201
|
Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, Duron S, Campbell D, Chernoff J, Field J, Marmorstein R, Kissil JL. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem 2013; 288:29105-14. [PMID: 23960073 DOI: 10.1074/jbc.m113.510933] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The p21-activated kinases (PAKs) are immediate downstream effectors of the Rac/Cdc42 small G-proteins and implicated in promoting tumorigenesis in various types of cancer including breast and lung carcinomas. Recent studies have established a requirement for the PAKs in the pathogenesis of Neurofibromatosis type 2 (NF2), a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate signaling through the PAKs and the tumor suppressive functions of Merlin are mediated, at least in part, through inhibition of the PAKs. Knockdown of PAK1 and PAK2 expression, through RNAi-based approaches, impairs the proliferation of NF2-null schwannoma cells in culture and inhibits their ability to form tumors in vivo. These data implicate the PAKs as potential therapeutic targets. High-throughput screening of a library of small molecules combined with a structure-activity relationship approach resulted in the identification of FRAX597, a small-molecule pyridopyrimidinone, as a potent inhibitor of the group I PAKs. Crystallographic characterization of the FRAX597/PAK1 complex identifies a phenyl ring that traverses the gatekeeper residue and positions the thiazole in the back cavity of the ATP binding site, a site rarely targeted by kinase inhibitors. FRAX597 inhibits the proliferation of NF2-deficient schwannoma cells in culture and displayed potent anti-tumor activity in vivo, impairing schwannoma development in an orthotopic model of NF2. These studies identify a novel class of orally available ATP-competitive Group I PAK inhibitors with significant potential for the treatment of NF2 and other cancers.
Collapse
Affiliation(s)
- Silvia Licciulli
- From the Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Lin AL, Gutmann DH. Advances in the treatment of neurofibromatosis-associated tumours. Nat Rev Clin Oncol 2013; 10:616-24. [DOI: 10.1038/nrclinonc.2013.144] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
203
|
Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res 2013; 26:634-45. [DOI: 10.1111/pcmr.12134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/28/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | - Mugdha Deo
- Department of Medical Genetics; University of British Columbia; Vancouver; BC; Canada
| |
Collapse
|
204
|
Sharma R, Wu X, Rhodes SD, Chen S, He Y, Yuan J, Li J, Yang X, Li X, Jiang L, Kim ET, Stevenson DA, Viskochil D, Xu M, Yang FC. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet 2013; 22:4818-28. [PMID: 23863460 DOI: 10.1093/hmg/ddt333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1.
Collapse
|
205
|
Nakayama J, Sato C, Imafuku S. In vitro responses of neurofibroma fibroblasts, mast cells and Schwann cells obtained from patients with neurofibromatosis 1 to 308-nm excimer light and/or vitamin D3. J Dermatol 2013; 40:743-5. [PMID: 23855960 DOI: 10.1111/1346-8138.12242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/05/2013] [Indexed: 12/01/2022]
Abstract
Fibroblasts, mast cells and Schwann cells were isolated from neurofibromas of patients with neurofibromatosis 1, and their responses to 308-nm excimer light irradiation and/or vitamin D3 or an analog (tacalcitol; 1,24-dihydroxyvitamin D3 ) were examined in vitro. Excimer light irradiation (300 mJ/cm(2) ) suppressed the growth of all three cell types. Exposure to 10(-7) mol/L of 1α,25(OH)2 D3 (VD3 ) or tacalcitol suppressed the growth of fibroblasts and mast cells, but not Schwann cells. These results suggest that the different neurofibroma cell types show different responses to VD3 . A combination of excimer light irradiation and VD3 is necessary to suppress the growth of neurofibroma cells in vivo.
Collapse
Affiliation(s)
- Juichiro Nakayama
- Department of Dermatology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | | | | |
Collapse
|
206
|
Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 2013; 45:756-66. [PMID: 23685747 PMCID: PMC3695033 DOI: 10.1038/ng.2641] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell-lineage origin that occur sporadically or in association with the inherited syndrome, Neurofibromatosis Type 1. To identify genetic drivers of MPNST development, we utilized the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of tumor protein p53 (Trp53) function and/or overexpression of epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets revealed novel and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched for in Wnt/CTNNB1, PI3K/Akt/mTor, and growth factor receptor signaling pathways. Lastly, we identified several novel proto-oncogenes including forkhead box R2 (Foxr2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.
Collapse
|
207
|
Gutmann DH, Blakeley JO, Korf BR, Packer RJ. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin Investig Drugs 2013; 22:443-62. [PMID: 23425047 PMCID: PMC4009992 DOI: 10.1517/13543784.2013.772979] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. AREAS COVERED Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. EXPERT OPINION The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy.
Collapse
Affiliation(s)
- David H Gutmann
- Washington University School of Medicine, Department of Neurology and Washington University Neurofibromatosis Center, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
208
|
The characterisation of Pax3 expressant cells in adult peripheral nerve. PLoS One 2013; 8:e59184. [PMID: 23527126 PMCID: PMC3602598 DOI: 10.1371/journal.pone.0059184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 12/25/2022] Open
Abstract
Pax3 has numerous integral functions in embryonic tissue morphogenesis and knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue’s resident stem/progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression. Based on the evidence of the role of Pax3 in other adult tissue stem and progenitor cells, it was hypothesised that the cells in adult peripheral nerve that express Pax3 may be peripheral glioblasts. Here, methods have been developed for identification and visualisation of Pax3 expressant cells in normal 60 day old mouse peripheral nerve that allowed morphological and phenotypic distinctions to be made between Pax3 expressing cells and other nonmyelinating Schwann cells. The distinctions described provide compelling support for a resident glioblast population in adult mouse peripheral nerve.
Collapse
|
209
|
Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RP, Brossier NM, Grizzle WE, Mikhail FM, Roth KA, Carroll SL. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:646-67. [PMID: 23321323 PMCID: PMC3586689 DOI: 10.1016/j.ajpath.2012.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression in humans would facilitate identification of somatic mutations driving this process. We previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P(0)-GGFβ3 mice) develop MPNSTs. To determine whether P(0)-GGFβ3 mice accurately model human neurofibroma-MPNST progression, cohorts of these animals were monitored through death and were necropsied; 94% developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs. Nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P(0)-GGFβ3 MPNSTs exhibited Ras hyperactivation, as in human NF1-associated MPNSTs. P(0)-GGFβ3 MPNSTs also exhibited abnormalities in the p16(INK4A)-cyclin D/CDK4-Rb and p19(ARF)-Mdm-p53 pathways, analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P(0)-GGFβ3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 neoplasia-associated genes (including Pten, Tpd52, Myc, Gli1, Xiap, and Bbc3/PUMA). Array comparative genomic hybridization also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P(0)-GGFβ3 mice represent a robust model of neurofibroma-MPNST progression useful for identifying novel genes driving neurofibroma and MPNST pathogenesis.
Collapse
Affiliation(s)
- Syed J. Kazmi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie J. Byer
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jenell M. Eckert
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Amy N. Turk
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Nicole M. Brossier
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, Alabama
| | - William E. Grizzle
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Fady M. Mikhail
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin A. Roth
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L. Carroll
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
210
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
211
|
Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y, Cho W, Lim K, Xu J, Lazar AJ, Creighton CJ, Bolshakov S, McKay RM, Lev D, Le LQ, Parada LF. CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 2013; 152:1077-90. [PMID: 23434321 DOI: 10.1016/j.cell.2013.01.053] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/21/2012] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that arise in connective tissue surrounding peripheral nerves. They occur sporadically in a subset of patients with neurofibromatosis type 1 (NF1). MPNSTs are highly aggressive, therapeutically resistant, and typically fatal. Using comparative transcriptome analysis, we identified CXCR4, a G-protein-coupled receptor, as highly expressed in mouse models of NF1-deficient MPNSTs, but not in nontransformed precursor cells. The chemokine receptor CXCR4 and its ligand, CXCL12, promote MPNST growth by stimulating cyclin D1 expression and cell-cycle progression through PI3-kinase (PI3K) and β-catenin signaling. Suppression of CXCR4 activity either by shRNA or pharmacological inhibition decreases MPNST cell growth in culture and inhibits tumorigenesis in allografts and in spontaneous genetic mouse models of MPNST. We further demonstrate conservation of these activated molecular pathways in human MPNSTs. Our findings indicate a role for CXCR4 in NF1-associated MPNST development and identify a therapeutic target.
Collapse
Affiliation(s)
- Wei Mo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Sun D, Haddad R, Kraniak JM, Horne SD, Tainsky MA. RAS/MEK-independent gene expression reveals BMP2-related malignant phenotypes in the Nf1-deficient MPNST. Mol Cancer Res 2013; 11:616-27. [PMID: 23423222 DOI: 10.1158/1541-7786.mcr-12-0593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal-regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery.
Collapse
Affiliation(s)
- Daochun Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
213
|
Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann Neurol 2013; 73:303-8. [PMID: 23424002 DOI: 10.1002/ana.23813] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 12/22/2022]
Abstract
Although traditional models of carcinogenesis have largely focused on neoplastic cells, converging data have revealed the importance of non-neoplastic stromal cells in influencing tumor growth and progression. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1)-associated optic glioma, we now demonstrate that stromal microglia express the CX3CR1 chemokine receptor, such that reduced CX3CR1 expression decreases optic nerve microglia. Moreover, genetic reduction of Cx3cr1 expression in Nf1 optic glioma mice delays optic glioma formation. Coupled with previous findings demonstrating that microglia maintain optic glioma growth, these new findings provide a strong preclinical rationale for the development of future stroma-directed glioma therapies in children.
Collapse
Affiliation(s)
- Winnie W Pong
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
214
|
Chen Z, Pradhan S, Liu C, Le LQ. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration. Stem Cells 2013; 30:2261-70. [PMID: 22851518 DOI: 10.1002/stem.1186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peripheral nerves have the potential to regenerate axons and reinnervate end organs. Chronic denervation and disturbed nerve regeneration are thought to contribute to peripheral neuropathy, pain, and pruritus in the skin. The capacity of denervated distal nerves to support axonal regeneration requires proliferation by Schwann cells, which guide regenerating axons to their denervated targets. However, adult peripheral nerve Schwann cells do not retain a growth-permissive phenotype, as is required to produce new glia. Therefore, it is believed that following injury, mature Schwann cells dedifferentiate to a progenitor/stem cell phenotype to promote axonal regrowth. In this study, we show that skin-derived precursors (SKPs), a recently identified neural crest-related stem cell population in the dermis of skin, are an alternative source of progenitors for cutaneous nerve regeneration. Using in vivo and in vitro three-dimensional cutaneous nerve regeneration models, we show that the SKPs are neurotropic toward injured nerves and that they have a full capacity to differentiate into Schwann cells and promote axon regeneration. The identification of SKPs as a physiologic source of progenitors for cutaneous nerve regeneration in the skin, where SKPs physiologically reside, has important implications for understanding early cellular events in peripheral nerve regeneration. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in cutaneous nerve homeostasis.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9069, USA
| | | | | | | |
Collapse
|
215
|
Experimental therapy for neurofibromatosis I shows promise: cancer drug shrinks some plexiform neuromas. Am J Med Genet A 2013; 161A:viii-ix. [PMID: 23348988 DOI: 10.1002/ajmg.a.35856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
216
|
Reuss DE, Mucha J, Holtkamp N, Müller U, Berlien HP, Mautner VF, Ehemann V, Platten M, Scheffzek K, von Deimling A. Functional MHC class II is upregulated in neurofibromin-deficient Schwann cells. J Invest Dermatol 2013; 133:1372-5. [PMID: 23303456 DOI: 10.1038/jid.2012.488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
217
|
Diggs-Andrews KA, Gutmann DH. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci 2013; 36:237-47. [PMID: 23312374 DOI: 10.1016/j.tins.2012.12.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction, including significant impairments in learning, behavior, and attention, is found in over 10% of children in the general population. However, in the common inherited cancer predisposition syndrome, neurofibromatosis type 1 (NF1), the prevalence of these cognitive deficits approaches 70%. As a monogenic disorder, NF1 provides a unique genetic tool to identify and dissect mechanistically the molecular and cellular bases underlying cognitive dysfunction. In this review, we discuss Nf1 fly and mouse systems that mimic many of the cognitive abnormalities seen in children with NF1. Further, we describe discoveries from these models that have uncovered defects in the regulation of Ras activity, cAMP generation, and dopamine homeostasis as key mechanisms important for cognitive dysfunction in children with NF1.
Collapse
Affiliation(s)
- Kelly A Diggs-Andrews
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
218
|
Duke FD, Brudenall DK, Scott EM, Teixeira LBC, Dubielzig RR. Metastatic uveal schwannoma of blue-eyed dogs. Vet Ophthalmol 2013; 16 Suppl 1:141-4. [DOI: 10.1111/vop.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Felicia D. Duke
- School of Veterinary Medicine; University of Wisconsin-Madison; 2015 Linden Drive Madison WI 53706 USA
| | | | - Erin M. Scott
- School of Veterinary Medicine; University of Wisconsin-Madison; 2015 Linden Drive Madison WI 53706 USA
| | - Leandro B. C. Teixeira
- School of Veterinary Medicine; University of Wisconsin-Madison; 2015 Linden Drive Madison WI 53706 USA
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin-Madison; 2015 Linden Drive Madison WI 53706 USA
| |
Collapse
|
219
|
Abstract
Neurofibromatosis 1 (NF1) is an inherited neurocutaneous disease that has a major impact on the nervous system, eye, skin, and bone. Individuals with NF1 have a predisposition to benign and malignant tumor formation and the hallmark lesion is the neurofibroma, a benign peripheral nerve sheath tumor. The gene for NF1 was cloned on chromosome 17q11.2 and neurofibromin, the NF1 protein, controls cell growth and proliferation by regulating the proto-oncogene Ras and cyclic adenosine monophosphate (AMP). Advances in molecular biology and mouse models of disease have enhanced our understanding of the pathogenesis of NF1 complications and facilitated targeted therapy. Progress has been made in developing robust clinical and radiological outcome measures and clinical trials are underway for children with learning difficulties and for individuals with symptomatic plexiform neurofibromas.
Collapse
|
220
|
Park HJ, Lee SJ, Sohn YB, Jin HS, Han JH, Kim YB, Yim H, Jeong SY. NF1 deficiency causes Bcl-xL upregulation in Schwann cells derived from neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Int J Oncol 2012; 42:657-66. [PMID: 23292448 DOI: 10.3892/ijo.2012.1751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
Since the bi-allelic inactivation of both neurofibromin 1 (NF1) gene alleles (NF1(-/-)) in Schwann cells (SCs) is common in both benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) in patients with neurofibromatosis type 1 (NF1), other genetic alterations in SCs may be required for tumor progression of PNs to MPNSTs. We found that the anti-apoptotic Bcl-xL protein is upregulated in MPNST tissues compared to PN tissues from patients with NF1 by immunohistological staining. In addition, we investigated whether Bcl-xL is upregulated in SCs derived from MPNSTs and found a significantly higher Bcl-xL expression level in sNF96.2 MPNST-derived SCs compared to normal human SCs (HSCs). We also discovered that the increased Bcl-xL expression caused an increase in drug resistance to doxorubicin in MPNST-derived SCs. Manipulation of NF1 gene expression levels by treatment with small interfering RNA (siRNA) and overexpression of the neurofibromin GAP-related domain (NF1-GRD) demonstrated that upregulated Bcl-xL expression in MPNST-derived SCs was caused by NF1 deficiency. Treatment with the Erk1/2 inhibitor, PD98059, resulted in a slight increase in Bcl-xL levels in neurofibromin-depleted normal HSCs, indicating that Bcl-xL upregulation in MPNST-derived SCs is mediated by activated Erk1/2, which is a Ras downstream protein regulated by neurofibromin. As the reduction of Bcl-xL expression restored sensitivity to doxorubicin-induced apoptosis in sNF96.2 cells, we examined the effect of the small molecule Bcl-xL inhibitor ABT-737 on sNF96.2 cells. A very low dose of ABT-737 combined with doxorubicin synergistically enhanced sensitivity to doxorubicin-induced apoptosis in sNF96.2 cells, suggesting that ABT-737 and doxorubicin may be a good combination to effectively treat NF1-associated MPNSTs with minimal side-effects. Collectively, our results suggest that upregulation of Bcl-xL in MPNST-derived SCs may be caused by the NF1 deficiency-mediated elevation in Ras/MAPK signaling and may provide a new potential chemotherapeutic target in patients with NF1 and MPNSTs.
Collapse
Affiliation(s)
- Ho-Jin Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Staser K, Park SJ, Rhodes SD, Zeng Y, He YZ, Shew MA, Gehlhausen JR, Cerabona D, Menon K, Chen S, Sun Z, Yuan J, Ingram DA, Nalepa G, Yang FC, Clapp DW. Normal hematopoiesis and neurofibromin-deficient myeloproliferative disease require Erk. J Clin Invest 2012; 123:329-34. [PMID: 23221339 DOI: 10.1172/jci66167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types. However, genetic studies examining Erk1/2's differential and/or combined control of normal and Nf1-deficient myelopoiesis are lacking. Moreover, prior studies relying on chemical Mek/Erk inhibitors have reached conflicting conclusions in normal and Nf1-deficient mice. Here, we show that while single Erk1 or Erk2 disruption did not grossly compromise myelopoiesis, dual Erk1/2 disruption rapidly ablated granulocyte and monocyte production in vivo, diminished progenitor cell number, and prevented HSPC proliferation in vitro. Genetic disruption of Erk1/2 in the context of Nf1 nullizygosity (Mx1Cre(+)Nf1(flox/flox)Erk1(-/-)Erk2(flox/flox)) fully protects against the development of MPD. Collectively, we identified a fundamental requirement for Erk1/2 signaling in normal and Nf1-deficient hematopoiesis, elucidating a critical hematopoietic function for Erk1/2 while genetically validating highly selective Mek/Erk inhibitors in a leukemia that is otherwise resistant to traditional therapy.
Collapse
Affiliation(s)
- Karl Staser
- Herman Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2012; 123:340-7. [PMID: 23221341 DOI: 10.1172/jci60578] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/23/2012] [Indexed: 01/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.
Collapse
Affiliation(s)
- Walter J Jessen
- Children’s Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, 3333 Burnet Ave., M.L.C. 7013, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, Croop JM, Vik TA, Denne SC, Parada LF, Hingtgen CM, Walsh LE, Yu M, Pradhan KR, Edwards-Brown MK, Cohen MD, Fletcher JW, Travers JB, Staser KW, Lee MW, Sherman MR, Davis CJ, Miller LC, Ingram DA, Clapp DW. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol 2012; 13:1218-24. [PMID: 23099009 DOI: 10.1016/s1470-2045(12)70414-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Plexiform neurofibromas are slow-growing chemoradiotherapy-resistant tumours arising in patients with neurofibromatosis type 1 (NF1). Currently, there are no viable therapeutic options for patients with plexiform neurofibromas that cannot be surgically removed because of their proximity to vital body structures. We undertook an open-label phase 2 trial to test whether treatment with imatinib mesylate can decrease the volume burden of clinically significant plexiform neurofibromas in patients with NF1. METHODS Eligible patients had to be aged 3-65 years, and to have NF1 and a clinically significant plexiform neurofibroma. Patients were treated with daily oral imatinib mesylate at 220 mg/m(2) twice a day for children and 400 mg twice a day for adults for 6 months. The primary endpoint was a 20% or more reduction in plexiform size by sequential volumetric MRI imaging. Clinical data were analysed on an intention-to-treat basis; a secondary analysis was also done for those patients able to take imatinib mesylate for 6 months. This trial is registered with ClinicalTrials.gov, number NCT01673009. FINDINGS Six of 36 patients (17%, 95% CI 6-33), enrolled on an intention-to-treat basis, had an objective response to imatinib mesylate, with a 20% or more decrease in tumour volume. Of the 23 patients who received imatinib mesylate for at least 6 months, six (26%, 95% CI 10-48) had a 20% or more decrease in volume of one or more plexiform tumours. The most common adverse events were skin rash (five patients) and oedema with weight gain (six). More serious adverse events included reversible grade 3 neutropenia (two), grade 4 hyperglycaemia (one), and grade 4 increases in aminotransferase concentrations (one). INTERPRETATION Imatinib mesylate could be used to treat plexiform neurofibromas in patients with NF1. A multi-institutional clinical trial is warranted to confirm these results. FUNDING Novartis Pharmaceuticals, the Indiana University Simon Cancer Centre, and the Indiana University Herman B Wells Center for Pediatric Research.
Collapse
Affiliation(s)
- Kent A Robertson
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Mutations in the SPRED1 (Sprouty-related protein with an EVH [Ena/Vasp homology] domain 1) and NF1 (neurofibromatosis 1) genes underlie clinically related human disorders. The NF1-encoded protein neurofibromin is a Ras GTPase-activating protein (GAP) and can directly limit Ras activity. Spred proteins also negatively regulate Ras signaling, but the mechanism by which they do so is not clear. In the July 1, 2012, issue of Genes & Development, Stowe and colleagues (pp. 1421-1426) present evidence that Spred1 recruits neurofibromin to the membrane, where it dampens growth factor-induced Ras activity, providing a satisfying explanation for the overlapping features of two human diseases.
Collapse
Affiliation(s)
- Andrea I McClatchey
- Massachusetts General Hospital Center for Cancer Research, Department of Pathology, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
225
|
Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, Bronson RT, Whitesell L, Lindquist S. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 2012; 122:3742-54. [PMID: 22945628 DOI: 10.1172/jci62727] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/12/2012] [Indexed: 01/25/2023] Open
Abstract
Intrinsic stress response pathways are frequently mobilized within tumor cells. The mediators of these adaptive mechanisms and how they contribute to carcinogenesis remain poorly understood. A striking example is heat shock factor 1 (HSF1), master transcriptional regulator of the heat shock response. Surprisingly, we found that loss of the tumor suppressor gene neurofibromatosis type 1 (Nf1) increased HSF1 levels and triggered its activation in mouse embryonic fibroblasts. As a consequence, Nf1-/- cells acquired tolerance to proteotoxic stress. This activation of HSF1 depended on dysregulated MAPK signaling. HSF1, in turn, supported MAPK signaling. In mice, Hsf1 deficiency impeded NF1-associated carcinogenesis by attenuating oncogenic RAS/MAPK signaling. In cell lines from human malignant peripheral nerve sheath tumors (MPNSTs) driven by NF1 loss, HSF1 was overexpressed and activated, which was required for tumor cell viability. In surgical resections of human MPNSTs, HSF1 was overexpressed, translocated to the nucleus, and phosphorylated. These findings reveal a surprising biological consequence of NF1 deficiency: activation of HSF1 and ensuing addiction to this master regulator of the heat shock response. The loss of NF1 function engages an evolutionarily conserved cellular survival mechanism that ultimately impairs survival of the whole organism by facilitating carcinogenesis.
Collapse
Affiliation(s)
- Chengkai Dai
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Manikandan M, Raksha G, Munirajan AK. Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach. Cancer Inform 2012; 11:157-71. [PMID: 23032637 PMCID: PMC3433856 DOI: 10.4137/cin.s10176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Haploinsufficiency of tumor suppressor genes, wherein the reduced production and activity of proteins results in the inability of the cell to maintain normal cellular function, is one among the various causes of cancer. However the precise molecular mechanisms underlying this condition remain unclear. Here we hypothesize that single nucleotide polymorphisms (SNPs) in the 3′untranslated region (UTR) of mRNAs and microRNA seed sequence (miR-SNPs) may cause haploinsufficiency at the level of proteins through altered binding specificity of microRNAs (miRNAs). Bioinformatics analysis of haploinsufficient genes for variations in their 3′UTR showed that the occurrence of SNPs result in the creation of new binding sites for miRNAs, thereby bringing the respective mRNA variant under the control of more miRNAs. In addition, 19 miR-SNPs were found to result in non-specific binding of microRNAs to tumor suppressors. Networking analysis suggests that the haploinsufficient tumor suppressor genes strongly interact with one another, and any subtle alterations in this network will contribute to tumorigenesis.
Collapse
Affiliation(s)
- Mayakannan Manikandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India
| | | | | |
Collapse
|
227
|
Abstract
Primary cutaneous lymphomas (PCLs) are clonal T- or B-cell neoplasms, which originate in the skin. In recent years, mast cells were described as regulators of the tumor microenvironment in different human malignancies. Here, we investigated the role of mast cells in the tumor microenvironment of PCL. We found significantly increased numbers of mast cells in skin biopsies from patients with cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma (CBCL). Mast cell infiltration was particularly prominent in the periphery, at lymphoma rims. Interestingly, CTCL and CBCL patients with a progressive course showed higher mast cell counts than stable patients, and mast cell numbers in different stages of CTCL correlated positively with disease progression. In addition, mast cell numbers positively correlated with microvessel density. Incubating primary CTCL cells with mast cell supernatant, we observed enhanced proliferation and production of cytokines. In line with our in vitro experiments, in a mouse model of cutaneous lymphoma, tumor growth in mast cell-deficient transgenic mice was significantly decreased. Taken together, these experiments show that mast cells play a protumorigenic role in CTCL and CBCL. Our data provide a rationale for exploiting tumor-associated mast cells as a prognostic marker and therapeutic target in PCL.
Collapse
|
228
|
Yang FC, Staser K, Clapp DW. The plexiform neurofibroma microenvironment. CANCER MICROENVIRONMENT 2012; 5:307-10. [PMID: 22821631 DOI: 10.1007/s12307-012-0115-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
Dynamic interactions between tumorigenic cells and surrounding cells, including immunomodulatory hematopoietic cells, can dictate tumor initiation, progression, and transformation. Hematopoietic-stromal interactions underpin the plexiform neurofibroma, a debilitating tumor arising in individuals afflicted with Neurofibromatosis type 1 (NF1), a common genetic disorder resulting from mutations in the NF1 tumor suppressor gene. At the tissue level, plexiform neurofibromas demonstrate a complex microenvironment composed of Schwann cells, fibroblasts, perineural cells, mast cells, secreted collagen, and blood vessels. At the cellular level, specific interactions between these cells engender tumor initiation and progression. In this microenvironment hypothesis, tumorigenic Schwann cells secrete pathological concentrations of stem cell factor, which recruit c-kit expressing mast cells. In turn, activated mast cells release inflammatory effectors stimulating the tumorigenic Schwann cells and their supporting fibroblasts and blood vessels, thus promoting tumor expansion in a feed-forward loop. Bone marrow transplantation experiments in plexiform neurofibroma mouse models have shown that tumorigenesis requires Nf1 haploinsufficiency in the hematopoietic compartment, suggesting that tumor microenvironments can depend on intricate interactions at both cellular and genetic levels. Overall, our continued understanding of critical tumor-stromal interactions will illuminate novel therapeutic targets, as shown by the first-ever successful medical treatment of a plexiform neurofibroma by targeted inhibition of the stem cell factor/c-kit axis.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA,
| | | | | |
Collapse
|
229
|
Abstract
Stem cells are fundamental units for achieving regenerative therapies, which leads naturally to a theoretical and experimental focus on these cells for therapeutic screening and intervention. A growing body of data in many tissue systems indicates that stem cell function is critically influenced by extrinsic signals derived from the microenvironment, or "niche." In this vein, the stem cell niche represents a significant, and largely untapped, entry point for therapeutic modulation of stem cell behavior. This Perspective will discuss how the niche influences stem cells in homeostasis, in the progression of degenerative and malignant diseases, and in therapeutic strategies for tissue repair.
Collapse
Affiliation(s)
- Amy J Wagers
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
230
|
Keng VW, Rahrmann EP, Watson AL, Tschida BR, Moertel CL, Jessen WJ, Rizvi TA, Collins MH, Ratner N, Largaespada DA. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res 2012; 72:3405-13. [PMID: 22700876 DOI: 10.1158/0008-5472.can-11-4092] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genetic evolution from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis type 1 (NF1) syndrome remains unclear. Schwann cells and/or their precursor cells are believed to be the primary pathogenic cell in neurofibromas because they harbor biallelic neurofibromin 1 (NF1) gene mutations. However, the phosphatase and tensin homolog (Pten) and neurofibromatosis 1 (Nf1) genes recently were found to be comutated in high-grade peripheral nerve sheath tumors (PNST) in mice. In this study, we created transgenic mice that lack both Pten and Nf1 in Schwann cells and Schwann cell precursor cells to validate the role of these two genes in PNST formation in vivo. Haploinsufficiency or complete loss of Pten dramatically accelerated neurofibroma development and led to the development of higher grade PNSTs in the context of Nf1 loss. Pten dosage, together with Nf1 loss, was sufficient for the progression from low-grade to high-grade PNSTs. Genetic analysis of human malignant PNSTs (MPNST) also revealed downregulation of PTEN expression, suggesting that Pten-regulated pathways are major tumor-suppressive barriers to neurofibroma progression. Together, our findings establish a novel mouse model that can rapidly recapitulate the onset of human neurofibroma tumorigenesis and the progression to MPNSTs.
Collapse
Affiliation(s)
- Vincent W Keng
- Masonic Cancer Center, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Neurogenic tumors are an uncommon yet important category of soft tissue tumors in children and adolescents because of their frequent association with various genetic syndromes. The heterogeneous cellular composition of the peripheral nerve and the wide metaplastic capacity of the neural crest and its derivatives generate a variety of neoplasms with neurogenic differentiation. This article reviews the clinicopathologic features and differential diagnosis of neurogenic tumors in the first two decades of life, and highlights use of selected ancillary methods for diagnosis.
Collapse
Affiliation(s)
- Justin M M Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | |
Collapse
|
232
|
Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2012; 5:623-90. [PMID: 22155606 PMCID: PMC3525246 DOI: 10.1186/1479-7364-5-6-623] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Somatic gene mutations constitute key events in the malignant transformation of human cells. Somatic mutation can either actively speed up the growth of tumour cells or relax the growth constraints normally imposed upon them, thereby conferring a selective (proliferative) advantage at the cellular level. Neurofibromatosis type-1 (NF1) affects 1/3,000-4,000 individuals worldwide and is caused by the inactivation of the NF1 tumour suppressor gene, which encodes the protein neurofibromin. Consistent with Knudson's two-hit hypothesis, NF1 patients harbouring a heterozygous germline NF1 mutation develop neurofibromas upon somatic mutation of the second, wild-type, NF1 allele. While the identification of somatic mutations in NF1 patients has always been problematic on account of the extensive cellular heterogeneity manifested by neurofibromas, the classification of NF1 somatic mutations is a prerequisite for understanding the complex molecular mechanisms underlying NF1 tumorigenesis. Here, the known somatic mutational spectrum for the NF1 gene in a range of NF1-associated neoplasms --including peripheral nerve sheath tumours (neurofibromas), malignant peripheral nerve sheath tumours, gastrointestinal stromal tumours, gastric carcinoid, juvenile myelomonocytic leukaemia, glomus tumours, astrocytomas and phaeochromocytomas -- have been collated and analysed.
Collapse
|
233
|
Yoshida Y, Furumura M, Tahira M, Horie T, Yamamoto O. Serum biomarker in neurofibromatosis type 1. J Dermatol Sci 2012; 67:155-8. [PMID: 22609162 DOI: 10.1016/j.jdermsci.2012.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 11/26/2022]
|
234
|
Baek ST, Tallquist MD. Nf1 limits epicardial derivative expansion by regulating epithelial to mesenchymal transition and proliferation. Development 2012; 139:2040-9. [PMID: 22535408 DOI: 10.1242/dev.074054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.
Collapse
Affiliation(s)
- Seung Tae Baek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
235
|
The neurofibromatoses and related disorders. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
236
|
Gutiérrez-Rivera A, Iribar H, Tuneu A, Izeta A. Skin-derived precursor cells as an in vitro modelling tool for the study of type 1 neurofibromatosis. Stem Cells Int 2012; 2012:646725. [PMID: 22550514 PMCID: PMC3329859 DOI: 10.1155/2012/646725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/18/2012] [Indexed: 12/17/2022] Open
Abstract
The most characteristic feature of neurofibromatosis type 1 (NF1) is the development of neurofibromas. It has been suggested that these tumors are caused by somatic inactivation of the wild-type NF1 allele, but the cell that originally suffers this mutation remains controversial. Several lines of evidence support the clonal origin of these tumors, and it has been recently suggested that skin-derived precursor cells (SKPs) could be the cell of origin of dermal neurofibromas. Nullizygous (NF1(-/-)) SKPs do give rise to neurofibromas when transplanted to heterozygous mice. Moreover, a nullizygous population of cells that is S100β negative is present in human neurofibromas, and NF1(+/-) multipotent progenitor cells are seemingly recruited to the tumor. This evidence supports the neurofibroma stem cell hypothesis and a putative involvement of SKPs in the aetiopathogenesis of the disease, suggesting that SKPs could become a valuable tool for the in vitro study of NF1.
Collapse
Affiliation(s)
- Araika Gutiérrez-Rivera
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Haizea Iribar
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Anna Tuneu
- Department of Dermatology, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| |
Collapse
|
237
|
Iyer V, Klebba I, McCready J, Arendt LM, Betancur-Boissel M, Wu MF, Zhang X, Lewis MT, Kuperwasser C. Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Res 2012; 72:2705-13. [PMID: 22467173 DOI: 10.1158/0008-5472.can-11-3287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen has a central role in the genesis and progression of breast cancers whether they are positive or negative for the estrogen receptor (ER). While therapies that disrupt estrogen biosynthesis or ER activity can treat these diseases in postmenopausal women, in younger women where ovarian function remains intact, these anti-estrogen therapies are not as effective. Moreover, emerging clinical evidence suggests that estrogen may promote other cancers. Thus, circulating estrogens may participate in cancer pathogenesis in ways that are not yet understood. In this study, we show that estrogen can promote the outgrowth of murine xenograft tumors established from patient-derived ER-negative breast cancer cells by influencing the mobilization and recruitment of a proangiogenic population of bone marrow-derived myeloid cells. ERα expression was necessary and sufficient in the bone marrow-derived cells themselves to promote tumor formation in response to estrogen. Our findings reveal a novel way in which estrogen promotes tumor formation, with implications for the development and application of anti-estrogen therapies to treat cancer in premenopausal women.
Collapse
Affiliation(s)
- Vandana Iyer
- Department of Anatomy & Cellular Biology, Sackler School of Biomedical Research, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Reinisch CM, Tschachler E. The dimensions and characteristics of the subepidermal nerve plexus in human skin – Terminal Schwann cells constitute a substantial cell population within the superficial dermis. J Dermatol Sci 2012; 65:162-9. [DOI: 10.1016/j.jdermsci.2011.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
239
|
Carroll SL. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 2012; 123:321-48. [PMID: 22160322 PMCID: PMC3288530 DOI: 10.1007/s00401-011-0928-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 12/20/2022]
Abstract
Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [neurofibromatosis type 2 (NF2), schwannomatosis and Carney complex type 1] has greatly advanced our understanding of these mechanisms. The development of genetically engineered mice with ablation of NF1, NF2, SMARCB1/INI1 or PRKAR1A has confirmed the key role these genes play in peripheral nerve sheath tumorigenesis. Establishing the functions of the NF1, NF2, SMARCB1/INI1 and PRKAR1A gene products has led to the identification of key cytoplasmic signaling pathways promoting Schwann cell neoplasia and identified new therapeutic targets. Analyses of human neoplasms and genetically engineered mouse models have established that interactions with other tumor suppressors such as TP53 and CDKN2A promote neurofibroma-MPNST progression and indicate that intratumoral interactions between neoplastic and non-neoplastic cell types play an essential role in peripheral nerve sheath tumorigenesis. Recent advances have also provided new insights into the identity of the neural crest-derived populations that give rise to different types of peripheral nerve sheath tumors. Based on these findings, we now have an initial outline of the molecular mechanisms driving the pathogenesis of neurofibromas, MPNSTs and schwannomas. However, this improved understanding in turn raises a host of intriguing new questions.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, 1720 Seventh Avenue South, SC930G3, Birmingham, AL 35294-0017, USA.
| |
Collapse
|
240
|
Hensley PJ, Kyprianou N. Modeling prostate cancer in mice: limitations and opportunities. JOURNAL OF ANDROLOGY 2012; 33:133-44. [PMID: 21680808 PMCID: PMC3726197 DOI: 10.2164/jandrol.111.013987] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex dynamics of the tumor microenvironment and prostate cancer heterogeneity have confounded efforts to establish suitable preclinical mouse models to represent human cancer progression from early proliferative phenotypes to aggressive, androgen-independent, and invasive metastatic tumors. Current models have been successful in capitulating individual characteristics of the aggressive tumors. However, none of these models comprehensively mimics human cancer progression, establishing the challenge in their exploitation to study human disease. The ability to tailor phenotypic outcomes in mice by compounding mutations to target specific molecular pathways provides a powerful tool toward disruption of signaling pathways contributing to the initiation and progression of castration-resistant prostate cancer. Each model is characterized by unique features contributing to the understanding of prostate tumorigenesis, as well as limitations challenging our knowledge of the mechanisms of cancer development and progression. Emerging strategies utilize genomic manipulation technology to circumvent these limitations toward the formulation of attractive, physiologically relevant models of prostate cancer progression to advanced disease. This review discusses the current value of the widely used and well-characterized mouse models of prostate cancer progression to metastasis, as well as the opportunities begging exploitation for the development of new models for testing the antitumor efficacy of therapeutic strategies and identifying new biomarkers of disease progression.
Collapse
Affiliation(s)
- Patrick J Hensley
- Department of Surgery/Urology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
241
|
Buchstaller J, McKeever PE, Morrison SJ. Tumorigenic cells are common in mouse MPNSTs but their frequency depends upon tumor genotype and assay conditions. Cancer Cell 2012; 21:240-52. [PMID: 22340596 PMCID: PMC3285409 DOI: 10.1016/j.ccr.2011.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/12/2011] [Accepted: 12/26/2011] [Indexed: 12/15/2022]
Abstract
Tumor-initiating cells have been suggested to be rare in many cancers. We tested this in mouse malignant peripheral nerve sheath tumors (MPNSTs) and found that 18% of primary and 49% of passaged MPNST cells from Nf1(+/-); Ink4a/Arf(-/-) mice formed tumors upon transplantation, whereas only 1.8% to 2.6% of MPNST cells from Nf1(+/-); p53(+/-) mice did. MPNST cells of both genotypes require laminin binding to β1-integrin for clonogenic growth. Most MPNST cells from Nf1(+/-); Ink4a/Arf(-/-) mice expressed laminin, whereas most MPNST cells from Nf1(+/-); p53(+/-) mice did not. Exogenous laminin increased the percentage of MPNST cells from Nf1(+/-); p53(+/-) but not Nf1(+/-); Ink4a/Arf(-/-) mice that formed tumorigenic colonies. Tumor-forming potential is common among MPNST cells, but the assay conditions required to detect it vary with tumor genotype.
Collapse
Affiliation(s)
- Johanna Buchstaller
- Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Paul E. McKeever
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Sean J. Morrison
- Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
- Howard Hughes Medical Institute, Children’s Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
- Correspondence: Children’s Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390-8502, phone 214-633-1791 fax 214-648-5517,
| |
Collapse
|
242
|
Sun D, Tainsky MA, Haddad R. Oncogene Mutation Survey in MPNST Cell Lines Enhances the Dominant Role of Hyperactive Ras in NF1 Associated Pro-Survival and Malignancy. TRANSLATIONAL ONCOGENOMICS 2012; 5:1-7. [PMID: 22346343 PMCID: PMC3273949 DOI: 10.4137/tog.s8830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are a type of soft tissue sarcoma that can be associated with germline mutations in Neurofibromatosis type 1 (NF1) or may occur sporadically. Although the etiology of MPNST is poorly understood, it is clear that a loss of function of the NF1 gene, encoding a Ras-GAP, is an important factor in the tumorigenesis of the inherited form of MPNST. Tumor latency in NF1 patients suggests that additional mutational events are probably required for malignancy. In order to define oncogene mutations associated with 5 MPNST cell lines, we assayed the 238 most frequent mutations in 19 commonly activated oncogenes using mass spectroscopy-based analysis. All 238 mutation sites in the assayed oncogenes were determined to harbor only wild-type sequences. These data suggest that hyperactive Ras resulting from the loss function of neurofibromin may be sufficient to set up the direction of malignant transformation of Schwann cells to MPNST.
Collapse
Affiliation(s)
- Daochun Sun
- Center for Molecluar Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201
| | | | | |
Collapse
|
243
|
Jost S, Gutmann DH. Neurofibromatosis and other genetic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2012; 105:569-82. [PMID: 22230519 DOI: 10.1016/b978-0-444-53502-3.00009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah Jost
- Department of Nedurology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
244
|
Staser K, Yang FC, Clapp DW. Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. ANNUAL REVIEW OF PATHOLOGY 2011; 7:469-95. [PMID: 22077553 PMCID: PMC3694738 DOI: 10.1146/annurev-pathol-011811-132441] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disease that results from either heritable or spontaneous autosomal dominant mutations in the NF1 gene. A second-hit mutation precedes the predominant NF1 neoplasms, which include myeloid leukemia, optic glioma, and plexiform neurofibroma. Despite this requisite NF1 loss of heterozygosity in the tumor cell of origin, nontumorigenic cells contribute to both generalized and specific disease manifestations. In mouse models of plexiform neurofibroma formation, Nf1 haploinsufficient mast cells promote inflammation, accelerating tumor formation and growth. These recruited mast cells, hematopoietic effector cells long known to permeate neurofibroma tissue, mediate key mitogenic signals that contribute to vascular ingrowth, collagen deposition, and tumor growth. Thus, the plexiform neurofibroma microenvironment involves a tumor/stromal interaction with the hematopoietic system that depends, at the molecular level, on a stem cell factor/c-kit-mediated signaling axis. These observations parallel findings in other NF1 disease manifestations and are clearly relevant to medical management of these neurofibromas.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
245
|
Gutmann DH, Stiles CD, Lowe SW, Bollag GE, Furnari FB, Charest AL. Report from the fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. Neuro Oncol 2011; 13:692-9. [PMID: 21727208 DOI: 10.1093/neuonc/nor080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cancers of the nervous system are clinically challenging tumors that present with varied histopathologies and genetic etiologies. While the prognosis for the most malignant of these tumors is essentially unchanged despite decades of basic and translational science research, the past few years have witnessed the identification of numerous targetable molecular alterations in these cancers. With the advent of advanced genomic sequencing methodologies and the development of accurate small-animal models of these nervous system cancers, we are now ideally positioned to develop personalized therapies that target the unique cellular and molecular changes that define their formation and drive their continued growth. Recently, the National Cancer Institute convened a workshop to advance our understanding of nervous system cancer mouse models and to inform clinical trials by reconsidering these neoplasms as complex biological systems characterized by heterogeneity at all levels.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
246
|
Nguyen R, Kluwe L, Fuensterer C, Kentsch M, Friedrich RE, Mautner VF. Plexiform neurofibromas in children with neurofibromatosis type 1: frequency and associated clinical deficits. J Pediatr 2011; 159:652-5.e2. [PMID: 21621223 DOI: 10.1016/j.jpeds.2011.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/08/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To define the frequency and clinical features of plexiform neurofibromas (PN) in children with neurofibromatosis type 1. STUDY DESIGN Sixty-five children received whole-body magnetic resonance imaging (MRI) and clinical-neurologic examination. Tumor sizes were calculated volumetrically with the program MedX v3.42. χ(2) test, Fisher exact test, t test, and Spearman rank correlation were used for statistical analysis. RESULTS Seventy-three tumors were detected in 37 of these 65 children. The mean volume of the tumors was 145.4 mL or 4.8 mL/kg body weight. Eighteen of the 73 PNs caused clinical deficits in 17 children, and the other 56 PNs in 20 children were asymptomatic. Symptomatic tumors were larger than asymptomatic ones (9.6 vs 3.3 mL/kg body weight; P = .01). However, in certain body regions, for example, the head, small tumors also caused clinical deficits. Ten of 18 children ≥11.5 years (median age of the 37 children with PNs) had symptomatic PNs compared with 7 of 19 who were <11.5 years (P = .25). CONCLUSION PNs cause clinical deficits in young children. Early detection and regular MRI monitoring help to estimate growth and possible upcoming complications, and are thus beneficial for optimizing treatment and management.
Collapse
Affiliation(s)
- Rosa Nguyen
- Phacomatosis Section, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
247
|
The haploinsufficient hematopoietic microenvironment is critical to the pathological fracture repair in murine models of neurofibromatosis type 1. PLoS One 2011; 6:e24917. [PMID: 21980365 PMCID: PMC3182976 DOI: 10.1371/journal.pone.0024917] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/19/2011] [Indexed: 12/28/2022] Open
Abstract
Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations.
Collapse
|
248
|
Brossier NM, Carroll SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2011; 88:58-71. [PMID: 21855613 DOI: 10.1016/j.brainresbull.2011.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1), the most common genetic disorder affecting the human nervous system, is characterized by the development of multiple benign Schwann cell tumors in skin and large peripheral nerves. These neoplasms, which are termed dermal and plexiform neurofibromas respectively, have distinct clinical courses; of particular note, plexiform, but not dermal, neurofibromas often undergo malignant progression to form malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy occurring in NF1 patients. In recent years, a number of genetically engineered mouse models have been created to investigate the molecular mechanisms driving the pathogenesis of these tumors. These models have been designed to address key questions including: (1) whether NF1 loss in the Schwann cell lineage is essential for tumorigenesis; (2) what cell type(s) in the Schwann cell lineage gives rise to dermal neurofibromas, plexiform neurofibromas and MPNSTs; (3) how the tumor microenvironment contributes to neoplasia; (4) what additional mutations contribute to neurofibroma-MPNST progression; (5) what role different neurofibromin-regulated Ras proteins play in this process and (6) how dysregulated growth factor signaling facilitates PNS tumorigenesis. In this review, we summarize the major findings from each of these models and their limitations as well as how discrepancies between these models may be reconciled. We also discuss how information gleaned from these models can be synthesized to into a comprehensive model of tumor formation in peripheral nervous system and consider several of the major questions that remain unanswered about this process.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
249
|
Mayes DA, Rizvi TA, Cancelas JA, Kolasinski NT, Ciraolo GM, Stemmer-Rachamimov AO, Ratner N. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 2011; 71:4675-85. [PMID: 21551249 PMCID: PMC3464476 DOI: 10.1158/0008-5472.can-10-4558] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plexiform neurofibromas are peripheral nerve sheath tumors initiated by biallelic mutation of the NF1 tumor suppressor gene in the Schwann cell lineage. To understand whether neurofibroma formation is possible after birth, we induced Nf1 loss of function with an inducible proteolipid protein Cre allele. Perinatal loss of Nf1 resulted in the development of small plexiform neurofibromas late in life, whereas loss in adulthood caused large plexiform neurofibromas and morbidity beginning 4 months after onset of Nf1 loss. A conditional EGFP reporter allele identified cells showing recombination, including peripheral ganglia satellite cells, peripheral nerve S100β+ myelinating Schwann cells, and peripheral nerve p75+ cells. Neurofibromas contained cells with Remak bundle disruption but no recombination within GFAP+ nonmyelinating Schwann cells. Extramedullary lympho-hematopoietic expansion was also observed in PlpCre;Nf1fl/fl mice. These tumors contained EGFP+/Sca-1+ stromal cells among EGFP-negative lympho-hematopoietic cells indicating a noncell autonomous effect and unveiling a role of Nf1-deleted microenvironment on lympho-hematopoietic proliferation in vivo. Together these findings define a tumor suppressor role for Nf1 in the adult and narrow the range of potential neurofibroma-initiating cell populations.
Collapse
Affiliation(s)
- Debra A. Mayes
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Tilat A. Rizvi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Jose A. Cancelas
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Hoxworth Blood Center, University of Cincinnati
| | - Nathan T. Kolasinski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | | | | | - Nancy Ratner
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
250
|
El-Hoss J, Micallef AS, Fairfull-Smith KE, Bottle SE, Little DG, Schindeler A. Assessment of Tumor Prevention in Type 1 Neurofibromatosis using a Nitroxide Compound. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|