201
|
Mirzadeh Azad F, Arabian M, Maleki M, Malakootian M. Small Molecules with Big Impacts on Cardiovascular Diseases. Biochem Genet 2020; 58:359-383. [PMID: 31997044 DOI: 10.1007/s10528-020-09948-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although in recent years there has been a significant progress in the diagnosis, treatment, and prognosis of CVD, but due to their complex pathobiology, developing novel biomarkers and therapeutic interventions are still in need. MicroRNAs (miRNAs) are a fraction of non-coding RNAs that act as micro-regulators of gene expression. Mounting evidences over the last decade confirmed that microRNAs were deregulated in several CVDs and manipulating their expression could affect homeostasis, differentiation, and function of cardiovascular system. Here, we review the current knowledge concerning the roles of miRNAs in cardiovascular diseases with more details on cardiac remodeling, arrhythmias, and atherosclerosis. In addition, we discuss the latest findings on the potential therapeutic applications of miRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
202
|
Kaymak I, Maier CR, Schmitz W, Campbell AD, Dankworth B, Ade CP, Walz S, Paauwe M, Kalogirou C, Marouf H, Rosenfeldt MT, Gay DM, McGregor GH, Sansom OJ, Schulze A. Mevalonate Pathway Provides Ubiquinone to Maintain Pyrimidine Synthesis and Survival in p53-Deficient Cancer Cells Exposed to Metabolic Stress. Cancer Res 2020; 80:189-203. [PMID: 31744820 DOI: 10.1158/0008-5472.can-19-0650] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context. SIGNIFICANCE: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide.
Collapse
Affiliation(s)
- Irem Kaymak
- Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | | | | | | | | | - Carsten P Ade
- Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Madelon Paauwe
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Charis Kalogirou
- Department of Urology, University Hospital Würzburg, Würzburg, Germany
| | - Hecham Marouf
- Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - Mathias T Rosenfeldt
- Department of Pathology, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - David M Gay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Grace H McGregor
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Almut Schulze
- Theodor-Boveri-Institute, Biocenter, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| |
Collapse
|
203
|
D'Ardes D, Santilli F, Guagnano MT, Bucci M, Cipollone F. From Endothelium to Lipids, Through microRNAs and PCSK9: A Fascinating Travel Across Atherosclerosis. High Blood Press Cardiovasc Prev 2020; 27:1-8. [PMID: 31925708 DOI: 10.1007/s40292-019-00356-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lipids and endothelium are pivotal players on the scene of atherosclerosis and their interaction is crucial for the establishment of the pathological processes. The endothelium is not only the border of the arterial wall: it plays a key role in regulating circulating fatty acids and lipoproteins and vice versa it is regulated by these lipidic molecules thereby promoting atherosclerosis. Inflammation is another important element in the relationship between lipids and endothelium. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a fundamental regulator of LDL-C and anti-PCSK9 monoclonal antibodies have been approved for therapeutic use in hypercholesterolemia, with the promise to subvert the natural history of the disease. Moreover, growing experimental and clinical evidence is enlarging our understanding of the mechanisms through which this protein may facilitate the genesis of atherosclerosis, independently of its impact on lipid metabolism. In addition, environmental stimuli may affect the post-transcriptional regulation of genes through micro-RNAs, which in turn play a key role in orchestrating the crosstalk between endothelium and cholesterol. Advances in experimental research, with development of high throughput techniques, have led, over the last century, to a tremendous progress in the understanding and fine tuning of the molecular mechanisms leading to atherosclerosis. Identification of pivotal keystone molecules bridging lipid metabolism, endothelial dysfunction and atherogenesis will provide the mechanistic substrate to test valuable targets for prediction, prevention and treatment of atherosclerosis-related disease.
Collapse
Affiliation(s)
- D D'Ardes
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Santilli
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M T Guagnano
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M Bucci
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Cipollone
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy.
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy.
| |
Collapse
|
204
|
Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 2020; 31:62-76. [PMID: 31813823 DOI: 10.1016/j.cmet.2019.11.010] [Citation(s) in RCA: 617] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Altered lipid metabolism is among the most prominent metabolic alterations in cancer. Enhanced synthesis or uptake of lipids contributes to rapid cancer cell growth and tumor formation. Lipids are a highly complex group of biomolecules that not only constitute the structural basis of biological membranes but also function as signaling molecules and an energy source. Here, we summarize recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype and discuss potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Marteinn Thor Snaebjornsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | - Sudha Janaki-Raman
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany.
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
205
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos-Sánchez M, Fernández-Armenta J, Pérez-Navarro A, Cesar S, Peña-Peña L, Vea À, Llorente-Cortés V, Mangas A, de Gonzalo-Calvo D, Toro R. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology. Transl Res 2020; 215:86-101. [PMID: 31505160 DOI: 10.1016/j.trsl.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilation and systolic dysfunction in the absence of abnormal loading conditions or coronary artery disease. This cardiac disorder is a major health problem due to its high prevalence, morbidity, and mortality. DCM is a complex disease with a common phenotype but heterogeneous pathological mechanisms. Early etiological diagnosis and prognosis stratification is crucial for the clinical management of the patient. Advances in imaging technology and genetic tests have provided useful tools for clinical practice. Nevertheless, the assessment of the disease remains challenging. Novel noninvasive indicators are still needed to assist in decision-making. microRNAs (miRNAs), a group of small noncoding RNAs, have been identified as key mediators of cell biology. They are found in a stable form in body fluids and their concentration is altered in response to stress. Previous research has suggested that the miRNA signature constitutes a novel source of noninvasive biomarkers for a wide array of cardiovascular diseases. Specifically, several studies have reported the potential role of miRNAs as clinical indicators among the etiologies of DCM. However, this field has not been reviewed in detail. Here, we summarize the evidence of intracellular and circulating miRNAs in DCM and their usefulness in the development of novel diagnostic, prognostic and therapeutic approaches, with a focus on DCM etiology. Although the findings are still preliminary, due to methodological and technical limitations and the lack of robust population-based studies, miRNAs constitute a promising tool to assist in the clinical management of DCM.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Thalía Belmonte
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Maribel Quezada-Feijoo
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Monica Ramos-Sánchez
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Juan Fernández-Armenta
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Cardiology, Puerta del Mar Universitary Hospital, Cádiz, Spain
| | - Amparo Pérez-Navarro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Department of Pediatric Cardiology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Luisa Peña-Peña
- Department of Cardiology, Virgen del Rocio Universitary Hospital, Sevilla, Spain
| | - Àngela Vea
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
206
|
Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F, Yu R, Lian C, Li Y, Chen W, Xue F. MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2. J Cell Biochem 2020; 121:385-393. [PMID: 31222822 DOI: 10.1002/jcb.29192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/07/2019] [Indexed: 01/02/2023]
Abstract
In this study, we aimed to study the effect of miR-33b in regulating sensitivity to daunorubicin (DNR) in acute myelocytic leukemia (AML). We used quantitative real-time polymerase chain reaction and Cell Counting Kit-8 assay to detect the level of miR-33b and cell viability. Cell apoptosis and the expression of eIF5A-2 and MCL-1 protein were detected by flow cytometry analysis and Western Blot analysis, respectively. MiR-33b mimic increased sensitivity of AML cells against DNR, while miR-33b inhibitor had the opposite effect. Furthermore, the results showed that the eIF5A-2 gene was a direct target of miR-33b, and miR-33b regulated eIF5A-2 mRNA and protein expression. Silencing of eIF5A-2 by RNA interference increased the sensitivity of AML cells against DNR. We also found that MCL-1 contributed to the regulation of DNR sensitivity, which was dependent on downregulation of eIF5A-2. Finally, knockdown of eIF5A-2 eliminated the effects of miRNA-33b mimic or inhibitor on DNR sensitivity. These findings indicate that miR-33b maybe as a new therapeutic target in AML cells.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Pingchong Lei
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Hong Qiao
- The Department of Oncology, Baoying Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiling Lu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Fengchang Bao
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Runhong Yu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Cheng Lian
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yao Li
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
207
|
Price NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C. Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circ Res 2019; 124:874-880. [PMID: 30707082 DOI: 10.1161/circresaha.118.314415] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Inhibition of miR-33 reduces atherosclerotic plaque burden, but miR-33 deficient mice are predisposed to the development of obesity and metabolic dysfunction. The proatherogenic effects of miR-33 are thought to be in large part because of its repression of macrophage cholesterol efflux, through targeting of Abca1 (ATP-binding cassette subfamily A member 1). However, targeting of other factors may also be required for the beneficial effects of miR-33, and currently available approaches have not allowed researchers to determine the specific impact of individual miRNA target interactions in vivo. OBJECTIVE In this work, we sought to determine how specific disruption of Abca1 targeting by miR-33 impacts macrophage cholesterol efflux and atherosclerotic plaque formation in vivo. METHODS AND RESULTS We have generated a novel mouse model with specific point mutations in the miR-33 binding sites of the Abca1 3'untranslated region, which prevents targeting by miR-33. Abca1 binding site mutant ( Abca1BSM) mice had increased hepatic ABCA1 expression but did not show any differences in body weight or metabolic function after high fat diet feeding. Macrophages from Abca1BSM mice also had increased ABCA1 expression, as well as enhanced cholesterol efflux and reduced foam cell formation. Moreover, LDLR (low-density lipoprotein receptor) deficient animals transplanted with bone marrow from Abca1BSM mice had reduced atherosclerotic plaque formation, similar to mice transplanted with bone marrow from miR-33 knockout mice. CONCLUSION Although the more pronounced phenotype of miR-33 deficient animals suggests that other targets may also play an important role, our data clearly demonstrate that repression of ABCA1 is primarily responsible for the proatherogenic effects of miR-33. This work shows for the first time that disruption of a single miRNA/target interaction can be sufficient to mimic the effects of miRNA deficiency on complex physiological phenotypes in vivo and provides an approach by which to assess the impact of individual miRNA targets.
Collapse
Affiliation(s)
- Nathan L Price
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Noemi Rotllan
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Xinbo Zhang
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Alberto Canfrán-Duque
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Timothy Nottoli
- Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Yajaira Suarez
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Department of Pathology (Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Carlos Fernández-Hernando
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Department of Pathology (Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
208
|
Nagata A, Akagi Y, Asano L, Kotake K, Kawagoe F, Mendoza A, Masoud SS, Usuda K, Yasui K, Takemoto Y, Kittaka A, Nagasawa K, Uesugi M. Synthetic Chemical Probes That Dissect Vitamin D Activities. ACS Chem Biol 2019; 14:2851-2858. [PMID: 31618573 DOI: 10.1021/acschembio.9b00718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D3 metabolites are capable of controlling gene expression in mammalian cells through two independent pathways: vitamin D receptor (VDR) and sterol regulatory element-binding protein (SREBP) pathways. In the present study, we dissect the complex biological activity of vitamin D by designing synthetic vitamin D3 analogs specific for VDR or SREBP pathway, i.e., a VDR activator that lacks SREBP inhibitory activity, or an SREBP inhibitor devoid of VDR activity. These synthetic vitamin D probes permitted identification of one of the vitamin D-responsive genes, Soat1, as an SREBP-suppressed gene. The chemical probes developed in the present study may prove useful in dissecting the intricate interplay of vitamin D actions, thereby providing insights into how vitamin D target genes are regulated.
Collapse
Affiliation(s)
- Akiko Nagata
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Yusuke Akagi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | | | | | - Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | | | - Shadi Sedghi Masoud
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Kosuke Usuda
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Koji Yasui
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | | | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Motonari Uesugi
- CREST, AMED 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
209
|
Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells. Sci Rep 2019; 9:19416. [PMID: 31857643 PMCID: PMC6923426 DOI: 10.1038/s41598-019-56031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
There has been no report about in vivo active cholesterol-lowering dipeptide in any protein origin, despite their potential health benefits. Cattle heart protein hydrolysate ultra-filtrate (HPHU, molecular weight < ca. 1,000 Da peptide mixture) exhibits cholesterol-lowering activity in hypercholesterolemic rats, but the active peptide in HPHU that lowers serum cholesterol levels and its molecular mechanism are unknown. In this study, we separated and purified HPHU to identify a novel cholesterol-lowering dipeptide (phenylalanine-proline, FP) and characterized the mechanism underlying its effects in vivo and in vitro. We identified FP as an active peptide from HPHU by MALDI-TOF mass spectrometry. FP significantly decreased serum total and non-HDL cholesterol and hepatic cholesterol levels in rats. FP significantly increased serum HDL cholesterol, accompanied by a significant decrease in the atherogenic index. FP also significantly increased fecal cholesterol and acidic steroid excretion. Moreover, FP significantly decreased ATP-binding cassette transporter A1 (ABCA1) expression in the rat jejunum and reduced cholesterol absorption in Caco-2 cells. We found a novel cholesterol-lowering dipeptide FP that could improve cholesterol metabolism via the down-regulation of intestinal ABCA1. The cholesterol-lowering action induced by FP was disappeared in PepT1KO mice. FP-induced cholesterol-lowering action is mediated via PepT1 in mice.
Collapse
|
210
|
Huesca-Gómez C, Torres-Paz YE, Martínez-Alvarado R, Fuentevilla-Álvarez G, Del Valle-Mondragón L, Torres-Tamayo M, Soto ME, Gamboa R. Association between the transporters ABCA1/G1 and the expression of miR-33a/144 and the carotid intima media thickness in patients with arterial hypertension. Mol Biol Rep 2019; 47:1321-1329. [PMID: 31853766 DOI: 10.1007/s11033-019-05229-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022]
Abstract
ATP-binding cassette membrane transporters (ABC), functions as an outflow facilitator of phospholipids and cellular cholesterol, playing an important role in the development of atherosclerosis and arterial hypertension. ABC's transporters could post-transcriptionally regulated by miRs. Evaluate the association in the transporters ABCA1 and ABCG1 with the expression of miR-33a and miR-144 and the carotid intima media thickness (cIMT) in patients with essential arterial hypertension. The miR-33a-5p, miR-144-3p and mRNA ABCA1 and ABCG1 expression in monocytes from Mexican hypertensive patients were examined by RT-PCR. The miR-33a and miR-144 expression in monocytes and mRNA ABCA1 and ABCG1 from Mexican hypertensive patients were examined by RT-PCR. This study involved 84 subjects (42 normotensive subjects and 42 patients with essential hypertension). Our study revealed that miR-33a expression (p = 0.001) and miR-144 (p = 0.985) were up-regulated, meanwhile, ABCA1 and ABCG1 transporters were down-regulated (p = 0.007 and p = 0.550 respectively) in hypertensive patients compared with the control group. The trend remains for miR33a/ABCA1 in presence of cIMT. Moreover, an inverse correlation was found with the expression levels of ABCA1 and ABCG1 as well as in HDL-C with miR-33a and miR-144. Our results showed an increase in the expression of miR-33a and miR-144 and an inverse correlation in their target ABCA1 and ABCG1; it may be associated with essential arterial hypertension in patients with cIMT and as consequence for atheromatous plaque.
Collapse
Affiliation(s)
- Claudia Huesca-Gómez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No 1, Col. Sección XVI, C.P. 14080, Mexico City, Mexico
| | - Yazmín Estela Torres-Paz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No 1, Col. Sección XVI, C.P. 14080, Mexico City, Mexico
| | - Rocío Martínez-Alvarado
- Department of Endocrinology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Giovanny Fuentevilla-Álvarez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No 1, Col. Sección XVI, C.P. 14080, Mexico City, Mexico
| | | | - Margarita Torres-Tamayo
- Department of Endocrinology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Ma Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Ricardo Gamboa
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No 1, Col. Sección XVI, C.P. 14080, Mexico City, Mexico.
| |
Collapse
|
211
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
212
|
The impact of PSRC1 overexpression on gene and transcript expression profiling in the livers of ApoE -/- mice fed a high-fat diet. Mol Cell Biochem 2019; 465:125-139. [PMID: 31838625 DOI: 10.1007/s11010-019-03673-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/03/2019] [Indexed: 01/16/2023]
Abstract
Our previous studies have confirmed that proline/serine-rich coiled-coil 1 (PSRC1) overexpression can regulate blood lipid levels and inhibit atherosclerosis (AS) development. In the current study, the gene and transcript expression profiles in the livers of ApoE-/- mice overexpressing PSRC1 were investigated. HiSeq X Ten RNA sequencing (RNA-seq) analysis was used to examine the differentially expressed genes (DEGs) and differentially expressed transcripts in the livers of PSRC1-overexpressing ApoE-/- and control mice. Then, Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these DEGs and on long noncoding RNA (lncRNA) predicted target genes. A total of 1892 significant DEGs were identified: 1431 were upregulated (e.g., Cyp2a4, Obp2a, and Sertad4), and 461 were downregulated (e.g., Moxd1, Egr1, and Elovl3). In addition, 8184 significant differentially expressed transcripts were identified, 4908 of which were upregulated and 3276 of which were downregulated. Furthermore, 1106 significant differentially expressed lncRNAs were detected, 713 of which were upregulated and 393 of which were downregulated. Quantitative reverse transcription PCR (qRT-PCR) verified changes in 10 randomly selected DEGs. GO analyses showed that the DEGs and predicted lncRNA target genes were mostly enriched for actin binding and lipid metabolism. KEGG biological pathway analyses showed that the DEGs in the livers of PSRC1-overexpressing ApoE-/- mice were enriched in the mitogen-activated protein kinase (MAPK) pathway. These findings reveal that PSRC1 may affect liver actin polymerization and cholesterol metabolism-related genes or pathways. These mRNAs and lncRNAs may represent new biomarkers and targets for the diagnosis and therapy of lipid metabolism disturbance and AS.
Collapse
|
213
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
214
|
MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem 2019; 76:1-12. [PMID: 31808077 DOI: 10.1007/s13105-019-00710-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered as the most common cardiovascular disease and a leading cause of global mortality, which develops through consecutive steps. Various cellular and molecular biomarkers such as microRNAs are identified to be involved in atherosclerosis progression. MicroRNAs are a group of endogenous, short, non-coding RNAs, which are able to bind to specific sequences on target messenger RNAs and thereby modulate gene expression post-transcriptionally. MicroRNAs are key players in wide range of biological processes; thus, their expression level is regulated in pathophysiological conditions. Ample evidences including in vitro and in vivo studies approved a critical role of microRNAs in epigenetic and the sequential processes of atherosclerosis from risk factors to plaque formation, progression, and rupture. Based on these findings, miRNAs seems to be promising candidates for therapeutic approach. This review summarizes the role of miRNAs in atherosclerosis development, epigenetic, and therapy. Moreover, the application of exosomes in miRNA delivery, and/or their prognostic and diagnostic values are also discussed.
Collapse
|
215
|
Zhang Y, Zhan Y, Liu D, Yu B. Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv 2019; 26:612-621. [PMID: 31210063 PMCID: PMC6586131 DOI: 10.1080/10717544.2019.1628117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Our study aims to investigate the effect of microRNA-183 (miR-183) on human umbilical vascular endothelial cells (HUVECs) injury by targeting IRS1. HUVECs injury was induced by oxidized low-density lipoprotein (ox-LDL). HUVECs were grouped so as to explore the role of ox-LDL and miR-183 in HUVECs injury, with the expression of miR-183 and IRS1 detected. Additionally, the related factors of oxidative stress and inflammation, as well as angiogenesis ability, proliferation, cell cycle, apoptosis, invasion, and migration abilities were also measured. Ox-LDL treatment could decrease the activity of HUVECs, increase the level of oxidative stress and inflammation, and induce the HUVECs injury. miR-183 could inhibit the expression of IRS1. The inhibition of miR-183 expression in ox-LDL-induced HUVECs injury could enhance cell activity, inhibit inflammatory level, and thus resist cell injury. Low expression of IRS1 could reverse the inhibition of miR-183 on HUVECs injury. This study highlights that inhibition of miR-183 expression may resist HUVECs injury by upregulating expression of IRS1.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yefei Zhan
- Department of Intensive Care Unit, Ningbo No 2 Hospital, Ningbo, People’s Republic of China
| | - Dandan Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| |
Collapse
|
216
|
Tian J, Popal MS, Zhao Y, Liu Y, Chen K, Liu Y. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application. Aging Dis 2019; 10:1302-1310. [PMID: 31788341 PMCID: PMC6844582 DOI: 10.14336/ad.2018.1020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
Abstract
Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinfan Tian
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mohammad Sharif Popal
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingke Zhao
- 3Li Ka Shing Faculty of Medicine, The University of HongKong, Pokfulam, Hong Kong
| | - Yanfei Liu
- 4Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
217
|
Ma M, Yin Z, Zhong H, Liang T, Guo L. Analysis of the expression, function, and evolution of miR-27 isoforms and their responses in metabolic processes. Genomics 2019; 111:1249-1257. [DOI: 10.1016/j.ygeno.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
|
218
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
219
|
Anti-ApoA-1 IgGs in Familial Hypercholesterolemia Display Paradoxical Associations with Lipid Profile and Promote Foam Cell Formation. J Clin Med 2019; 8:jcm8122035. [PMID: 31766415 PMCID: PMC6947407 DOI: 10.3390/jcm8122035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) promote atherogenesis via innate immune receptors, and may impair cellular cholesterol homeostasis (CH). We explored the presence of anti-ApoA-1 IgG in children (5-15 years old) with or without familial hypercholesterolemia (FH), analyzing their association with lipid profiles, and studied their in vitro effects on foam cell formation, gene regulation, and their functional impact on cholesterol passive diffusion (PD). METHODS Anti-ApoA-1 IgG and lipid profiles were measured on 29 FH and 25 healthy children. The impact of anti-ApoA-1 IgG on key CH regulators (SREBP2, HMGCR, LDL-R, ABCA1, and miR-33a) and foam cell formation detected by Oil Red O staining were assessed using human monocyte-derived macrophages. PD experiments were performed using a validated THP-1 macrophage model. RESULTS Prevalence of high anti-ApoA-1 IgG levels (seropositivity) was about 38% in both study groups. FH children seropositive for anti-ApoA-1 IgG had significant lower total cholesterol LDL and miR-33a levels than those who were seronegative. On macrophages, anti-ApoA-1 IgG induced foam cell formation in a toll-like receptor (TLR) 2/4-dependent manner, accompanied by NF-kB- and AP1-dependent increases of SREBP-2, LDL-R, and HMGCR. Despite increased ABCA1 and decreased mature miR-33a expression, the increased ACAT activity decreased membrane free cholesterol, functionally culminating to PD inhibition. CONCLUSIONS Anti-ApoA-1 IgG seropositivity is frequent in children, unrelated to FH, and paradoxically associated with a favorable lipid profile. In vitro, anti-ApoA-1 IgG induced foam cell formation through a complex interplay between innate immune receptors and key cholesterol homeostasis regulators, functionally impairing the PD cholesterol efflux capacity of macrophages.
Collapse
|
220
|
Price NL, Miguel V, Ding W, Singh AK, Malik S, Rotllan N, Moshnikova A, Toczek J, Zeiss C, Sadeghi MM, Arias N, Baldán Á, Andreev OA, Rodríguez-Puyol D, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C, Lamas S. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 2019; 4:131102. [PMID: 31613798 DOI: 10.1172/jci.insight.131102] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can partially prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in 2 mouse models of kidney disease. These effects were not related to changes in circulating leukocytes because bone marrow transplants from miR-33-deficient animals did not have a similar impact on disease progression. Most important, targeted delivery of miR-33 peptide nucleic acid inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| | - Wen Ding
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abhishek K Singh
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Moshnikova
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jakub Toczek
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Caroline Zeiss
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mehran M Sadeghi
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Noemi Arias
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| |
Collapse
|
221
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
222
|
Erhartova D, Cahova M, Dankova H, Heczkova M, Mikova I, Sticova E, Spicak J, Seda O, Trunecka P. Serum miR-33a is associated with steatosis and inflammation in patients with non-alcoholic fatty liver disease after liver transplantation. PLoS One 2019; 14:e0224820. [PMID: 31703079 PMCID: PMC6839850 DOI: 10.1371/journal.pone.0224820] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background & aims MiR-33a has emerged as a critical regulator of lipid homeostasis in the liver. Genetic deficiency of miR-33a aggravates liver steatosis in a preclinical model of non-alcoholic fatty liver disease (NAFLD), and relative expression of miR-33a is increased in the livers of patients with non-alcoholic steatohepatitis (NASH). It was unknown whether miR-33a is detectable in the serum of patients with NAFLD. We sought to determine whether circulating miR-33a is associated with histological hepatic steatosis, inflammation, ballooning or fibrosis, and whether it could be used as a serum marker in patients with NAFLD/NASH. Methods We analysed circulating miR-33a using quantitative PCR in 116 liver transplant recipients who underwent post-transplant protocol liver biopsy. Regression analysis was used to determine association of serum miR-33a with hepatic steatosis, inflammation, ballooning and fibrosis in liver biopsy. Results Liver graft steatosis and inflammation, but not ballooning or fibrosis, were significantly associated with serum miR-33a, dyslipidemia and insulin resistance markers on univariate analysis. Multivariate analysis showed that steatosis was independently associated with serum miR-33a, ALT, glycaemia and waist circumference, whereas inflammation was independently associated with miR-33a, HbA1 and serum triglyceride levels. Receiver operating characteristic analysis showed that exclusion of serum miR-33a from multivariate analysis resulted in non-significant reduction of prediction model accuracy of liver steatosis or inflammation. Conclusions Our data indicate that circulating miR-33a is an independent predictor of liver steatosis and inflammation in patients after liver transplantation. Although statistically significant, its contribution to the accuracy of prediction model employing readily available clinical and biochemical variables was limited in our cohort.
Collapse
Affiliation(s)
- Denisa Erhartova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Charles University, First Faculty of Medicine, Institute of Physiology, Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Helena Dankova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marie Heczkova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Mikova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Julius Spicak
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Seda
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Institute of Biology and Medical Genetics, Prague, Czech Republic
| | - Pavel Trunecka
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
223
|
MicroRNAs as Potential Biomarkers in Atherosclerosis. Int J Mol Sci 2019; 20:ijms20225547. [PMID: 31703274 PMCID: PMC6887712 DOI: 10.3390/ijms20225547] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a complex multifactorial disease that, despite advances in lifestyle management and drug therapy, remains to be the major cause of high morbidity and mortality rates from cardiovascular diseases (CVDs) in industrialized countries. Therefore, there is a great need in reliable diagnostic/prognostic biomarkers and effective treatment alternatives to reduce its burden. It was established that microRNAs (miRNAs/miRs), a class of non-coding single-stranded RNA molecules, can regulate the expression of genes at the post-transcriptional level and, accordingly, coordinate the cellular protein expression. Thus, they are involved not only in cell-specific physiological functions but also in the cellular and molecular mechanisms of human pathologies, including atherosclerosis. MiRNAs may be significant in the dysregulation that affects endothelial integrity, the function of vascular smooth muscle and inflammatory cells, and cellular cholesterol homeostasis that drives the initiation and growth of an atherosclerotic plaque. Besides, distinct expression patterns of several miRNAs are attributed to atherosclerotic and cardiovascular patients. In this article, the evidence indicating the multiple critical roles of miRNAs and their relevant molecular mechanisms related to atherosclerosis development and progression was reviewed. Moreover, the effects of miRNAs on atherosclerosis enabled to exploit them as novel diagnostic biomarkers and therapeutic targets that may lead to better management of atherosclerosis and CVDs.
Collapse
|
224
|
Hung YH, Kanke M, Kurtz CL, Cubitt RL, Bunaciu RP, Zhou L, White PJ, Vickers KC, Hussain MM, Li X, Sethupathy P. MiR-29 Regulates de novo Lipogenesis in the Liver and Circulating Triglyceride Levels in a Sirt1-Dependent Manner. Front Physiol 2019; 10:1367. [PMID: 31736786 PMCID: PMC6828850 DOI: 10.3389/fphys.2019.01367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are known regulators of lipid homeostasis. We recently demonstrated that miR-29 controls the levels of circulating cholesterol and triglycerides, but the mechanisms remained unknown. In the present study, we demonstrated that systemic delivery of locked nucleic acid inhibitor of miR-29 (LNA29) through subcutaneous injection effectively suppresses hepatic expression of miR-29 and dampens de novo lipogenesis (DNL) in the liver of chow-fed mice. Next, we used mice with liver-specific deletion of Sirtuin 1 (L-Sirt1 KO), a validated target of miR-29, and demonstrated that the LNA29-induced reduction of circulating triglycerides, but not cholesterol, is dependent on hepatic Sirt1. Moreover, lipidomics analysis revealed that LNA29 suppresses hepatic triglyceride levels in a liver-Sirt1 dependent manner. A comparative transcriptomic study of liver tissue from LNA29-treated wild-type/floxed and L-Sirt1 KO mice identified the top candidate lipogenic genes and hepatokines through which LNA29 may confer its effects on triglyceride levels. The transcriptomic analysis also showed that fatty acid oxidation (FAO) genes respond differently to LNA29 depending on the presence of hepatic Sirt1. Overall, this study demonstrates the beneficial effects of LNA29 on DNL and circulating lipid levels. In addition, it provides mechanistic insight that decouples the effect of LNA29 on circulating triglycerides from that of circulating cholesterol.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Catherine Lisa Kurtz
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca L Cubitt
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Liye Zhou
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, United States
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | | | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
225
|
Peng C, Lei P, Li X, Xie H, Yang X, Zhang T, Cao Z, Zhang J. Down-regulated of SREBP-1 in circulating leukocyte is a risk factor for atherosclerosis: a case control study. Lipids Health Dis 2019; 18:177. [PMID: 31610782 PMCID: PMC6792215 DOI: 10.1186/s12944-019-1125-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sterol regulatory-element binding proteins (SREBPs) and mir-33 (miR-33a, miR-33b), which are encoded by the introns of SREBPs, are key factors in the lipid metabolism pathway. SREBPs mRNA in circulating leucocyte and carotid plaques, along with various risk factors that associated with Coronary Atherosclerotic Disease (CAD) were investigated in a central Chinese cohort. METHODS A total of 218 coronary atherosclerotic disease (CAD) patients, and 178 non-CAD controls, were recruited to collect leukocytes. Carotid plaques and peripheral blood were obtained from CAD patients undergoing carotid endarterectomy (CEA) (n = 12) while THP-1 and peripheral blood mononuclear cells (PBMCs) were stimulated with Oxidized low-density lipoprotein (ox-LDL) to establish an in vitro foam cell formation model. SREBPs and miR-33 levels were quantified by qPCR. Routine biochemical markers were measured using standard procedures. RESULTS SREBP-1 mRNA level of circulating leucocytes in CAD patients were significantly lower than in non-CAD controls (p = 0.005). After stratification coronary artery atherosclerotic complexity, we detected a significant reduction of SREBP-1 in high-risk complexity CAD patients (SYNTAX score > 23) (p = 0.001). Logistic regression analysis indicated that decreased expression of SREBP-1 was a risk factor of CAD (odds ratio (OR) =0.48, 95% confidence interval (CI) = 0.30~0.76, p = 0.002) after adjusting clinical confounders; the mRNA levels of SREBPs in carotid plaques correlated with the corresponding value in circulating leukocytes (SREBP-1 r = 0.717, p = 0.010; SREBP-2 r = 0.612, p = 0.034). Finally, there was no significant difference in serum miR-33 levels between CAD patients and controls. CONCLUSIONS Our finding suggesting a potential role in the adjustment of established CAD risk. The future clarification of how SREBP-1 influence the pathogenesis of CAD might pave the way for the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Chunyan Peng
- Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, China.
| | - Pan Lei
- Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Xiandong Li
- Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Huaqiang Xie
- Department of Cardiology, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaowen Yang
- Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Zhang
- Department of Neurosurgery, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Zheng Cao
- Department of Cardiology, Taihe hospital, Hubei University of Medicine, Shiyan, China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
226
|
Li P, Gao X, Sun X, Li W, Yi B, Zhu L. A novel epigenetic mechanism of FXR inhibiting GLP-1 secretion via miR-33 and its downstream targets. Biochem Biophys Res Commun 2019; 517:629-635. [PMID: 31387746 DOI: 10.1016/j.bbrc.2019.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022]
Abstract
Type II diabetes is a complex, chronic, and progressive disease. Previously, we demonstrate that FXR inhibits GLP-1 secretion via interacting with CREB to inhibit the transcriptional activity of CREB, thus promoting the development of type II diabetes. Epigenetic modifications, such as DNA methylation, histone acetylation, and post-transcriptional RNA regulation, are essential mediators contributing to diabetes-associated morbidity and mortality. Thus, we attempted to investigate the epigenetic mechanisms of FXR modulating GLP-1 secretion. Firstly, the involvement of histone acetylation, DNA methylation, and post-transcriptional regulation in FXR inhibiting GLP-1 secretion was verified. As FXR overexpression significantly inhibited the activity of GCG 3'-UTR, we hypothesize that miRNA might participate in the mechanism. Two online tools and real-time PCR revealed that FXR promoted miR-33 expression. Moreover, miR-33 inhibited the expression of GCG and CREB1 through direct targeting in STC-1 cells. FXR overexpression in STC-1 cells significantly reduced the mRNA expression and protein levels of both GCG and CREB1, as well as the secretion of GLP-1; miR-33 inhibition exerted opposing effects. More importantly, the effects of FXR overexpression were significantly reversed by miR-33 inhibition, indicating that FXR inhibited GLP-1 secretion through promoting miR-33 expression, therefore inhibiting the expression of miR-33 targets, GCG and CREB1. In conclusion, we provide a novel epigenetic mechanism by which FXR inhibits the secretion of GLP-1 through miR-33 and its two downstream targets, GCG and CREB1. These findings might provide innovative strategies for improving type II diabetes, which needs further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiang Gao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Bo Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
227
|
van Ingen E, Foks AC, Kröner MJ, Kuiper J, Quax PHA, Bot I, Nossent AY. Antisense Oligonucleotide Inhibition of MicroRNA-494 Halts Atherosclerotic Plaque Progression and Promotes Plaque Stabilization. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:638-649. [PMID: 31689618 PMCID: PMC6838792 DOI: 10.1016/j.omtn.2019.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022]
Abstract
We have previously shown that third-generation antisense (3GA) inhibition of 14q32 microRNA (miRNA)-494 reduced early development of atherosclerosis. However, patients at risk of atherosclerotic complications generally present with advanced and unstable lesions. Here, we administered 3GAs against 14q32 miRNA-494 (3GA-494), miRNA-329 (3GA-329), or a control (3GA-ctrl) to mice with advanced atherosclerosis. Atherosclerotic plaque formation in LDLr−/− mice was induced by a 10-week high-fat diet and simultaneous carotid artery collar placement. Parallel to 3GA-treatment, hyperlipidemia was normalized by a diet switch to regular chow for an additional 5 weeks. We show that, even though plasma cholesterol levels were normalized after diet switch, carotid artery plaque progression continued in 3GA-ctrl mice. However, treatment with 3GA-494 and, in part, 3GA-329 halted plaque progression. Furthermore, in the aortic root, intra-plaque collagen content was increased in 3GA-494 mice, accompanied by a reduction in the intra-plaque macrophage content. Pro-atherogenic cells in the circulation, including inflammatory Ly6Chi monocytes, neutrophils, and blood platelets, were decreased upon miRNA-329 and miRNA-494 inhibition. Taken together, treatment with 3GA-494, and in part with 3GA-329, halts atherosclerotic plaque progression and promotes stabilization of advanced lesions, which is highly relevant for human atherosclerosis.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Amanda C Foks
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Mara J Kröner
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Johan Kuiper
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Ilze Bot
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
228
|
Niu X, Schulert GS. Functional Regulation of Macrophage Phenotypes by MicroRNAs in Inflammatory Arthritis. Front Immunol 2019; 10:2217. [PMID: 31572403 PMCID: PMC6753331 DOI: 10.3389/fimmu.2019.02217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory arthritis including rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) exhibit the shared feature of changes in activation and polarization of circulating monocytes and tissue macrophages. Numerous microRNAs (miRs) have been found to have key functions in regulating inflammation and macrophage polarization. Although there is increasing interest in the roles of miRs in both RA and JIA, less is known regarding how miRs relate to functional properties of immune cells, including monocytes and macrophages. Interestingly, miRs can function both to promote inflammatory phenotypes and pro-inflammatory polarization, as well as through negative-feedback loops to limit inflammation. Here, we review the functional roles of several miRs in macrophages in inflammatory arthritis, with a particular focus on vivo effects of miR alteration in experimental arthritis. We also consider how current efforts to target miRs clinically could modify functional monocyte and macrophage polarization in vivo, and serve as novel therapies for diseases such as RA and JIA.
Collapse
Affiliation(s)
- Xiaoling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, The Children's Hospital of Shanghai Jiaotong University, Pudong, China.,Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
229
|
Acharya A, Berry DC, Zhang H, Jiang Y, Jones BT, Hammer RE, Graff JM, Mendell JT. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev 2019; 33:1367-1380. [PMID: 31488578 PMCID: PMC6771383 DOI: 10.1101/gad.328955.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.
Collapse
Affiliation(s)
- Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jonathan M Graff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
230
|
Nishino T, Horie T, Baba O, Sowa N, Hanada R, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Ide Y, Koyama S, Kimura M, Nagata M, Yoshida K, Takagi Y, Nakamura T, Hasegawa K, Miyamoto S, Kimura T, Ono K. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arterioscler Thromb Vasc Biol 2019; 38:2460-2473. [PMID: 30354203 DOI: 10.1161/atvbaha.118.311409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tomohiro Nishino
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Naoya Sowa
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Ritsuko Hanada
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhide Kuwabara
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Tetsushi Nakao
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masataka Nishiga
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Hitoo Nishi
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhiro Nakashima
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Fumiko Nakazeki
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yuya Ide
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Koyama
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Manabu Nagata
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Kazumichi Yoshida
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasushi Takagi
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Moriguchi, Japan (T.N.)
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Japan (K.H.)
| | - Susumu Miyamoto
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Koh Ono
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
231
|
Sun JJ, Zheng LG, Chen CY, Zhang JY, You CH, Zhang QH, Ma HY, Monroig Ó, Tocher DR, Wang SQ, Li YY. MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:475-487. [PMID: 31020472 DOI: 10.1007/s10126-019-09895-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases (fads2) in the rabbitfish Siganus canaliculatus, but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3'UTR of insulin-induced gene 1 (insig1), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5, as well as srebp1. In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5, whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1. The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
Collapse
Affiliation(s)
- Jun Jun Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Li Guo Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Ying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jin Ying Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Hong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qing Hao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hong Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Shu Qi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Yuan You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
232
|
Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z, Ilbeigi D, Seiri P, Yousefi Z. Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells. Biochem Genet 2019; 57:507-521. [PMID: 30697640 DOI: 10.1007/s10528-019-09905-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
Non-alcoholic fatty liver disease is one of the main causes of chronic liver disease and therefore is currently considered a major public health problem. Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase enzyme that contributes in the regulation of metabolic processes and protects against lipid accumulation in hepatocytes. Its expression is potentially regulated by microRNAs which attach to the 3' untranslated region (3'-UTR) of their target mRNA. HepG2 cells were incubated by glucose to induce lipid accumulation and were subsequently transfected with mir-23b mimic and inhibitor. Real-time PCR was used for measuring the expression of mir-23b and SIRT1 mRNA. Cell survival assay and intracellular triglyceride measurement were performed using colorimetric methods. Determination of SIRT1 protein level and activity were done by western blot and fluorometric analysis, respectively. The interaction of miR-23b with 3'-UTR of SIRT1 mRNA was confirmed by dual luciferase. miR-23b mimic inhibited gene and protein expression of SIRT1, while the inhibitor of miR-23b significantly elevated the expression levels of SIRT1 mRNA and protein. The results showed that the 3'-UTR of SIRT1 mRNA is a direct target for miR-23b. The intracellular triglyceride level was increased following the inhibition of SIRT1 in transfected HepG2 cell by miR-23b mimic. Cell viability was decreased in response to miR-23b upregulation compared to control cells. miR-23b reduces the expression and activity of SIRT1 and therefore may be a causative factor in the enhancement of lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Mohammad Borji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | - Ali Akbar Owji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Davod Ilbeigi
- Neuroscience Researcher Center, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
233
|
Hussain MM, Goldberg IJ. Human MicroRNA-33b Promotes Atherosclerosis in Apoe -/- Mice. Arterioscler Thromb Vasc Biol 2019; 38:2272-2275. [PMID: 30354227 DOI: 10.1161/atvbaha.118.311617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- M Mahmood Hussain
- From the Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY; and Division of Endocrinology, Diabetes, and Metabolism, NYU School of Medicine, NYU Langone Health, New York
| | - Ira J Goldberg
- From the Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY; and Division of Endocrinology, Diabetes, and Metabolism, NYU School of Medicine, NYU Langone Health, New York
| |
Collapse
|
234
|
Koyama S, Horie T, Nishino T, Baba O, Sowa N, Miyasaka Y, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Ide Y, Kimura M, Tsuji S, Ruiz Rodriguez R, Xu S, Yamasaki T, Otani C, Watanabe T, Nakamura T, Hasegawa K, Kimura T, Ono K. Identification of Differential Roles of MicroRNA-33a and -33b During Atherosclerosis Progression With Genetically Modified Mice. J Am Heart Assoc 2019; 8:e012609. [PMID: 31242815 PMCID: PMC6662357 DOI: 10.1161/jaha.119.012609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background MicroRNA (miR)‐33 targets cholesterol transporter ATP‐binding cassette protein A1 and other antiatherogenic targets and contributes to atherogenic progression. Its inhibition or deletion is known to result in the amelioration of atherosclerosis in mice. However, mice lack the other member of the miR‐33 family, miR‐33b, which exists in humans and other large mammals. Thus, precise evaluation and comparison of the responsibilities of these 2 miRs during the progression of atherosclerosis has not been reported, although they are essential. Methods and Results In this study, we performed a comprehensive analysis of the difference between the function of miR‐33a and miR‐33b using genetically modified mice. We generated 4 strains with or without miR‐33a and miR‐33b. Comparison between mice with only miR‐33a (wild‐type mice) and mice with only miR‐33b (miR‐33a−/−/miR‐33b+/+) revealed the dominant expression of miR‐33b in the liver. To evaluate the whole body atherogenic potency of miR‐33a and miR‐33b, we developed apolipoprotein E–deficient/miR‐33a+/+/miR‐33b−/− mice and apolipoprotein E–deficient/miR‐33a−/−/miR‐33b+/+ mice. With a high‐fat and high‐cholesterol diet, the apolipoprotein E–deficient/miR‐33a−/−/miR‐33b+/+ mice developed increased atherosclerotic plaque versus apolipoprotein E–deficient/miR‐33a+/+/miR‐33b−/− mice, in line with the predominant expression of miR‐33b in the liver and worsened serum cholesterol profile. By contrast, a bone marrow transplantation study showed no significant difference, which was consistent with the relevant expression levels of miR‐33a and miR‐33b in bone marrow cells. Conclusions The miR‐33 family exhibits differences in distribution and regulation and particularly in the progression of atherosclerosis; miR‐33b would be more potent than miR‐33a.
Collapse
Affiliation(s)
- Satoshi Koyama
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Takahiro Horie
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomohiro Nishino
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Baba
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Naoya Sowa
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yui Miyasaka
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yasuhide Kuwabara
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tetsushi Nakao
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masataka Nishiga
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hitoo Nishi
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yasuhiro Nakashima
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Fumiko Nakazeki
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yuya Ide
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masahiro Kimura
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Shuhei Tsuji
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Randolph Ruiz Rodriguez
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Sijia Xu
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomohiro Yamasaki
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Chiharu Otani
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Toshimitsu Watanabe
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomoyuki Nakamura
- 2 Department of Pharmacology Kansai Medical University Hirakata Japan
| | - Koji Hasegawa
- 3 Division of Translational Research Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Takeshi Kimura
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Koh Ono
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
235
|
Liu S, Sui Q, Zhao Y, Chang X. Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7157-7166. [PMID: 31146527 DOI: 10.1021/acs.jafc.9b02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lonicera caerulea berry polyphenols (LCBP) are known to reduce cholesterol accumulation. Currently, it is unknown whether LCBP can activate Sirtuin 1 (SIRT1) to regulate the formation of RAW264.7 macrophage foam cells. In this study, the effect of LCBP on lipid accumulation in macrophages was evaluated. Fluorescently labeled ox-LDL and 25-NBD cholesterol were used to detect the ox-LDL uptake and cholesterol outflow rate from macrophages. Gene silencing was performed using siRNA to detect changes in the expression of the ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 2 (SREBP2), and SIRT1 proteins using Western blotting, and changes in the expression of miR-33 were detected by real-time polymerase chain reaction. The results showed that treatment with 80 μg/mL LCBP significantly inhibited the accumulation of lipids in RAW264.7 macrophages induced by ox-LDL and reduced intracellular cholesterol levels by activating SIRT1 to enhance the expression of ABCA1, a cholesterol efflux gene, but not independent effect. Of the three key LCBP components investigated, chlorogenic acid was found to activate SIRT1 and regulate the expression of the cholesterol-related factors ABCA1, SREBP2, and miR-33; cyanidin-3-glucoside and catechins were effective to a lesser extent. Our results suggest a novel hypolipidemic mechanism of LCBP.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Qianqian Sui
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
236
|
Nguyen MA, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez AC, Cottee ML, Afolayan E, Farah E, Kahiel Z, Côté M, Gadde S, Rayner KJ. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo. ACS NANO 2019; 13:6491-6505. [PMID: 31125197 DOI: 10.1021/acsnano.8b09679] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The prevention and treatment of cardiovascular diseases (CVD) has largely focused on lowering circulating LDL cholesterol, yet a significant burden of atherosclerotic disease remains even when LDL is low. Recently, microRNAs (miRNAs) have emerged as exciting therapeutic targets for cardiovascular disease. miRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression by degradation or translational inhibition of target mRNAs. A number of miRNAs have been found to modulate all stages of atherosclerosis, particularly those that promote the efflux of excess cholesterol from lipid-laden macrophages in the vessel wall to the liver. However, one of the major challenges of miRNA-based therapy is to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. We sought to develop chitosan nanoparticles (chNPs) that can deliver functional miRNA mimics to macrophages and to determine if these nanoparticles can alter cholesterol efflux and reverse cholesterol transport in vivo. We developed chNPs with a size range of 150-200 nm via the ionic gelation method using tripolyphosphate (TPP) as a cross-linker. In this method, negatively charged miRNAs were encapsulated in the nanoparticles by ionic interactions with polymeric components. We then optimized the efficiency of intracellular delivery of different formulations of chitosan/TPP/miRNA to mouse macrophages. Using a well-defined miRNA with roles in macrophage cholesterol metabolism, we tested whether chNPs could deliver functional miRNAs to macrophages. We find chNPs can transfer exogenous miR-33 to naïve macrophages and reduce the expression of ABCA1, a potent miR-33 target gene, both in vitro and in vivo, confirming that miRNAs delivered via nanoparticles can escape the endosomal system and function in the RISC complex. Because miR-33 and ABCA1 play a key role in regulating the efflux of cholesterol from macrophages, we also confirmed that macrophages treated with miR-33-loaded chNPs exhibited reduced cholesterol efflux to apolipoprotein A1, further confirming functional delivery of the miRNA. In vivo, mice treated with miR33-chNPs showed decreased reverse cholesterol transport (RCT) to the plasma, liver, and feces. In contrast, when efflux-promoting miRNAs were delivered via chNPs, ABCA1 expression and cholesterol efflux into the RCT pathway were improved. Over all, miRNAs can be efficiently delivered to macrophages via nanoparticles, where they can function to regulate ABCA1 expression and cholesterol efflux, suggesting that these miRNA nanoparticles can be used in vivo to target atherosclerotic lesions.
Collapse
Affiliation(s)
- My-Anh Nguyen
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Hailey Wyatt
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Leah Susser
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Michele Geoffrion
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Adil Rasheed
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Anne-Claire Duchez
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Mary Lynn Cottee
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Esther Afolayan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Eliya Farah
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Zaina Kahiel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Suresh Gadde
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| |
Collapse
|
237
|
Ash GI, Kim D, Choudhury M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol Metab 2019; 30:369-383. [PMID: 31126754 PMCID: PMC6716370 DOI: 10.1016/j.tem.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology to medicine promises a wide range of new tools and possibilities, from earlier diagnostics and improved imaging, to better, more efficient, and more targeted therapies. This emerging field could help address obesity, with advances in drug delivery, nutraceuticals, and genetic and epigenetic therapeutics. Its application to obesity is still largely in the development phase. Here, we review the novel angle of nanotech applied to human consumable products and their specific applications to addressing obesity through nutraceuticals, with respect to benefits and limitations of current nanotechnology methods. Further, we review potential future applications to deliver genetic and epigenetic miRNA therapeutics. Finally, we discuss future directions, including theranostics, combinatory therapy, and personalized medicine.
Collapse
Affiliation(s)
- Garrett I Ash
- School of Nursing, Yale University, West Haven, CT, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
238
|
Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Rep 2019; 22:2133-2145. [PMID: 29466739 PMCID: PMC5860817 DOI: 10.1016/j.celrep.2018.01.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.
Collapse
|
239
|
Abstract
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Collapse
|
240
|
Bruen R, Fitzsimons S, Belton O. miR-155 in the Resolution of Atherosclerosis. Front Pharmacol 2019; 10:463. [PMID: 31139076 PMCID: PMC6527595 DOI: 10.3389/fphar.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.
Collapse
Affiliation(s)
- Robyn Bruen
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
241
|
Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X, Liang S, Ou J, Zhou J, Luo B, Shang J. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis 2019; 10:365. [PMID: 31064980 PMCID: PMC6504957 DOI: 10.1038/s41419-019-1599-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE−/− mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE−/− mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiani Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Feiran Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Qingqing Lei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Tingting Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Kai Li
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiawei Guo
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Guolong Bu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, 510080, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, 510080, Guangzhou, China.,Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, 510080, Guangzhou, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, 510080, Guangzhou, China
| | - Bin Luo
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.
| |
Collapse
|
242
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
243
|
Song M, Xu S, Zhong A, Zhang J. Crosstalk between macrophage and T cell in atherosclerosis: Potential therapeutic targets for cardiovascular diseases. Clin Immunol 2019; 202:11-17. [DOI: 10.1016/j.clim.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
|
244
|
|
245
|
Sun Y, Oravecz-Wilson K, Bridges S, McEachin R, Wu J, Kim SH, Taylor A, Zajac C, Fujiwara H, Peltier DC, Saunders T, Reddy P. miR-142 controls metabolic reprogramming that regulates dendritic cell activation. J Clin Invest 2019; 129:2029-2042. [PMID: 30958798 DOI: 10.1172/jci123839] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
DCs undergo metabolic reprogramming from a predominantly oxidative phosphorylation (OXPHOS) to glycolysis to mount an immunogenic response. The mechanism underpinning the metabolic reprogramming remains elusive. We demonstrate that miRNA-142 (miR-142) is pivotal for this shift in metabolism, which regulates the tolerogenic and immunogenic responses of DCs. In the absence of miR-142, DCs fail to switch from OXPHOS and show reduced production of proinflammatory cytokines and the ability to activate T cells in vitro and in in vivo models of sepsis and alloimmunity. Mechanistic studies demonstrate that miR-142 regulates fatty acid (FA) oxidation, which causes the failure to switch to glycolysis. Loss- and gain-of-function experiments identified carnitine palmitoyltransferase -1a (CPT1a), a key regulator of the FA pathway, as a direct target of miR-142 that is pivotal for the metabolic switch. Thus, our findings show that miR-142 is central to the metabolic reprogramming that specifically favors glycolysis and immunogenic response by DCs.
Collapse
Affiliation(s)
- Yaping Sun
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Julia Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie H Kim
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cynthia Zajac
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hideaki Fujiwara
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Thomas Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pediatrics, and
| |
Collapse
|
246
|
Hicks JA, Porter TE, Sunny NE, Liu HC. Delayed Feeding Alters Transcriptional and Post-Transcriptional Regulation of Hepatic Metabolic Pathways in Peri-Hatch Broiler Chicks. Genes (Basel) 2019; 10:genes10040272. [PMID: 30987204 PMCID: PMC6523616 DOI: 10.3390/genes10040272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatic fatty acid oxidation of yolk lipoproteins provides the main energy source for chick embryos. Post-hatching these yolk lipids are rapidly exhausted and metabolism switches to a carbohydrate-based energy source. We recently demonstrated that many microRNAs (miRNAs) are key regulators of hepatic metabolic pathways during this metabolic switching. MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in most eukaryotes. To further elucidate the roles of miRNAs in the metabolic switch, we used delayed feeding for 48 h to impede the hepatic metabolic switch. We found that hepatic expression of several miRNAs including miR-33, miR-20b, miR-34a, and miR-454 was affected by delaying feed consumption for 48 h. For example, we found that delayed feeding resulted in increased miR-20b expression and conversely reduced expression of its target FADS1, an enzyme involved in fatty acid synthesis. Interestingly, the expression of a previously identified miR-20b regulator FOXO3 was also higher in delayed fed chicks. FOXO3 also functions in protection of cells from oxidative stress. Delayed fed chicks also had much higher levels of plasma ketone bodies than their normal fed counterparts. This suggests that delayed fed chicks rely almost exclusively on lipid oxidation for energy production and are likely under higher oxidative stress. Thus, it is possible that FOXO3 may function to both limit lipogenesis as well as to help protect against oxidative stress in peri-hatch chicks until the initiation of feed consumption. This is further supported by evidence that the FOXO3-regulated histone deacetylase (HDAC2) was found to recognize the FASN (involved in fatty acid synthesis) chicken promoter in a yeast one-hybrid assay. Expression of FASN mRNA was lower in delayed fed chicks until feed consumption. The present study demonstrated that many transcriptional and post-transcriptional mechanisms, including miRNA, form a complex interconnected regulatory network that is involved in controlling lipid and glucose molecular pathways during the metabolic transition in peri-hatch chicks.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA.
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
247
|
Cardiovascular inflammation: RNA takes the lead. J Mol Cell Cardiol 2019; 129:247-256. [PMID: 30880251 DOI: 10.1016/j.yjmcc.2019.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Inflammation has recently gained tremendous attention as a key contributor in several chronic diseases. While physiological inflammation is essential to counter a wide variety of damaging stimuli and to improve wound healing, dysregulated inflammation such as in the myocardium and vasculature can promote cardiovascular diseases. Given the high severity, prevalence, and economic burden of these diseases, understanding the factors involved in the regulation of physiological inflammation is essential. Like other complex biological phenomena, RNA-based processes are emerging as major regulators of inflammatory responses. Among such processes are cis-regulatory elements in the mRNA of inflammatory genes, noncoding RNAs directing the production or localization of inflammatory cytokines/chemokines, or pathogenic RNA driving inflammatory responses. In this review, we describe several specific RNA-based molecular mechanisms by which physiological inflammation pertaining to cardiovascular diseases is regulated. These include the role of AU-rich element-containing mRNAs, long non-coding RNAs, microRNAs, and viral RNAs.
Collapse
|
248
|
Diao L, Bai L, Jiang X, Li J, Zhang Q. Long‐chain noncoding RNA GAS5 mediates oxidative stress in cardiac microvascular endothelial cells injury. J Cell Physiol 2019; 234:17649-17662. [PMID: 30825202 DOI: 10.1002/jcp.28388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liwei Diao
- Department of Cardiovascular Surgery The 2nd Affiliated Hospital of Harbin Medical University Harbin People's Republic of China
| | - Long Bai
- Department of Cardiovascular Surgery The 2nd Affiliated Hospital of Harbin Medical University Harbin People's Republic of China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery The 2nd Affiliated Hospital of Harbin Medical University Harbin People's Republic of China
| | - Jianjun Li
- Department of Cardiovascular Surgery The 2nd Affiliated Hospital of Harbin Medical University Harbin People's Republic of China
| | - Qinghua Zhang
- Department of Cardiovascular Surgery The 2nd Affiliated Hospital of Harbin Medical University Harbin People's Republic of China
| |
Collapse
|
249
|
Wang Y, Liu C, Hu L. Cholesterol regulates cell proliferation and apoptosis of colorectal cancer by modulating miR-33a-PIM3 pathway. Biochem Biophys Res Commun 2019; 511:685-692. [PMID: 30827510 DOI: 10.1016/j.bbrc.2019.02.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
The relationship between colorectal cancer (CRC) and cholesterol has been confirmed for many years, but the mechanism was not very clear. miR-33a was important in cholesterol metabolism and was abnormally expressed in many tumors, thus our study hypothesized that cholesterol effect on CRC by regulating miR-33a and its target gene PIM3, and verify it by series of assay. From results of CCK8 and flow cytometry, we confirmed cholesterol can stimulate CRC cell proliferation, promote cell cycle progression and inhibit cell apoptosis. miR-33a and SREBP2 mRNA expression were inhibited by cholesterol, and when cells transfected with miR-33a mimics or inhibitor the effect of cholesterol appeared a significant difference than before. In addition, PIM3 showed up-regulation with cholesterol treatment, and it was proved to be the target gene of miR-33a by dual luciferase reporter assay, it modulated CRC cells proliferation and apoptosis by phosphorylating p27, p21 and Bad protein. Thus, it inferred that cholesterol can regulate CRC development by miR-33a-PIM3 pathway.
Collapse
Affiliation(s)
- Yan Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Likuan Hu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
250
|
Huang R, Duan X, Fan J, Li G, Wang B. Role of Noncoding RNA in Development of Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8690592. [PMID: 30931332 PMCID: PMC6413411 DOI: 10.1155/2019/8690592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence globally, but little is known about its specific molecular mechanisms. During the past decade, noncoding RNAs (ncRNAs) have been linked to NAFLD initiation and progression. They are a class of RNAs that play an important role in regulating gene expression despite not encoding proteins. This review summarizes recent research on the relationship between ncRNAs and NAFLD. We discussed the potential applicability of ncRNAs as a biomarker for early NAFLD diagnosis and assessment of disease severity. With further study, ncRNAs should prove to be valuable new targets for NAFLD treatment and benefit the development of noninvasive diagnostic methods.
Collapse
Affiliation(s)
- Ruixian Huang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Duan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jangao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangming Li
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baocan Wang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|