMID: 18477565 DOI: 10.1074/jbc.m801963200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human alpha-skeletal actin have been implicated in causing congenital nemaline myopathy, a disease characterized histopathologically by nemaline bodies in skeletal muscle and manifested in the patient as skeletal muscle weakness. Here we investigate the functional effects of three severe nemaline myopathy mutations (V43F, A138P, and R183G) in human alpha-skeletal actin. Wild-type and mutant actins were expressed and purified from the baculovirus/insect cell expression system. The mutations are located in different subdomains of actin; Val-43 is located in a flexible loop of subdomain 2, Ala-138 is near a hydrophobic cleft in the "hinge" region between subdomains 1 and 3, and Arg-183 is near the nucleotide-binding site. None of the three mutations affected the folding of the actin monomer, the velocity at which skeletal myosin moves actin in an in vitro motility assay, or the relative average isometric force supported by F-actin. Defects in fundamental actomyosin interactions are, therefore, unlikely to account for the muscle weakness observed in affected patients. There were, however, significant changes observed in the polymerization kinetics of V43F and A138P and in the rate of nucleotide release for V43F. No detectable defect was found for R183G. If these subtle changes in polymerization observed in vitro are amplified in the context of the sarcomere, it could in principle be one of the primary insults that triggers the development of nemaline myopathy.
Collapse
Affiliation(s)
- Becky M Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
230
|
Frederick KB, Sept D, De La Cruz EM. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability. J Mol Biol 2008; 378:540-50. [PMID: 18374941 PMCID: PMC2424216 DOI: 10.1016/j.jmb.2008.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 11/28/2022]
Abstract
Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (C(c)) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the C(c) of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (approximately 30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability.
Collapse
Affiliation(s)
- Kendra B. Frederick
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - David Sept
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
231
|
Mi W, Li L, Su XD. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2. Biochem Biophys Res Commun 2008; 368:919-22. [PMID: 18280248 DOI: 10.1016/j.bbrc.2008.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/02/2008] [Indexed: 10/22/2022]
Abstract
Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys(114), and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general.
Collapse
Affiliation(s)
- Wei Mi
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, No. 5 Yi Heyuan Road, Beijing 100871, China
| | | | | |
Collapse
|
232
|
Orbán J, Lőrinczy D, Nyitrai M, Hild G. Nucleotide dependent differences between the alpha-skeletal and alpha-cardiac actin isoforms. Biochem Biophys Res Commun 2008; 368:696-702. [PMID: 18261974 PMCID: PMC2726638 DOI: 10.1016/j.bbrc.2008.01.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The thermodynamic properties of the actin filaments prepared from cardiomyocytes were investigated with differential scanning calorimetry. This method could distinguish between the alpha-cardiac and alpha-skeletal components of the actin filaments polymerised from ADP-actin monomers by their different melting temperatures (T(m)). Similar separation was not possible with filaments polymerised from ATP-actin monomers. Further analyses revealed that the activation energy (E(act)) was greater for filaments of alpha-skeletal actin than for alpha-cardiac actin monomers when the filaments were polymerised from ADP-actin monomers. These results showed that the alpha-cardiac actin filaments were thermodynamically less stable than the filaments of alpha-skeletal actin and their difference was nucleotide dependent. Based on these results and considering previous observations it was concluded that the existence of two actin isoforms and their nucleotide dependent conformational differences are part of the tuning regulatory mechanism by which the cardiac muscle cells can maintain their biological function under pathological conditions.
Collapse
Affiliation(s)
- József Orbán
- University of Pécs, Faculty of Medicine, Department of Biophysics, Pécs, Szigeti Str. 12, H-7624, Hungary
| | - Dénes Lőrinczy
- University of Pécs, Faculty of Medicine, Department of Biophysics, Pécs, Szigeti Str. 12, H-7624, Hungary
| | - Miklós Nyitrai
- University of Pécs, Faculty of Medicine, Department of Biophysics, Pécs, Szigeti Str. 12, H-7624, Hungary
| | - Gábor Hild
- University of Pécs, Faculty of Medicine, Department of Biophysics, Pécs, Szigeti Str. 12, H-7624, Hungary
| |
Collapse
|
233
|
Abstract
We investigate via stochastic simulation the overshoots observed in the fluorescence intensity of pyrene-labeled actin during rapid polymerization. We show that previous assumptions about pyrene intensity that ignore the intensity differences between subunits in different ATP hydrolysis states are not consistent with experimental data. This strong sensitivity of intensity to hydrolysis state implies that a measured pyrene intensity curve does not immediately reveal the true polymerization kinetics. We show that there is an optimal range of hydrolysis and phosphate release rate combinations simultaneously consistent with measured polymerization data from previously published severing and Arp2/3 complex-induced branching experiments. Within this range, we find that the pyrene intensity curves are described very accurately by the following average relative intensity coefficients: 0.37 for F-ATP actin; 0.55 for F-ADP + P(i) actin; and 0.75 for F-ADP actin. Finally, we present an analytic formula, which properly accounts for the sensitivity of the pyrene assay to hydrolysis state, for estimation of the concentration of free barbed ends from pyrene intensity curves.
Collapse
|
234
|
Bathe M. A finite element framework for computation of protein normal modes and mechanical response. Proteins 2008; 70:1595-609. [PMID: 17975833 DOI: 10.1002/prot.21708] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A computational framework based on the Finite Element Method is presented to calculate the normal modes and mechanical response of proteins and their supramolecular assemblies. Motivated by elastic network models, proteins are treated as continuum elastic solids with molecular volume defined by their solvent-excluded surface. The discretized Finite Element representation is obtained using a surface simplification algorithm that facilitates the generation of models of arbitrary prescribed spatial resolution. The procedure is applied to a mutant of T4 phage lysozyme, G-actin, syntenin, cytochrome-c', beta-tubulin, and the supramolecular assembly filamentous actin (F-actin). Equilibrium thermal fluctuations of alpha-carbon atoms and their inter-residue correlations compare favorably with all-atom-based results, the Rotational-Translational Block procedure, and experiment. Additionally, the free vibration and compressive buckling responses of F-actin are in quantitative agreement with experiment. The proposed methodology is applicable to any protein or protein assembly and facilitates the incorporation of specific atomic-level interactions, including aqueous-electrolyte-mediated electrostatic effects and solvent damping. The procedure is equally applicable to proteins with known atomic coordinates as it is to electron density maps of proteins, protein complexes, and supramolecular assemblies of unknown atomic structure.
Collapse
Affiliation(s)
- Mark Bathe
- Arnold Sommerfeld Zentrum für Theoretische Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| |
Collapse
|
235
|
Sawaya MR, Kudryashov DS, Pashkov I, Adisetiyo H, Reisler E, Yeates TO. Multiple crystal structures of actin dimers and their implications for interactions in the actin filament. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:454-65. [PMID: 18391412 PMCID: PMC2631129 DOI: 10.1107/s0907444908003351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/30/2008] [Indexed: 01/04/2023]
Abstract
Multiple crystal structures are reported of cross-linked actin dimers. Interactions that are conserved across crystal structures suggest detailed interactions that are likely to be present in F-actin filaments. The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing precisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state. Laterally cross-linked dimers, comprised of monomers belonging to different protofilaments, are found to adopt configurations in crystals that are not related to the native structure of filamentous actin. In contrast, multiple structures of longitudinal dimers consistently reveal the same interface between monomers within a single protofilament. The reappearance of the same longitudinal interface in multiple crystal structures adds weight to arguments that the interface visualized is similar to that in actin filaments. Highly conserved atomic interactions involving residues 199–205 and 287–291 are highlighted.
Collapse
Affiliation(s)
- Michael R Sawaya
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
236
|
The dual mode of action of bistramide A entails severing of filamentous actin and covalent protein modification. Proc Natl Acad Sci U S A 2008; 105:4088-92. [PMID: 18334642 DOI: 10.1073/pnas.0710727105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study provides comprehensive characterization of the mode of action of bistramide A and identifies structural requirements of bistramide-based compounds that are responsible for severing actin filaments and inhibiting growth of cancer cells in vitro and in vivo. We rationally designed and assembled a series of structural analogs of the natural product, including a fluorescently labeled conjugate. We used TIRF microscopy to directly observe actin filament severing by this series of small molecules, which established that the combination of the spiroketal and the amide subunits was sufficient to enable rapid actin filament disassembly in vitro. In addition, we demonstrated that the enone subunit of bistramide A is responsible for covalent modification of the protein in vitro and in A549 cells, resulting in further increase in the cytotoxicity of the natural product. Our results demonstrate that bistramide A elicits its potent antiproliferative activity by a dual mechanism of action, which entails both severing of actin filaments and covalent sequestration of monomeric actin in the cell.
Collapse
|
237
|
Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. The structural basis of actin filament branching by the Arp2/3 complex. ACTA ACUST UNITED AC 2008; 180:887-95. [PMID: 18316411 PMCID: PMC2265399 DOI: 10.1083/jcb.200709092] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.
Collapse
|
238
|
Synthetic Mimetics of Actin-Binding Macrolides: Rational Design of Actin-Targeted Drugs. ACTA ACUST UNITED AC 2008; 15:287-94. [DOI: 10.1016/j.chembiol.2008.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 11/23/2022]
|
239
|
Kudryashov DS, Cordero CL, Reisler E, Satchell KJF. Characterization of the enzymatic activity of the actin cross-linking domain from the Vibrio cholerae MARTX Vc toxin. J Biol Chem 2008; 283:445-452. [PMID: 17951576 PMCID: PMC2365471 DOI: 10.1074/jbc.m703910200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins, which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTX(Vc)), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin-binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin, at a high mole ratio to actin but accelerates F-actin cross-linking at low mole ratios. DNase I completely blocks the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTX(Vc) (Sheahan, K. L., and Satchell, K. J. F. (2007) Cell. Microbiol. 9, 1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin-binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding.
Collapse
Affiliation(s)
- Dmitri S Kudryashov
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Christina L Cordero
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Emil Reisler
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Karla J Fullner Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
240
|
Tropomyosin and the steric mechanism of muscle regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:95-109. [PMID: 19209816 DOI: 10.1007/978-0-387-85766-4_8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contraction in all muscles must be precisely regulated and requisite control systems must be able to adjust to changes in physiological and myopathic stimuli. In this chapter, we outline the structural evidence for a steric mechanism that governs muscle activity. The mechanism involves calcium and myosin induced changes in the position of tropomyosin along actin-based thin filaments. This process either blocks or uncovers myosin crossbridge binding sites on actin and consequently regulates crossbridge cycling on thin filaments, the sliding of thin and thick filaments and muscle shortening and force production.
Collapse
|
241
|
Kuhn TB, Bamburg JR. Tropomyosin and ADF/cofilin as collaborators and competitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:232-49. [PMID: 19209826 DOI: 10.1007/978-0-387-85766-4_18] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dynamics of actin filaments is pivotal to many fundamental cellular processes such as Dcytokinesis, motility, morphology, vesicle and organelle transport, gene transcription and senescence. In vivo kinetics of actin filament dynamics is far from the equilibrium in vitro and these profound differences are attributed to large number of regulatory proteins. In particular, proteins of the ADF/cofilin family greatly increase actin filament dynamics by severing filaments and enhancing depolymerization of ADP-actin monomers from their pointed ends. Cofilin binds cooperatively to a minor conformer of F-actin in which the subunits are slightly under rotated along the filament helical axis. At high stoichiometry of cofilin to actin subunits, cofilin actually stabilizes actin filaments. Many isoforms oftropomyosin appear to compete with ADF/cofilin proteins for binding to actin filaments. Tropomyosin isoforms studied to date prefer binding to the "untwisted" conformer of F-actin and through their protection and stabilization of F-actin, recruit myosin II and assemble different actin superstructures from the cofilin-actin filaments. However, some tropomyosin isoforms may synergize with ADF/cofilin to enhance filament dynamics, suggesting that the different isoforms of tropomyosins, many of which show developmental or tissue specific expression profiles, play major roles in the assembly and turnover of actin superstructures. Different actin superstructures can overlap both spatially and temporally within a cell, but can be differentiated from each other based upon their kinetic and kinematic properties. Furthermore, local regulation of ADF/cofilin activity through signal transduction pathways could be one mechanism to alter the dynamic balance in F-actin-binding of certain tropomyosin isoforms in subcellular domains.
Collapse
Affiliation(s)
- Thomas B Kuhn
- Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | |
Collapse
|
242
|
Sun Y, Schroeder HW, Beausang JF, Homma K, Ikebe M, Goldman YE. Myosin VI walks "wiggly" on actin with large and variable tilting. Mol Cell 2007; 28:954-64. [PMID: 18158894 PMCID: PMC2683265 DOI: 10.1016/j.molcel.2007.10.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/18/2007] [Accepted: 10/15/2007] [Indexed: 10/21/2022]
Abstract
Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI along actin. The axial angle is distributed in two peaks, consistent with the hand-over-hand model. The changes in lever arm angles during discrete steps suggest that it exhibits large and variable tilting in the plane of actin and to the sides. These motions imply that, in addition to the previously suggested flexible tail domain, there is a compliant region between the motor domain and lever arm that allows myosin VI to accommodate the helical position of binding sites while taking variable step sizes along the actin filament.
Collapse
Affiliation(s)
- Yujie Sun
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Harry W. Schroeder
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - John F. Beausang
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Kazuaki Homma
- University of Massachusetts Medical School, North Worcester, MA 01655
| | - Mitsuo Ikebe
- University of Massachusetts Medical School, North Worcester, MA 01655
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
243
|
Reisler E, Egelman EH. Actin Structure and Function: What We Still Do Not Understand. J Biol Chem 2007; 282:36133-7. [DOI: 10.1074/jbc.r700030200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
244
|
Dalhaimer P, Pollard TD, Nolen BJ. Nucleotide-mediated conformational changes of monomeric actin and Arp3 studied by molecular dynamics simulations. J Mol Biol 2007; 376:166-83. [PMID: 18155236 DOI: 10.1016/j.jmb.2007.11.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Members of the actin family of proteins exhibit different biochemical properties when ATP, ADP-P(i), ADP, or no nucleotide is bound. We used molecular dynamics simulations to study the effect of nucleotides on the behavior of actin and actin-related protein 3 (Arp3). In all of the actin simulations, the nucleotide cleft stayed closed, as in most crystal structures. ADP was much more mobile within the cleft than ATP, despite the fact that both nucleotides adopt identical conformations in actin crystal structures. The nucleotide cleft of Arp3 opened in most simulations with ATP, ADP, and no bound nucleotide. Deletion of a C-terminal region of Arp3 that extends beyond the conserved actin sequence reduced the tendency of the Arp3 cleft to open. When the Arp3 cleft opened, we observed multiple instances of partial release of the nucleotide. Cleft opening in Arp3 also allowed us to observe correlated movements of the phosphate clamp, cleft mouth, and barbed-end groove, providing a way for changes in the nucleotide state to be relayed to other parts of Arp3. The DNase binding loop of actin was highly flexible regardless of the nucleotide state. The conformation of Ser14/Thr14 in the P1 loop was sensitive to the presence of the gamma-phosphate, but other changes observed in crystal structures were not correlated with the nucleotide state on nanosecond timescales. The divalent cation occupied three positions in the nucleotide cleft, one of which was not previously observed in actin or Arp2/3 complex structures. In sum, these simulations show that subtle differences in structures of actin family proteins have profound effects on their nucleotide-driven behavior.
Collapse
Affiliation(s)
- Paul Dalhaimer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
245
|
Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39:1488-93. [DOI: 10.1038/ng.2007.6] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/04/2007] [Indexed: 11/09/2022]
|
246
|
Abstract
Formins are a widely expressed family of proteins that govern cell shape, adhesion, cytokinesis, and morphogenesis by remodeling the actin and microtubule cytoskeletons. These large multidomain proteins associate with a variety of other cellular factors and directly nucleate actin polymerization through a novel mechanism. The signature formin homology 2 (FH2) domain initiates filament assembly and remains persistently associated with the fast-growing barbed end, enabling rapid insertion of actin subunits while protecting the end from capping proteins. On the basis of structural and mechanistic work, an integrated model is presented for FH2 processive motion. The adjacent FH1 domain recruits profilin-actin complexes and accelerates filament elongation. The most predominantly expressed formins in animals and fungi are autoinhibited through intramolecular interactions and appear to be activated by Rho GTPases and additional factors. Other classes of formins lack the autoinhibitory and/or Rho-binding domains and thus are likely to be controlled by alternative mechanisms.
Collapse
Affiliation(s)
- Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
247
|
Teal DJ, Dawson JF. Yeast actin with a subdomain 4 mutation (A204C) exhibits increased pointed-end critical concentration. Biochem Cell Biol 2007; 85:319-25. [PMID: 17612626 DOI: 10.1139/o07-047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Characterizing mutants of actin that do not polymerize will advance our understanding of the mechanism of actin polymerization and will be invaluable for the production of short F-actin structures for structural studies. To circumvent the problem of expressing dominant lethal nonpolymerizing actin in yeast, we adopted a cysteine engineering strategy. Here we report the characterization of a mutant of yeast actin, AC-actin, possessing a single pointed-end mutation, A204C. Expression of this mutant in yeast results in actin-polymerization-deficient phenotypes. When copolymerized with wild-type actin, ATP-AC-actin is incorporated into filaments. ADP-AC-actin participates in the nucleation and elongation of wild-type filaments only at very high concentrations. At low concentrations, ADP-AC-actin appears to participate only in the nucleation of wild-type filaments, suggesting that Ala-204 is involved in modulating the critical concentration of the pointed end of actin.
Collapse
Affiliation(s)
- David J Teal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
248
|
Chu JW, Voth GA. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Biophys J 2007; 93:3860-71. [PMID: 17704151 PMCID: PMC2084241 DOI: 10.1529/biophysj.107.112060] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this work, a double-well network model (DWNM) is presented for generating a coarse-grained free energy function that can be used to study the transition between reference conformational states of a protein molecule. Compared to earlier work that uses a single, multidimensional double-well potential to connect two conformational states, the DWNM uses a set of interconnected double-well potentials for this purpose. The DWNM free energy function has multiple intermediate states and saddle points, and is hence a "rough" free energy landscape. In this implementation of the DWNM, the free energy function is reduced to an elastic-network model representation near the two reference states. The effects of free energy function roughness on the reaction pathways of protein conformational change is demonstrated by applying the DWNM to the conformational changes of two protein systems: the coil-to-helix transition of the DB-loop in G-actin and the open-to-closed transition of adenylate kinase. In both systems, the rough free energy function of the DWNM leads to the identification of distinct minimum free energy paths connecting two conformational states. These results indicate that while the elastic-network model captures the low-frequency vibrational motions of a protein, the roughness in the free energy function introduced by the DWNM can be used to characterize the transition mechanism between protein conformations.
Collapse
Affiliation(s)
- Jhih-Wei Chu
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
249
|
Onishi H, Morales MF. A closer look at energy transduction in muscle. Proc Natl Acad Sci U S A 2007; 104:12714-9. [PMID: 17640901 PMCID: PMC1924791 DOI: 10.1073/pnas.0705525104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Indexed: 11/18/2022] Open
Abstract
Muscular force is the sum of unitary force interactions generated as filaments of myosins move forcibly along parallel filaments of actins, understanding that the free energy required comes from myosin-catalyzed ATP hydrolysis. Using results from conventional biochemistry, our own mutational studies, and diffraction images from others, we attempt, in molecular detail, an account of a unitary interaction, i.e., what happens after a traveling myosin head, bearing an ADP-P(i), reaches the next station of an actin filament in its path. We first construct a reasonable model of the myosin head and actin regions that meet to form the "weakly bound state". Separately, we consider Holmes' model of the rigor state [Holmes, K. C., Angert, I., Kull, F. J., Jahn, W. & Schröder, R. R. (2003) Nature 425, 423-427], supplemented with several heretofore missing residues, thus realizing the "strongly bound state." Comparing states suggests how influences initiated at the interface travel elsewhere in myosin to discharge various functions, including striking the actins. Overall, state change seems to occur by attachment of a hydrophobic triplet (Trp-546, Phe-547, and Pro-548) of myosin to an actin conduit with a hydrophobic guiding rail (Ile-341, Ile-345, Leu-349, and Phe-352) and the subsequent linear movement of the triplet along the rail.
Collapse
Affiliation(s)
- Hirofumi Onishi
- *Exploratory Research for Advanced Technology “Actin-Filament Dynamics” Project, Japan Science and Technology Agency, c/o RIKEN Harima Institute SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; and
| | | |
Collapse
|
250
|
Norman AI, Ivkov R, Forbes JG, Greer SC. The polymerization of actin: structural changes from small-angle neutron scattering. J Chem Phys 2007; 123:154904. [PMID: 16252969 DOI: 10.1063/1.2039088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new analysis of small-angle neutron-scattering data from rabbit muscle actin in the course of the polymerization from G-actin to F-actin as a function of temperature. The data, from Ivkov et al. [J. Chem. Phys. 108, 5599 (1998)], were taken in D2O buffer with Ca2+ as the divalent cation on the G-actin in the presence of ATP and with KCl as the initiating salt. The new analysis of the data using modeling and the method of generalized indirect fourier transform (O. Glatter, GIFT, University of Graz, Austria, http://physchem.kfunigraz.ac.at/sm/) provide shapes and dimensions of the G-actin monomer and of the growing actin oligomer in solution as a function of temperature and salt concentration. This analysis indicates that the G-actin monomer, under the conditions given above, is a sphere 50-54 A in diameter as opposed to the oblate ellipsoid seen by x-ray crystallography. The F-actin dimensions are consistent with x-ray crystal structure determinations.
Collapse
Affiliation(s)
- Alexander I Norman
- Department of Chemistry and Biochemistry, The University of Maryland College Park, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|