201
|
Nititham J, Gupta R, Zeng X, Hartogensis W, Nixon DF, Deeks SG, Hecht FM, Liao W. Psoriasis risk SNPs and their association with HIV-1 control. Hum Immunol 2017; 78:179-184. [PMID: 27810495 PMCID: PMC5253078 DOI: 10.1016/j.humimm.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Human evolution has resulted in selection for genetic polymorphisms beneficial in the defense against pathogens. However, such polymorphisms may have the potential to heighten the risk of autoimmune disease. Here, we investigated whether psoriasis-associated single nucleotide polymorphisms influence host control of HIV-1 infection. We studied psoriasis and viral immune response variants in three HIV-positive cohorts: (1) HIV-1 controllers and non-controllers in the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort (n=366), (2) Individuals with primary HIV infection in the Options cohort (n=675), and (3) HIV-positive injection drug users from the Urban Health Study (UHS) (n=987). We found a strong association of two psoriasis MHC variants, rs9264942 and rs3021366, with both HIV-1 controller status and viral load, and identified another Class III MHC variant rs9368699 to be strongly associated with viral load. A number of genetic variants outside the MHC (SOX5, TLR9, SDC4, PROX1, IL12B, TLR4, MBL-2, TYK2, IFIH1) demonstrated nominal significance. Overall, our data suggest that several psoriasis variants within the MHC have a robust impact on HIV-1 control, while variants outside the MHC require further investigation.
Collapse
Affiliation(s)
- Joanne Nititham
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Rashmi Gupta
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Xue Zeng
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wendy Hartogensis
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Steven G Deeks
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Frederick M Hecht
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
202
|
Minimizing the risk of allo-sensitization to optimize the benefit of allogeneic cardiac-derived stem/progenitor cells. Sci Rep 2017; 7:41125. [PMID: 28117403 PMCID: PMC5259698 DOI: 10.1038/srep41125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that screening patient sera for the presence of HLA antibodies is important to provide an immune-educated choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the allogeneic reparative effects.
Collapse
|
203
|
Serena M, Parolini F, Biswas P, Sironi F, Blanco Miranda A, Zoratti E, Scupoli MT, Ziglio S, Valenzuela-Fernandez A, Gibellini D, Romanelli MG, Siccardi A, Malnati M, Beretta A, Zipeto D. HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Sci Rep 2017; 7:40037. [PMID: 28051183 PMCID: PMC5209703 DOI: 10.1038/srep40037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires β2-microglobulin (β2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to β2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring β2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with β2m. HIV-1 Env-pseudotyped viruses produced in the absence of β2m are less infectious than those produced in the presence of β2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to β2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Priscilla Biswas
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Sironi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Almudena Blanco Miranda
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Elisa Zoratti
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Serena Ziglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Agustin Valenzuela-Fernandez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Antonio Siccardi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Mauro Malnati
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alberto Beretta
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
204
|
Presti R, Pantaleo G. The Immunopathogenesis of HIV-1 Infection. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
205
|
John M, Gaudieri S, Mallal S. Immunogenetics and Vaccination. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
206
|
Caillat-Zucman S. New insights into the understanding of MHC associations with immune-mediated disorders. HLA 2016; 89:3-13. [DOI: 10.1111/tan.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S. Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité; Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot; Paris France
| |
Collapse
|
207
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
208
|
Bettens F, Buhler S, Tiercy JM. Allorecognition of HLA-C Mismatches by CD8 + T Cells in Hematopoietic Stem Cell Transplantation Is a Complex Interplay between Mismatched Peptide-Binding Region Residues, HLA-C Expression, and HLA-DPB1 Disparities. Front Immunol 2016; 7:584. [PMID: 28018351 PMCID: PMC5151176 DOI: 10.3389/fimmu.2016.00584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
HLA-C locus mismatches (MMs) are the most frequent class I disparities in unrelated hematopoietic stem cell transplantation (HSCT) and have a detrimental impact on clinical outcome. Recently, a few retrospective clinical studies have reported some variability in the immunogenicity of HLA-C incompatibilities. To get better insight into presumably permissive HLA-C MMs, we have developed a one-way in vitro mixed lymphocyte reaction (MLR) assay allowing to quantify activated CD56-CD137+CD8+ lymphocytes in HLA-C incompatible combinations. T cell-mediated alloresponses were correlated with genetic markers such as HLA-C mRNA expression and the number of amino acid (aa) MMs in the α1/α2 domains (peptide-binding region). Because of the high rate of HLA-DPB1 incompatibilities in HLA-A-, B-, C-, DRB1-, and DQB1-matched unrelated HSCT patient/donor pairs, the impact of HLA-DPB1 mismatching, a potential bystander of CD4+ T cell activation, was also considered. Heterogeneous alloresponses were measured in 63 HLA-C-mismatched pairs with a positive assay in 52% of the combinations (2.3-18.6% activated CTLs), representing 24 different HLA-A~B~DRB1~DQB1 haplotypes. There was no correlation between measured alloresponses and mRNA expression of the mismatched HLA-C alleles. The HLA-C*03:03/03:04 MM did not induce any positive alloresponse in five MLRs. We also identified HLA-C*02:02 and HLA-C*06:02 as mismatched alleles with lower immunogenicity, and HLA-C*14:02 as a more immunogenic MM. A difference of at least 10 aa residues known to impact peptide/T cell receptor (TCR) binding and a bystander HLA-DPB1 incompatibility had a significant impact on CTL alloreactivity (p = 0.021). The same HLA-C MM, when recognized by two different responders with the same HLA haplotypes, was recognized differently, emphasizing the role of the T-cell repertoire of responding cells. In conclusion, mismatched HLA-C alleles differing by 10 or more aas in the peptide/TCR-binding region, when occurring together with HLA-DPB1 incompatibilities, should be considered as high-risk MMs in unrelated HSCT.
Collapse
Affiliation(s)
- Florence Bettens
- National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, University Hospitals Geneva , Geneva , Switzerland
| | - Stéphane Buhler
- National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, University Hospitals Geneva , Geneva , Switzerland
| | - Jean-Marie Tiercy
- National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, University Hospitals Geneva , Geneva , Switzerland
| |
Collapse
|
209
|
Sips M, Liu Q, Draghi M, Ghebremichael M, Berger CT, Suscovich TJ, Sun Y, Walker BD, Carrington M, Altfeld M, Brouckaert P, De Jager PL, Alter G. HLA-C levels impact natural killer cell subset distribution and function. Hum Immunol 2016; 77:1147-1153. [PMID: 27521484 PMCID: PMC6684021 DOI: 10.1016/j.humimm.2016.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
Abstract
Differences in HLA-C expression are inversely correlated with HIV viral load set-point and slower progression to AIDS, linked to enhanced cytotoxic T cell immunity. Yet, beyond T cells, HLA-C serves as a dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIR). Thus, we speculated that HLA-C expression levels may also impact NK activity, thereby modulating HIV antiviral control. Phenotypic and functional profiling was performed on freshly isolated PBMCs. HLA-C expression was linked to changes in NK subset distribution and licensing, particularly in HLA-C1/C1, KIR2DL3+2DL2-individuals. Moreover, high levels of HLA-C, were associated with reduced frequencies of anergic CD56neg NKs and lower frequencies of KIR2DL1/2/3+ NK cells, pointing to an HLA-C induced influence on the NK cell development in the absence of disease. In HIV infection, several spontaneous controllers, that expressed higher levels of HLA-C demonstrated robust NK-IFN-γ secretion in response to target cells, highlighting a second disease induced licensing phenotype. Thus this population study points to a potential role for HLA-C levels both in NK cell education and development.
Collapse
Affiliation(s)
- Magdalena Sips
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Qingquan Liu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, ShaanXi, China
| | - Monia Draghi
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Christoph T Berger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; University Hospital Basel, Basel, Switzerland
| | | | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, ShaanXi, China
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Womens Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
210
|
Vince N, Li H, Ramsuran V, Naranbhai V, Duh FM, Fairfax BP, Saleh B, Knight JC, Anderson SK, Carrington M. HLA-C Level Is Regulated by a Polymorphic Oct1 Binding Site in the HLA-C Promoter Region. Am J Hum Genet 2016; 99:1353-1358. [PMID: 27817866 PMCID: PMC5142108 DOI: 10.1016/j.ajhg.2016.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Differential HLA-C levels influence several human diseases, but the mechanisms responsible are incompletely characterized. Using a validated prediction algorithm, we imputed HLA-C cell surface levels in 228 individuals from the 1000 Genomes dataset. We tested 68,726 SNPs within the MHC for association with HLA-C level. The HLA-C promoter region variant, rs2395471, 800 bp upstream of the transcription start site, gave the most significant association with HLA-C levels (p = 4.2 × 10-66). This imputed expression quantitative trait locus, termed impeQTL, was also shown to associate with HLA-C expression in a genome-wide association study of 273 donors in which HLA-C mRNA expression levels were determined by quantitative PCR (qPCR) (p = 1.8 × 10-20) and in two cohorts where HLA-C cell surface levels were determined directly by flow cytometry (n = 369 combined, p < 10-15). rs2395471 is located in an Oct1 transcription factor consensus binding site motif where the A allele is predicted to have higher affinity for Oct1 than the G allele. Mobility shift electrophoresis demonstrated that Oct1 binds to both alleles in vitro, but decreased HLA-C promoter activity was observed in a luciferase reporter assay for rs2395471_G relative to rs2395471_A on a fixed promoter background. The rs2395471 variant accounts for up to 36% of the explained variation of HLA-C level. These data strengthen our understanding of HLA-C transcriptional regulation and provide a basis for understanding the potential consequences of manipulating HLA-C levels therapeutically.
Collapse
Affiliation(s)
- Nicolas Vince
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hongchuan Li
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Center for the AIDS Programme of Research in South Africa, University of KwaZuluNatal, Durban 4091, South Africa
| | - Fuh-Mei Duh
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Bahara Saleh
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stephen K Anderson
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
211
|
Lin Z, Kuroki K, Kuse N, Sun X, Akahoshi T, Qi Y, Chikata T, Naruto T, Koyanagi M, Murakoshi H, Gatanaga H, Oka S, Carrington M, Maenaka K, Takiguchi M. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C ∗12:02/C ∗14:03. Cell Rep 2016; 17:2210-2220. [PMID: 27880898 PMCID: PMC5184766 DOI: 10.1016/j.celrep.2016.10.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03, that impact suppression of HIV-1 replication. KIR2DL2+ NK cells suppressed viral replication in HLA-C∗14:03+ or HLA-C∗12:02+ cells to a significantly greater extent than did KIR2DL2- NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C∗14:03 or HLA-C∗12:02 influenced KIR2DL2+ NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection.
Collapse
Affiliation(s)
- Zhansong Lin
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21701, USA
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takuya Naruto
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21701, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139-3583, USA
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
212
|
Dellgren C, Ekwelum VAC, Ormhøj M, Pallesen N, Knudsen J, Nehlin JO, Barington T. Low Constitutive Cell Surface Expression of HLA-B Is Caused by a Posttranslational Mechanism Involving Glu180 and Arg239. THE JOURNAL OF IMMUNOLOGY 2016; 197:4807-4816. [PMID: 27821669 DOI: 10.4049/jimmunol.1502546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
HLA class I cell surface expression is crucial for normal immune responses, and variability in HLA expression may influence the course of infections. We have previously shown that classical HLA class I expression on many human cell types is biased with greatly reduced expression of HLA-B compared with HLA-A in the absence of inflammatory signals. In the search for the mechanisms responsible for this discrepancy, we have recently reported that the regulation is mainly posttranslational and that the C-terminal part of the α2 domain and the α3 domain contain the molecular determinants that explain most of the variability of expression between common HLA-A and -B allomorphs. In this study, we present a fine mapping of the structural determinants that allow such variability by exchanging key amino acids located within the C-terminal part of the α2 domain and the α3 domain of HLA-A2 and -B8, including Glu/Asp at position 177, Gln/Glu at position 180, Gly/Arg at position 239, and Pro/Ser at position 280. We found that the HLA-A2 and -B8 expression profiles could be interconverted to a large extent by mutual exchange of Gln/Glu at position 180 or by Gly/Arg at position 239. The presence of Gln180 and Gly239, as in HLA-A2, led to higher cell surface expression levels when compared with the presence of Glu180 and Arg239, as in HLA-B8. This indicates that the amino acids at positions 180 and 239 determine the level of cell surface expression of common HLA-A and -B allomorphs, probably by affecting HLA processing in the Ag presentation pathway.
Collapse
Affiliation(s)
- Christoffer Dellgren
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Vanessa A C Ekwelum
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Maria Ormhøj
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Nicole Pallesen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Julie Knudsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Jan O Nehlin
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
213
|
Han L, He H, Qu X, Liu Y, He S, Zheng X, He F, Bai H, Bo X. The relationships among host transcriptional responses reveal distinct signatures underlying viral infection-disease associations. MOLECULAR BIOSYSTEMS 2016; 12:653-65. [PMID: 26699092 DOI: 10.1039/c5mb00657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome-scale DNA microarrays and computational biology facilitate new understanding of viral infections at the system level. Recent years have witnessed a major shift from microorganism-centric toward host-oriented characterization and categorization of viral infections and infection related diseases. We established host transcriptional response (HTR) relationships among 23 different types of human viral pathogens based on calculating HTR similarities using computational integration of 587 public available gene expression profiles. We further identified five virus clusters that show consensus internal HTRs and defined cluster signatures using common dysregulated genes. Individual cluster signature genes were distinguished from one another, and functional analysis revealed common and specific host cellular bioprocesses and signaling pathways involved in confronting viral infections. Through literature investigation and support from epidemiological studies, these were confirmed to be important gene factors associating viral infections with cluster-common and cluster-specific non-infectious human disease(s). Our analyses were the first to feature differential HTRs to viral infections as clusters, and they present a new perspective for understanding infection-disease associations and the underlying pathogeneses.
Collapse
Affiliation(s)
- Lu Han
- Department of Traditional Chinese Medicine and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China and Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haochen He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xinyan Qu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Song He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xiaofei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hui Bai
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China. and No. 451 Hospital of Chinese People's Liberation Army, Xi'an, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
214
|
Hoff GA, Fischer JC, Hsu K, Cooley S, Miller JS, Wang T, Haagenson M, Spellman S, Lee SJ, Uhrberg M, Venstrom JM, Verneris MR. Recipient HLA-C Haplotypes and microRNA 148a/b Binding Sites Have No Impact on Allogeneic Hematopoietic Cell Transplantation Outcomes. Biol Blood Marrow Transplant 2016; 23:153-160. [PMID: 27746218 DOI: 10.1016/j.bbmt.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Natural killer cells are important in graft-versus-leukemia responses after hematopoietic cell transplantation (HCT). A variety of surface receptors dictates natural killer cell function, including killer cell immunoglobulin-like receptor recognition of HLA-C. Previous single-center studies show that HLA-C epitopes, designated C1 and C2, were associated with allogeneic HCT outcomes; specifically, recipients homozygous for the C1 epitope (C1/C1) experienced a survival benefit. Additionally, mismatching at HLA-C was beneficial in recipients possessing at least 1 C2 allele, whereas the opposite was true for homozygous C1 (C1/C1) recipients where HLA-C mismatching resulted in worse outcomes. In this analysis we aimed to validate these findings in a large multicenter study. We also set out to determine whether surface expression of recipient HLA-C, determined by polymorphism in a microRNA (miR-148a/b) binding site within the 3'-region of the HLA-C transcript, was associated with transplant outcomes. In this large registry cohort, we were unable to confirm the prior findings regarding recipient HLA-C epitope status and outcome. Additionally, HLA-C surface expression (ie, surface density), as predicted by the miR-148a/b binding single nucleotide polymorphism, was also not with associated transplant outcomes. Collectively, neither HLA-C surface expression, as determined by miR-148a/b, nor recipient HLA-C epitopes (C1, C2) are associated with allogeneic HCT outcomes.
Collapse
Affiliation(s)
- Gretchen A Hoff
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Johannes C Fischer
- Institute of Transplantation Diagnostics and Cell Therapeutics, Universitatklinikum Dusseldorf Klinik fur Kinder, Düsseldorf, Germany
| | - Katharine Hsu
- Blood and Marrow Transplantation, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Cooley
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie J Lee
- Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus Uhrberg
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Clinic of Düsseldorf, Düsseldorf, Germany
| | - Jeffrey M Venstrom
- Blood and Marrow Transplant, University of California San Francisco Medical Center, San Francisco, California
| | - Michael R Verneris
- University of Colorado, Pediatric BMT and Cell Therapy, Aurora, Colorado.
| |
Collapse
|
215
|
Bardeskar NS, Mania-Pramanik J. HIV and host immunogenetics: unraveling the role of HLA-C. HLA 2016; 88:221-231. [PMID: 27620973 DOI: 10.1111/tan.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/09/2023]
Abstract
Host genetic factors play a major role in determining the outcome of many infections including human immunodeficiency virus (HIV). Multiple host factors have been studied till date showing their varied role in susceptibility or resistance to HIV infection. HLA-C, however, has been recently started gaining interest in researchers mind revealing its polymorphisms to have an important effect on viral load set-points, disease progression as well as transmission. In this review report, we have compiled these significant findings of HLA-C in HIV infection, in an attempt to highlight the need for further research in the area in different ethnic population to establish its role in the infection.
Collapse
Affiliation(s)
- N S Bardeskar
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - J Mania-Pramanik
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
216
|
Lisovsky I, Isitman G, Tremblay-McLean A, Song R, DaFonseca S, Lebouchẻ B, Routy JP, Bruneau J, Bernard NF. The differential impact of natural killer (NK) cell education via KIR2DL3 and KIR3DL1 on CCL4 secretion in the context of in-vitro HIV infection. Clin Exp Immunol 2016; 186:336-346. [PMID: 27506421 DOI: 10.1111/cei.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/30/2022] Open
Abstract
Carriage of certain inhibitory natural killer (NK) cell receptor (iNKR)/HLA ligand pairs is associated with protection from infection and slow time to AIDS implicating NK cells in HIV control. NK cells acquire functional potential through education, which requires the engagement of iNKRs by their human leucocyte antigen (HLA) ligands. HIV infection down-regulates cell surface HLA-A/B, but not HLA-C/E. We investigated how NK cell populations expressing combinations of the iNKRs NKG2A, KIR2DL3 (2DL3) and KIR3DL1 (3DL1) responded to autologous HIV infected CD4 (iCD4) cells. Purified NK cells from HIV-uninfected individuals were stimulated with autologous HIV iCD4 or uninfected CD4 T cells. Using flow cytometry we gated on each of the 8 NKG2A+/- 2DL3+/- 3DL1+/- populations and analysed all possible combinations of interferon (IFN)-γ, CCL4 and CD107a functional subsets responding to iCD4 cells. Infected CD4 cells induced differential frequencies of NKG2A+/- 2DL3+/- 3DL1+/- populations with total IFN-γ+ , CCL4+ and CD107a+ functional profiles. 2DL3+ NKG2A+ NK cells had a higher frequency of responses to iCD4 than other populations studied. A higher frequency of 2DL3+ NK cells responded to iCD4 from individuals that were not HLA-C1 homozygotes. These results show that 2DL3+ NK cells are mediators of HIV-specific responses. Furthermore, responses of NK cell populations to iCD4 are influenced not only by NK cell education through specific KIR/HLA pairs, but also by differential HIV-mediated changes in HLA expression.
Collapse
Affiliation(s)
- I Lisovsky
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - G Isitman
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - A Tremblay-McLean
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - R Song
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - S DaFonseca
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada
| | - B Lebouchẻ
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Chronic Viral Illness Service, MUHC, Glen Site, Montreal, Quebec, Canada.,Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| | - J-P Routy
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Chronic Viral Illness Service, MUHC, Glen Site, Montreal, Quebec, Canada.,Division of Hematology, MUHC, Glen Site, Montreal, Quebec, Canada
| | - J Bruneau
- Department of Family Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - N F Bernard
- Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Chronic Viral Illness Service, MUHC, Glen Site, Montreal, Quebec, Canada.,Division of Clinical Immunology, MUHC, Montreal, Quebec, Canada
| |
Collapse
|
217
|
Rapid identification of bovine MHCI haplotypes in genetically divergent cattle populations using next-generation sequencing. Immunogenetics 2016; 68:765-781. [PMID: 27516207 PMCID: PMC5056950 DOI: 10.1007/s00251-016-0945-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire.
Collapse
|
218
|
Little AM, Green A, Harvey J, Hemmatpour S, Latham K, Marsh SGE, Poulton K, Sage D. BSHI Guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int J Immunogenet 2016; 43:263-86. [DOI: 10.1111/iji.12282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 12/29/2022]
Affiliation(s)
- A-M. Little
- Histocompatibility and Immunogenetics Laboratory; Gartnavel General Hospital; Glasgow UK
- Institute of Infection, Immunity and Inflammation; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - A. Green
- Histocompatibility and Immunogenetics Laboratory; NHS Blood and Transplant; Filton UK
| | - J. Harvey
- Histocompatibility and Immunogenetics Laboratory; NHS Blood and Transplant; Filton UK
| | - S. Hemmatpour
- Histocompatibility and Immunogenetics Laboratory; NHS Blood and Transplant; London Tooting UK
| | - K. Latham
- Anthony Nolan Research Institute; Royal Free Hospital; London UK
| | - S. G. E. Marsh
- Anthony Nolan Research Institute; Royal Free Hospital; London UK
- Cancer Institute; University College London; London UK
| | - K. Poulton
- Transplantation Laboratory; Manchester Royal Infirmary; Manchester UK
- British Society for Histocompatibility & Immunogenetics
| | - D. Sage
- Histocompatibility and Immunogenetics Laboratory; NHS Blood and Transplant; London Tooting UK
| |
Collapse
|
219
|
Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the Immune System with Skin and Bone Tissue in Psoriatic Arthritis: A Comprehensive Review. Clin Rev Allergy Immunol 2016; 51:87-99. [PMID: 26780035 PMCID: PMC6080719 DOI: 10.1007/s12016-016-8529-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cutaneous psoriasis (e.g., psoriasis vulgaris (PsV)) and psoriatic arthritis (PsA) are complex heterogeneous diseases thought to have similar pathophysiology. The soluble and cellular mediators of these closely related diseases are being elucidated through genetic approaches such as genome-wide association studies (GWAS), as well as animal and molecular models. Novel therapeutics targeting these mediators (IL-12, IL-23, IL-17, IL-17 receptor, TNF) are effective in treating both the skin and joint manifestations of psoriasis, reaffirming the shared pathophysiology of PsV and PsA. However, the molecular and cellular interactions between skin and joint disease have not been well characterized. Clearly, PsV and PsA are highly variable in terms of their clinical manifestations, and this heterogeneity can partially be explained by differences in HLA-associations (HLA-Cw*0602 versus HLA-B*27, for example). In addition, there are numerous other genetic susceptibility loci (LCE3, CARD14, NOS2, NFKBIA, PSMA6, ERAP1, TRAF3IP2, IL12RB2, IL23R, IL12B, TNIP1, TNFAIP3, TYK2) and geoepidemiologic factors that contribute to the wide variability seen in psoriasis. Herein, we review the complex interplay between the genetic, cellular, ethnic, and geographic mediators of psoriasis, focusing on the shared mechanisms of PsV and PsA.
Collapse
Affiliation(s)
- Andrea Sukhov
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, CA, Davis, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
220
|
Petersdorf EW. Mismatched unrelated donor transplantation. Semin Hematol 2016; 53:230-236. [PMID: 27788760 DOI: 10.1053/j.seminhematol.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 11/11/2022]
Abstract
There are now more than 25 million volunteer donors registered worldwide for patients in need of a life-saving hematopoietic cell transplant to cure blood disorders. Although a human leukocyte antigen (HLA)-matched donor remains the preferred stem cell source for transplantation, the use of a donor with limited HLA mismatching may be considered. Significant advances in clinical and basic research have been instrumental in furthering the understanding of donor-recipient HLA mismatches that are better tolerated than other mismatches. An increased appreciation of the role of regulatory region variation that affects the level of HLA expression provides new approaches for the selection of HLA-mismatched donors.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Department of Medicine, University of Washington; Seattle Cancer Care Alliance; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA.
| |
Collapse
|
221
|
van den Bogaard EH, Tijssen HJ, Rodijk-Olthuis D, van Houwelingen KP, Coenen MJ, Marget M, Schalkwijk J, Joosten I. Cell Surface Expression of HLA-Cw6 by Human Epidermal Keratinocytes: Positive Regulation by Cytokines, Lack of Correlation to a Variant Upstream of HLA-C. J Invest Dermatol 2016; 136:1903-1906. [PMID: 27297019 DOI: 10.1016/j.jid.2016.05.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Henk J Tijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Kjeld P van Houwelingen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marieke J Coenen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Matthias Marget
- Institute of Pharmacology, University of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
222
|
Abstract
The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC.
Collapse
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
223
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
224
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
225
|
Hönger G, Krähenbühl N, Dimeloe S, Stern M, Schaub S, Hess C. Inter-individual differences in HLA expression can impact the CDC crossmatch. ACTA ACUST UNITED AC 2016; 85:260-6. [PMID: 25786570 DOI: 10.1111/tan.12537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 02/04/2015] [Indexed: 11/27/2022]
Abstract
How human leucocyte antigen (HLA) expression levels on human lymphocytes relate to clinically relevant in vitro cytotoxicity testing has not been defined. Here, cross-sectional (n = 14) and longitudinal (n = 6) semi-quantitative assessment of HLA expression on lymphocytes was performed. Complement-dependent cytotoxicity (CDC) and cellular allo-reactivity were assessed vis-à-vis target cells with defined levels of HLA expression. On CD4(+) and CD8(+) T-cells, and on B-cells, intra-individual HLA levels varied ≤1.5-fold, whereas inter-individual HLA expression varied 2.34-fold and 2.07-fold on CD4(+) and CD8(+) T-cells, respectively, and 2.90-fold on B-cells. Importantly, CDC crossmatch reactions induced by anti-HLA-A2 monoclonal antibody as well as patient sera solely containing HLA-A2 antibodies were significantly impacted by HLA-A2 expression levels on donor cells. Likewise, cytotoxicity of HLA-A2 reactive effector cells was induced proportionate to availability of HLA-A2. These data demonstrate that human HLA expression on lymphocytes from healthy blood donors is fairly stable intra-individually, yet varies significantly from person to person. Variability in HLA expression levels can impact functional cytotoxic reactions in vitro, including the widely used CDC crossmatch assay. Prospective studies are required to test the clinical relevance of this finding.
Collapse
Affiliation(s)
- G Hönger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland; Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
226
|
Apps R, Del Prete GQ, Chatterjee P, Lara A, Brumme ZL, Brockman MA, Neil S, Pickering S, Schneider DK, Piechocka-Trocha A, Walker BD, Thomas R, Shaw GM, Hahn BH, Keele BF, Lifson JD, Carrington M. HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host Microbe 2016; 19:686-95. [PMID: 27173934 PMCID: PMC4904791 DOI: 10.1016/j.chom.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Pramita Chatterjee
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Stuart Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Rasmi Thomas
- Host Genetics Section, US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA.
| |
Collapse
|
227
|
Shepherd BL, Dauya E, Ferrand R, Rowland-Jones S, Yindom LM. Isolation of full-length HLA-C*18:02 allele in an individual from Sub-Saharan Africa. HLA 2016; 87:471-2. [PMID: 27098306 DOI: 10.1111/tan.12804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
Abstract
The full-length sequence of HLA-C*18:02 differs from that of HLA-C*18:01 by a single nucleotide polymorphism.
Collapse
Affiliation(s)
- B L Shepherd
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Dauya
- Department of Infectious Disease, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - R Ferrand
- Department of Infectious Disease, Biomedical Research and Training Institute, Harare, Zimbabwe.,Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - S Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L-M Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
228
|
Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3398-410. [PMID: 26962229 PMCID: PMC4868784 DOI: 10.4049/jimmunol.1502469] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
NK cells recognize self-HLA via killer Ig-like receptors (KIR). Homeostatic HLA expression signals for inhibition via KIR, and downregulation of HLA, a common consequence of viral infection, allows NK activation. Like HLA, KIR are highly polymorphic, and allele combinations of the most diverse receptor-ligand pair, KIR3DL1 and HLA-B, correspond to hierarchical HIV control. We used primary cells from healthy human donors to demonstrate how subtype combinations of KIR3DL1 and HLA-B calibrate NK education and their consequent capacity to eliminate HIV-infected cells. High-density KIR3DL1 and Bw4-80I partnerships endow NK cells with the greatest reactivity against HLA-negative targets; NK cells exhibiting the remaining KIR3DL1/HLA-Bw4 combinations demonstrate intermediate responsiveness; and Bw4-negative KIR3DL1(+) NK cells are poorly responsive. Cytotoxicity against HIV-infected autologous CD4(+) T cells strikingly correlated with reactivity to HLA-negative targets. These findings suggest that the programming of NK effector function results from defined features of receptor and ligand subtypes. KIR3DL1 and HLA-B subtypes exhibit an array of binding strengths. Like KIR3DL1, subtypes of HLA-Bw4 are expressed at distinct, predictable membrane densities. Combinatorial permutations of common receptor and ligand subtypes reveal binding strength, receptor density, and ligand density to be functionally important. These findings have immediate implications for prognosis in patients with HIV infection. Furthermore, they demonstrate how features of KIR and HLA modified by allelic variation calibrate NK cell reactive potential.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiernan J Mulrooney
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoît Le Luduec
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Edward Barker
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
229
|
René C, Lozano C, Eliaou JF. Expression of classical HLA class I molecules: regulation and clinical impacts: Julia Bodmer Award Review 2015. HLA 2016; 87:338-49. [PMID: 27060357 DOI: 10.1111/tan.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Human leukocyte antigen (HLA) class I genes are ubiquitously expressed, but in a tissue specific-manner. Their expression is primarily regulated at the transcriptional level and can be modulated both positively and negatively by different stimuli. Advances in sequencing technologies led to the identification of new regulatory variants located in the untranslated regions (UTRs), which could influence the expression. After a brief description of the mechanisms underlying the transcriptional regulation of HLA class I genes expression, we will review how the expression levels of HLA class I genes could affect biological and pathological processes. Then, we will discuss on the differential expression of HLA class I genes according to the locus, allele and UTR polymorphisms and its clinical impact. This interesting field of study led to a new dimension of HLA typing, going beyond a qualitative aspect.
Collapse
Affiliation(s)
- C René
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1183, Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - C Lozano
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France
| | - J-F Eliaou
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1194, IRCM, University of Montpellier, Montpellier, France
| |
Collapse
|
230
|
Abstract
BACKGROUND A dysregulated mucosal immune response to the intestinal environment in a genetically susceptible host is hypothesized to be critical to the pathogenesis of Crohn's disease (CD). Therefore, we examined CD-susceptibility genes involved in the immune response through a genome-wide association study and consecutive genotyping of human leukocyte antigens (HLAs) and killer cell immunoglobulin-like receptors. METHODS An initial genome-wide association study was performed with 275 CD patients and 2369 controls from a Korean population. To validate the loci identified in the genome-wide association study, replication genotyping was performed in a different cohort of 242 CD patients and 1066 controls. Finally, high-resolution genotyping of HLA and killer cell immunoglobulin-like receptor was performed. RESULTS Four susceptibility loci, a promoter region in tumor necrosis factor (ligand) superfamily member (TNFSF15) and 3 independent regions in HLAs, showed significant associations with CD. Among them, rs114985235 in the intergenic region between HLA-B and HLA-C showed the strongest association, with an increased risk of CD (P = 8.71 × 10; odds ratio, 2.25). HLA typing in this region showed HLA-C*01 to be responsible for the association of CD among 43 HLA-B and HLA-C genotypes identified in the Korean population. However, the interaction of HLA-C with killer cell immunoglobulin-like receptor had little effect on the development of CD. CONCLUSIONS We newly identified HLA-C*01 as a prominent CD-susceptibility HLA allotype in the Korean population. In addition, these results confirm that genetic variations in immune response genes, such as HLAs and TNFSF15, are important host factors for the pathogenesis of CD.
Collapse
|
231
|
Voorter CEM, Gerritsen KEH, Groeneweg M, Wieten L, Tilanus MGJ. The role of gene polymorphism in HLA class I splicing. Int J Immunogenet 2016; 43:65-78. [PMID: 26920492 DOI: 10.1111/iji.12256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 01/15/2023]
Abstract
Among the large number of human leucocyte antigen (HLA) alleles, only a few have been identified with a nucleotide polymorphism impairing correct splicing. Those alleles show aberrant expression levels, due to either a direct effect of the polymorphism on the normal splice site or to the creation of an alternative splice site. Furthermore, in several studies, the presence of alternatively spliced HLA transcripts co-expressed with the mature spliced transcripts was reported. We evaluated the splice site sequences of all known HLA class I alleles and found that, beside the consensus GT and AG sequences at the intron borders, there were some other highly conserved nucleotides for the different class I genes. In this review, we summarize the splicing mechanism and evaluate what is known today about alternative splicing of HLA class I genes.
Collapse
Affiliation(s)
- C E M Voorter
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - K E H Gerritsen
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M Groeneweg
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - L Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M G J Tilanus
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
232
|
NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun 2016; 7:10554. [PMID: 26861112 PMCID: PMC4749981 DOI: 10.1038/ncomms10554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/26/2015] [Indexed: 12/18/2022] Open
Abstract
NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK–T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards ‘self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8+ T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions. NK cell tolerance to self-MHCI levels is calibrated during their development. Here the authors show that this tolerance is overcome by an inflammatory environment and that NLRC5 protects T cells from NK cell-mediated elimination by maintaining high MHCI expression.
Collapse
|
233
|
Naranbhai V, de Assis Rosa D, Werner L, Moodley R, Hong H, Kharsany A, Mlisana K, Sibeko S, Garrett N, Chopera D, Carr WH, Abdool Karim Q, Hill AVS, Abdool Karim SS, Altfeld M, Gray CM, Ndung'u T. Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect Dis 2016; 16:27. [PMID: 26809736 PMCID: PMC4727384 DOI: 10.1186/s12879-016-1361-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Killer-cell Immunoglobulin-like Receptors (KIR) interact with Human Leukocyte Antigen (HLA) to modify natural killer- and T-cell function. KIR are implicated in HIV acquisition by small studies that have not been widely replicated. A role for KIR in HIV disease progression is more widely replicated and supported by functional studies. METHODS To assess the role of KIR and KIR ligands in HIV acquisition and disease course, we studied at-risk women in South Africa between 2004-2010. Logistic regression was used for nested case-control analysis of 154 women who acquired vs. 155 who did not acquire HIV, despite high exposure. Linear mixed-effects models were used for cohort analysis of 139 women followed prospectively for a median of 54 months (IQR 31-69) until 2014. RESULTS Neither KIR repertoires nor HLA alleles were associated with HIV acquisition. However, KIR haplotype BB was associated with lower viral loads (-0.44 log10 copies/ml; SE = 0.18; p = 0.03) and higher CD4+ T-cell counts (+80 cells/μl; SE = 42; p = 0.04). This was largely explained by the protective effect of KIR2DL2/KIR2DS2 on the B haplotype and reciprocal detrimental effect of KIR2DL3 on the A haplotype. CONCLUSIONS Although neither KIR nor HLA appear to have a role in HIV acquisition, our data are consistent with involvement of KIR2DL2 in HIV control. Additional studies to replicate these findings are indicated.
Collapse
Affiliation(s)
- V Naranbhai
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - D de Assis Rosa
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of the Witwatersrand, Johannesburg, South Africa.
| | - L Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - R Moodley
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - H Hong
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - A Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - K Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - S Sibeko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - N Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - D Chopera
- University of Cape Town, Cape Town, South Africa.
| | - W H Carr
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,City University of New York - Medgar Evers College, New York, USA. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA.
| | - Q Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - A V S Hill
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - S S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - M Altfeld
- Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,Leibniz Institute for Experimental Virology, Heinrich Pette Institute, Hamburg, Germany.
| | - C M Gray
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of Cape Town, Cape Town, South Africa.
| | - T Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa. .,Max Planck Institute for Infection Biology, Chariteplatz, D-10117, Berlin, Germany.
| |
Collapse
|
234
|
MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc Natl Acad Sci U S A 2016; 113:1363-8. [PMID: 26787888 DOI: 10.1073/pnas.1523482113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic risk for autoimmunity in HLA genes is most often attributed to structural specificity resulting in presentation of self-antigens. Autoimmune vitiligo is strongly associated with the MHC class II region. Here, we fine-map vitiligo MHC class II genetic risk to three SNPs only 47 bp apart, located within a predicted super-enhancer in an intergenic region between HLA-DRB1 and HLA-DQA1, localized by a genome-wide association study of 2,853 Caucasian vitiligo patients. The super-enhancer corresponds to an expression quantitative trait locus for expression of HLA-DR and HLA-DQ RNA; we observed elevated surface expression of HLA-DR (P = 0.008) and HLA-DQ (P = 0.02) on monocytes from healthy subjects homozygous for the high-risk SNP haplotype. Unexpectedly, pathogen-stimulated peripheral blood mononuclear cells from subjects homozygous for the high-risk super-enhancer haplotype exhibited greater increase in production of IFN-γ and IL-1β than cells from subjects homozygous for the low-risk haplotype. Specifically, production of IFN-γ on stimulation of dectin-1, mannose, and Toll-like receptors with Candida albicans and Staphylococcus epidermidis was 2.5- and 2.9-fold higher in high-risk subjects than in low-risk subjects, respectively (P = 0.007 and P = 0.01). Similarly, production of IL-1β was fivefold higher in high-risk subjects than in low-risk subjects (P = 0.02). Increased production of immunostimulatory cytokines in subjects carrying the high-risk haplotype may act as an "adjuvant" during the presentation of autoantigens, tying together genetic variation in the MHC with the development of autoimmunity. This study demonstrates that for risk of autoimmune vitiligo, expression level of HLA class II molecules is as or more important than antigen specificity.
Collapse
|
235
|
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2016; 6:665. [PMID: 26834742 PMCID: PMC4716577 DOI: 10.3389/fimmu.2015.00665] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023] Open
Abstract
Killing of HIV-infected cells by CD8+ T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
236
|
Host Response in HIV Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
237
|
Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity. Proc Natl Acad Sci U S A 2015; 113:692-7. [PMID: 26699458 DOI: 10.1073/pnas.1511859113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC).
Collapse
|
238
|
McKinney DM, Fu Z, Le L, Greenbaum JA, Peters B, Sette A. Development and validation of a sample sparing strategy for HLA typing utilizing next generation sequencing. Hum Immunol 2015; 76:917-22. [PMID: 26027778 PMCID: PMC4662932 DOI: 10.1016/j.humimm.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/17/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023]
Abstract
We report the development of a general methodology to genotype HLA class I and class II loci. A Whole Genome Amplification (WGA) step was used as a sample sparing methodology. HLA typing data could be obtained with as few as 300 cells, underlining the usefulness of the methodology for studies for which limited cells are available. The next generation sequencing platform was validated using a panel of cell lines from the International Histocompatibility Working Group (IHWG) for HLA-A, -B, and -C. Concordance with the known, previously determined HLA types was 99%. We next developed a panel of primers to allow HLA typing of alpha and beta chains of the HLA DQ and DP loci and the beta chain of the DRB1 locus. For the beta chain genes, we employed a novel strategy using primers in the intron regions surrounding exon 2, and the introns surrounding exons 3 through 4 (DRB1) or 5 (DQB1 and DPB1). Concordance with previously determined HLA Class II types was also 99%. To increase throughput and decrease cost, we developed strategies combining multiple loci from each donor. Multiplexing of 96 samples per run resulted in increases in throughput of approximately 8-fold. The pipeline developed for this analysis (HLATyphon) is available for download at https://github.com/LJI-Bioinformatics/HLATyphon.
Collapse
Affiliation(s)
- Denise M McKinney
- Department of Vaccine Development, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA
| | - Zheng Fu
- Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA
| | - Lucas Le
- Department of Vaccine Development, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA
| | - Jason A Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Department of Vaccine Development, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Department of Vaccine Development, La Jolla Institute for Allergy and Immunology, 9820 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
239
|
Heterogeneity of dN/dS Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phylogeny. J Mol Evol 2015; 82:38-50. [PMID: 26573803 DOI: 10.1007/s00239-015-9713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The classical class I HLA loci of humans show an excess of nonsynonymous with respect to synonymous substitutions at codons of the antigen recognition site (ARS), a hallmark of adaptive evolution. Additionally, high polymporphism, linkage disequilibrium, and disease associations suggest that one or more balancing selection regimes have acted upon these genes. However, several questions about these selective regimes remain open. First, it is unclear if stronger evidence for selection on deep timescales is due to changes in the intensity of selection over time or to a lack of power of most methods to detect selection on recent timescales. Another question concerns the functional entities which define the selected phenotype. While most analyses focus on selection acting on individual alleles, it is also plausible that phylogenetically defined groups of alleles ("lineages") are targets of selection. To address these questions, we analyzed how dN/dS (ω) varies with respect to divergence times between alleles and phylogenetic placement (position of branches). We find that ω for ARS codons of class I HLA genes increases with divergence time and is higher for inter-lineage branches. Throughout our analyses, we used non-selected codons to control for possible effects of inflation of ω associated to intra-specific analysis, and showed that our results are not artifactual. Our findings indicate the importance of considering the timescale effect when analysing ω over a wide spectrum of divergences. Finally, our results support the divergent allele advantage model, whereby heterozygotes with more divergent alleles have higher fitness than those carrying similar alleles.
Collapse
|
240
|
Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc Natl Acad Sci U S A 2015; 112:14658-63. [PMID: 26553974 DOI: 10.1073/pnas.1514867112] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous genome-wide association studies (GWAS) of HIV-1-infected populations have been underpowered to detect common variants with moderate impact on disease outcome and have not assessed the phenotypic variance explained by genome-wide additive effects. By combining the majority of available genome-wide genotyping data in HIV-infected populations, we tested for association between ∼8 million variants and viral load (HIV RNA copies per milliliter of plasma) in 6,315 individuals of European ancestry. The strongest signal of association was observed in the HLA class I region that was fully explained by independent effects mapping to five variable amino acid positions in the peptide binding grooves of the HLA-B and HLA-A proteins. We observed a second genome-wide significant association signal in the chemokine (C-C motif) receptor (CCR) gene cluster on chromosome 3. Conditional analysis showed that this signal could not be fully attributed to the known protective CCR5Δ32 allele and the risk P1 haplotype, suggesting further causal variants in this region. Heritability analysis demonstrated that common human genetic variation-mostly in the HLA and CCR5 regions-explains 25% of the variability in viral load. This study suggests that analyses in non-European populations and of variant classes not assessed by GWAS should be priorities for the field going forward.
Collapse
|
241
|
Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, Mann JK, Jaggernath M, Kang SG, Körner C, Chung AW, Schafer JL, Evans DT, Alter G, Walker BD, Goulder PJ, Carrington M, Hartmann P, Pertel T, Zhou R, Ndung’u T, Altfeld M. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa. PLoS Med 2015; 12:e1001900; discussion e1001900. [PMID: 26575988 PMCID: PMC4648589 DOI: 10.1371/journal.pmed.1001900] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. METHODS AND FINDINGS Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I-presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. CONCLUSIONS These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Hamburg—Eppendorf, Hamburg, Germany
| | - Christina F. Thobakgale
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Camilo A. Jimenez Cruz
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | | | | | | | - Jaclyn K. Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Manjeetha Jaggernath
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Seung-gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pia Hartmann
- First Department of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
242
|
René C, Lozano C, Villalba M, Eliaou JF. 5' and 3' untranslated regions contribute to the differential expression of specific HLA-A alleles. Eur J Immunol 2015; 45:3454-63. [PMID: 26399450 DOI: 10.1002/eji.201545927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
In hematopoietic stem cell transplantation (HSCT), when no HLA full-matched donor is available, alternative donors could include one HLA-mismatched donor. Recently, the low expressed HLA-C alleles have been identified as permissive mismatches for the best donor choice. Concerning HLA-A, the degree of variability of expression is poorly understood. Here, we evaluated HLA-A expression in healthy individuals carrying HLA-A*02 allele in different genotypes using flow cytometry and allele-specific quantitative RT-PCR. While an interindividual variability of HLA-A*02 cell surface expression, not due to the allele associated, was observed, no difference of the mRNA expression level was shown, suggesting the involvement of the posttranscriptional regulation. The results of qRT-PCR analyses exhibit a differential expression of HLA-A alleles with HLA-A*02 as the strongest expressed allele independently of the second allele. The associated non-HLA-A*02 alleles were differentially expressed, particularly the HLA-A*31 and HLA-A*33 alleles (strong expression) and the HLA-A*29 (low expression). The presence of specific polymorphisms in the 5' and 3' untranslated regions of the HLA-A*31 and HLA-A*33 alleles could contribute to this high level of expression. As previously described for HLA-C, low-expressed HLA-A alleles, such as HLA-A*29, could be considered as a permissive mismatch, although this needs to be confirmed by clinical studies.
Collapse
Affiliation(s)
- Céline René
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Claire Lozano
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France.,Institute for Regenerative Medicine and Biotherapy (IRMB), CHRU Montpellier, Montpellier, France
| | - Jean-François Eliaou
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1194, IRCM University of Montpellier, Montpellier, France
| |
Collapse
|
243
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
244
|
Horowitz A, Guethlein LA, Nemat-Gorgani N, Norman PJ, Cooley S, Miller JS, Parham P. Regulation of Adaptive NK Cells and CD8 T Cells by HLA-C Correlates with Allogeneic Hematopoietic Cell Transplantation and with Cytomegalovirus Reactivation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4524-36. [PMID: 26416275 DOI: 10.4049/jimmunol.1401990] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Mass cytometry was used to investigate the effect of CMV reactivation on lymphocyte reconstitution in hematopoietic cell transplant patients. For eight transplant recipients (four CMV negative and four CMV positive), we studied PBMCs obtained 6 mo after unrelated donor hematopoietic cell transplantation (HCT). Forty cell-surface markers, distinguishing all major leukocyte populations in PBMC, were analyzed with mass cytometry. This group included 34 NK cell markers. Compared with healthy controls, transplant recipients had higher HLA-C expression on CD56(-)CD16(+) NK cells, B cells, CD33(bright) myeloid cells, and CD4CD8 T cells. The increase in HLA-C expression was greater for CMV-positive HCT recipients than for CMV negative recipients. Present in CMV-positive HCT recipients, but not in CMV-negative HCT recipients or controls, is a population of killer cell Ig-like receptor (KIR)-expressing CD8 T cells not previously described. These CD8 T cells coexpress CD56, CD57, and NKG2C. The HCT recipients also have a population of CD57(+)NKG2A(+) NK cells that preferentially express KIR2DL1. An inverse correlation was observed between the frequencies of CD57(+)NKG2C(+) NK cells and CD57(+)NKG2A(+) NK cells. Although CD57(+)NKG2A(+) NK cells are less abundant in CMV-positive recipients, their phenotype is of a more activated cell than the CD57(+)NKG2A(+) NK cells of controls and CMV-negative HCT recipients. These data demonstrate that HCT and CMV reactivation are associated with an increased expression of HLA-C. This could influence NK cell education during lymphocyte reconstitution. The increased inhibitory KIR expression by proliferating CMV-specific CD8 T cells suggests regulatory interactions between HLA-C and KIR might promote Graft-versus-Leukemia effects following transplantation.
Collapse
Affiliation(s)
- Amir Horowitz
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Sarah Cooley
- Department of Hematology, Oncology, and Transplantation, School of Public Health, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Jeffrey S Miller
- Department of Hematology, Oncology, and Transplantation, School of Public Health, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
245
|
Abstract
PURPOSE OF REVIEW Rapid expansion of genomic technologies has resulted in an unprecedented ability to interrogate the impact of human genetic variation on disease. HIV-1 infection is a unique model for studying this impact because host genetic variation influences both clinical outcome and the genetic sequence and evolution of the pathogen itself. RECENT FINDINGS Several candidate gene studies have proposed novel associations with HIV acquisition and/or disease progression; however, many of these are not supported by larger genome-wide association studies. Thus, controversy remains as to which host and viral genetic factors truly impact HIV infection. Novel methods for assessing the genetic (viral and host) component of disease progression are becoming important areas of investigation. SUMMARY To fully understand the impact of human genetic variation in HIV disease, the field will need to come together to set a standard for discovery of new genes. Additionally, novel avenues of investigation such as sequencing studies (to define the role of rare variants), studies of epistasis and host/viral genome interaction will be of great value.
Collapse
|
246
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
247
|
The effect of KIR2D-HLA-C receptor-ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population. AIDS 2015; 29:1607-15. [PMID: 26372271 DOI: 10.1097/qad.0000000000000747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Class I human leukocyte antigen (HLA) alleles interact with both cytotoxic T lymphocytes through their T-cell receptors, and natural killer cells through their killer immunoglobulin-like receptors (KIRs). Compared with the reported protective effect of KIR3DL1/S1-HLA-Bw4 interactions in HIV-infected patients, the effect of KIR2D-HLA-C combinations on HIV control remains unclear. Here, we investigate the effect of KIR2D-HLA-C combinations on HIV disease progression. DESIGN We performed a cross-sectional and longitudinal analysis of a Thai HIV cohort. METHODS Two hundred and nine HIV-1 CRF01_AE-infected, treatment-naive Thai patients (CD4 T-cell counts of >200/μl) and 104 exposed seronegatives were studied. The effect of KIR-HLA receptor-ligand combinations on viral transmission and survival rate was statistically analyzed. RESULTS We found the following results: higher frequency of patients expressing both KIR2DL3 and HLA-C1 among infected patients compared with exposed seronegative (odds ratio 4.8, P = 0.004), higher viral load in patients expressing HLA-C1 with KIR2DL3 compared with those without this receptor-ligand combination (median 4.8 vs. 4.2 log copies/ml, P = 0.033), higher numbers of KIR2DL3-HLA-C1 interactions was associated with a higher viral load (β = 0.13, P = 0.039 by linear regression model), and higher mortality rate in carriers of the KIR2DL3-HLA-C1 combination (adjusted hazard ratio 1.9, P = 0.012 by Cox hazard model). CONCLUSION We have identified a deleterious effect of the KIR2DL3-HLA-C1 receptor-ligand combination on HIV clinical outcomes in a Thai cohort. Further investigation into mechanisms underlying this susceptibility may aid the understanding of the role of natural killer cells in HIV disease control and pathogenesis.
Collapse
|
248
|
Petersdorf EW, Malkki M, O'hUigin C, Carrington M, Gooley T, Haagenson MD, Horowitz MM, Spellman SR, Wang T, Stevenson P. High HLA-DP Expression and Graft-versus-Host Disease. N Engl J Med 2015; 373:599-609. [PMID: 26267621 PMCID: PMC4560117 DOI: 10.1056/nejmoa1500140] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Transplantation of hematopoietic cells from unrelated donors can cure blood disorders but carries a significant risk of acute graft-versus-host disease (GVHD). The risk is higher when the recipient and donor are HLA-DPB1-mismatched, but the mechanisms leading to GVHD are unknown. The HLA-DPB1 regulatory region variant rs9277534 is associated with HLA-DPB1 expression. We tested the hypothesis that the GVHD risk correlates with the rs9277534 allele linked to the mismatched HLA-DPB1 in the recipient. METHODS We genotyped rs9277534 in 3505 persons to define rs9277534-DPB1 haplotypes. Among 1441 recipients of transplants from HLA-A,B,C,DRB1,DQB1-matched unrelated donors with only one HLA-DPB1 mismatch, linkage of the rs9277534 A and G alleles to the mismatched HLA-DPB1 was determined. HLA-DPB1 expression was assessed by means of a quantitative polymerase-chain-reaction assay. The risk of acute GVHD among recipients whose mismatched HLA-DPB1 allele was linked to rs9277534G (high expression) was compared with the risk among recipients whose mismatched HLA-DPB1 allele was linked to rs9277534A (low expression). RESULTS The mean HLA-DPB1 expression was lower with rs9277534A than with rs9277534G. Among recipients of transplants from donors with rs9277534A-linked HLA-DPB1, the risk of acute GVHD was higher for recipients with rs9277534G-linked HLA-DPB1 mismatches than for recipients with rs9277534A-linked HLA-DPB1 mismatches (hazard ratio, 1.54; 95% confidence interval [CI], 1.25 to 1.89; P<0.001), as was the risk of death due to causes other than disease recurrence (hazard ratio, 1.25; 95% CI, 1.00 to 1.57; P=0.05). CONCLUSIONS The risk of GVHD associated with HLA-DPB1 mismatching was influenced by the HLA-DPB1 rs9277534 expression marker. Among recipients of HLA-DPB1-mismatched transplants from donors with the low-expression allele, recipients with the high-expression allele had a high risk of GVHD. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Effie W Petersdorf
- From the Division of Clinical Research, Fred Hutchinson Cancer Research Center (E.W.P., M.M., T.G., P.S.), and the Department of Medicine, University of Washington School of Medicine (E.W.P.) - both in Seattle; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratories for Cancer Research, Frederick, MD (C.O., M.C.); Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston (M.C.); Center for International Blood and Marrow Transplant Research, Minneapolis (M.D.H., S.R.S.); and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee (M.M.H., T.W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Cell surface expression level variation between two common Human Leukocyte Antigen alleles, HLA-A2 and HLA-B8, is dependent on the structure of the C terminal part of the alpha 2 and the alpha 3 domains. PLoS One 2015; 10:e0135385. [PMID: 26258424 PMCID: PMC4530957 DOI: 10.1371/journal.pone.0135385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Constitutive cell surface expression of Human Leukocyte Antigen (HLA) class I antigens vary extremely from tissue to tissue and individual antigens may differ widely in expression levels. Down-regulation of class I expression is a known immune evasive mechanism used by cancer cells and viruses. Moreover, recent observations suggest that even minor differences in expression levels may influence the course of viral infections and the frequency of complications to stem cell transplantation. We have shown that some human multipotent stem cells have high expression of HLA-A while HLA-B is only weakly expressed, and demonstrate here that this is also the case for the human embryonic kidney cell line HEK293T. Using quantitative flow cytometry and quantitative polymerase chain reaction we found expression levels of endogenous HLA-A3 (median 71,204 molecules per cell) 9.2-fold higher than the expression of-B7 (P = 0.002). Transfection experiments with full-length HLA-A2 and -B8 encoding plasmids confirmed this (54,031 molecules per cell vs. 2,466, respectively, P = 0.001) independently of transcript levels suggesting a post-transcriptional regulation. Using chimeric constructs we found that the cytoplasmic tail and the transmembrane region had no impact on the differential cell surface expression. In contrast, ~65% of the difference could be mapped to the six C-terminal amino acids of the alpha 2 domain and the alpha 3 domain (amino acids 176–284), i.e. amino acids not previously shown to be of importance for differential expression levels of HLA class I molecules. We suggest that the differential cell surface expression of two common HLA-A and–B alleles is regulated by a post-translational mechanism that may involve hitherto unrecognized molecules.
Collapse
|
250
|
Tremante E, Lo Monaco E, Ingegnere T, Sampaoli C, Fraioli R, Giacomini P. Monoclonal antibodies to HLA-E bind epitopes carried by unfolded β2 m-free heavy chains. Eur J Immunol 2015; 45:2356-64. [PMID: 25982269 DOI: 10.1002/eji.201545446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Abstract
Since HLA-E heavy chains accumulate free of their light β2 -microglobulin (β2 m) subunit, raising mAbs to folded HLA-E heterodimers has been difficult, and mAb characterization has been controversial. Herein, mAb W6/32 and 5 HLA-E-restricted mAbs (MEM-E/02, MEM-E/07, MEM-E/08, DT9, and 3D12) were tested on denatured, acid-treated, and natively folded (both β2 m-associated and β2 m-free) HLA-E molecules. Four distinct conformations were detected, including unusual, partially folded (and yet β2 m-free) heavy chains reactive with mAb DT9. In contrast with previous studies, epitope mapping and substitution scan on thousands of overlapping peptides printed on microchips revealed that mAbs MEM-E/02, MEM-E/07, and MEM-E/08 bind three distinct α1 and α2 domain epitopes. All three epitopes are linear since they span just 4-6 residues and are "hidden" in folded HLA-E heterodimers. They contain at least one HLA-E-specific residue that cannot be replaced by single substitutions with polymorphic HLA-A, HLA-B, HLA-C, HLA-F, and HLA-G residues. Finally, also the MEM-E/02 and 3D12 epitopes are spatially distinct. In summary, HLA-E-specific residues are dominantly immunogenic, but only when heavy chains are locally unfolded. Consequently, the available mAbs fail to selectively bind conformed HLA-E heterodimers, and HLA-E expression may have been inaccurately assessed in some previous oncology, reproductive immunology, virology, and transplantation studies.
Collapse
Affiliation(s)
- Elisa Tremante
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Lo Monaco
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | - Tiziano Ingegnere
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | - Camilla Sampaoli
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | - Rocco Fraioli
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|