201
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
202
|
Chen YS, Tu YC, Lai YC, Liu E, Yang YC, Kuo CC. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate. J Neurochem 2019; 153:549-566. [PMID: 31821563 DOI: 10.1111/jnc.14939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor channels are activated by glutamate (or NMDA) and glycine. The channels also undergo desensitization, which denotes decreased channel availability, after prolonged exposure to the activating ligands. Glycine apparently has a paradoxical negative effect on desensitization, as the increase in ambient glycine in concentrations required for channel activation would increase sustained NMDA receptor currents. We hypothesized that this classical "glycine-dependent desensitization" could be glycine-dependent activation in essence. By performing electrophysiological recordings and biophysical analyses with rat brain NMDA receptors heterogeneously expressed in Xenopus laevis oocytes, we characterized that the channel opened by "only" NMDA (in nominally glycine-free condition probably with the inevitable nanomolar glycine) would undergo a novel form of deactivation rather than desensitization, and is thus fully available for subsequent activation. Moreover, external tetrapentylammonium ions (TPentA), tetrabutylammonium ions, and tetrapropylammonium ions (TPA, in higher concentrations) block the pore and prohibit channel desensitization with a simple "foot-in-the-door" hindrance effect. TpentA and TPA have the same voltage dependence but show different flow dependence in binding affinity, revealing a common binding site at an electrical distance of ~0.7 from the outside yet differential involvement of the flux-coupling region in the external pore mouth. The smaller tetraethylammonium ion and the larger tetrahexylammonium and tetraheptylammonium ions may block the channel but could not affect desensitization. We conclude that NMDA receptor desensitization requires concomitant binding of both glycine and glutamate, and thus movement of both GluN1 and GluN2 subunits. Desensitization gate itself embodies a highly restricted pore reduction with a physical distance of ~4 Å from the charged nitrogen atom of bound tetraalkylammonium ions, and is located very close to the activation gate in the bundle-crossing region in the external pore vestibule.
Collapse
Affiliation(s)
- Yu-Shian Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chi Tu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Erin Liu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
203
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|
204
|
Johnson LR, Battle AR, Martinac B. Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci 2019; 13:533. [PMID: 31866826 PMCID: PMC6906178 DOI: 10.3389/fncel.2019.00533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
An increase in post-synaptic Ca2+ conductance through activation of the ionotropic N-methyl-D-aspartate receptor (NMDAR) and concomitant structural changes are essential for the initiation of long-term potentiation (LTP) and memory formation. Memories can be initiated by coincident events, as occurs in classical conditioning, where the NMDAR can act as a molecular coincidence detector. Binding of glutamate and glycine, together with depolarization of the postsynaptic cell membrane to remove the Mg2+ channel pore block, results in NMDAR opening for Ca2+ conductance. Accumulating evidence has implicated both force-from-lipids and protein tethering mechanisms for mechanosensory transduction in NMDAR, which has been demonstrated by both, membrane stretch and application of amphipathic molecules such as arachidonic acid (AA). The contribution of mechanosensitivity to memory formation and consolidation may be to increase activity of the NMDAR leading to facilitated memory formation. In this review we look back at the progress made toward understanding the physiological and pathological role of NMDA receptor channels in mechanobiology of the nervous system and consider these findings in like of their potential functional implications for memory formation. We examine recent studies identifying mechanisms of both NMDAR and other mechanosensitive channels and discuss functional implications including gain control of NMDA opening probability. Mechanobiology is a rapidly growing area of biology with many important implications for understanding form, function and pathology in the nervous system.
Collapse
Affiliation(s)
- Luke R Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
205
|
Das M, Du Y, Mortensen JS, Ramos M, Ghani L, Lee HJ, Bae HE, Byrne B, Guan L, Loland CJ, Kobilka BK, Chae PS. Trehalose-cored amphiphiles for membrane protein stabilization: importance of the detergent micelle size in GPCR stability. Org Biomol Chem 2019; 17:3249-3257. [PMID: 30843907 DOI: 10.1039/c8ob03153c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their importance in biology and medicinal chemistry, structural and functional studies of membrane proteins present major challenges. To study diverse membrane proteins, it is crucial to have the correct detergent to efficiently extract and stabilize the proteins from the native membranes for biochemical/biophysical downstream analyses. But many membrane proteins, particularly eukaryotic ones, are recalcitrant to stabilization and/or crystallization with currently available detergents and thus there are major efforts to develop novel detergents with enhanced properties. Here, a novel class of trehalose-cored amphiphiles are introduced, with multiple alkyl chains and carbohydrates projecting from the trehalose core unit are introduced. A few members displayed enhanced protein stabilization behavior compared to the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for multiple tested membrane proteins: (i) a bacterial leucine transporter (LeuT), (ii) the R. capsulatus photosynthetic superassembly, and (iii) the human β2 adrenergic receptor (β2AR). Due to synthetic convenience and their favourable behaviors for a range of membrane proteins, these agents have potential for membrane protein research. In addition, the detergent property-efficacy relationship discussed here will guide future design of novel detergents.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Endogenous formaldehyde is a memory-related molecule in mice and humans. Commun Biol 2019; 2:446. [PMID: 31815201 PMCID: PMC6884489 DOI: 10.1038/s42003-019-0694-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Gaseous formaldehyde is an organic small molecule formed in the early stages of earth’s evolution. Although toxic in high concentrations, formaldehyde plays an important role in cellular metabolism and, unexpectedly, is found even in the healthy brain. However, its pathophysiological functions in the brain are unknown. Here, we report that under physiological conditions, spatial learning activity elicits rapid formaldehyde generation from mitochondrial sarcosine dehydrogenase (SARDH). We find that elevated formaldehyde levels facilitate spatial memory formation by enhancing N-methyl-D-aspartate (NMDA) currents via the C232 residue of the NMDA receptor, but that high formaldehyde concentrations gradually inactivate the receptor by cross-linking NR1 subunits to NR2B. We also report that in mice with aldehyde dehydrogenase-2 (ALDH2) knockout, formaldehyde accumulation due to hypofunctional ALDH2 impairs memory, consistent with observations of Alzheimerʼs disease patients. We also find that formaldehyde deficiency caused by mutation of the mitochondrial SARDH gene in children with sarcosinemia or in mice with Sardh deletion leads to cognitive deficits. Hence, we conclude that endogenous formaldehyde regulates learning and memory via the NMDA receptor. Ai et al. report that endogenous formaldehyde bidirectionally modulates cognition via the NMDA-R receptor, with both insufficiency and overabundance resulting in cognitive defects. The target site of formaldehyde enhancing NMDA-currents is cysteine C232 residue in amino terminal domain sequence of the NR2B subunit of NMDA-R and excessive formaldehyde suppresses NMDA-R activity by cross-linking NR1 to NR2B residues.
Collapse
|
207
|
Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8:F1000 Faculty Rev-1940. [PMID: 31807283 PMCID: PMC6871362 DOI: 10.12688/f1000research.18949.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the GRIN genes that encode N-methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in GRIN2A and GRIN2B. Comparison of clinical phenotypes shows that GRIN2A variants are commonly associated with an epileptic phenotype but that GRIN2B variants are commonly found in patients with neurodevelopmental disorders. These observations emphasize the distinct roles that the gene products serve in circuit function and suggest that functional analysis of GRIN2A and GRIN2B variation may provide insight into the molecular mechanisms, which will allow more accurate subclassification of clinical phenotypes. Furthermore, characterization of the pharmacological properties of variant receptors could provide the first opportunity for translational therapeutic strategies for these GRIN-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Scott J Myers
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Hongjie Yuan
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, USA
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen F Traynelis
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Chian-Ming Low
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
208
|
Schreiber JA, Schepmann D, Frehland B, Thum S, Datunashvili M, Budde T, Hollmann M, Strutz-Seebohm N, Wünsch B, Seebohm G. A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Commun Biol 2019; 2:420. [PMID: 31754650 PMCID: PMC6858350 DOI: 10.1038/s42003-019-0645-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), especially GluN2B-containing NMDARs, are associated with neurodegenerative diseases like Parkinson, Alzheimer and Huntington based on their high Ca2+ conductivity. Overactivation leads to high intracellular Ca2+ concentrations and cell death rendering GluN2B-selective inhibitors as promising drug candidates. Ifenprodil represents the first highly potent prototypical, subtype-selective inhibitor of GluN2B-containing NMDARs. However, activity of ifenprodil on serotonergic, adrenergic and sigma receptors limits its therapeutic use. Structural reorganization of the ifenprodil scaffold to obtain 3-benzazepines retained inhibitory GluN2B activity but decreased the affinity at the mentioned non-NMDARs. While scaffold optimization improves the selectivity, the molecular inhibitory mechanism of these compounds is still not known. Here, we show a common inhibitory mechanism of ifenprodil and the related 3-benzazepines by mutational modifications of the receptor binding site, chemical modifications of the 3-benzazepine scaffold and subsequent in silico simulation of the inhibitory mechanism.
Collapse
Affiliation(s)
- Julian A. Schreiber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Bastian Frehland
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Simone Thum
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Maia Datunashvili
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University Münster, Münster, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Nathalie Strutz-Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University Münster, Münster, Germany
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| |
Collapse
|
209
|
Troutwine B, Park A, Velez‐Hernandez ME, Lew L, Mihic SJ, Atkinson NS. F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol‐Induced Behaviors in Drosophila. Alcohol Clin Exp Res 2019; 43:2480-2493. [DOI: 10.1111/acer.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Benjamin Troutwine
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | | | - Linda Lew
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - S. John Mihic
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Nigel S. Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| |
Collapse
|
210
|
Aleksandrova AA, Sarti E, Forrest LR. MemSTATS: A Benchmark Set of Membrane Protein Symmetries and Pseudosymmetries. J Mol Biol 2019; 432:597-604. [PMID: 31628944 DOI: 10.1016/j.jmb.2019.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
In membrane proteins, symmetry and pseudosymmetry often have functional or evolutionary implications. However, available symmetry detection methods have not been tested systematically on this class of proteins because of the lack of an appropriate benchmark set. Here we present MemSTATS, a publicly available benchmark set of both quaternary- and internal-symmetries in membrane protein structures. The symmetries are described in terms of order, repeated elements, and orientation of the axis with respect to the membrane plane. Moreover, using MemSTATS, we compare the performance of four widely used symmetry detection algorithms and highlight specific challenges and areas for improvement in the future.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
211
|
XiangWei W, Kannan V, Xu Y, Kosobucki GJ, Schulien AJ, Kusumoto H, Moufawad El Achkar C, Bhattacharya S, Lesca G, Nguyen S, Helbig KL, Cuisset JM, Fenger CD, Marjanovic D, Schuler E, Wu Y, Bao X, Zhang Y, Dirkx N, Schoonjans AS, Syrbe S, Myers SJ, Poduri A, Aizenman E, Traynelis SF, Lemke JR, Yuan H, Jiang Y. Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain 2019; 142:3009-3027. [PMID: 31504254 PMCID: PMC6763743 DOI: 10.1093/brain/awz232] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.
Collapse
Affiliation(s)
- Wenshu XiangWei
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gabrielle J Kosobucki
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Anthony J Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gaetan Lesca
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France; INSERM U1028, CNRS UMR5292, Paris, France
- Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France; Claude Bernard Lyon I University, Lyon, France
| | - Sylvie Nguyen
- Department of Pediatric Neurology, University Hospital of Lille, and Lille Reference Centre for Rare Epileptic Disorders, Lille, France
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Marie Cuisset
- Department of Pediatric Neurology, University Hospital of Lille, and Lille Reference Centre for Rare Epileptic Disorders, Lille, France
| | | | | | - Elisabeth Schuler
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ye Wu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Nina Dirkx
- Neurogenetics Group, University of Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Child Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Steffen Syrbe
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
212
|
N-terminal alternative splicing of GluN1 regulates the maturation of excitatory synapses and seizure susceptibility. Proc Natl Acad Sci U S A 2019; 116:21207-21212. [PMID: 31570583 DOI: 10.1073/pnas.1905721116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of NMDA receptors (NMDARs) in the brain are composed of 2 GluN1 and 2 GluN2 subunits. The inclusion or exclusion of 1 N-terminal and 2 C-terminal domains of GluN1 results in 8 splicing variants that exhibit distinct temporal and spatial patterns of expression and functional properties. However, previous functional analyses of Grin1 variants have been done using heterologous expression and the in vivo function of Grin1 splicing is unknown. Here we show that N-terminal splicing of GluN1 has important functions in the maturation of excitatory synapses. The inclusion of exon 5 of Grin1 is up-regulated in several brain regions such as the thalamus and neocortex. We find that deletion of Grin1 exon 5 disrupts the developmental remodeling of NMDARs in thalamic neurons and the effect is distinct from that of Grin2a (GluN2A) deletion. Deletion of Grin2a or exon 5 of Grin1 alone partially attenuates the shortening of NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) during early life, whereas deletion of both Grin2a and exon 5 of Grin1 completely abolishes the developmental change in NMDAR-EPSC decay time. Deletion of exon 5 of Grin1 leads to an overproduction of excitatory synapses in layer 5 pyramidal neurons in the cortex and increases seizure susceptibility in adult mice. Our findings demonstrate that N-terminal splicing of GluN1 has important functions in synaptic maturation and neuronal network excitability.
Collapse
|
213
|
Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics. Biomolecules 2019; 9:biom9100546. [PMID: 31569344 PMCID: PMC6843686 DOI: 10.3390/biom9100546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Aleš Balík
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| | - Ladislav Vyklický
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
214
|
Li J, Zhang J, Tang W, Mizu RK, Kusumoto H, XiangWei W, Xu Y, Chen W, Amin JB, Hu C, Kannan V, Keller SR, Wilcox WR, Lemke JR, Myers SJ, Swanger SA, Wollmuth LP, Petrovski S, Traynelis SF, Yuan H. De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat 2019; 40:2393-2413. [PMID: 31429998 DOI: 10.1002/humu.23895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Ruth K Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Johansen B Amin
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, New York
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie R Keller
- Division of Pediatric Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - William R Wilcox
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| | - Sharon A Swanger
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, New York
| | - Slavé Petrovski
- Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
215
|
Chatterjee S, Dutta C, Carrejo NC, Landes CF. Mechanistic Understanding of the Phosphorylation-Induced Conformational Rigidity at the AMPA Receptor C-terminal Domain. ACS OMEGA 2019; 4:14211-14218. [PMID: 31508543 PMCID: PMC6732983 DOI: 10.1021/acsomega.9b01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Phosphorylation at the intracellular C-terminal domain (CTD) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induces conformational rigidity. Such intracellular alterations to the AMPA receptor influence its functional responses, which are involved in multiple synaptic processes and neuronal signaling. The structure of the CTD still remains unresolved, which poses challenges toward providing a mechanism for the process of phosphorylation and deciphering the role of each phosphorylation step in causing the resultant conformational behavior. Herein, we utilize smFRET spectroscopy to understand the mechanism of phosphorylation, with the help of strategic point mutations that mimic phosphorylation. Our results reveal that first, phosphorylation at three target sites (S818, S831, and T840) is necessary for the change in the secondary structure of the existing disordered native sequence. Also, the results suggest that the formation of the tertiary structure through electrostatic interaction involving one specific phosphorylation site (S831) stabilizes the structure and renders conformational rigidity.
Collapse
Affiliation(s)
- Sudeshna Chatterjee
- Department
of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Chayan Dutta
- Department
of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Nicole C. Carrejo
- Department
of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
216
|
Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 2019; 175:1520-1532.e15. [PMID: 30500536 DOI: 10.1016/j.cell.2018.10.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.
Collapse
Affiliation(s)
- Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sandipan Chowdhury
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
217
|
Wagner M, Schepmann D, Ametamey SM, Wünsch B. Modification of the 4-phenylbutyl side chain of potent 3-benzazepine-based GluN2B receptor antagonists. Bioorg Med Chem 2019; 27:3559-3567. [PMID: 31255496 DOI: 10.1016/j.bmc.2019.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023]
Abstract
Excitotoxicity driven by overactivation of NMDA receptors represents a major mechanism of acute and chronic neurological and neurodegenerative disorders. Negative allosteric modulators interacting with the ifenprodil binding site of the NMDA receptor are able to interrupt this ongoing neurodamaging process. Starting from the potent 3-benzazepine-1,7-diol 4a novel NMDA receptor antagonists were designed by modification of the N-(4-phenylbutyl) side chain. With respect to developing novel fluorinated PET tracers, regioisomeric fluoroethoxy derivatives 11, 12, 14, and 15 were synthesized. Analogs 19 and 20 with various heteroaryl moieties at the end of the N-side chain were prepared by Sonogashira reaction and nucleophilic substitution. The fluoroethyl triazole 37 was obtained by 1,3-dipolar cycloaddition. In several new ligands, the flexibility of the (hetero)arylbutyl side chain was restricted by incorporation of a triple bond. The affinity towards the ifenprodil binding site was tested in an established competition assay using [3H]ifenprodil as radioligand. Introduction of a fluoroethoxy moiety at the terminal phenyl ring, replacement of the terminal phenyl ring by a heteroaryl ring and incorporation of a triple bond into the butyl spacer led to considerable reduction of GluN2B affinity. The phenol 15 (Ki = 193 nM) bearing a p-fluoroethoxy moiety at the terminal phenyl ring represents the most promising GluN2B ligand of this series of compounds. With exception of 15 showing moderate σ2 affinity (Ki = 79 nM), the interaction of synthesized 3-benzazepines towards the PCP binding site of the NMDA receptor, σ1 and σ2 receptors was rather low (Ki > 100 nM).
Collapse
Affiliation(s)
- Marina Wagner
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität Münster, Germany.
| |
Collapse
|
218
|
La DS, Salituro FG, Martinez Botella G, Griffin AM, Bai Z, Ackley MA, Dai J, Doherty JJ, Harrison BL, Hoffmann EC, Kazdoba TM, Lewis MC, Quirk MC, Robichaud AJ. Neuroactive Steroid N-Methyl-d-aspartate Receptor Positive Allosteric Modulators: Synthesis, SAR, and Pharmacological Activity. J Med Chem 2019; 62:7526-7542. [DOI: 10.1021/acs.jmedchem.9b00591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel S. La
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Andrew M. Griffin
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Zhu Bai
- Wuxi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Michael A. Ackley
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Jing Dai
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - James J. Doherty
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Boyd L. Harrison
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Ethan C. Hoffmann
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Tatiana M. Kazdoba
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael C. Lewis
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael C. Quirk
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Albert J. Robichaud
- SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
219
|
Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK, Chae PS. Self-Assembly Behavior and Application of Terphenyl-Cored Trimaltosides for Membrane-Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Chemistry 2019; 25:11545-11554. [PMID: 31243822 DOI: 10.1002/chem.201902468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/13/2023]
Abstract
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d-maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2 AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.,Current address: Department of Chemistry, Mirpur University of Science & Technology, Mirpur, AJK, 10250, Pakistan)
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Qianhui Qu
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Georgios Skiniotis
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
220
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
221
|
Jalali-Yazdi F, Gouaux E. NMDA Receptors' Structural Asymmetry. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1218-1219. [PMID: 32025192 PMCID: PMC7001661 DOI: 10.1017/s1431927619006822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
222
|
Zampieri D, Fortuna S, Calabretti A, Romano M, Menegazzi R, Schepmann D, Wünsch B, Collina S, Zanon D, Mamolo MG. Discovery of new potent dual sigma receptor/GluN2b ligands with antioxidant property as neuroprotective agents. Eur J Med Chem 2019; 180:268-282. [PMID: 31319263 DOI: 10.1016/j.ejmech.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
Abstract
Among several potential applications, sigma receptors (σRs) can be used as neuroprotective agents, antiamnesic, antipsychotics and against other neurodegenerative disorders. On the other hands, antagonists of the GluN2b-subunit-containing-N-methyl-D-aspartate (NMDA) receptors are of major interest for the same purpose, being this subunit expressed in specific areas of the central nervous system and responsible for the excitatory regulation of nerve cells. Under these premises, we have synthesized and biologically tested novel hybrid derivatives obtained from the combination of phenyloxadiazolone and dihydroquinolinone scaffolds with different amine moieties, peculiar of σ2R ligands. Most of the new ligands exhibited a pan-affinity towards both σR subtypes and high affinity against GluN2b subunit. The most promising compounds belong to the dihydroquinolinone series, with the best affinity profile for the cyclohexylpiperazine derivative 28. Investigation on their biological activity showed that the new compounds were able to protect SH-SY5Y cells against oxidative stress induced by hydrogen peroxide treatment. These results proved that our dual σR/GluN2b ligands have beneficial effects in a model of neuronal oxidative stress and can represent strong candidate pharmacotherapeutic agents for minimizing oxidative stress-induced neuronal injuries.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1- Via Giorgieri 1, University of Trieste, 34127, Trieste, Italy.
| | - Sara Fortuna
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1- Via Giorgieri 1, University of Trieste, 34127, Trieste, Italy. http://sarafortuna.eu/
| | - Antonella Calabretti
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1- Via Giorgieri 1, University of Trieste, 34127, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28/1, University of Trieste, 34127 Trieste, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, Via Valerio 28/1, University of Trieste, 34127 Trieste, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Viale Taramelli 6 and 12, University of Pavia, 27100, Pavia, Italy
| | - Davide Zanon
- Pharmacy and Clinical Pharmacology Department Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Maria Grazia Mamolo
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1- Via Giorgieri 1, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
223
|
Poulie CBM, Alcaide A, Krell-Jørgensen M, Larsen Y, Astier E, Bjørn-Yoshimoto WE, Yi F, Syrenne JT, Storgaard M, Nielsen B, Frydenvang KA, Jensen AA, Hansen KB, Pickering DS, Bunch L. Design and Synthesis of 2,3- trans-Proline Analogues as Ligands for Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters. ACS Chem Neurosci 2019; 10:2989-3007. [PMID: 31124660 DOI: 10.1021/acschemneuro.9b00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Development of pharmacological tools for the ionotropic glutamate receptors (iGluRs) is imperative for the study and understanding of the role and function of these receptors in the central nervous system. We report the synthesis of 18 analogues of (2 S,3 R)-2-carboxy-3-pyrrolidine acetic acid (3a), which explores the effect of introducing a substituent on the ε-carbon (3c-q). A new synthetic method was developed for the efficient synthesis of racemic 3a and applied to give expedited access to 13 racemic analogues of 3a. Pharmacological characterization was carried out at native iGluRs, cloned homomeric kainate receptors (GluK1-3), NMDA receptors (GluN1/GluN2A-D), and excitatory amino acid transporters (EAAT1-3). From the structure-activity relationship studies, several new ligands emerged, exemplified by triazole 3p-d1, GluK3-preferring (GluK1/GluK3 Ki ratio of 15), and the structurally closely related tetrazole 3q-s3-4 that displayed 4.4-100-fold preference as an antagonist for the GluN1/GluN2A receptor ( Ki = 0.61 μM) over GluN1/GluN2B-D ( Ki = 2.7-62 μM).
Collapse
Affiliation(s)
- Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anna Alcaide
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mikkel Krell-Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Younes Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Eloi Astier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Jed T. Syrenne
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Morten Storgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Karla A. Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kasper B. Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Darryl S. Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
224
|
Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, Santos-Gómez A, Locubiche S, Gómez de Salazar M, García-Díaz R, Gratacòs-Batlle E, Ramos-Vicente D, Chu-Van E, Colsch B, Fernández-Dueñas V, Ciruela F, Bayés À, Sindreu C, López-Sala A, García-Cazorla À, Altafaj X. l-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal 2019; 12:12/586/eaaw0936. [DOI: 10.1126/scisignal.aaw0936] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autosomal dominant mutations in GRIN2B are associated with severe encephalopathy, but little is known about the pathophysiological outcomes and any potential therapeutic interventions. Genetic studies have described the association between de novo mutations of genes encoding the subunits of the N-methyl-d-aspartate receptor (NMDAR) and severe neurological conditions. Here, we evaluated a missense mutation in GRIN2B, causing a proline-to-threonine switch (P553T) in the GluN2B subunit of NMDAR, which was found in a 5-year-old patient with Rett-like syndrome with severe encephalopathy. Structural molecular modeling predicted a reduced pore size of the mutant GluN2B-containing NMDARs. Electrophysiological recordings in a HEK-293T cell line expressing the mutated subunit confirmed this prediction and showed an associated reduced glutamate affinity. Moreover, GluN2B(P553T)-expressing primary murine hippocampal neurons showed decreased spine density, concomitant with reduced NMDA-evoked currents and impaired NMDAR-dependent insertion of the AMPA receptor subunit GluA1 at stimulated synapses. Furthermore, the naturally occurring coagonist d-serine restored function to GluN2B(P553T)-containing NMDARs. l-Serine dietary supplementation of the patient was hence initiated, resulting in the increased abundance of d-serine in the plasma and brain. The patient has shown notable improvements in motor and cognitive performance and communication after 11 and 17 months of l-serine dietary supplementation. Our data suggest that l-serine supplementation might ameliorate GRIN2B-related severe encephalopathy and other neurological conditions caused by glutamatergic signaling deficiency.
Collapse
|
225
|
Wu M, Katti P, Zhao Y, Peoples RW. Positions in the N-methyl-D-aspartate Receptor GluN2C Subunit M3 and M4 Domains Regulate Alcohol Sensitivity and Receptor Kinetics. Alcohol Clin Exp Res 2019; 43:1180-1190. [PMID: 30964201 PMCID: PMC6551259 DOI: 10.1111/acer.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol alters synaptic transmission in the brain. The N-methyl-D-aspartate (NMDA) receptor (NMDAR), a subtype of glutamate-gated ion channel, is an important synaptic target of alcohol in the brain. We and others have previously identified 4 alcohol-sensitive positions in the third and fourth membrane-associated (M) domains, designated M31-2 and M41-2 , of the GluN1, GluN2A, and GluN2B NMDAR subunits. In the present study, we tested whether the corresponding positions in the GluN2C subunit also regulate alcohol sensitivity and ion channel gating. METHODS We performed alanine- and tryptophan-scanning mutagenesis in the GluN2C subunit followed by expression in HEK 293 cells and electrophysiological patch-clamp recording. RESULTS Alanine substitution at the M31 (F634) and M41-2 (M821 and M823) positions did not alter ethanol (EtOH) sensitivity, whereas substitution of alanine at the M32 position (F635) yielded nonfunctional receptors. Tryptophan substitution at the M31-2 positions did not change EtOH sensitivity, whereas tryptophan substitution at the M41 position increased, and at the M42 position decreased, EtOH sensitivity. The increased EtOH sensitivity of the tryptophan mutant at M41 is in marked contrast to previous results observed in the GluN2A and GluN2B subunits. In addition, this mutant exhibited increased desensitization, but to a much lesser extent compared to the corresponding mutations in GluN2A and GluN2B. A series of mutations at M41 altered EtOH sensitivity, glutamate potency, and desensitization. Seven amino acid substitutions (of 15 tested) at this position yielded nonfunctional receptors. Among the remaining mutants at M41 , EtOH sensitivity was not significantly correlated with hydrophobicity, molecular volume, or polarity of the substituent, or with glutamate EC50 values, but was correlated with maximal steady-state-to-peak current ratio, a measure of desensitization. CONCLUSIONS The identity and characteristics of alcohol-sensitive positions in the GluN2C subunit differ from those previously reported for GluN2A and GluN2B subunits, despite the high homology among these subunits.
Collapse
Affiliation(s)
- Man Wu
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881
- Present address: Department of Neuroscience, University of Pittsburgh, 461 Crawford Hall, Pittsburgh, PA 15260
| | | | - Yulin Zhao
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881
- Present address: Laboratory of Membrane Excitability and Disease, Mount Sinai School of Medicine, 1425 Madison Avenue, ICAHN 9-26, 28, New York, NY 10029
| | - Robert W. Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
226
|
Herguedas B, Watson JF, Ho H, Cais O, García-Nafría J, Greger IH. Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8. Science 2019; 364:science.aav9011. [PMID: 30872532 PMCID: PMC6513756 DOI: 10.1126/science.aav9011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/04/2019] [Indexed: 11/02/2022]
Abstract
AMPA-type glutamate receptors (AMPARs) mediate excitatory neurotransmission and are central regulators of synaptic plasticity, a molecular mechanism underlying learning and memory. Although AMPARs act predominantly as heteromers, structural studies have focused on homomeric assemblies. Here, we present a cryo-electron microscopy structure of the heteromeric GluA1/2 receptor associated with two transmembrane AMPAR regulatory protein (TARP) γ8 auxiliary subunits, the principal AMPAR complex at hippocampal synapses. Within the receptor, the core subunits arrange to give the GluA2 subunit dominant control of gating. This structure reveals the geometry of the Q/R site that controls calcium flux, suggests association of TARP-stabilized lipids, and demonstrates that the extracellular loop of γ8 modulates gating by selectively interacting with the GluA2 ligand-binding domain. Collectively, this structure provides a blueprint for deciphering the signal transduction mechanisms of synaptic AMPARs.
Collapse
Affiliation(s)
- Beatriz Herguedas
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| | - Jake F Watson
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Ondrej Cais
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | - Ingo H Greger
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
227
|
Sainas S, Temperini P, Farnsworth JC, Yi F, Møllerud S, Jensen AA, Nielsen B, Passoni A, Kastrup JS, Hansen KB, Boschi D, Pickering DS, Clausen RP, Lolli ML. Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. J Med Chem 2019; 62:4467-4482. [PMID: 30943028 DOI: 10.1021/acs.jmedchem.8b01986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a series of glutamate and aspartate analogues designed using the hydroxy-1,2,3-triazole moiety as a bioisostere for the distal carboxylic acid. Compound 6b showed unprecedented selectivity among ( S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtypes, confirmed also by an unusual binding mode observed for the crystal structures in complex with the AMPA receptor GluA2 agonist-binding domain. Here, a methionine (Met729) was highly disordered compared to previous agonist-bound structures. This observation provides a possible explanation for the pharmacological profile. In the structure with 7a, an unusual organization of water molecules around the bioisostere arises compared to previous structures of ligands with other bioisosteres. Aspartate analogue 8 with the hydroxy-1,2,3-triazole moiety directly attached to glycine was unexpectedly able to activate both the glutamate and glycine agonist-binding sites of the N-methyl-d-aspartic acid receptor. These observations demonstrate novel features that arise when employing a hydroxytriazole moiety as a bioisostere for the distal carboxylic acid in glutamate receptor agonists.
Collapse
Affiliation(s)
- Stefano Sainas
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Piero Temperini
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Jill C Farnsworth
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Stine Møllerud
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Alice Passoni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , via La Masa 19 , 20156 Milan , Italy
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Donatella Boschi
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Marco L Lolli
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| |
Collapse
|
228
|
Börgel F, Galla F, Lehmkuhl K, Schepmann D, Ametamey SM, Wünsch B. Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold. J Pharm Biomed Anal 2019; 172:214-222. [PMID: 31060034 DOI: 10.1016/j.jpba.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
Abstract
Recently, the eutomers of highly potent GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold were identified. Herein, pharmacokinetic properties regarding lipophilicity, plasma protein binding (PPB) and metabolism are analyzed. The logD7.4 values of 1.68 for phenol 1 and 2.46 for methyl ether 2 are in a very good range for CNS agents. A very similar logD7.4 value was recorded for the prototypical GluN2B antagonist ifenprodil (logD7.4 = 1.49). The herein developed high performance affinity chromatography (HPAC) method using human serum albumin as stationary phase led to PPB of 3-benzazepines (R)-1-3 and (S)-1-3 of 76-98%. Upon incubation with mouse liver microsomes, (R)-1-3 and (S)-1-3 showed moderate to high metabolic stability. The (R)-configured eutomers turned out to be metabolically more stable than their (S)-configured distomers. During phase I metabolism of 3-benzazepines 1-3 hydroxylations at both aromatic rings, the aliphatic side chain and the seven-membered ring were observed. O-demethylation of methyl ether (S)-2 was faster than O-demethylation of its enantiomer (R)-2. In phase I biotransformation the phenol eutomer (R)-1 showed comparable stability as ifenprodil. In phase II biotransformation, glucuronidation of the phenolic (only 1) and benzylic hydroxy groups was observed. Both enantiomers formed the same type of metabolites, respectively, but in different amounts. Whereas, the benzylic hydroxy group of (R)-2 was glucuronidated preferably, predominant benzylic glucuronidation of (S)-3 was detected. Mouse liver microsomes produced the glucuronide of phenol 1 (main metabolite) in larger amounts than rat liver microsomes.
Collapse
Affiliation(s)
- Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Fabian Galla
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
229
|
Zhao Y, Chen S, Swensen AC, Qian WJ, Gouaux E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 2019; 364:355-362. [PMID: 30975770 DOI: 10.1126/science.aaw8250] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Glutamate-gated AMPA receptors mediate the fast component of excitatory signal transduction at chemical synapses throughout all regions of the mammalian brain. AMPA receptors are tetrameric assemblies composed of four subunits, GluA1-GluA4. Despite decades of study, the subunit composition, subunit arrangement, and molecular structure of native AMPA receptors remain unknown. Here we elucidate the structures of 10 distinct native AMPA receptor complexes by single-particle cryo-electron microscopy (cryo-EM). We find that receptor subunits are arranged nonstochastically, with the GluA2 subunit preferentially occupying the B and D positions of the tetramer and with triheteromeric assemblies comprising a major population of native AMPA receptors. Cryo-EM maps define the structure for S2-M4 linkers between the ligand-binding and transmembrane domains, suggesting how neurotransmitter binding is coupled to ion channel gating.
Collapse
Affiliation(s)
- Yan Zhao
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Shanshuang Chen
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Adam C Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. .,Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
230
|
Corsi L, Mescola A, Alessandrini A. Glutamate Receptors and Glioblastoma Multiforme: An Old "Route" for New Perspectives. Int J Mol Sci 2019; 20:ijms20071796. [PMID: 30978987 PMCID: PMC6479730 DOI: 10.3390/ijms20071796] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant tumor of the central nervous system, with poor survival in both treated and untreated patients. Recent studies began to explain the molecular pathway, comprising the dynamic structural and mechanical changes involved in GBM. In this context, some studies showed that the human glioblastoma cells release high levels of glutamate, which regulates the proliferation and survival of neuronal progenitor cells. Considering that cancer cells possess properties in common with neural progenitor cells, it is likely that the functions of glutamate receptors may affect the growth of cancer cells and, therefore, open the road to new and more targeted therapies.
Collapse
Affiliation(s)
- Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy.
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
- Department of Physics, Informatics e Mathematics, Via G. Campi 213/a, 41125 Modena, Italy.
| |
Collapse
|
231
|
Wilding TJ, Huettner JE. Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing. J Gen Physiol 2019; 151:435-451. [PMID: 30498132 PMCID: PMC6445585 DOI: 10.1085/jgp.201812234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 02/04/2023] Open
Abstract
Kainate receptors are ligand-gated ion channels that have two major roles in the central nervous system: they mediate a postsynaptic component of excitatory neurotransmission at some glutamatergic synapses and modulate transmitter release at both excitatory and inhibitory synapses. Accumulating evidence implicates kainate receptors in a variety of neuropathologies, including epilepsy, psychiatric disorders, developmental delay, and cognitive impairment. Here, to gain a deeper understanding of the conformational changes associated with agonist binding and channel opening, we generate a series of Cys substitutions in the GluK2 kainate receptor subunit, focusing on the M3 helices that line the ion pore and form the bundle-crossing gate at the extracellular mouth of the channel. Exposure to 50 µM Cd produces direct activation of homomeric mutant channels bearing Cys substitutions in (A657C), or adjacent to (L659C), the conserved SYTANLAAF motif. Activation by Cd is occluded by modification with 2-aminoethyl MTS (MTSEA), indicating that Cd binds directly and specifically to the substituted cysteines. Cd potency for the A657C mutation (EC50 = 10 µM) suggests that binding involves at least two coordinating residues, whereas weaker Cd potency for L659C (EC50 = 2 mM) implies that activation does not require tight coordination by multiple side chains for this substitution. Experiments with heteromeric and chimeric channels indicate that activation by Cd requires Cys substitution at only two of the four subunits within a tetrameric receptor and that activation is similar for substitution within subunits in either the A/C or B/D conformations. We develop simple kinetic models for the A657C substitution that reproduce several features of Cd activation as well as the low-affinity inhibition observed at higher Cd concentrations (5-20 mM). Together, these results demonstrate rapid and reversible channel activation, independent of agonist site occupancy, upon Cd binding to Cys side chains at two specific locations along the GluK2 inner helix.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
232
|
Abstract
Pain management is complex regardless of whether the pain is acute or chronic in nature or non-cancer or cancer related. In addition, relatively few pain pharmacotherapy options with adequate efficacy and safety data currently exist. Consequently, interest in the role of NMDA receptor antagonists as a pharmacological pain management strategy has surfaced. This narrative review provides an overview of the NMDA receptor and elaborates on the pharmacotherapeutic profile and pain management literature findings for the following NMDA receptor antagonists: ketamine, memantine, dextromethorphan, and magnesium. The literature on this topic is characterized by small studies, many of which exhibit methodological flaws. To date, ketamine is the most studied NMDA receptor antagonist for both acute and chronic pain management. Although further research about NMDA receptor antagonists for analgesia is needed and the optimal dosage/administration regimens for these drugs have yet to be determined, ketamine appears to hold the most promise and may be of particular value in the perioperative pain management realm.
Collapse
|
233
|
Schönrock M, Thiel G, Laube B. Coupling of a viral K +-channel with a glutamate-binding-domain highlights the modular design of ionotropic glutamate-receptors. Commun Biol 2019; 2:75. [PMID: 30820470 PMCID: PMC6385376 DOI: 10.1038/s42003-019-0320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neuronal signaling in the mammalian CNS. These receptors are critically involved in diverse physiological processes; including learning and memory formation, as well as neuronal damage associated with neurological diseases. Based on partial sequence and structural similarities, these complex cation-permeable iGluRs are thought to descend from simple bacterial proteins emerging from a fusion of a substrate binding protein (SBP) and an inverted potassium (K+)-channel. Here, we fuse the pore module of the viral K+-channel KcvATCV-1 to the isolated glutamate-binding domain of the mammalian iGluR subunit GluA1 which is structural homolog to SBPs. The resulting chimera (GluATCV*) is functional and displays the ligand recognition characteristics of GluA1 and the K+-selectivity of KcvATCV-1. These results are consistent with a conserved activation mechanism between a glutamate-binding domain and the pore-module of a K+-channel and support the expected phylogenetic link between the two protein families.
Collapse
Affiliation(s)
- Michael Schönrock
- Department of Biology, Neurophysiology and Neurosensory Systems, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, Plant Membrane Biophysics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Bodo Laube
- Department of Biology, Neurophysiology and Neurosensory Systems, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
| |
Collapse
|
234
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
235
|
Dissecting diverse functions of NMDA receptors by structural biology. Curr Opin Struct Biol 2019; 54:34-42. [PMID: 30703613 DOI: 10.1016/j.sbi.2018.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels, which are critically involved in brain development, learning and memory, cognition, as well as a number of neurological diseases and disorders. Structural biology of NMDARs has been challenging due to technical difficulties associated with assembling a number of different membrane protein subunits. Here, we review historical X-ray crystallographic studies on isolated extracellular domains, which are still the most effective mean to delineate compound binding modes, as well as the most recent studies using electron cryo-microscopy (cryo-EM). A number of NMDAR structures accumulated over the past 15 years provide insights into the hetero-tetrameric assembly pattern, pharmacological specificities elicited by subtypes and alternative splicing, and potential patterns of conformational dynamics; however, many more important unanswered questions remain.
Collapse
|
236
|
Regan MC, Zhu Z, Yuan H, Myers SJ, Menaldino DS, Tahirovic YA, Liotta DC, Traynelis SF, Furukawa H. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat Commun 2019; 10:321. [PMID: 30659174 PMCID: PMC6338780 DOI: 10.1038/s41467-019-08291-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Context-dependent inhibition of N-methyl-D-aspartate (NMDA) receptors has important therapeutic implications for the treatment of neurological diseases that are associated with altered neuronal firing and signaling. This is especially true in stroke, where the proton concentration in the afflicted area can increase by an order of magnitude. A class of allosteric inhibitors, the 93-series, shows greater potency against GluN1-GluN2B NMDA receptors in such low pH environments, allowing targeted therapy only within the ischemic region. Here we map the 93-series compound binding site in the GluN1-GluN2B NMDA receptor amino terminal domain and show that the interaction of the N-alkyl group with a hydrophobic cage of the binding site is critical for pH-dependent inhibition. Mutation of residues in the hydrophobic cage alters pH-dependent potency, and remarkably, can convert inhibitors into potentiators. Our study provides a foundation for the development of highly specific neuroprotective compounds for the treatment of neurological diseases. Context-dependent inhibition of NMDA receptors has important therapeutic implications for treatment of neurological diseases. Here, the authors use structural biology and biophysics to describe the basis for pH-dependent inhibition for a class of allosteric NMDAR inhibitors, called the 93-series.
Collapse
Affiliation(s)
- Michael C Regan
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zongjian Zhu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dave S Menaldino
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
237
|
Noori HR, Mücksch C, Urbassek HM. Ethanol-induced conformational fluctuations of NMDA receptors. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1504135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hamid R. Noori
- Neuronal Convergence Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christian Mücksch
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | - Herbert M. Urbassek
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
238
|
Staley EM, Jamy R, Phan AQ, Figge DA, Pham HP. N-Methyl-d-aspartate Receptor Antibody Encephalitis: A Concise Review of the Disorder, Diagnosis, and Management. ACS Chem Neurosci 2019; 10:132-142. [PMID: 30134661 DOI: 10.1021/acschemneuro.8b00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Anti-NMDA ( N-methyl-d-aspartate) receptor (anti-NMDAR) encephalitis is one of the most common paraneoplastic encephalitides. It occurs in both sexes, across all age ranges, and may occur in the presence or absence of an associated tumor. Its pathogenesis and clinical presentation relate to the presence of IgG1 or IgG3 antibodies targeting the NR1 subunit of the NMDA receptor, leading to a disinhibition of neuronal excitatory pathways. Initial clinical manifestations may be nonspecific, resembling a viral-like illness; however, with disease progression, symptoms can become quite severe, including prominent psychiatric features, cognitive problems, motor dysfunction, and autonomic instability. Anti-NMDAR encephalitis may even result in death in severe untreated cases. Diagnosis can be challenging, given that initial laboratory and radiographic results are typically nonspecific. The majority of patients respond to first or second-line treatments, although therapeutic options remain limited, usually consisting of tumor removal (if there is confirmation of an underlying malignancy) in conjunction with prompt initiation of immunosuppressive medications along with intravenous immunoglobulins and/or plasma exchange. Although the clinical presentation of anti-NMDAR encephalitis overlaps with several other more common neurological and psychiatric disorders, early diagnosis and treatment is essential for a positive prognosis. Here, we concisely review the pathogenesis, diagnosis, and clinical management of this disease.
Collapse
Affiliation(s)
- Elizabeth M. Staley
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Rabia Jamy
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35249, United States
| | - Allan Q. Phan
- Doctor of Medicine Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - David A. Figge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35249, United States
| | - Huy P. Pham
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
239
|
Chatterjee S, Ade C, Nurik CE, Carrejo NC, Dutta C, Jayaraman V, Landes CF. Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors. J Phys Chem B 2019; 123:130-137. [PMID: 30537817 DOI: 10.1021/acs.jpcb.8b10749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intracellular C-terminal domain (CTD) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor undergoes phosphorylation at specific locations during long-term potentiation. This modification enhances conductance through the AMPA receptor ion channel and thus potentially plays a crucial role in modulating receptor trafficking and signaling. However, because the CTD structure is largely unresolved, it is difficult to establish if phosphorylation induces conformational changes that might play a role in enhancing channel conductance. Herein, we utilize single-molecule Förster resonance energy transfer (smFRET) spectroscopy to probe the conformational changes of a section of the AMPA receptor CTD, under the conditions of point-mutated phosphomimicry. Multiple analysis algorithms fail to identify stable conformational states within the smFRET distributions, consistent with a lack of well-defined secondary structure. Instead, our results show that phosphomimicry induces conformational rigidity to the CTD, and such rigidity is electrostatically tunable.
Collapse
Affiliation(s)
- Sudeshna Chatterjee
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Carina Ade
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Caitlin E Nurik
- Department of Biochemistry and Molecular Biology , University of Texas Health Medical School , Houston , Texas 77005 , United States
| | - Nicole C Carrejo
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Chayan Dutta
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology , University of Texas Health Medical School , Houston , Texas 77005 , United States
| | - Christy F Landes
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States.,Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
240
|
Campos-Rodríguez C, Trujillo-Ferrara JG, Alvarez-Guerra A, Vargas IMC, Cuevas-Hernández RI, Andrade-Jorge E, Zamudio S, Juan ERS. Neuropharmacological Screening of Chiral and Non-chiral Phthalimide- Containing Compounds in Mice: in vivo and in silico Experiments. Med Chem 2019; 15:102-118. [DOI: 10.2174/1573406414666180525082038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/03/2018] [Accepted: 05/20/2018] [Indexed: 11/22/2022]
Abstract
Background:
Thalidomide, the first synthesized phthalimide, has demonstrated sedative-
hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides
have an interesting chemical structure that confers important biological properties.
Objective:
Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral
phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic
and anticonvulsant effects were tested.
Method:
Homology modeling and molecular docking were employed to predict recognition of the
analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the
open field test and elevated plus maze (EPM). The compounds were tested in mouse models of
acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP;
10 mg/kg).
Results:
The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased
locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased
locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg,
and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ
model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP
and R-TASP (316 mg/kg) lowered the convulsive and death rate.
Conclusion:
The chiral compounds exhibited a non-competitive NMDAR antagonist profile and
the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity
for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to
be supported by the in silico studies, which evidenced a high affinity of phthalimides for the
hNMDAR and mGluR type 1.
Collapse
Affiliation(s)
- Carolina Campos-Rodríguez
- Physiology Department, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico City, Mexico
| | - José G. Trujillo-Ferrara
- Medicinal Biochemistry Department, Escuela Superior de Medicina Instituto Politecnico Nacional, Unidad Profesional Lázaro Cardenas del Río, Mexico City, Mexico
| | - Ameyali Alvarez-Guerra
- Physiology Department, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico City, Mexico
| | - Irán M. Cumbres Vargas
- Physiology Department, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico City, Mexico
| | - Roberto I. Cuevas-Hernández
- Medicinal Biochemistry Department, Escuela Superior de Medicina Instituto Politecnico Nacional, Unidad Profesional Lázaro Cardenas del Río, Mexico City, Mexico
| | - Erik Andrade-Jorge
- Medicinal Biochemistry Department, Escuela Superior de Medicina Instituto Politecnico Nacional, Unidad Profesional Lázaro Cardenas del Río, Mexico City, Mexico
| | - Sergio Zamudio
- Physiology Department, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico City, Mexico
| | - Eduardo R.-S. Juan
- Physiology Department, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico City, Mexico
| |
Collapse
|
241
|
Fasipe O, Akhideno P, Owhin O, Ibiyemi-Fasipe O. Announcing the first novel class of rapid-onset antidepressants in clinical practice. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_36_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
242
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
243
|
Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Structure 2018; 27:241-252.e3. [PMID: 30528594 DOI: 10.1016/j.str.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules. We demonstrate the applicability of druggability simulations by faithfully identifying known agonist and modulator sites on AMPA receptors (AMPARs) and NMDA receptors. Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response to agonist. We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain (NTD), resulting from its unique conformational flexibility that we explored further with crystal structures trapped in vastly different states. In addition to providing an in-depth analysis into iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of pharmacophoric features toward novel iGluR modulators.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Beatriz Herguedas
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Javier García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anindita Dutta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Saher A Shaikh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
244
|
Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Cell Rep 2018; 25:3582-3590.e4. [DOI: 10.1016/j.celrep.2018.11.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
|
245
|
Wells G, Yuan H, McDaniel MJ, Kusumoto H, Snyder JP, Liotta DC, Traynelis SF. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins 2018; 86:1265-1276. [PMID: 30168177 PMCID: PMC6774441 DOI: 10.1002/prot.25595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/17/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are transmembrane glutamate-binding ion channels that mediate neurotransmission in mammals. NMDA receptor subunits are tetrameric complexes of GluN1 and GluN2A-D subunits, encoded by the GRIN gene family. Of these subunits, GluN2B is suggested to be required for normal development of the central nervous system. A mutation identified in a patient with developmental delay, E413G, resides in the GluN2B ligand-binding domain and substantially reduces glutamate potency by an unknown mechanism. GluN2B Gly413, though near the agonist, is not in van der Waals contact with glutamate. Visual analysis of the GluN2B structure with the E413G mutation modeled suggests that replacement of Glu with Gly at this position increases solvent access to the ligand-binding domain. This was confirmed by molecular modeling, which showed that the ligand is more mobile in GluN2B-E413G than WT GluN2B. Evaluation of agonist occupancy using random accelerated molecular dynamics (RAMD) simulations predicts that the glutamate exits the binding-site more rapidly for GluN2B-E413G than WT receptors. This analysis was extended to other binding-site mutations, which produced qualitative agreement between experimentally determined EC50 values, deactivation time constants, and ligand motion within the binding-site. Furthermore, long sub-microsecond molecular dynamics simulations of the bi-lobed ligand-binding domain revealed that it adopted a cleft-open ligand-free state more often for GluN2B-E413G than wild-type GluN2B. This is consistent with the idea that L-glutamate binding is altered such that the ligand-binding domain occupies the open-cleft conformation associated with the closed channel.
Collapse
Affiliation(s)
- Gordon Wells
- African Health Research Institute, Steyn Lab, K-RITH Tower, Nelson R. Mandela Medical School, Durban, South Africa
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Hongjie Yuan
- Department of Pharmacology, Emory University, Atlanta, Georgia
| | | | | | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
246
|
Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Del-Ben CM, Louzada-Junior P. Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophr Res 2018; 202:55-63. [PMID: 29935886 DOI: 10.1016/j.schres.2018.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been largely implicated in the neurobiology of schizophrenia and other psychosis. Aiming to evaluate their potential as peripheral biomarkers for psychosis, we quantified the plasma concentrations of NR1 and NR2 NMDAR subunits of first-episode psychosis patients in their first contact with mental health services due to psychotic symptoms, compared with siblings and matched community-based controls. METHODS The quantifications of NR1 and NR2 plasma concentrations were performed by ELISA. Data were analysed by nonparametric tests and Receiver Operating Curve (ROC) analysis. RESULTS We included 166 first-episode psychosis patients (mean age = 30.3 ± 12.2 years; 64% men), with the diagnosis of schizophrenia spectrum (n = 84), bipolar disorder (n = 51) and psychotic depression (n = 31), 76 siblings (mean age = 31.5 ± 11.0 years; 30.3% men) and 166 healthy community-based controls (mean age = 31.4 ± 12.0 years; 63.9% men). NMDAR subunits were significantly lower in patients compared with siblings and controls (p < 0.001), except by NR1 plasma concentrations of bipolar patients compared with siblings and controls. NR1 plasma concentrations lower than 17.65 pg/ml (AUC = 0.621) showed sensitivity of 42.8%, specificity of 84.3%, positive predictive value (PPV) of 73.2% and negative predictive value (NPV) of 59.6%. Individuals with NR2 plasma concentrations lower than 2.92 ng/ml (AUC = 0.801) presented a 10.61-fold increased risk of psychosis, with a sensibility of 71.9%, specificity of 80.6%, PPV of 79.0% and NPV of 73.9%. CONCLUSIONS This is the first study reporting the measurement and the reduction of NR1 and NR2 NMDAR subunits plasma concentrations in psychiatric disorders. In particular, the NR2 subunit may be a possible plasma biomarker for psychosis.
Collapse
Affiliation(s)
- C M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - R Shuhama
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - H A Fachim
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil; Institute of Neuroscience and Behaviour- INeC, Ribeirão Preto, São Paulo, Brazil
| | - P R Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - C M Del-Ben
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - P Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
247
|
Ramos-Vicente D, Ji J, Gratacòs-Batlle E, Gou G, Reig-Viader R, Luís J, Burguera D, Navas-Perez E, García-Fernández J, Fuentes-Prior P, Escriva H, Roher N, Soto D, Bayés À. Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. eLife 2018; 7:e35774. [PMID: 30465522 PMCID: PMC6307864 DOI: 10.7554/elife.35774] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Jie Ji
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Gemma Gou
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Javier Luís
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Demian Burguera
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Enrique Navas-Perez
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Jordi García-Fernández
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Pablo Fuentes-Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes MarinsBanyuls-sur-MerFrance
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Àlex Bayés
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
248
|
Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chem Neurosci 2018; 9:2722-2730. [PMID: 29767953 DOI: 10.1021/acschemneuro.8b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Matthew B. Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Lara León-García
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X. Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - David Soto
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
249
|
Neubert F, Beliu G, Terpitz U, Werner C, Geis C, Sauer M, Doose S. Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Franziska Neubert
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| | - Christian Geis
- Hans-Berger Department of Neurology; Center for Sepsis Control and Care (CSCC); Jena University Hospital; Am Klinikum 1 07747 Jena Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics; University of Würzburg; Biocenter; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
250
|
Neubert F, Beliu G, Terpitz U, Werner C, Geis C, Sauer M, Doose S. Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging. Angew Chem Int Ed Engl 2018; 57:16364-16369. [PMID: 30347512 DOI: 10.1002/anie.201808951] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/15/2018] [Indexed: 12/20/2022]
Abstract
Super-resolution microscopy requires small fluorescent labels. We report the application of genetic code expansion in combination with bioorthogonal click chemistry to label the NR1 domain of the NMDA receptor. We generated NR1 mutants incorporating an unnatural amino acid at various positions in order to attach small organic fluorophores such as Cy5-tetrazine site-specifically to the extracellular domain of the receptor. Mutants were optimized with regard to protein expression, labeling efficiency and receptor functionality as tested by fluorescence microscopy and whole-cell patch clamp. The results show that bioorthogonal click chemistry in combination with small organic dyes is superior to available immunocytochemistry protocols for receptor labeling in live and fixed cells and enables single-molecule sensitive super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Franziska Neubert
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|