201
|
Venkatesan RN, Bielas JH, Loeb LA. Generation of mutator mutants during carcinogenesis. DNA Repair (Amst) 2006; 5:294-302. [PMID: 16359931 DOI: 10.1016/j.dnarep.2005.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 09/07/2005] [Accepted: 10/26/2005] [Indexed: 01/16/2023]
Abstract
Mutations are rare in normal cells. In contrast, multiple mutations are characteristic in most tumors. Previously we proposed a "mutator phenotype" hypothesis to explain how pre-cancer cells may acquire large number of mutations during carcinogenesis. Here we extend the "mutator phenotype" hypothesis considering recently discovered biochemical activities whose aberrant expression may result in genome-wide random mutations. The scope of this article is to emphasize that simple random point mutations can drive carcinogenesis and highlight new emerging pathways that generate these mutations. We focus specifically on random point mutations generated by replication errors, oxidative base damage, covalent base modifications by enzymes, and spontaneously generated abasic sites as a source of mutator mutants.
Collapse
Affiliation(s)
- Ranga N Venkatesan
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA
| | | | | |
Collapse
|
202
|
Seo KY, Nagalingam A, Miri S, Yin J, Chandani S, Kolbanovskiy A, Shastry A, Loechler EL. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair (Amst) 2006; 5:515-22. [PMID: 16483853 DOI: 10.1016/j.dnarep.2005.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g., G-to-T, G-to-A, -1 frameshifts, etc.) via its major adduct [+ta]-B[a]P-N2-dG. We recently showed that the dominant G-to-T mutation depends on DNA polymerase V (DNAP V), but not DNAPs IV or II, when studied in a 5'-TG sequence in E. coli. Herein we investigate what DNAPs are responsible for non-mutagenic bypass with [+ta]-B[a]P-N2-dG, along with its mirror image adduct [-ta]-B[a]P-N2-dG. Each adduct is built into a 5'-TG sequence in a single stranded M13 phage vector, which is then transformed into eight different E. coli strains containing all combinations of proficiency and deficiency in the three lesion-bypass DNAPs II, IV and V. Based on M13 progeny output, non-mutagenic bypass with [-ta]-B[a]P-N2-dG depends on DNAP IV. In contrast, non-mutagenic bypass with [+ta]-B[a]P-N2-dG depends on both DNAPs IV and V, where arguments suggest that DNAP IV is involved in dCTP insertion, while DNAP V is involved in extension of the adduct-G:C base pair. Numerous findings indicate that DNAP II has a slight inhibitory effect on the bypass of [+ta]- and [-ta]-B[a]P-N2-dG in the case of both DNAPs IV and V. In conclusion, for efficient non-mutagenic bypass (dCTP insertion) in E. coli, [+ta]-B[a]P-N2-dG requires DNAPs IV and V, [-ta]-B[a]P-N2-dG requires only DNAP IV, while DNAP II is inhibitory to both, and experiments to investigate these differences should provide insights into the mechanism and purpose of these lesion-bypass DNAPs.
Collapse
Affiliation(s)
- Kwang Young Seo
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Godoy VG, Jarosz DF, Walker FL, Simmons LA, Walker GC. Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO J 2006; 25:868-79. [PMID: 16482223 PMCID: PMC1383567 DOI: 10.1038/sj.emboj.7600986] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 01/10/2006] [Indexed: 01/20/2023] Open
Abstract
In Escherichia coli, the Y-family DNA polymerases Pol IV (DinB) and Pol V (UmuD2'C) enhance cell survival upon DNA damage by bypassing replication-blocking DNA lesions. We report a unique function for these polymerases when DNA replication fork progression is arrested not by exogenous DNA damage, but with hydroxyurea (HU), thereby inhibiting ribonucleotide reductase, and bringing about damage-independent DNA replication stalling. Remarkably, the umuC122::Tn5 allele of umuC, dinB, and certain forms of umuD gene products endow E. coli with the ability to withstand HU treatment (HUR). The catalytic activities of the UmuC122 and DinB proteins are both required for HUR. Moreover, the lethality brought about by such stalled replication forks in the wild-type derivatives appears to proceed through the toxin/antitoxin pairs mazEF and relBE. This novel function reveals a role for Y-family polymerases in enhancing cell survival under conditions of nucleotide starvation, in addition to their established functions in response to DNA damage.
Collapse
Affiliation(s)
- Veronica G Godoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Daniel F Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabianne L Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lyle A Simmons
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, 68-633, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Tel.: +1 617 253 6716; Fax: +1 617 253 2643; E-mail:
| |
Collapse
|
204
|
Abstract
Over the past few years, study of the rare inherited chromosome instability disorder, Fanconi Anemia (FA), has uncovered a novel DNA damage response pathway. Through the cooperation of multiple proteins, this pathway regulates a complicated cellular response to DNA cross-linking agents and other genotoxic stresses. In this article we review recent data identifying new components of the FA pathway that implicate it in several aspects of the DNA damage response, including the direct processing of DNA, translesion synthesis, homologous recombination, and cell cycle regulation. We also discuss new findings that explain how the FA pathway is regulated through the processes of ubiquitination and deubiquitination. We then consider the clinical implications of our current understanding of the FA pathway, particularly in the development and treatment of malignancy in heterozygous carriers of FA mutations or in patients with sporadic cancers. We consider how recent studies of p53-mediated apoptosis and loss of p53 function in models of FA may help explain the clinical features of the disease and finally present a hypothesis to account for the specificity of the FA pathway in the response to DNA cross-links.
Collapse
Affiliation(s)
- Richard D Kennedy
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
205
|
Ukai A, Maruyama T, Mochizuki S, Ouchida R, Masuda K, Kawamura K, Tagawa M, Kinoshita K, Sakamoto A, Tokuhisa T, O-Wang J. Role of DNA polymerase theta in tolerance of endogenous and exogenous DNA damage in mouse B cells. Genes Cells 2006; 11:111-21. [PMID: 16436048 DOI: 10.1111/j.1365-2443.2006.00922.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA polymerase theta (Poltheta) is a family A polymerase that contains an intrinsic helicase domain. To investigate the function of Poltheta in mammalian cells, we have inactivated its polymerase activity in CH12 mouse B lymphoma cells by targeted deletion of the polymerase core domain that contains the catalytic aspartic acid residue. Compared to parental CH12 cells, mutant cells devoid of Poltheta polymerase activity exhibited a slightly reduced growth rate, accompanied by increased spontaneous cell death. In addition, mutant cells showed elevated sensitivity to mitomycin C, cisplatin, etoposide, gamma-irradiation and ultraviolet (UV) radiation. Interestingly, mutant cells were more sensitive to the alkylating agent methyl methanesulfonate (MMS) than parental cells. This elevated MMS sensitivity relative to WT cells persisted in the presence of methoxyamine, an inhibitor of the major base excision repair (BER) pathway, suggesting that Poltheta is involved in tolerance of MMS through a mechanism that appears to be different from BER. These results reveal an important role for Poltheta in preventing spontaneous cell death and in tolerance of not only DNA interstrand cross-links and double strand breaks but also UV adducts and alkylation damage in mammalian lymphocytes.
Collapse
Affiliation(s)
- Akiko Ukai
- Laboratory for Antigen Receptor Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 2006; 439:225-8. [PMID: 16407906 DOI: 10.1038/nature04318] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 10/11/2005] [Indexed: 11/08/2022]
Abstract
Translesion synthesis (TLS) by Y-family DNA polymerases is a chief mechanism of DNA damage tolerance. Such TLS can be accurate or error-prone, as it is for bypass of a cyclobutane pyrimidine dimer by DNA polymerase eta (XP-V or Rad30) or bypass of a (6-4) TT photoproduct by DNA polymerase V (UmuD'2C), respectively. Although DinB is the only Y-family DNA polymerase conserved among all domains of life, the biological rationale for this striking conservation has remained enigmatic. Here we report that the Escherichia coli dinB gene is required for resistance to some DNA-damaging agents that form adducts at the N2-position of deoxyguanosine (dG). We show that DinB (DNA polymerase IV) catalyses accurate TLS over one such N2-dG adduct (N2-furfuryl-dG), and that DinB and its mammalian orthologue, DNA polymerase kappa, insert deoxycytidine (dC) opposite N2-furfuryl-dG with 10-15-fold greater catalytic proficiency than opposite undamaged dG. We also show that mutating a single amino acid, the 'steric gate' residue of DinB (Phe13 --> Val) and that of its archaeal homologue Dbh (Phe12 --> Ala), separates the abilities of these enzymes to perform TLS over N2-dG adducts from their abilities to replicate an undamaged template. We propose that DinB and its orthologues are specialized to catalyse relatively accurate TLS over some N2-dG adducts that are ubiquitous in nature, that lesion bypass occurs more efficiently than synthesis on undamaged DNA, and that this specificity may be achieved at least in part through a lesion-induced conformational change.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
207
|
Saumaa S, Tarassova K, Tark M, Tover A, Tegova R, Kivisaar M. Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida. DNA Repair (Amst) 2006; 5:505-14. [PMID: 16414311 DOI: 10.1016/j.dnarep.2005.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 11/21/2022]
Abstract
One of the popular ideas is that decline in methyl-directed mismatch repair (MMR) in carbon-starved bacteria might facilitate occurrence of stationary-phase mutations. We compared the frequency of accumulation of stationary-phase mutations in carbon-starved Pseudomonas putida wild-type and MMR-defective strains and found that knockout of MMR system increased significantly emergence of base substitutions in starving P. putida. At the same time, the appearance of 1-bp deletion mutations was less affected by MMR in this bacterium. The spectrum of base substitution mutations which occurred in starving populations of P. putida wild-type strain was distinct from mutation spectrum identified in MMR-defective strains. The spectrum of base substitutions differed also in this case when mutants emerged in starved populations of MutS or MutL-defective strains were comparatively analyzed. Based on our results we suppose that other mechanisms than malfunctioning of MMR system in resting cells might be considered to explain the accumulation of stationary-phase mutations in P. putida. To further characterize populations of P. putida starved on selective plates, we stained bacteria with LIVE/DEAD kit in situ on agar plates. We found that although the overall number of colony forming units (CFU) did not decline in long-term-starved populations, these populations were very heterogeneous on the plates and contained many dead cells. Our results imply that slow growth of subpopulation of cells at the expenses of dead cells on selective plates might be important for the generation of stationary-phase mutations in P. putida. Additionally, the different survival patterns of P. putida on the same selective plates hint that competitive interactions taking place under conditions of prolonged starvation of microbial populations on semi-solid surfaces might be more complicated than previously assumed.
Collapse
Affiliation(s)
- Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
208
|
Venkatesan RN, Loeb LA. The multiplicity of mutations in human cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:3-17. [PMID: 18727496 DOI: 10.1007/1-4020-3764-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Ranga N Venkatesan
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
209
|
Kashiwagi K, Isogai Y, Nishiguchi KI, Shiba K. Frame shuffling: a novel method for in vitro protein evolution. Protein Eng Des Sel 2006; 19:135-40. [PMID: 16415043 DOI: 10.1093/protein/gzj008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe 'frame shuffling', a novel method for preparing artificial protein libraries. With this method, a Y-family DNA polymerase known to introduce frame shift mutations at high rates is utilized to scramble the reading frames of a parental gene. The resultant progeny produce mutant proteins having segmental sequence changes. Such frame-shuffled mutant proteins exhibit physicochemical properties that differ from those of proteins obtained using conventional mutagenesis.
Collapse
Affiliation(s)
- Kenji Kashiwagi
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake, Koto-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
210
|
|
211
|
Abdulovic A, Kim N, Jinks-Robertson S. Mutagenesis and the three R's in yeast. DNA Repair (Amst) 2006; 5:409-21. [PMID: 16412705 DOI: 10.1016/j.dnarep.2005.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.
Collapse
Affiliation(s)
- Amy Abdulovic
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
212
|
Lee CH, Chandani S, Loechler EL. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. J Mol Graph Model 2006; 25:87-102. [PMID: 16386932 DOI: 10.1016/j.jmgm.2005.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/21/2005] [Accepted: 10/21/2005] [Indexed: 01/25/2023]
Abstract
Y-family DNA polymerases (DNAPs) are a superfamily of evolutionarily related proteins that exist in cells to bypass DNA damage caused by both radiation and chemicals. Cells have multiple Y-family DNAPs, presumably to conduct translesion synthesis (TLS) on DNA lesions of varying structure and conformation. The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces all classes of mutations with G-->T base substitutions predominating. We recently showed that a G-->T mutagenesis pathway for the major adduct of B[a]P ([+ta]-B[a]P-N2-dG) in Escherichia coli depends on Y-family member DNAP V. Since no X-ray crystal study for DNAP V has been reported, no structure is available to help in understanding the structural basis for dATP insertion associated with G-->T mutations from [+ta]-B[a]P-N2-dG. Herein, we do homology modeling to construct a model for UmuC, which is the polymerase subunit of DNAP V. The sequences of eight Y-family DNAPs were aligned based on the positioning of conserved amino acids and an analysis of conserved predicted secondary structure, as well as insights gained from published X-ray structures of five Y-family members. Starting coordinates for UmuC were generated from the backbone coordinates for the Y-family polymerase Dpo4 for reasons discussed, and were refined using molecular dynamics with CHARMM 27. A survey of the literature revealed that E. coli DNAP V and human DNAP eta show a similar pattern of dNTP insertion opposite a variety of DNA lesions. Furthermore, E. coli DNAP IV and human DNAP kappa show a similar dNTP insertional pattern with these same DNA lesions, although the insertional pattern for DNAP IV/kappa differs from the pattern for DNAPs V/eta. These comparisons prompted us to construct and refine models for E. coli DNAP IV and human DNAPs eta and kappa as well. The dNTP/template binding pocket of all four DNAPs was inspected, focusing on the array of seven amino acids that contact the base of the incoming dNTP, as well as the template base. DNAPs V and eta show similarities in this array, and DNAPs IV and kappa also show similarities, although the arrays are different for the two pairs of DNAPs. Thus, there is a correlation between structural similarities and insertional similarities for the pairs DNAPs V/eta and DNAPs IV/kappa. Although the significance of this correlation remains to be elucidated, these observations point the way for future experimental studies.
Collapse
Affiliation(s)
- Chiu Hong Lee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
213
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
214
|
Krutyakov VM. Eukaryotic error-prone DNA polymerases: The presumed roles in replication, repair, and mutagenesis. Mol Biol 2006. [DOI: 10.1134/s0026893306010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
215
|
Sutton MD, Duzen JM. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair (Amst) 2005; 5:312-23. [PMID: 16338175 DOI: 10.1016/j.dnarep.2005.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | |
Collapse
|
216
|
Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 2005; 187:7607-18. [PMID: 16267285 PMCID: PMC1280315 DOI: 10.1128/jb.187.22.7607-7618.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
217
|
Wang Y, Arora K, Schlick T. Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Protein Sci 2005; 15:135-51. [PMID: 16322565 PMCID: PMC2242364 DOI: 10.1110/ps.051726906] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The possible conformational changes of DNA polymerase IV (Dpo4) before and after the nucleotidyl-transfer reaction are investigated at the atomic level by dynamics simulations to gain insight into the mechanism of low-fidelity polymerases and identify slow and possibly critical steps. The absence of significant conformational changes in Dpo4 before chemistry when the incoming nucleotide is removed supports the notion that the "induced-fit" mechanism employed to interpret fidelity in some replicative and repair DNA polymerases does not exist in Dpo4. However, significant correlated movements in the little finger and finger domains, as well as DNA sliding and subtle catalytic-residue rearrangements, occur after the chemical reaction when both active-site metal ions are released. Subsequently, Dpo4's little finger grips the DNA through two arginine residues and pushes it forward. These metal ion correlated movements may define subtle, and possibly characteristic, conformational adjustments that operate in some Y-family polymerase members in lieu of the prominent subdomain motions required for catalytic cycling in other DNA polymerases like polymerase beta. Such subtle changes do not easily provide a tight fit for correct incoming substrates as in higher-fidelity polymerases, but introduce in low-fidelity polymerases different fidelity checks as well as the variable conformational-mobility potential required to bypass different lesions.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-2005, USA
| | | | | |
Collapse
|
218
|
Seo KY, Nagalingam A, Tiffany M, Loechler EL. Mutagenesis studies with four stereoisomeric N2-dG benzo[a]pyrene adducts in the identical 5′-CGC sequence used in NMR studies: G→T mutations dominate in each case. Mutagenesis 2005; 20:441-8. [PMID: 16311255 DOI: 10.1093/mutage/gei061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) and a potent mutagen/carcinogen found ubiquitously in the environment. B[a]P is primarily metabolized to diol epoxides, which react principally at N2-dG in DNA. B[a]P-N2-dG adducts have been shown to induce a variety of mutations, notably G-->T, G-->A, G-->C and -1 frameshifts. Four stereoisomers of B[a]P-N2-dG (designated: [+ta]-;, [+ca]-, [-ta] and [-ca]) were studied by NMR in duplex 11mers in a 5'-CGC sequence context, and each adopted a different adduct conformation (Geacintov, et al. (1997) Chem. Res. Toxicol., 10, 111). Herein these four identical B[a]P-containing 11mers are built into duplex plasmid genomes and mutagenesis studied in Escherichia coli following SOS-induction. In nucleotide excision repair (NER) proficient E.coli, no adduct-derived mutants are detected. In NER deficient E.coli, G-->T mutations dominate for all four stereoisomers [+ta]-, [+ca]-, [-ta] and [-ca]-B[a]P-N(2)-dG, and mutation frequency is similar. Thus, the mutagenic pattern for these four B[a]P-N2-dG stereoisomers is the same, in spite of the fact that they adopt dramatically different conformations in ds-oligonucleotides as determined by NMR. These findings suggest that adduct conformation must be fluid enough in the 5'-CGC sequence that the duplex DNA conformation can interconvert to mutagenic and non-mutagenic conformations during lesion-bypass. A comparison of all published studies with these four B[a]P-N2-dG stereoisomers in E.coli reveals that B[a]P-N2-dG adduct stereochemistry tends to have a lesser impact on mutagenic pattern (e.g. G-->T versus G-->A mutations) than does DNA sequence context, which is discussed.
Collapse
Affiliation(s)
- Kwang-Young Seo
- Biology Department, Boston University, 24 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
219
|
Takenaka K, Ogi T, Okada T, Sonoda E, Guo C, Friedberg EC, Takeda S. Involvement of vertebrate Polkappa in translesion DNA synthesis across DNA monoalkylation damage. J Biol Chem 2005; 281:2000-4. [PMID: 16308320 DOI: 10.1074/jbc.m506153200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA lesions that escape excision repair pathways can cause arrested DNA replication. This replication block can be processed by translesion DNA synthesis (TLS), which is carried out by a number of specialized DNA polymerases. A sequential lesion bypass model has been proposed; one of the lesion-specific polymerases inserts nucleotide(s) opposite the damaged template, followed by extension from the inserted nucleotide by the same or another polymerase. Polzeta and Polkappa have been proposed as candidates for executing the extension step in eukaryotic cells. We previously disrupted separately Rev3, the catalytic subunit of Polzeta, and Polkappa in chicken B lymphocyte DT40 cells. We found that each cell line showed significant UV sensitivity, implying that both contribute to UV radiation damage repair. In the present studies we generated REV3(-/-)POLK(/-) double knock-out cells to determine whether they participate in the same or different pathways. The double mutant was viable and proliferated with the same kinetics as parental REV3(-/-) cells. The cells showed the same sensitivity as REV3(-/-) cells to UV, ionizing radiation, and chemical cross-linking agents. In contrast, they were more sensitive than REV3(-/-) cells to monofunctional alkylating agents, even though POLK(/-) cells barely exhibited increased sensitivity to those. Moreover Polk-deficient mouse embryonic stem and fibroblast cells, both of which have previously been shown to be sensitive to UV radiation, also showed moderate sensitivity to methyl methanesulfonate, a monofunctional alkylating agent. These data imply that Polkappa has a function in TLS past alkylated base adducts as well as UV radiation DNA damage in vertebrates.
Collapse
Affiliation(s)
- Katsuya Takenaka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
220
|
Watson NB, Mukhopadhyay S, McGregor WG. Translesion DNA replication proteins as molecular targets for cancer prevention. Cancer Lett 2005; 241:13-22. [PMID: 16303242 DOI: 10.1016/j.canlet.2005.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Mutations in DNA are generally considered to have an etiologic role in the development of cancer. If so, it follows that reducing the frequency of such mutations will reduce the incidence of cancer induced by mutagens. Recent advances in elucidating the molecular mechanisms of carcinogen-induced mutagenesis indicate that replication of DNA templates that contain replication-blocking adducts is accomplished with error-prone DNA polymerases. These polymerases have relaxed base-pairing requirements, and can insert bases across from adducted templates, but with potentially mutagenic consequences. In principle, these proteins present new and attractive molecular targets to reduce mutagenesis. If this can be done in vivo without increasing cytotoxic responses to carcinogens, then novel chemopreventive strategies can be designed to reduce the risk of cancer in exposed populations prior to the appearance of disease symptoms.
Collapse
Affiliation(s)
- Nicholas B Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
221
|
Abstract
When cells that are actively replicating DNA encounter sites of base damage or strand breaks, replication might stall or arrest. In this situation, cells rely on DNA-damage-tolerance mechanisms to bypass the damage effectively. One of these mechanisms, known as translesion DNA synthesis, is supported by specialized DNA polymerases that are able to catalyse nucleotide incorporation opposite lesions that cannot be negotiated by high-fidelity replicative polymerases. A second category of tolerance mechanism involves alternative replication strategies that obviate the need to replicate directly across sites of template-strand damage.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
222
|
Sampoli Benítez BA, Arora K, Schlick T. In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism. Biophys J 2005; 90:42-56. [PMID: 16214865 PMCID: PMC1367036 DOI: 10.1529/biophysj.105.071944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The African swine fever virus DNA polymerase X (pol X), a member of the X family of DNA polymerases, is thought to be involved in base excision repair. Kinetics data indicate that pol X catalyzes DNA polymerization with low fidelity, suggesting a role in viral mutagenesis. Though pol X lacks the fingers domain that binds the DNA in other members of the X family, it binds DNA tightly. To help interpret details of this interaction, molecular dynamics simulations of free pol X at different salt concentrations and of pol X bound to gapped DNA, in the presence and in the absence of the incoming nucleotide, are performed. Anchors for the simulations are two NMR structures of pol X without DNA and a model of one NMR structure plus DNA and incoming nucleotide. Our results show that, in its free form, pol X can exist in two stable conformations that interconvert to one another depending on the salt concentration. When gapped double stranded DNA is introduced near the active site, pol X prefers an open conformation, regardless of the salt concentration. Finally, under physiological conditions, in the presence of both gapped DNA and correct incoming nucleotide, and two divalent ions, the thumb subdomain of pol X undergoes a large conformational change, closing upon the DNA. These results predict for pol X a substrate-induced conformational change triggered by the presence of DNA and the correct incoming nucleotide in the active site, as in DNA polymerase beta. The simulations also suggest specific experiments (e.g., for mutants Phe-102Ala, Val-120Gly, and Lys-85Val that may reveal crucial DNA binding and active-site organization roles) to further elucidate the fidelity mechanism of pol X.
Collapse
|
223
|
Choi JY, Guengerich FP. Adduct size limits efficient and error-free bypass across bulky N2-guanine DNA lesions by human DNA polymerase eta. J Mol Biol 2005; 352:72-90. [PMID: 16061253 DOI: 10.1016/j.jmb.2005.06.079] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
224
|
Miller JH. Perspective on mutagenesis and repair: the standard model and alternate modes of mutagenesis. Crit Rev Biochem Mol Biol 2005; 40:155-79. [PMID: 15917398 DOI: 10.1080/10409230590954153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The basic ideas of replication, mutagenesis, and repair have outlined a picture of how point mutations occur that has provided a valuable framework for theory and experiment, much as the Standard Model of particle physics has done for our concept of fundamental particles. However, alternative modes of mutagenesis are being defined that are changing our perspective of the "Standard Model" of mutagenesis, requiring an expanded model. The genome is now envisioned as being in dynamic equilibrium between a multitude of forces for mutational change and forces that counteract such change. By maintaining a delicate balance between these forces, cells avoid unwanted or excessive mutations. Yet, cells allow mutagenesis to occur under certain conditions. We can define an emerging paradigm. Namely, mechanisms exist that can direct point mutations to specific designated genes or regions of genes. In some cases, this is achieved by specific enzymes, and in other cases high mutability is programmed into the sequence of certain genes to help generate diversity. In yet additional cases, general mutability is increased under stress, and selective forces allow the recovery of favorable mutants.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
225
|
Friedrich-Heineken E, Toueille M, Tännler B, Bürki C, Ferrari E, Hottiger MO, Hübscher U. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity. J Mol Biol 2005; 353:980-9. [PMID: 16216273 DOI: 10.1016/j.jmb.2005.09.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/05/2005] [Accepted: 09/07/2005] [Indexed: 11/22/2022]
Abstract
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.
Collapse
Affiliation(s)
- Erica Friedrich-Heineken
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
226
|
King NM, Nikolaishvili-Feinberg N, Bryant MF, Luche DD, Heffernan TP, Simpson DA, Hanaoka F, Kaufmann WK, Cordeiro-Stone M. Overproduction of DNA polymerase eta does not raise the spontaneous mutation rate in diploid human fibroblasts. DNA Repair (Amst) 2005; 4:714-24. [PMID: 15886068 DOI: 10.1016/j.dnarep.2005.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 11/22/2022]
Abstract
Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers.
Collapse
Affiliation(s)
- Nicole M King
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | |
Collapse
|
228
|
Kusumoto R, Masutani C, Shimmyo S, Iwai S, Hanaoka F. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 2005; 9:1139-50. [PMID: 15569147 DOI: 10.1111/j.1365-2443.2004.00797.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human XPV (xeroderma pigmentosum variant) gene is responsible for the cancer-prone xeroderma pigmentosum syndrome and encodes DNA polymerase eta (pol eta), which catalyses efficient translesion synthesis past cis-syn cyclobutane thymine dimers (TT dimers) and other lesions. The fidelity of DNA synthesis by pol eta on undamaged templates is extremely low, suggesting that pol eta activity must be restricted to damaged sites on DNA. Little is known, however, about how the activity of pol eta is targeted and restricted to damaged DNA. Here we show that pol eta binds template/primer DNAs regardless of the presence of TT dimers. Rather, enhanced binding to template/primer DNAs containing TT dimers is only observed when the 3'-end of the primer is an adenosine residue situated opposite the lesion. When two nucleotides have been incorporated into the primer beyond the TT dimer position, the pol eta-template/primer DNA complex is destabilized, allowing DNA synthesis by DNA polymerases alpha or delta to resume. Our study provides mechanistic explanations for polymerase switching at TT dimer sites.
Collapse
Affiliation(s)
- Rika Kusumoto
- Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
229
|
Tark M, Tover A, Tarassova K, Tegova R, Kivi G, Hõrak R, Kivisaar M. A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J Bacteriol 2005; 187:5203-13. [PMID: 16030214 PMCID: PMC1196032 DOI: 10.1128/jb.187.15.5203-5213.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/21/2005] [Indexed: 11/20/2022] Open
Abstract
Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P. putida. When rulAB-carrying cells from an 8-day-old culture were mixed with Pol V-negative cells from a 1-day-old culture, cells derived from the aged culture out-competed cells from the nonaged culture and overtook the whole culture. At the same time, bacteria from an aged culture lacking the rulAB genes were only partially able to out-compete cells from a fresh overnight culture of the parental P. putida strain. Thus, in addition to conferring resistance to DNA damage, the plasmid-encoded Pol V genes significantly increase the evolutionary fitness of bacteria during prolonged nutritional starvation of a P. putida population. The results of our study indicate that RecA is involved in the control of expression of the pWW0-encoded Pol V.
Collapse
Affiliation(s)
- Mariliis Tark
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
230
|
Albertella MR, Lau A, O'Connor MJ. The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 2005; 4:583-93. [PMID: 15811630 DOI: 10.1016/j.dnarep.2005.01.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/24/2005] [Indexed: 12/23/2022]
Abstract
Specialized DNA polymerases are required to bypass DNA damage lesions that would otherwise cause replication arrest and cell death. When operating on non-canonical templates, such as undamaged DNA or on non-cognate lesions, these polymerases exhibit considerably reduced fidelity, resulting in the generation of mutations. Ectopic overexpression of these polymerases can also lead to an increased mutation rate and an enhanced capability of DNA repair, suggesting that they could potentially act as oncogenes if they were overexpressed in cancers. Here, we examine expression patterns of DNA polymerases in matched normal and tumor samples from a diverse range of tissues. As well as investigating the specialized polymerases beta, lambda, iota and kappa, we also investigate the expression of the replicative polymerases alpha, delta and epsilon. The data presented provide evidence for the overexpression of specialized polymerases in tumors, with more than 45% of the 68 tumor samples studied demonstrating greater than two-fold enhanced expression of at least one specialized polymerase. Of particular note, DNA polymerase beta (pol beta) was found to be overexpressed at both the mRNA and protein level in approximately one third of all tumor types studied, with overexpression being particularly frequent in uterus, ovary, prostate and stomach samples. Pols lambda, and iota were also found to be overexpressed to a significant extent in a range of tumor types, albeit less frequently than pol beta. In contrast, pol kappa was rarely found to be overexpressed in tumors but was found to be commonly underexpressed in many samples. Downregulation of pol beta expression by siRNA resulted in an increased sensitivity to the chemotherapeutic agent cisplatin, suggesting a role for this polymerase in providing tolerance to cisplatin-induced damage. These observations suggest that specialised DNA polymerases, and particularly pol beta, could be considered both as caretaker genes altered during tumorigenesis, and as potential drug targets to sensitise tumors to chemotherapy.
Collapse
Affiliation(s)
- Mark R Albertella
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Milton Road, Cambridge CB4 OWG, UK
| | | | | |
Collapse
|
231
|
Friedberg EC, Lehmann AR, Fuchs RPP. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 2005; 18:499-505. [PMID: 15916957 DOI: 10.1016/j.molcel.2005.03.032] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 11/30/2022]
Abstract
The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
232
|
Jena NR, Mishra PC. Mechanisms of Formation of 8-Oxoguanine Due To Reactions of One and Two OH• Radicals and the H2O2 Molecule with Guanine: A Quantum Computational Study. J Phys Chem B 2005; 109:14205-18. [PMID: 16852784 DOI: 10.1021/jp050646j] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.
Collapse
Affiliation(s)
- N R Jena
- Department of Physics, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
233
|
Zang H, Goodenough AK, Choi JY, Irimia A, Loukachevitch LV, Kozekov ID, Angel KC, Rizzo CJ, Egli M, Guengerich FP. DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine. J Biol Chem 2005; 280:29750-64. [PMID: 15965231 DOI: 10.1074/jbc.m504756200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1,N(2)-Etheno(epsilon)guanine is a mutagenic DNA lesion derived from lipid oxidation products and also from some chemical carcinogens. Gel electrophoretic analysis of the products of primer extension by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) indicated preferential incorporation of A opposite 3'-(1,N(2)-epsilon-G)TACT-5', among the four dNTPs tested individually. With the template 3'-(1,N(2)-epsilon-G)CACT-5', both G and A were incorporated. When primer extension was done in the presence of a mixture of all four dNTPs, high pressure liquid chromatography-mass spectrometry analysis of the products indicated that (opposite 3'-(1,N(2)-epsilon-G)CACT-5') the major product was 5'-GTGA-3' and the minor product was 5'-AGTGA-3'. With the template 3'-(1,N(2)-epsilon-G)TACT-5', the following four products were identified by high pressure liquid chromatography-mass spectrometry: 5'-AATGA-3', 5'-ATTGA-3', 5'-ATGA-3', and 5'-TGA-3'. An x-ray crystal structure of Dpo4 was solved (2.1 A) with a primer-template and A placed in the primer to be opposite the 1,N(2)-epsilon-G in the template 3'-(1,N(2)-epsilon-G)TACT 5'. The added A in the primer was paired across the template T with classic Watson-Crick geometry. Similar structures were observed in a ternary Dpo4-DNA-dATP complex and a ternary Dpo4-DNA-ddATP complex, with d(d)ATP opposite the template T. A similar structure was observed with a ddGTP adjacent to the primer and opposite the C next to 1,N(2)-epsilon-G in 3'-(1,N(2)-epsilon-G)CACT-5'. We concluded that Dpo4 uses several mechanisms, including A incorporation opposite 1,N(2)-epsilon-G and also a variation of dNTP-stabilized misalignment, to generate both base pair and frameshift mutations.
Collapse
Affiliation(s)
- Hong Zang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Evolutionary theory holds that aging is a consequence of the declining force of natural selection with age. We discuss here the evidence that among the causes of aging in complex multicellular organisms, such as mammals, is the antagonistically pleiotropic effects of the cellular responses that protect the organism from cancer. Cancer is relatively rare in young mammals, owing in large measure to the activity of tumor suppressor mechanisms. These mechanisms either protect the genome from damage and/or mutations, or they elicit cellular responses-apoptosis or senescence--that eliminate or prevent the proliferation of somatic cells at risk for neoplastic transformation. We focus here on the senescence response, reviewing its causes, regulation and effects. In addition, we describe recent data that support the idea that both senescence and apoptosis may indeed be the double-edged swords predicted by the evolutionary hypothesis of antagonistic pleiotropy-protecting organisms from cancer early in life, but promoting aging phenotypes, including late life cancer, in older organisms.
Collapse
Affiliation(s)
- Judith Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
235
|
Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 2005; 3:e176. [PMID: 15869329 PMCID: PMC1088971 DOI: 10.1371/journal.pbio.0030176] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 03/15/2005] [Indexed: 11/28/2022] Open
Abstract
The emergence of drug-resistant bacteria poses a serious threat to human health. In the case of several antibiotics, including those of the quinolone and rifamycin classes, bacteria rapidly acquire resistance through mutation of chromosomal genes during therapy. In this work, we show that preventing induction of the SOS response by interfering with the activity of the protease LexA renders pathogenic Escherichia coli unable to evolve resistance in vivo to ciprofloxacin or rifampicin, important quinolone and rifamycin antibiotics. We show in vitro that LexA cleavage is induced during RecBC-mediated repair of ciprofloxacin-mediated DNA damage and that this results in the derepression of the SOS-regulated polymerases Pol II, Pol IV and Pol V, which collaborate to induce resistance-conferring mutations. Our findings indicate that the inhibition of mutation could serve as a novel therapeutic strategy to combat the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- 1Department of Chemistry, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jodie K Chin
- 1Department of Chemistry, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - David R Andes
- 2The Department of Medicine, Section of Infectious DiseaseUniversity of Wisconsin Medical School, Madison, WisconsinUnited States of America
| | - Valérie de Crécy-Lagard
- 3Molecular Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - William A Craig
- 2The Department of Medicine, Section of Infectious DiseaseUniversity of Wisconsin Medical School, Madison, WisconsinUnited States of America
| | - Floyd E Romesberg
- 1Department of Chemistry, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| |
Collapse
|
236
|
Laan R, Baarends WM, Wassenaar E, Roest HP, Hoeijmakers JHJ, Grootegoed JA. Expression and possible functions of DNA lesion bypass proteins in spermatogenesis. ACTA ACUST UNITED AC 2005; 28:1-15. [PMID: 15679615 DOI: 10.1111/j.1365-2605.2004.00505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, there is a complex interplay of different DNA damage response and repair mechanisms. Several observations suggest that, in particular in gametogenesis, proteins involved in DNA repair play an intricate role in and outside the context of DNA repair. Here, we discuss the possible roles of proteins that take part in replicative damage bypass (RDB) mechanisms, also known as post-replication DNA repair (PRR), in germ line development. In yeast, and probably also in mammalian somatic cells, RDB [two subpathways: damage avoidance and translesion synthesis (TLS)] prevents cessation of replication forks during the S phase of the cell cycle, in situations when the replication machinery encounters a lesion present in the template DNA. Many genes encoding proteins involved in RDB show an increased expression in testis, in particular in meiotic and post-meiotic spermatogenic cells. Several RDB proteins take part in protein ubiquitination, and we address relevant aspects of the ubiquitin system in spermatogenesis. RDB proteins might be required for damage avoidance and TLS of spontaneous DNA damage during gametogenesis. In addition, we consider the possible functional relation between TLS and the induction of mutations in spermatogenesis. TLS requires the activity of highly specialized polymerases, and is an error-prone process that may induce mutations. In evolutionary terms, controlled generation of a limited number of mutations in gametogenesis might provide a mechanism for evolvability.
Collapse
Affiliation(s)
- Roald Laan
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
237
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
238
|
Gasche C, Goel A, Natarajan L, Boland CR. Mesalazine Improves Replication Fidelity in Cultured Colorectal Cells. Cancer Res 2005; 65:3993-7. [PMID: 15899787 DOI: 10.1158/0008-5472.can-04-3824] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic studies indicate that mesalazine has chemopreventive effects in inflammatory bowel disease-associated colorectal cancer. Most of our general understanding of chemoprevention in colorectal cancer is, however, derived from aspirin, which is structurally similar to mesalazine. Herein we determined the influence of aspirin and mesalazine on replication fidelity in cultured colorectal cells. Flow cytometry was used for quantitation of mutation rates at a (CA)13 microsatellite in HCT116 cells (mismatch repair deficient) and HCT116+chr3 cells (mismatch repair proficient) that had been stably transfected with pIREShyg2-EGFP/CA13, an enhanced green fluorescence protein-based plasmid, and cultured in the absence or presence of various concentrations of aspirin or mesalazine. Aspirin at doses above 1.25 mmol/L markedly reduced cell growth. Mesalazine doses up to 5.0 mmol/L had no such effect. The mutation rate in mismatch repair-deficient HCT116 cells was 6.8 x 10(-4) +/- 9.0 x 10(-5). In aspirin-treated cultures the mutation rate was 8.2 x 10(-4) +/- 1.3 x 10(-4) (121% of control). Instead, mesalazine lowered the mutation rate in a dose-dependent fashion (5.5 x 10(-4) +/- 1.1 x 10(-4); 81% of control). The effects of mesalazine were most significant in the M1 fraction (P < 0.0001), which represents a mutant population immediate after the polymerase error and were confirmed in mismatch repair-proficient HCT116+chr3 cells. Our data indicate that mesalazine reduces frameshift mutations at a (CA)13 microsatellite in cultured colorectal cells independent of mismatch repair proficiency. This finding suggests that mesalazine improves replication fidelity, an effect that may be active in reducing mutations independent of its anti-inflammatory properties.
Collapse
Affiliation(s)
- Christoph Gasche
- Department of Medicine 4, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
239
|
Holmberg C, Fleck O, Hansen HA, Liu C, Slaaby R, Carr AM, Nielsen O. Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 2005; 19:853-62. [PMID: 15805471 PMCID: PMC1074322 DOI: 10.1101/gad.329905] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cullin 4 (Pcu4), and CSN subunits Csn1 and Csn2 are required for degradation of the ribonucleotide reductase (RNR) inhibitor protein Spd1. Ddb1-deficient cells have >20-fold increased spontaneous mutation rate. This is partly dependent on the error-prone translesion DNA polymerases. Spd1 deletion substantially reduced the mutation rate, suggesting that insufficient RNR activity accounts for approximately 50% of observed mutations. Epistasis analysis indicated that Ddb1 contributed to mutation avoidance and tolerance to DNA damage in a pathway distinct from NER. Finally, we show that Ddb1/Csn1/Cullin 4-mediated Spd1 degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation.
Collapse
Affiliation(s)
- Christian Holmberg
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | | | | | | | | | | | | |
Collapse
|
240
|
Fischhaber PL, Friedberg EC. How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis? DNA Repair (Amst) 2005; 4:279-83. [PMID: 15590336 DOI: 10.1016/j.dnarep.2004.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 08/27/2004] [Indexed: 11/30/2022]
Abstract
Specialized DNA polymerases are required in both prokaryotic and eukaryotic cells for bypassing sites of template DNA damage that arrest high-fidelity DNA replication. Recent studies in the literature provide hints of the complexity of DNA switching between polymerases for translesion DNA synthesis (TLS) and those for normal DNA replication.
Collapse
Affiliation(s)
- Paula L Fischhaber
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9072, USA.
| | | |
Collapse
|
241
|
Tan XH, Zhao M, Pan KF, Dong Y, Dong B, Feng GJ, Jia G, Lu YY. Frequent mutation related with overexpression of DNA polymerase beta in primary tumors and precancerous lesions of human stomach. Cancer Lett 2005; 220:101-14. [PMID: 15737693 DOI: 10.1016/j.canlet.2004.07.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/25/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
To explore whether DNA polymerase beta (pol beta) contributes to the malignant transformation of gastric mucosa, we examined pol beta in gastric tumor cell lines, primary tumors and precancerous lesions. Point mutations of pol beta were detected in 6 of 13 cell lines and 23 of 104 tissues including 35.0% (14/40) of gastric cancer (GC), 30.0% (3/10) of dysplasia (Dys), 28.6% (4/14) of intestinal metaplasia (IM) and 10.5% (2/19) of chronic atrophic gastritis (CAG), respectively. A frequent mutation was a T to C transition at nucleotide 889, which was observed in 4 GC cell lines, 7 GC, 2 Dys, and 2 IM. The level of pol beta expression in tumors was higher than that of their matched normal tissues and gradual changes from GC, Dys, CAG to IM. These results indicate that the mutation and overexpression of pol beta may influence the progression during gastric carcinogenesis.
Collapse
Affiliation(s)
- Xiao-Hui Tan
- Beijing Molecular Oncology Laboratory, Beijing Institute for Cancer Research, School of Oncology, Peking University, Da-Hong-Luo-Chang Street 1#, Western District, Beijing 100034, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Pukk K, Aron DC. The DNA damage response and patient safety: engaging our molecular biology-oriented colleagues. Int J Qual Health Care 2005; 17:363-7. [PMID: 15831545 DOI: 10.1093/intqhc/mzi041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The imperative to improve patient safety is clear. Biomedical scientists, who account for a large proportion of medical school faculty, and clinicians tend to speak different languages. Biological systems are remarkable for their high robustness, flexibility, and efficiency. Biomedical scientists possess a profound understanding of the complex mechanisms that govern organisms. Their insights may inform the design of safer health care systems. We propose a model to assist in bi-directional communication between these disciplines. We use the principles and mechanisms of the DNA damage response to describe the central concepts of safety science and discuss similarities and differences between the systems of DNA repair and organizational approaches to safety in health care. We suggest that such biomedical scientists can and should be engaged in the effort to bring education about patient safety management into the medical school curriculum and to make patient care safer.
Collapse
Affiliation(s)
- Karin Pukk
- Medical Management Center, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
243
|
Brooks PJ, Theruvathu JA. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 2005; 35:187-93. [PMID: 16054980 DOI: 10.1016/j.alcohol.2005.03.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/28/2005] [Accepted: 03/29/2005] [Indexed: 02/06/2023]
Abstract
Alcoholic beverage consumption is classified as a known human carcinogen, causally related to an increased risk of cancer of the upper gastrointestinal tract. The formation of acetaldehyde from ethanol metabolism seems to be the major mechanism underlying this effect. Acetaldehyde is carcinogenic in rodents and causes sister chromatid exchanges and chromosomal aberrations in human cells. The best-studied DNA adduct from acetaldehyde is N(2)-ethyl-2'-deoxyguanosine, which is increased in liver DNA obtained from ethanol-treated rodents and in white blood cells obtained from human alcohol abusers. However, the carcinogenic relevance of this adduct is unclear in view of the lack of evidence that it is mutagenic in mammalian cells. A different DNA adduct, 1,N(2)-propano-2'-deoxyguanosine (PdG), can also be formed from acetaldehyde in the presence of histones and other basic molecules. PdG has been shown to be responsible for the genotoxic and mutagenic effects of crotonaldehyde. The PdG adduct can exist in either of two forms: a ring-closed form or a ring-opened aldehyde form. Whereas the ring-closed form is mutagenic, the aldehyde form can participate in the formation of secondary lesions, including DNA-protein cross-links and DNA interstrand cross-links. The formation of these types of complex secondary DNA lesions resulting from PdG may explain many of the observed genotoxic effects of acetaldehyde described above. Repair of PdG and its associated adducts is complex, involving multiple pathways. Inherited variation in the genes encoding the proteins involved in the repair of PdG and its secondary adducts may contribute to susceptibility to alcoholic beverage-related carcinogenesis.
Collapse
Affiliation(s)
- Philip J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3S32, MSC 9412, Bethesda, MD 20892-9412, USA.
| | | |
Collapse
|
244
|
Abstract
A causal association between genetic alterations and cancer is supported by extensive experimental and epidemiological data. Mutational inactivation of tumor suppressor genes and activation of oncogenes are associated with the development of a wide range of cancers. The link between mutagenesis and carcinogenesis is particularly evident for cancers induced by chemical exposures, which, in some cases, lead to characteristic patterns of mutations. These "genotoxic," direct-acting carcinogens form covalent adducts with DNA, which cause mutations during DNA replication. The link between mutagenesis and carcinogenesis is also supported by the observation that DNA repair defects are associated with an increased cancer risk. Normally, DNA repair mechanisms serve to suppress mutagenesis by correcting DNA damage before it can lead to heritable mutations. It has been postulated that mutagenesis plays a role in both the initiation phase and the progression phase of carcinogenesis, and that an essential step in the carcinogenic process is the development of a mutator state in which the normal cellular processes that suppress mutagenesis become compromised. Given the link between mutations and cancer, attempts have been made to use the mutational profile of cancer cells as an indicator of the causative agent. While this may be a valid approach in some cases, it is complicated by the role of endogenous processes in promoting mutagenesis. In addition, many important carcinogenic agents may enhance mutagenesis indirectly through suppression of DNA repair functions or stimulation of inappropriate cell proliferation. Epigenetic phenomena may also suppress gene expression without causing overt changes in DNA sequence.
Collapse
Affiliation(s)
- Kathleen Dixon
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
245
|
Brégeon D, Doetsch PW. Reliable method for generating double-stranded DNA vectors containing site-specific base modifications. Biotechniques 2005; 37:760-2, 764, 766. [PMID: 15560132 DOI: 10.2144/04375st01] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cells of all living organisms are continuously exposed to physical and chemical agents that damage DNA and alter the integrity of their genomes. Despite the relatively high efficiency of the different repair pathways, some lesions remain in DNA when it is replicated or transcribed. Lesion bypass by DNA and RNA polymerases has been the subject of numerous investigations. However, knowledge of the in vivo mechanism of transcription lesion bypass is very limited because no robust methodology is available. Here we describe a protocol based on the synthesis of a complementary strand of a circular, single-stranded DNA molecule, which allows for the production of large amounts of double-stranded DNA containing a lesion at a specific position in a transcribed sequence. Such constructs can subsequently be used for lesion bypass studies in vivo by RNA polymerase and to ascertain how these events can be affected by the genetic background of the cells.
Collapse
|
246
|
Yang W. Portraits of a Y-family DNA polymerase. FEBS Lett 2005; 579:868-72. [PMID: 15680965 DOI: 10.1016/j.febslet.2004.11.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 10/26/2004] [Accepted: 11/03/2004] [Indexed: 12/20/2022]
Abstract
Members of the Y-family of DNA polymerases catalyze template-dependent DNA synthesis but share no sequence homology with other known DNA polymerases. Y-family polymerases exhibit high error rates and low processivity when copying normal DNA but are able to synthesize DNA opposite damaged templates. In the past three years, much has been learned about this family of polymerases including determination of more than a dozen crystal structures with various substrates. In this short review, I will summarize the biochemical properties and structural features of Y-family DNA polymerases.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Pérez-Capilla T, Baquero MR, Gómez-Gómez JM, Ionel A, Martín S, Blázquez J. SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J Bacteriol 2005; 187:1515-8. [PMID: 15687217 PMCID: PMC545630 DOI: 10.1128/jb.187.4.1515-1518.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the dinB gene, encoding DNA polymerase IV, is induced by the inhibition of cell wall synthesis at different levels. Using the beta-lactam antibiotic ceftazidime, a PBP3 inhibitor, as a model, we have shown that this induction is independent of the LexA/RecA regulatory system. Induction of dinB transcription mediated by ceftazidime produces an increase in the reversion of a +1 Lac frameshift mutation.
Collapse
Affiliation(s)
- Tatiana Pérez-Capilla
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotechnología, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
248
|
Huang ME, Kolodner RD. A Biological Network in Saccharomyces cerevisiae Prevents the Deleterious Effects of Endogenous Oxidative DNA Damage. Mol Cell 2005; 17:709-20. [PMID: 15749020 DOI: 10.1016/j.molcel.2005.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/22/2004] [Accepted: 02/03/2005] [Indexed: 02/07/2023]
Abstract
In this study, we used Saccharomyces cerevisiae to identify a biological network that prevents the deleterious effects of endogenous reactive oxygen species. The absence of Tsa1, a key peroxiredoxin, caused increased rates of mutations, chromosomal rearrangements, and recombination. Defects in recombinational DNA double strand break repair, Rad6-mediated postreplicative repair, and DNA damage and replication checkpoints caused growth defects or lethality in the absence of Tsa1. In addition, the mutator phenotypes caused by a tsa1 mutation were significantly aggravated by defects in Ogg1, mismatch repair, or checkpoints. These results indicate that increased endogenous oxidative stress has broad effects on genome stability and is highly sensitive to the functional state of DNA repair and checkpoints. These findings may provide insight in understanding the consequences of various pathophysiological processes in regard to genomic instability.
Collapse
Affiliation(s)
- Meng-Er Huang
- Ludwig Institute for Cancer Research, CMME 3058, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
249
|
Parrilla-Castellar ER, Arlander SJH, Karnitz L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 2005; 3:1009-14. [PMID: 15279787 DOI: 10.1016/j.dnarep.2004.03.032] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.
Collapse
|
250
|
Abstract
A functional immune system is one of the prerequisites for the survival of a species. Humans have one of the most complicated immune systems, with the ability to learn from and adapt to pathogens. At first, a primary repertoire of antibodies is generated, which, upon antigen encounter, will diversify and adapt to produce a highly specific and potent secondary response, part of which is kept in memory to fight off future infections. In this review, the mechanism as well as the specificities of the key protein in the secondary immune response, activation-induced cytidine deaminase (AID), are highlighted, as well as its role in the DNA deamination model of immunoglobulin diversification. The review also highlights aspects of AID's regulation on both the transcriptional as well as post-translational level and its potential molecular mechanism and specificity. Furthermore, it expands outside the involvement of AID in somatic hypermutation, class switching, and gene conversion to discuss the implications of DNA deamination in epigenetic modifications of DNA (as a potential demethylase), the induction of mutations during oncogenesis, and includes an evolutionary comparison to the DNA deaminase family member APOBEC3G, a key protein in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Svend Petersen-Mahrt
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms Hert, UK.
| |
Collapse
|