201
|
Mardones P, Martínez G, Hetz C. Control of systemic proteostasis by the nervous system. Trends Cell Biol 2014; 25:1-10. [PMID: 25174273 DOI: 10.1016/j.tcb.2014.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Maintenance of organismal homeostasis depends on the integration of intracellular and external signals, involving the ability to detect molecular perturbations. An explosion of studies in model organisms indicates the occurrence of dynamic communication between alarm pathways engaged by protein-folding stress in neurons that activate adaptive programs in peripheral organs to control cellular proteostasis. Here we review emerging concepts that highlight the contribution of the proteostasis network to the regulation of several aspects of animal physiology through central integration of signals spanning multiple tissues and organs. These recent findings uncover a new layer of functional interrelation between cells that handle and orchestrate the global maintenance of the proteome at the organismal level in a cell-nonautonomous manner.
Collapse
Affiliation(s)
- Pablo Mardones
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Neurounion Biomedical Foundation, CENPAR, Santiago, Chile; Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
202
|
Hayward SAL, Manso B, Cossins AR. Molecular basis of chill resistance adaptations in poikilothermic animals. ACTA ACUST UNITED AC 2014; 217:6-15. [PMID: 24353199 DOI: 10.1242/jeb.096537] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly in genetic model species from a broader range of taxa.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
203
|
Allen E, Ren J, Zhang Y, Alcedo J. Sensory systems: their impact on C. elegans survival. Neuroscience 2014; 296:15-25. [PMID: 24997267 DOI: 10.1016/j.neuroscience.2014.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/24/2022]
Abstract
An animal's survival strongly depends on a nervous system that can rapidly process and integrate the changing quality of its environment and promote the most appropriate physiological responses. This is amply demonstrated in the nematode worm Caenorhabditis elegans, where its sensory system has been shown to impact multiple physiological traits that range from behavior and developmental plasticity to longevity. Because of the accessibility of its nervous system and the number of tools available to study and manipulate its neural circuitry, C. elegans has thus become an important model organism in dissecting the mechanisms through which the nervous system promotes survival. Here we review our current understanding of how the C. elegans sensory system affects diverse physiological traits, whose coordination would be essential for survival under fluctuating environments. The knowledge we derive from the C. elegans studies should provide testable hypotheses in discovering similar mechanisms in higher animals.
Collapse
Affiliation(s)
- Erika Allen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| | - Jing Ren
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| |
Collapse
|
204
|
Flibotte JJ, Jablonski AM, Kalb RG. Oxygen sensing neurons and neuropeptides regulate survival after anoxia in developing C. elegans. PLoS One 2014; 9:e101102. [PMID: 24967811 PMCID: PMC4072718 DOI: 10.1371/journal.pone.0101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Hypoxic brain injury remains a major source of neurodevelopmental impairment for both term and preterm infants. The perinatal period is a time of rapid transition in oxygen environments and developmental resetting of oxygen sensing. The relationship between neural oxygen sensing ability and hypoxic injury has not been studied. The oxygen sensing circuitry in the model organism C. elegans is well understood. We leveraged this information to investigate the effects of impairments in oxygen sensing on survival after anoxia. There was a significant survival advantage in developing worms specifically unable to sense oxygen shifts below their preferred physiologic range via genetic ablation of BAG neurons, which appear important for conferring sensitivity to anoxia. Oxygen sensing that is mediated through guanylate cyclases (gcy-31, 33, 35) is unlikely to be involved in conferring this sensitivity. Additionally, animals unable to process or elaborate neuropeptides displayed a survival advantage after anoxia. Based on these data, we hypothesized that elaboration of neuropeptides by BAG neurons sensitized animals to anoxia, but further experiments indicate that this is unlikely to be true. Instead, it seems that neuropeptides and signaling from oxygen sensing neurons operate through independent mechanisms, each conferring sensitivity to anoxia in wild type animals.
Collapse
Affiliation(s)
- John J. Flibotte
- Department of Pediatrics, Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Angela M. Jablonski
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Kalb
- Department of Pediatrics, Division of Neurology, Research Institute, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
205
|
Abstract
Inflammation is traditionally considered a defense response induced by infection or injury. However, inflammation can also be induced by tissue stress and malfunction in the absence of infection or overt tissue damage. Here we discuss the relationship between homeostasis, stress responses, and inflammation. Stress responses have cell-autonomous and cell-extrinsic components, the latter contributing to tissue level adaptation to stress conditions. Inflammation can be thought of as the extreme end of a spectrum that ranges from homeostasis to stress response to bona fide inflammatory response. Inflammation can be triggered by two types of stimuli: extreme deviations of homeostasis or challenges that cause a disruption of homeostasis. This perspective may help to explain qualitative differences and functional outcomes of diverse inflammatory responses.
Collapse
Affiliation(s)
- Raj Chovatiya
- Yale University School of Medicine, Howard Hughes Medical Institute, 300 Cedar Street, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Yale University School of Medicine, Howard Hughes Medical Institute, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
206
|
Kumsta C, Ching TT, Nishimura M, Davis AE, Gelino S, Catan HH, Yu X, Chu CC, Ong B, Panowski SH, Baird N, Bodmer R, Hsu AL, Hansen M. Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1. Aging Cell 2014; 13:419-30. [PMID: 24314125 PMCID: PMC4059541 DOI: 10.1111/acel.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/18/2022] Open
Abstract
Integrin-signaling complexes play important roles in cytoskeletal organization and cell adhesion in many species. Components of the integrin-signaling complex have been linked to aging in both Caenorhabditis elegans and Drosophila melanogaster, but the mechanism underlying this function is unknown. Here, we investigated the role of integrin-linked kinase (ILK), a key component of the integrin-signaling complex, in lifespan determination. We report that genetic reduction of ILK in both C. elegans and Drosophila increased resistance to heat stress, and led to lifespan extension in C. elegans without majorly affecting cytoskeletal integrity. In C. elegans, longevity and thermotolerance induced by ILK depletion was mediated by heat-shock factor-1 (HSF-1), a major transcriptional regulator of the heat-shock response (HSR). Reduction in ILK levels increased hsf-1 transcription and activation, and led to enhanced expression of a subset of genes with roles in the HSR. Moreover, induction of HSR-related genes, longevity and thermotolerance caused by ILK reduction required the thermosensory neurons AFD and interneurons AIY, which are known to play a critical role in the canonical HSR. Notably, ILK was expressed in neighboring neurons, but not in AFD or AIY, implying that ILK reduction initiates cell nonautonomous signaling through thermosensory neurons to elicit a noncanonical HSR. Our results thus identify HSF-1 as a novel effector of the organismal response to reduced ILK levels and show that ILK inhibition regulates HSF-1 in a cell nonautonomous fashion to enhance stress resistance and lifespan in C. elegans.
Collapse
Affiliation(s)
- Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Tsui-Ting Ching
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Institute of Biopharmaceutical Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Mayuko Nishimura
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Andrew E Davis
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Sara Gelino
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Hannah H Catan
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Xiaokun Yu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Chu-Chiao Chu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Binnan Ong
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Siler H Panowski
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Nathan Baird
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| |
Collapse
|
207
|
Shai N, Shemesh N, Ben-Zvi A. Remodeling of Proteostasis Upon Transition to Adulthood is Linked to Reproduction Onset. Curr Genomics 2014; 15:122-9. [PMID: 24822030 PMCID: PMC4009840 DOI: 10.2174/1389202915666140221005023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activating
cytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, and
enhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditis
elegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation of
quality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlled
cell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes in
proteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans.
Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeled
at the point of transition between development and adulthood to influence the subsequent course of aging.
Collapse
Affiliation(s)
- Nadav Shai
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Netta Shemesh
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
208
|
Novel polyglutamine model uncouples proteotoxicity from aging. PLoS One 2014; 9:e96835. [PMID: 24817148 PMCID: PMC4016013 DOI: 10.1371/journal.pone.0096835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023] Open
Abstract
Polyglutamine expansions in certain proteins are the genetic determinants for nine distinct progressive neurodegenerative disorders and resultant age-related dementia. In these cases, neurodegeneration is due to the aggregation propensity and resultant toxic properties of the polyglutamine-containing proteins. We are interested in elucidating the underlying mechanisms of toxicity of the protein ataxin-3, in which a polyglutamine expansion is the genetic determinant for Machado-Joseph Disease (MJD), also referred to as spinocerebellar ataxia 3 (SCA3). To this end, we have developed a novel model for ataxin-3 protein aggregation, by expressing a disease-related polyglutamine-containing fragment of ataxin-3 in the genetically tractable body wall muscle cells of the model system C. elegans. Here, we demonstrate that this ataxin-3 fragment aggregates in a polyQ length-dependent manner in C. elegans muscle cells and that this aggregation is associated with cellular dysfunction. However, surprisingly, this aggregation and resultant toxicity was not influenced by aging. This is in contrast to polyglutamine peptides alone whose aggregation/toxicity is highly dependent on age. Thus, the data presented here not only describe a new polyglutamine model, but also suggest that protein context likely influences the cellular interactions of the polyglutamine-containing protein and thereby modulates its toxic properties.
Collapse
|
209
|
Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T. Protein thermodynamics can be predicted directly from biological growth rates. PLoS One 2014; 9:e96100. [PMID: 24787650 PMCID: PMC4006894 DOI: 10.1371/journal.pone.0096100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122°C). The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.
Collapse
Affiliation(s)
- Ross Corkrey
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Tom A. McMeekin
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - John P. Bowman
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - David A. Ratkowsky
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - June Olley
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
210
|
Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Biol 2014; 15:211-7. [PMID: 24556842 DOI: 10.1038/nrm3752] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteome maintenance is crucial to cellular health and viability, and is typically thought to be controlled in a cell-autonomous manner. However, recent evidence indicates that protein-folding defects can systemically activate proteostasis mechanisms through signalling pathways that coordinate stress responses among tissues. Coordination of ageing rates between tissues may also be mediated by systemic modulation of proteostasis. These findings suggest that proteome maintenance is a systemically regulated process, a discovery that may have important therapeutic implications.
Collapse
|
211
|
Eletto D, Eletto D, Dersh D, Gidalevitz T, Argon Y. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol Cell 2014; 53:562-576. [PMID: 24508390 DOI: 10.1016/j.molcel.2014.01.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/25/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
The response to endoplasmic reticulum (ER) stress relies on activation of unfolded protein response (UPR) sensors, and the outcome of the UPR depends on the duration and strength of signal. Here, we demonstrate a mechanism that attenuates the activity of the UPR sensor inositol-requiring enzyme 1α (IRE1α). A resident ER protein disulfide isomerase, PDIA6, limits the duration of IRE1α activity by direct binding to cysteine 148 in the lumenal domain of the sensor, which is oxidized when IRE1 is activated. PDIA6-deficient cells hyperrespond to ER stress with sustained autophosphorylation of IRE1α and splicing of XBP1 mRNA, resulting in exaggerated upregulation of UPR target genes and increased apoptosis. In vivo, PDIA6-deficient C. elegans exhibits constitutive UPR and fails to complete larval development, a program that normally requires the UPR. Thus, PDIA6 activity provides a mechanism that limits UPR signaling and maintains it within a physiologically appropriate range.
Collapse
Affiliation(s)
- Davide Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniela Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Devin Dersh
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
212
|
Bar DZ, Davidovich M, Lamm AT, Zer H, Wilson KL, Gruenbaum Y. BAF-1 mobility is regulated by environmental stresses. Mol Biol Cell 2014; 25:1127-36. [PMID: 24501420 PMCID: PMC3967975 DOI: 10.1091/mbc.e13-08-0477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Barrier to autointegration factor (BAF) is an essential component of the nuclear lamina that binds lamins, LEM-domain proteins, histones, and DNA. Under normal conditions, BAF protein is highly mobile when assayed by fluorescence recovery after photobleaching and fluorescence loss in photobleaching. We report that Caenorhabditis elegans BAF-1 mobility is regulated by caloric restriction, food deprivation, and heat shock. This was not a general response of chromatin-associated proteins, as food deprivation did not affect the mobility of heterochromatin protein HPL-1 or HPL-2. Heat shock also increased the level of BAF-1 Ser-4 phosphorylation. By using missense mutations that affect BAF-1 binding to different partners we find that, overall, the ability of BAF-1 mutants to be immobilized by heat shock in intestinal cells correlated with normal or increased affinity for emerin in vitro. These results show BAF-1 localization and mobility at the nuclear lamina are regulated by stress and unexpectedly reveal BAF-1 immobilization as a specific response to caloric restriction in C. elegans intestinal cells.
Collapse
Affiliation(s)
- Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram Jerusalem 91904, Israel Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | |
Collapse
|
213
|
Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl F. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014; 156:975-85. [DOI: 10.1016/j.cell.2014.01.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
214
|
Kandasamy S, Khan W, Evans FD, Critchley AT, Zhang J, Fitton JH, Stringer DN, Gardiner VA, Prithiviraj B. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food Funct 2014; 5:275-84. [PMID: 24323434 DOI: 10.1039/c3fo60050e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.
Collapse
Affiliation(s)
- Saveetha Kandasamy
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2B 5E3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Dillin A, Gottschling DE, Nyström T. The good and the bad of being connected: the integrons of aging. Curr Opin Cell Biol 2014; 26:107-12. [PMID: 24529252 PMCID: PMC3927154 DOI: 10.1016/j.ceb.2013.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Over 40 years ago, Francois Jacob proposed that levels of 'integrons' explain how biological systems are constructed. Today, these networks of interactions between tissues, cells, organelles, metabolic pathways, genes, and individual molecules provide key insights into biology. We suggest that the wiring and interdependency between subsystems within a network are useful to understand the aging process. The breakdown of one subsystem (e.g. an organelle) can have ramifications for other interconnected subsystems, leading to the sequential collapse of subsystem functions. But yet, the interconnected nature of homeostatic wiring can provide organisms with the means of compensating for the decline of one subsystem. This occurs at multiple levels in an organism-for example, between organelles or between tissues. We review recent data that highlight the importance of such interconnectivity/communication in the aging process, in both progressive decline and longevity assurance.
Collapse
Affiliation(s)
- Andrew Dillin
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Daniel E Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
216
|
Addicted to secrete - novel concepts and targets in cancer therapy. Trends Mol Med 2014; 20:242-50. [PMID: 24456621 DOI: 10.1016/j.molmed.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) mediates the adaptation of the secretory pathway (SP) to fluctuations in cellular protein demand or to environmental variations. Recently, drug screenings have confirmed the therapeutic potential of targeting the UPR in cancer models. However, the UPR may not be the only druggable target of the SP. Moreover, recent studies have revealed other contributions of the SP to cancer development. This article does not intend to describe the well-established implication of UPR signaling pathways in cancer cell life and cell decision, but rather aims at defining the concept of 'tumor cell secretory addiction', from molecular, cellular, and therapeutic perspectives. Furthermore, the implication of UPR modulations in this context will be discussed.
Collapse
|
217
|
Abstract
In a recent paper in Nature, Ermolaeva et al. uncover a systemic response to DNA damage in germ cells that protects somatic tissues, providing mechanistic insight into the bidirectional communication between germ line and soma.
Collapse
|
218
|
|
219
|
Kimata T, Sasakura H, Ohnishi N, Nishio N, Mori I. Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. WORM 2013; 1:31-41. [PMID: 24058821 PMCID: PMC3670169 DOI: 10.4161/worm.19504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thermotaxis is a model to elucidate how nervous systems sense and memorize environmental conditions to regulate behavioral strategies in Caenorhabditis elegans. The genetic and neural imaging analyses revealed molecular and cellular bases of this experience-dependent behavior. Surprisingly, thermosensory neurons themselves memorize the sensed temperatures. Recently developed techniques for optical manipulation of neuronal activity have facilitated the revelation that there is a sophisticated information flow between sensory neurons and interneurons. Further studies on thermotaxis will allow us to understand the fundamental logics of neural processing from sensory perceptions to behavioral outputs.
Collapse
Affiliation(s)
- Tsubasa Kimata
- Laboratory of Molecular Neurobiology; Department of Molecular Biology; Graduate School of Science; Nagoya University; Nagoya, Japan
| | | | | | | | | |
Collapse
|
220
|
Gandhapudi SK, Murapa P, Threlkeld ZD, Ward M, Sarge KD, Snow C, Woodward JG. Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress. THE JOURNAL OF IMMUNOLOGY 2013; 191:4068-79. [PMID: 24043900 DOI: 10.4049/jimmunol.1202831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is a major transcriptional regulator of the heat shock response in eukaryotic cells. HSF1 is evoked in response to a variety of cellular stressors, including elevated temperatures, oxidative stress, and other proteotoxic stressors. Previously, we demonstrated that HSF1 is activated in naive T cells at fever range temperatures (39.5°C) and is critical for in vitro T cell proliferation at fever temperatures. In this study, we demonstrated that murine HSF1 became activated to the DNA-binding form and transactivated a large number of genes in lymphoid cells strictly as a consequence of receptor activation in the absence of apparent cellular stress. Microarray analysis comparing HSF1(+/+) and HSF1(-/-) gene expression in T cells activated at 37°C revealed a diverse set of 323 genes significantly regulated by HSF1 in nonstressed T cells. In vivo proliferation studies revealed a significant impairment of HSF1(-/-) T cell expansion under conditions mimicking a robust immune response (staphylococcal enterotoxin B-induced T cell activation). This proliferation defect due to loss of HSF1 is observed even under nonfebrile temperatures. HSF1(-/-) T cells activated at fever temperatures show a dramatic reduction in cyclin E and cyclin A proteins during the cell cycle, although the transcription of these genes was modestly affected. Finally, B cell and hematopoietic stem cell proliferation from HSF1(-/-) mice, but not HSF1(+/+) mice, were also attenuated under stressful conditions, indicating that HSF1 is critical for the cell cycle progression of lymphoid cells activated under stressful conditions.
Collapse
Affiliation(s)
- Siva K Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536
| | | | | | | | | | | | | |
Collapse
|
221
|
Silva MC, Amaral MD, Morimoto RI. Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet 2013; 9:e1003711. [PMID: 24009518 PMCID: PMC3757039 DOI: 10.1371/journal.pgen.1003711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
Protein quality control requires constant surveillance to prevent misfolding, aggregation, and loss of cellular function. There is increasing evidence in metazoans that communication between cells has an important role to ensure organismal health and to prevent stressed cells and tissues from compromising lifespan. Here, we show in C. elegans that a moderate increase in physiological cholinergic signaling at the neuromuscular junction (NMJ) induces the calcium (Ca(2+))-dependent activation of HSF-1 in post-synaptic muscle cells, resulting in suppression of protein misfolding. This protective effect on muscle cell protein homeostasis was identified in an unbiased genome-wide screening for modifiers of protein aggregation, and is triggered by downregulation of gei-11, a Myb-family factor and proposed regulator of the L-type acetylcholine receptor (AChR). This, in-turn, activates the voltage-gated Ca(2+) channel, EGL-19, and the sarcoplasmic reticulum ryanodine receptor in response to acetylcholine signaling. The release of calcium into the cytoplasm of muscle cells activates Ca(2+)-dependent kinases and induces HSF-1-dependent expression of cytoplasmic chaperones, which suppress misfolding of metastable proteins and stabilize the folding environment of muscle cells. This demonstrates that the heat shock response (HSR) can be activated in muscle cells by neuronal signaling across the NMJ to protect proteome health.
Collapse
Affiliation(s)
- M. Catarina Silva
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
| | - Margarida D. Amaral
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
- Centre of Human Genetics, National Institute of Health, Lisboa, Portugal
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
222
|
van Oosten-Hawle P, Porter RS, Morimoto RI. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 2013; 153:1366-78. [PMID: 23746847 DOI: 10.1016/j.cell.2013.05.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/16/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
A major challenge for metazoans is to ensure that different tissues, each expressing distinctive proteomes, are nevertheless well protected at an organismal level from proteotoxic stress. We show that expression of endogenous metastable proteins in muscle cells, which rely on chaperones for proper folding, induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells but as effectively by elevated expression of HSP90 in intestine or neuronal cells. This cell-nonautonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This transcellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for organismal stress-sensing surveillance.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
223
|
Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013; 38:378-85. [PMID: 23768628 DOI: 10.1016/j.tibs.2013.05.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder for which no disease modifying treatments exist. Many molecular changes and cellular consequences that underlie HD are observed in other neurological disorders, suggesting that common pathological mechanisms and pathways may exist. Recent findings have enhanced our understanding of the way cells regulate and respond to expanded polyglutamine proteins such as mutant huntingtin. These studies demonstrate that in addition to effects on folding, aggregation, and clearance pathways, a general transcriptional mechanism also dictates the expression of polyglutamine proteins. Here, we summarize the key pathways and networks that are important in HD in the context of recent therapeutic advances and highlight how their interplay may be of relevance to other protein folding disorders.
Collapse
|
224
|
A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans. J Neurosci 2013; 33:6102-11. [PMID: 23554491 DOI: 10.1523/jneurosci.4023-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the heat shock response (HSR) is regulated at the organismal level by a network of thermosensory neurons that senses elevated temperatures and activates the HSR in remote tissues. Which neuronal receptors are required for this signaling mechanism and in which neurons they function are largely unanswered questions. Here we used worms that were engineered to exhibit RNA interference hypersensitivity in neurons to screen for neuronal receptors that are required for the activation of the HSR and identified a putative G-protein coupled receptor (GPCR) as a novel key component of this mechanism. This gene, which we termed GPCR thermal receptor 1 (gtr-1), is expressed in chemosensory neurons and has no role in heat sensing but is critically required for the induction of genes that encode heat shock proteins in non-neural tissues upon exposure to heat. Surprisingly, the knock-down of gtr-1 by RNA interference protected worms expressing the Alzheimer's-disease-linked aggregative peptide Aβ3-42 from proteotoxicity but had no effect on lifespan. This study provides several novel insights: (1) it shows that chemosensory neurons play important roles in the nematode's HSR-regulating mechanism, (2) it shows that lifespan and heat stress resistance are separable, and (3) it strengthens the emerging notion that the ability to respond to heat comes at the expense of protein homeostasis (proteostasis).
Collapse
|
225
|
EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003511. [PMID: 23671427 PMCID: PMC3650002 DOI: 10.1371/journal.pgen.1003511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing) and the URX (O2-sensing) neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor) in the BAG neurons and AHR-1(bHLH factor) in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.
Collapse
|
226
|
Alcedo J, Flatt T, Pasyukova EG. Neuronal inputs and outputs of aging and longevity. Front Genet 2013; 4:71. [PMID: 23653632 PMCID: PMC3644678 DOI: 10.3389/fgene.2013.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/13/2013] [Indexed: 12/14/2022] Open
Abstract
An animal’s survival strongly depends on its ability to maintain homeostasis in response to the changing quality of its external and internal environment. This is achieved through intracellular and intercellular communication within and among different tissues. One of the organ systems that plays a major role in this communication and the maintenance of homeostasis is the nervous system. Here we highlight different aspects of the neuronal inputs and outputs of pathways that affect aging and longevity. Accordingly, we discuss how sensory inputs influence homeostasis and lifespan through the modulation of different types of neuronal signals, which reflects the complexity of the environmental cues that affect physiology. We also describe feedback, compensatory, and feed-forward mechanisms in these longevity-modulating pathways that are necessary for homeostasis. Finally, we consider the temporal requirements for these neuronal processes and the potential role of natural genetic variation in shaping the neurobiology of aging.
Collapse
Affiliation(s)
- Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland ; Department of Biological Sciences, Wayne State University Detroit, MI, USA
| | | | | |
Collapse
|
227
|
Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 2013; 152:818-30. [PMID: 23415229 DOI: 10.1016/j.cell.2012.12.043] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI. Identification of a tissue-selective heat shock response regulatory network. PLoS Genet 2013; 9:e1003466. [PMID: 23637632 PMCID: PMC3630107 DOI: 10.1371/journal.pgen.1003466] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
The heat shock response (HSR) is essential to survive acute proteotoxic stress and has been studied extensively in unicellular organisms and tissue culture cells, but to a lesser extent in intact metazoan animals. To identify the regulatory pathways that control the HSR in Caenorhabditis elegans, we performed a genome-wide RNAi screen and identified 59 genes corresponding to 7 positive activators required for the HSR and 52 negative regulators whose knockdown leads to constitutive activation of the HSR. These modifiers function in specific steps of gene expression, protein synthesis, protein folding, trafficking, and protein clearance, and comprise the metazoan heat shock regulatory network (HSN). Whereas the positive regulators function in all tissues of C. elegans, nearly all of the negative regulators exhibited tissue-selective effects. Knockdown of the subunits of the proteasome strongly induces HS reporter expression only in the intestine and spermatheca but not in muscle cells, while knockdown of subunits of the TRiC/CCT chaperonin induces HS reporter expression only in muscle cells. Yet, both the proteasome and TRiC/CCT chaperonin are ubiquitously expressed and are required for clearance and folding in all tissues. We propose that the HSN identifies a key subset of the proteostasis machinery that regulates the HSR according to the unique functional requirements of each tissue. The heat shock response (HSR) is an essential stress response that functions to maintain protein folding homeostasis, or proteostasis, and whose critical role in human diseases is recently becoming apparent. Previously, most of our understanding of the HSR has come from cultured cells and unicellular organisms. Here we present the identification of the heat shock regulatory network (HSN) in Caenorhabditis elegans, an intact, multicellular organism, using genome-wide RNAi screening. We identify 59 positive and negative regulators of the HSR, all of which have a previously established role in proteostasis, linking the function of the HSR to its regulation. Some HSN genes were previously established in other systems, many were indirectly linked to HSR, and others are novel. Unexpectedly, almost all negative regulators of the HSR act in distinct, tissue-selective patterns, despite their broad expression and universal cellular requirements. Therefore, our data indicate that the HSN consists of a specific subset of the proteostasis machinery that functions to link the proteostasis network to HSR regulation in a tissue-selective manner.
Collapse
Affiliation(s)
- Eric Guisbert
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Daniel M. Czyz
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Klaus Richter
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Patrick D. McMullen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
229
|
Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013; 14:237-48. [PMID: 23463216 DOI: 10.1038/nrm3542] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.
Collapse
|
230
|
Skibinski G, Finkbeiner S. Longitudinal measures of proteostasis in live neurons: features that determine fate in models of neurodegenerative disease. FEBS Lett 2013; 587:1139-46. [PMID: 23458259 DOI: 10.1016/j.febslet.2013.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
Protein misfolding and proteostasis decline is a common feature of many neurodegenerative diseases. However, modeling the complexity of proteostasis and the global cellular consequences of its disruption is a challenge, particularly in live neurons. Although conventional approaches, based on population measures and single "snapshots", can identify cellular changes during neurodegeneration, they fail to determine if these cellular events drive cell death or act as adaptive responses. Alternatively, a "systems" cell biology approach known as longitudinal survival analysis enables single neurons to be followed over the course of neurodegeneration. By capturing the dynamics of misfolded proteins and the multiple cellular events that occur along the way, the relationship of these events to each other and their importance and role during cell death can be determined. Quantitative models of proteostasis dysfunction may yield unique insight and novel therapeutic strategies for neurodegenerative disease.
Collapse
Affiliation(s)
- Gaia Skibinski
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|
231
|
Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG. The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS One 2013; 8:e57149. [PMID: 23468922 PMCID: PMC3584136 DOI: 10.1371/journal.pone.0057149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/22/2013] [Indexed: 12/31/2022] Open
Abstract
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.
Collapse
Affiliation(s)
- Zohar Bromberg
- Dept. of Anesthesiology and Critical Care Medicine and the Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Pierre Goloubinoff
- Dept. of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Younousse Saidi
- Dept. of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Yoram George Weiss
- Dept. of Anesthesiology and Critical Care Medicine and the Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
- Dept. of Anesthesiology and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
232
|
Rodriguez M, Snoek LB, De Bono M, Kammenga JE. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 2013; 29:367-74. [PMID: 23428113 DOI: 10.1016/j.tig.2013.01.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Many organisms have stress response pathways, components of which share homology with players in complex human disease pathways. Research on stress response in the nematode worm Caenorhabditis elegans has provided detailed insights into the genetic and molecular mechanisms underlying complex human diseases. In this review we focus on four different types of environmental stress responses - heat shock, oxidative stress, hypoxia, and osmotic stress - and on how these can be used to study the genetics of complex human diseases. All four types of responses involve the genetic machineries that underlie a number of complex human diseases such as cancer and neurodegenerative diseases, including Alzheimer's and Parkinson's. We highlight the types of stress response experiments required to detect the genes and pathways underlying human disease and suggest that studying stress biology in worms can be translated to understanding human disease and provide potential targets for drug discovery.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PD, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
233
|
Morton EA, Lamitina T. Caenorhabditis elegans HSF-1 is an essential nuclear protein that forms stress granule-like structures following heat shock. Aging Cell 2013; 12:112-20. [PMID: 23107491 DOI: 10.1111/acel.12024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2012] [Indexed: 01/06/2023] Open
Abstract
The heat shock transcription factor (HSF) is a conserved regulator of heat shock-inducible gene expression. Organismal roles for HSF in physiological processes such as development, aging, and immunity have been defined largely through studies of the single Caenorhabditis elegans HSF homolog, hsf-1. However, the molecular and cell biological properties of hsf-1 in C. elegans are incompletely understood. We generated animals expressing physiological levels of an HSF-1::GFP fusion protein and examined its function, localization, and regulation in vivo. HSF-1::GFP was functional, as measured by its ability to rescue phenotypes associated with two hsf-1 mutant alleles. Rescue of hsf-1 development phenotypes was abolished in a DNA-binding-deficient mutant, demonstrating that the transcriptional targets of hsf-1 are critical to its function even in the absence of stress. Under nonstress conditions, HSF-1::GFP was found primarily in the nucleus. Following heat shock, HSF-1::GFP rapidly and reversibly redistributed into dynamic, subnuclear structures that share many properties with human nuclear stress granules, including colocalization with markers of active transcription. Rapid formation of HSF-1 stress granules required HSF-1 DNA-binding activity, and the threshold for stress granule formation was altered by growth temperature. HSF-1 stress granule formation was not induced by inhibition of IGF signaling, a pathway previously suggested to function upstream of hsf-1. Our findings suggest that development, stress, and aging pathways may regulate HSF-1 function in distinct ways, and that HSF-1 nuclear stress granule formation is an evolutionarily conserved aspect of HSF-1 regulation in vivo.
Collapse
Affiliation(s)
- Elizabeth A Morton
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
234
|
Xu X, Kim SK. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003108. [PMID: 23271974 PMCID: PMC3521710 DOI: 10.1371/journal.pgen.1003108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS), as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.
Collapse
Affiliation(s)
- Xiao Xu
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stuart K. Kim
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
235
|
Abstract
For all organisms promoting protein homeostasis is a high priority in order to optimize cellular functions and resources. However, there is accumulating evidence that aging leads to a collapse in protein homeostasis and widespread non-disease protein aggregation. This review examines these findings and discusses the potential causes and consequences of this physiological aggregation with age in particular in relation to disease protein aggregation and toxicity. Importantly, recent evidence points to unexpected differences in protein-quality-control and susceptibility to protein aggregation between neurons and other cell types. In addition, new insight into the cell-non-autonomous coordination of protein homeostasis by neurons will be presented.
Collapse
Affiliation(s)
- Della C David
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany
| |
Collapse
|
236
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
237
|
Jeong DE, Artan M, Seo K, Lee SJ. Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front Genet 2012; 3:218. [PMID: 23087711 PMCID: PMC3475297 DOI: 10.3389/fgene.2012.00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/01/2012] [Indexed: 12/30/2022] Open
Abstract
Many environmental factors that dynamically change in nature influence various aspects of animal physiology. Animals are equipped with sensory neuronal systems that help them properly sense and respond to environmental factors. Several studies have shown that chemosensory and thermosensory neurons affect the lifespan of invertebrate model animals, including Caenorhabditis elegans and Drosophila melanogaster. Although the mechanisms by which these sensory systems modulate lifespan are incompletely understood, hormonal signaling pathways have been implicated in sensory system-mediated lifespan regulation. In this review, we describe findings regarding how sensory nervous system components elicit physiological changes to regulate lifespan in invertebrate models, and discuss their implications in mammalian aging.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Division of Molecular and Life Science, Pohang University of Science and Technology Pohang, South Korea
| | | | | | | |
Collapse
|
238
|
Sangha JS, Sun X, Wally OSD, Zhang K, Ji X, Wang Z, Wang Y, Zidichouski J, Prithiviraj B, Zhang J. Liuwei Dihuang (LWDH), a traditional Chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans. PLoS One 2012; 7:e43990. [PMID: 22952840 PMCID: PMC3431378 DOI: 10.1371/journal.pone.0043990] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022] Open
Abstract
Liuwei Dihuang (LWDH), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ) induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE) and water extract (LWDH-WE). Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. In vitro studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aβ in vitro. By contrast, LWDH-EE effectively delayed Aβ induced paralysis in the transgenic C. elegans (CL4176) model which expresses human Aβ1–42. Western blot revealed no treatment induced reduction in Aβ accumulation in CL4176 although a significant reduction was observed at an early stage with respect to β-amyloid deposition in C. elegans strain CL2006 which constitutively expresses human Aβ1–42. In addition, LWDH-EE reduced in vivo reactive oxygen species (ROS) in C. elegans (CL4176) that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of amy1 in CL4176 while up-regulating hsp16.2 induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated β-amyloid induced toxicity, in part, through up-regulation of heat shock protein, antioxidant activity and reduced ROS in C. elegans.
Collapse
Affiliation(s)
- Jatinder S. Sangha
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
| | - Xiaoli Sun
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Owen S. D. Wally
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
| | - Kaibin Zhang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xiuhong Ji
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanwen Wang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jeffrey Zidichouski
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
- * E-mail: (BP); (JZ)
| | - Junzeng Zhang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- * E-mail: (BP); (JZ)
| |
Collapse
|
239
|
|
240
|
Finka A, Cuendet AFH, Maathuis FJ, Saidi Y, Goloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. THE PLANT CELL 2012; 24:3333-48. [PMID: 22904147 PMCID: PMC3462635 DOI: 10.1105/tpc.112.095844] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/26/2012] [Accepted: 07/18/2012] [Indexed: 05/17/2023]
Abstract
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Younousse Saidi
- Department of Biology, University of York, YO1 5DD York, United Kingdom
- School of Biosciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
241
|
PKC-2 phosphorylation of UNC-18 Ser322 in AFD neurons regulates temperature dependency of locomotion. J Neurosci 2012; 32:7042-51. [PMID: 22593072 DOI: 10.1523/jneurosci.4029-11.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diacylglycerol (DAG)/protein kinase C (PKC) signaling plays an integral role in the regulation of neuronal function. This is certainly true in Caenorhabditis elegans and in particular for thermosensory signaling and behavior. Downstream molecular targets for transduction of this signaling cascade remain, however, virtually uncharacterized. We investigated whether PKC phosphorylation of Munc18-1, an essential protein in vesicle trafficking and exocytosis, was the downstream effector for DAG regulation of thermosensory behavior. We demonstrate here that the C. elegans ortholog of Munc18-1, UNC-18, was phosphorylated in vitro at Ser322. Transgenic rescue of unc-18-null worms with Ser322 phosphomutants displayed altered thermosensitivity. C. elegans expresses three DAG-regulated PKCs, and blocking UNC-18 Ser322 phosphorylation was phenocopied only by deletion of calcium-activated PKC-2. Expression of nonphosphorylatable UNC-18 S322A, either pan-neuronally or specifically in AFD thermosensory neurons, converted wild-type worms to a pkc-2-null phenotype. These data demonstrate that an individual DAG-dependent thermosensory behavior of an organism is effected specifically by the downstream PKC-2 phosphorylation of UNC-18 on Ser322 in AFD neurons.
Collapse
|
242
|
Vaccaro A, Tauffenberger A, Ash PEA, Carlomagno Y, Petrucelli L, Parker JA. TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002806. [PMID: 22792076 PMCID: PMC3390363 DOI: 10.1371/journal.pgen.1002806] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
TDP-43 is a multifunctional nucleic acid binding protein linked to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia. To learn more about the normal biological and abnormal pathological role of this protein, we turned to Caenorhabditis elegans and its orthologue TDP-1. We report that TDP-1 functions in the Insulin/IGF pathway to regulate longevity and the oxidative stress response downstream from the forkhead transcription factor DAF-16/FOXO3a. However, although tdp-1 mutants are stress-sensitive, chronic upregulation of tdp-1 expression is toxic and decreases lifespan. ALS–associated mutations in TDP-43 or the related RNA binding protein FUS activate the unfolded protein response and generate oxidative stress leading to the daf-16–dependent upregulation of tdp-1 expression with negative effects on neuronal function and lifespan. Consistently, deletion of endogenous tdp-1 rescues mutant TDP-43 and FUS proteotoxicity in C. elegans. These results suggest that chronic induction of wild-type TDP-1/TDP-43 by cellular stress may propagate neurodegeneration and decrease lifespan. TAR DNA Binding Protein 43 (TDP-43) is implicated in several human age-dependent neurodegenerative disorders, but until now little was known about TDP-43's role in the aging process. Here we used the nematode Caenorhabditis elegans to study the role of the TDP-43 orthologue tdp-1 in aging and neurodegeneration. In this study we discovered that tdp-1 is a stress-responsive gene acting within the Insulin/IGF signaling pathway to regulate lifespan and the response to oxidative stress. We found that, although worms missing tdp-1 were stress-sensitive, elevated expression of tdp-1 was toxic. We asked if tdp-1 also responded to the stress caused by toxic proteins found in Amyotrophic Lateral Sclerosis (ALS). Using worm models for ALS, we discovered that mutant TDP-43 generated oxidative stress and induced tdp-1 expression with negative consequences on neuronal function and lifespan. Consistently, removing tdp-1 rescued toxicity in our worm ALS models. tdp-1's role in the cellular stress response likely reflects an ancient adaptation to deal with unfavorable environmental conditions that is inappropriately activated and maintained by genetic mutations leading to proteotoxic and oxidative stress. We predict that similar mechanisms may exist in humans, helping explain the involvement of TDP-43 in a growing number of neurodegenerative disorders. TAR DNA Binding Protein 43 (TDP-43) is implicated in several human age-dependent neurodegenerative disorders, but until now little was known about TDP-43's role in the aging process. Here we used the nematode Caenorhabditis elegans to study the role of the TDP-43 orthologue tdp-1 in aging and neurodegeneration. In this study we discovered that tdp-1 is a stress-responsive gene acting within the Insulin/IGF signaling pathway to regulate lifespan and the response to oxidative stress. We found that, although worms missing tdp-1 were stress-sensitive, elevated expression of tdp-1 was toxic. We asked if tdp-1 also responded to the stress caused by toxic proteins found in Amyotrophic Lateral Sclerosis (ALS). Using worm models for ALS, we discovered that mutant TDP-43 generated oxidative stress and induced tdp-1 expression with negative consequences on neuronal function and lifespan. Consistently, removing tdp-1 rescued toxicity in our worm ALS models. tdp-1's role in the cellular stress response likely reflects an ancient adaptation to deal with unfavorable environmental conditions that is inappropriately activated and maintained by genetic mutations leading to proteotoxic and oxidative stress. We predict that similar mechanisms may exist in humans, helping explain the involvement of TDP-43 in a growing number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- CRCHUM, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Tauffenberger
- CRCHUM, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Peter E. A. Ash
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, United States of America
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, United States of America
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, United States of America
| | - J. Alex Parker
- CRCHUM, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
243
|
Lehmann S, Shephard F, Jacobson LA, Szewczyk NJ. Integrated control of protein degradation in C. elegans muscle. WORM 2012; 1:141-50. [PMID: 23457662 PMCID: PMC3583358 DOI: 10.4161/worm.20465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/14/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Freya Shephard
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Lewis A. Jacobson
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Nathaniel J. Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| |
Collapse
|
244
|
Melo JA, Ruvkun G. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 2012; 149:452-66. [PMID: 22500807 DOI: 10.1016/j.cell.2012.02.050] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/02/2012] [Accepted: 02/23/2012] [Indexed: 12/18/2022]
Abstract
The nematode C. elegans is attracted to nutritious bacteria and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulate behavioral avoidance of normally attractive bacteria. RNAi of these and other essential processes induces expression of detoxification and innate immune effectors, even in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues was sufficient to stimulate aversion behavior, revealing a neuroendocrine axis of control that additionally required serotonergic and Jnk kinase signaling pathways. We propose that surveillance pathways overseeing core cellular activities allow animals to detect invading pathogens that deploy toxins and virulence factors to undermine vital host functions. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification, and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes.
Collapse
Affiliation(s)
- Justine A Melo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
245
|
He L, Skirkanich J, Moronetti L, Lewis R, Lamitina T. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3. Dis Model Mech 2012; 5:930-9. [PMID: 22569626 PMCID: PMC3484874 DOI: 10.1242/dmm.008987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3wt was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3ΔF508 was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3ΔF508. Efficient degradation of PGP-3ΔF508 required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.
Collapse
Affiliation(s)
- Liping He
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
246
|
Ma KX, Chen GW, Liu DZ. cDNA cloning of heat shock protein 90 gene and protein expression pattern in response to heavy metal exposure and thermal stress in planarian Dugesia japonica. Mol Biol Rep 2012; 39:7203-10. [DOI: 10.1007/s11033-012-1552-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
|
247
|
Abstract
The immune system protects from infections primarily by detecting and eliminating the invading pathogens; however, the host organism can also protect itself from infectious diseases by reducing the negative impact of infections on host fitness. This ability to tolerate a pathogen's presence is a distinct host defense strategy, which has been largely overlooked in animal and human studies. Introduction of the notion of "disease tolerance" into the conceptual tool kit of immunology will expand our understanding of infectious diseases and host pathogen interactions. Analysis of disease tolerance mechanisms should provide new approaches for the treatment of infections and other diseases.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA
| | | |
Collapse
|
248
|
McMullen PD, Aprison EZ, Winter PB, Amaral LAN, Morimoto RI, Ruvinsky I. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress. PLoS Comput Biol 2012; 8:e1002338. [PMID: 22291584 PMCID: PMC3266876 DOI: 10.1371/journal.pcbi.1002338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components.
Collapse
Affiliation(s)
- Patrick D. McMullen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Peter B. Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| |
Collapse
|
249
|
Bar-Lavan Y, Kosolapov L, Frumkin A, Ben-Zvi A. Regulation of cellular protein quality control networks in a multicellular organism. FEBS J 2012; 279:526-31. [PMID: 22177281 DOI: 10.1111/j.1742-4658.2011.08455.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The long-term health of all metazoan cells is linked to protein quality control, which is achieved by proteostasis, a complex network of molecular interactions that determines the health of the proteome under physiological or stress conditions. Studying the regulation of cellular proteostasis in the context of the whole organism has unraveled multiple layers of cell-nonautonomous regulation, including neuronal regulation, cell-to-cell stress signals and endocrine signaling that affect growth, development and aging. Here, we discuss emerging concepts in cell-nonautonomous regulation of protein quality control networks. The identification of organismal modulators of cellular proteostasis may present novel, yet general targets for misfolding disease intervention.
Collapse
Affiliation(s)
- Yael Bar-Lavan
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
250
|
Kästle M, Grune T. Interactions of the Proteasomal System with Chaperones. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:113-60. [DOI: 10.1016/b978-0-12-397863-9.00004-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|